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Abstract. Gist is a tool that (a) solves the qualitative analysis problem
of turn-based probabilistic games with ω-regular objectives; and (b) syn-
thesizes reasonable environment assumptions for synthesis of unrealizable
specifications. Our tool provides the first and efficient implementations
of several reduction-based techniques to solve turn-based probabilistic
games, and uses the analysis of turn-based probabilistic games for syn-
thesizing environment assumptions for unrealizable specifications.

1 Introduction

Gist (Game solver from IST) is a tool for (a) qualitative analysis of turn-based
probabilistic games (21/2-player games) with ω-regular objectives, and (b) com-
puting environment assumptions for synthesis of unrealizable specifications. The
class of 21/2-player games arise in several important applications related to verifi-
cation and synthesis of reactive systems. Some key applications are: (a) synthesis
of stochastic reactive systems; (b) verification of probabilistic systems; and (c)
synthesis of unrealizable specifications. We believe that our tool will be useful
for the above applications.

2 1/2-player games. 21/2-player games are played on a graph by two players
along with probabilistic transitions. We consider ω-regular objectives over infi-
nite paths specified by parity, Rabin and Streett (strong fairness) conditions that
can express all ω-regular properties such as safety, reachability, liveness, fairness,
and most properties commonly used in verification. Given a game and an objec-
tive, our tool determines whether the first player has a strategy to ensure that
the objective is satisfied with probability 1, and if so, it constructs such a wit-
ness strategy. Our tool provides the first implementation of qualitative analysis
(probability 1 winning) of 21/2-player games with ω-regular objectives.

Synthesis of environment assumptions. The synthesis problem asks to con-
struct a finite-state reactive system from an ω-regular specification. In practice,
initial specifications are often unrealizable, which means that there is no system
that implements the specification. A common reason for unrealizability is that
assumptions on the environment of the system are incomplete. The problem of
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correcting an unrealizable specification Ψ by computing an environment assump-
tion Φ such that the new specification Φ → Ψ is realizable was studied in [3].
The work [3] constructs an assumption Φ that constrains only the environment
and is as weak as possible. Our tool implements the algorithms of [3]. We believe
our implementation will be useful in analysis of realizability of specifications and
computation of assumptions for unrealizable specifications.

2 Definitions

We first present the basic definitions of games and objectives.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S0, S1, SP ), δ) consists of a directed graph (S,E), a partition (S0,
S1,SP ) of the finite set S of states, and a probabilistic transition function δ:
SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S0 are the player-0 states, where player 0 decides the
successor state; the states in S1 are the player-1 states, where player 1 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ SP and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0. The turn-
based deterministic game graphs (2-player game graphs) are the special case of
the 21/2-player game graphs with SP = ∅.

Objectives. We consider the three canonical forms of ω-regular objectives:
Streett and its dual Rabin objectives; and parity objectives. The Streett ob-
jective consists of d request-response pairs { (Q1, R1), (Q2, R2), . . . , (Qd, Rd) }
where Qi denotes a request and Ri denotes the corresponding response (each
Qi and Ri are subsets of the state space). The objective requires that if a re-
quest Qi happens infinitely often, then the corresponding response must happen
infinitely often. The Rabin objective is its dual. The parity (or Rabin-chain ob-
jective) is the special case of Streett objectives when the set of request-responses
Q1 ⊂ R1 ⊂ Q2 ⊂ R2 ⊂ Q3 ⊂ · · · ⊂ Qd ⊂ Rd form a chain.

Qualitative analysis. The qualitative analysis for 21/2-player games is as fol-
lows: the input is a 21/2-player game graph, and an objective Φ (Streett, Ra-
bin or parity objective), and the output is the set of states such that player 0
can ensure Φ with probability 1. For detailed description of game graphs, plays,
strategies, objectives and notion of winning see [1]. We focus on qualitative anal-
ysis because: a) In applications like synthesis the relevant analysis is qualitative
analysis: the goal is to synthesize a system that behaves correctly with proba-
bility 1; (b) Qualitative analysis for probabilistic games is independent of the
precise probabilities, and thus robust with imprecision in the exact probabilities
(hence resilient to probabilistic modeling errors). The qualitative analysis can
be done with discrete graph theoretic algorithms. Thus qualitative analysis is
more robust and efficient, and our tools implements these efficient algorithms.



3 Tool Implementation

Our tool presents a solution of the following two problems.

Qualitative analysis of 2 1/2-player games. Our tool presents the first imple-
mentation for the qualitative analysis of 21/2-player games with Streett, Rabin
and parity objectives. We have implemented the linear-time reduction for qual-
itative analysis of 21/2-player Rabin and Streett games to 2-player Rabin and
Streett games of [2], and the linear-time reduction for 21/2-player parity games to
2-player parity games of [4]. The 2-player Rabin and Streett games are solved by
reducing them to the 2-player parity games using the LAR (latest appearance
records) construction [5]. The 2-player parity games are solved using the tool
PGSolver [6].

Environment assumptions for synthesis. Our tool implements a two-step
algorithm for computing the environment assumptions as presented in [3]. The
algorithm operates on the game graph that is used to answer the realizability
question. First, a safety assumption that removes a minimal set of environment
edges from the graph is computed. Second, a fairness assumption that puts
fairness conditions on some of the remaining environment edges is computed. The
problem of finding a minimal set of fair edges is computationally hard [3], and a
reduction to 21/2-player games was presented in [3] to compute a locally minimal
fairness assumption. The details of the implementation are as follows: given an
LTL formula φ, the conversion to an equivalent deterministic parity automaton is
achieved through GOAL [8]. Our tool then converts the parity automaton into
a 2-player parity game by splitting the states and transitions based on input
and output symbols. Our tool then computes the safety assumption by solving
a safety model-checking problem. The computation of the fairness assumption
is achieved in the following steps:
– Convert the parity game with fairness assumption into a 21/2-player game.
– Solve the 21/2-player game (using our tool) to check whether the assumption

is sufficient (if so, go to the previous step with a weaker fairness assumption).
The synthesized system is obtained from a witness strategy of the parity game.
The flow is illustrated in Figure 1.

LTL Formula
Det. Parity

Aut.
Synthesis
Game

Synthesized System
21/2-player

game

Safe
Synthesis
Game

GOAL

Assumption not locally minimal

Fig. 1. An example illustrating the flow of the tool
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Fig. 2. An example that illustrates the tool flow

We illustrate the working of our tool on a simple example shown in Figure 2
Consider an LTL formula Φ = GFgrant∧G(cancel → ¬grant), where G and F
denote globally and eventually, respectively. The propositions grant and cancel

are abbreviated as g and c, respectively. From Φ our tool obtains a deterministic
parity automaton (Figure 2(a)) that accepts exactly the words that satisfies Φ.
The parity automaton is then converted into a parity game. In Figure 2(b), ✷
represents player 0 states and ✸ represents player 1 states. It can be shown
that in this game no safety assumption required. We illustrate how to compute
a locally minimal fairness assumption. Given an fairness assumption on edges,
our tool reduces the game with the assumption to a 21/2-player parity game
(see details in [3]). If the initial state in the 21/2-player game is in winning
with probability 1 for player 0, then the assumption is sufficient. Figure 2(c)
illustrates the 21/2-player game obtained with the fairness assumption on the
edge (0, 4). The © state is the probabilistic state with uniform distribution over
its successors. The assumption on this edge is the minimal fairness assumption for
the example. Our tool then converts this game back into an automaton to obtain
the environment assumption as an automaton(Figure 2(d)). This assumption is
equivalent to the formula G(¬(cancel ∧ grant)) =⇒ GF (¬cancel). From a
witness strategy in Figure 2(c) our tool obtains the system that implements the
specification with the assumption (Figure 2(e)).



Performance of Gist. Our implementation of reduction of 21/2-player games
to 2-player games is linear time and efficient, and the computationally expensive
step is solving 2-player games. For qualitative analysis of 21/2-player games,
Gist can handle game graphs of size that can be typically handled by tools
solving 2-player games. Typical run-times for qualitative analysis of 21/2-player
parity games of various sizes are summarized in Table 3. The games used were
generated using the benchmark tools of PGSolver and then converting one-tenth
of the states into probabilistic states.

States Edges Runtime (sec.)
Avg. Best Worst

1000 5000 1.17 0.63 1.59
5000 25000 15.94 11.10 19.46
10000 50000 51.43 39.38 62.61
20000 100000 282.24 267.40 310.11
50000 250000 2513.18 2063.40 2711.23

Table 1. Runtimes for solving 21/2-player parity games

In the case of synthesis of environment assumptions, the expensive step is the
reduction of LTL formula to deterministic parity automata. Our tool can handle
formulas that are handled by classical tools for translation of LTL formula to
deterministic parity automata.

Other features of Gist. Our tool is compatible with several other game solving
and synthesis tools: Gist is compatible with PGSolver and GOAL. Our tool
provides a graphical interface to describe games and automata, and thus can
also be used as a front-end to PGSolver to graphically describe games.
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4 Appendix: Details of the Tool

Gist is available for download at http://pub.ist.ac.at/gist for Unix-based
architectures. All the libraries that Gist uses are packaged along with it.

4.1 Dependencies and Architecture

Language, tools and installation.Gist is written in Scala and it uses several
other tools. For the graphical interface to draw game graphs and automata it
uses the JUNG library [7] for graph layout algorithms. For translation of an LTL
formula to a deterministic parity automata it uses GOAL [8]. The solution of
2-player parity games is achieved by using PGSolver [6]. For compilation and
installation: (a) an installation of the Scala compiler and runtime environment
is required; (b) the PGSolver build process requires an OCaml compiler to be
installed; and (c) GOAL and JUNG require a Java runtime environment to be
installed.

Source code. The source code of Gist is composed mainly of five modules:

1. Module newgames mainly consists of the classes for probabilistic ω-regular
games, i.e. games with Büchi, coBüchi, Rabin, Streett and parity objectives.
Each of these classes contains routines for the reduction of the 21/2-player
version to the 2-player version which preserves the probability 1 winning
region of Player 1. Each of these classes also returns a witness strategy for
the player as required.

2. Module specification consists of classes implementing the specifications
for the synthesis problem, i.e. LTL formulae, Büchi automata and parity
automata. The class for LTL formulae contains a routine to convert LTL
formulae into an equivalent nondeterministic Büchi automata and the class
for Büchi automata has a routine for converting it into a deterministic parity
automaton. The parity automata class can generate the synthesis game (by
splitting transitions) for the automaton as described in [3].

3. Module synthesis contains the classes relevant to the process of synthesis.
The class for synthesis games contains routines (a) to compute transducers
implementing the specification; (b) to compute minimal safety assumption
and locally minimal fairness assumption in case of an unrealizable specifica-
tion; (c) to check whether user-specified assumptions are sufficient to make
the specification realizable; and (d) to get the assumptions as a Streett au-
tomaton.

4. Modules gui and cui contain classes for graphical and text based user in-
terfaces. Most of the functionality in the cui module is contained in the
Console class, which interprets a command line. The gui module contains
forms and windows to display various automata and games; and provide an
interface for the various operations on them.

5. Module basic contains the definitions which are needed by all other packages,
namely, the classes for alphabet, symbols and generic automata.

http://pub.ist.ac.at/gist


In addition to these, there are other routines to parse and write automata and
game graphs in files in a format that can be used with GOAL.

4.2 User Manual

In this section we describe the usage of the graphical and text-based interface
of the tool.
Format of files. The file format used by the tool is based on the format used
by GOAL. The format for games and automata structures is presented below:

<structure label-on="transition" type=["game"|"fa"]>

<alphabet type="propositional">

<prop type=["input"|"output"]>TEXT</prop>

...

</alphabet>

<stateSet>

<state sid="NUMERIC">

[<player>[0|1|-1]</player>]

[<label>TEXT</label>]

</state>

...

</stateSet>

<transitionSet>

<transition tid="NUMERIC">

<from>NUMERIC(State ID)</from>

<to>NUMERIC(State ID)</to>

<read>TEXT(Symbol)</read>

</transition>

...

</transitionSet>

<initialStateSet>

<stateID>NUMERIC</stateID>

</initialStateSet>

<acc type="[buchi|parity|rabin|streett]">

<accSet> %Ony one set for Buchi acceptance condition.

<stateID>NUMERIC(State ID)</stateID>

...

</accSet>

<accSet> %Multiple sets for Parity acceptance condition.

%One for each priority

<stateID>NUMERIC(State ID)</stateID>

...

</accSet>

<accSet> %Multiple sets for Rabin and Streett acceptance conditions.

%Different format from the other conditions.

<E>



<stateID>NUMERIC(State ID)</stateID>

...

</E>

<F>

<stateID>NUMERIC(State ID)</stateID>

...

</F>

...

</accSet>

</acc>

</structure>

Graphical Interface. The graphical interface for Gist consists of a window for
each kind of game graph, automata, and formula the tool handles. When Gist is
invoked, a window is shown with buttons for each kind. A window for a specific
kind contains buttons that represent relevant actions that can be performed.
There are also generic options such as saving and loading.

For automata and game graphs, the window contains an area in which the
graph is laid out visually. The layout can be changed by dragging the vertices and
the edges of the graph. Gist uses the layout algorithms of JUNG to automati-
cally layout the graph. The layout algorithms can be chosen by right-clicking on
the window and selecting Layout from a pop-up menu that appears. Also, sets
of vertices or edges can be highlighted for other operations (such as finding suf-
ficiency of assumptions containing these edges) by choosing Highlight Mode

on the pop-up menu.

The tool also includes interfaces for building automata and games graphically.
In these windows, one can insert states or edges into a structure by selecting the
appropriate mode from the pop-up menu. When an edge is created, the user can
label the edge appropriately. The alphabet for the symbols (for labeling edges)
must be set before the edges are created. States and edges can also be deleted
using the Delete mode.

Text-based Interface. The text-based interface for Gist is an interactive
prompt. The user can define and use variable for any object. Variables need
not be declared before use. All variable names need to begin with a $. The
syntax for the statements is defined below.

Variable := $[a-zA-Z0-9]*

Statement := Variable --Prints the value of the variable

| Variable = Variable --Assignment

| Variable = Expression --Assignment

Expression := Object Action

Object := "LTL" | "BuchiAutomaton" | "ParityAutomaton"

| "SynthesisGame" | "StreettAutomaton" | "ParityGame"

| "RabinGame" | "StreettGame"

Action := readFile ... | writeFile ... | help | ...



The “action” as seen in the above syntax definition varies depending upon the
object. The help action for any object displays all the other actions available
for this object along with an explanation.

All objects which represent games have the following actions: winningRe-

gion, cooperativeWinningRegion, and toDeterministicGame. The action
winningRegion takes an argument, either 0 or 1 (for a player), and computes
the set of states from which the player wins with probability 1. The action co-

operativeWinningRegion is invoked only for 2-player games, and it computes
the set of states such that there is a path to satisfy the objective of player 0.
The action toDeterministicGame is invoked on 21/2-player games and it re-
turns a 2-player game in which probability 1 winning of player 0 is preserved. In
addition, the action winningStrategy computes the winning strategy of each
player in 2-player games, and the probability 1 winning strategy in 21/2-player
games.

The objects for Büchi automata have an action toParityAutomaton to
convert it into equivalent deterministic parity automata. Similarly, the objects
for LTL formulae and parity automata have actions to convert them into non-
deterministic Büchi automata and Synthesis games respectively. The objects for
Synthesis games have actions related to synthesis and computation of environ-
ment assumptions.

The text-based interface for Gist is also available online at
http://pub.ist.ac.at/gist. Figure 3 shows the screenshot for the text-
interface with input and output for Example 1 (described in the following
subsection). Figure 4 shows the screenshot of the web interface for a similar
example.

4.3 Examples to Illustrate the Usage of Gist

In this section, we present two examples to illustrate the usage of Gist. We
have chosen small examples for the simplicity of the presentation to illustrate the
usage ofGist. These examples demonstrate the usage ofGist for computation of
environment assumptions for synthesis and uses solution of 21/2-player games. In
these examples, we compute the assumptions for two unrealizable specifications
given in LTL. Both the specifications are about request-response systems and
are chosen to illustrate safety and fairness assumptions respectively.

Example 1. Consider a request-response system in which there are two inputs,
request and cancel, and one output grant. Now, consider the specification
G(request → grant) ∧ G(cancel → ¬grant). This specification is unrealiz-
able: any input in which both request and cancel are set at the same time
does not have an output which satisfies the specification. We can compute an
environment assumption for this specification using Gist. Intuitively, we would
want an assumption that says request and cancel must not be set at the same
time provided the specification was not already violated earlier. We show that
the assumption can be computed automatically by Gist.

To compute the assumption usingGist, we select LTL formula from the main
window of options and then enter the formula above, specifying the inputs and

http://pub.ist.ac.at/gist


Fig. 3. Example to illustrate the text-based interface

outputs. This formula is then converted into a nondeterministic Büchi automaton
and then to a deterministic parity automaton, and finally to a synthesis game. In
this game, we attempt to compute the safety assumption. The safety assumption
is highlighted (green arrows in a box; (0,4) and (2,7)) as shown in Figure 5. As
shown in Figure 5, the safety assumption includes all the edges where request

and cancel are set at the same time. But, if there has been an instance of a
request not being granted already, then there is no restriction on the inputs.
This is the same assumption as was expected intuitively. Now, we can obtain
a synthesis game where the safety assumption is enforced. In this new game, if
the fairness assumption is computed the output shows no fairness assumption
is necessary. A transducer that implements the modified specification can be
obtained from the solution of this game.

Example 2. Consider the request-response system as in Example 1. But, with
the specification (GFgrant) ∧ G(cancel → ¬grant). This specification says
that we should have infinitely many grants and that at every step, if cancel

is set, then there should be no grant at that step. This specification is also
unrealizable as any input where the cancel is always set has no acceptable
output. We can see that if cancel is not set always after a point, then the
specification becomes realizable. This condition can be computed using Gist

following the same steps as in the above example: first the tool finds that no
safety assumption is necessary, and then it computes the fairness assumption in
the synthesis game. The fairness assumption is computed internally by reduction
to 21/2-player games. The fairness assumption is highlighted (by green arrow



Fig. 4. Gist web interface



Fig. 5. Example 1. The safety assumption is highlighted

in a box; (0,4)) in the screenshot Figure 6. The computed assumption can be
interpreted as follows: the highlighted edge must be taken infinitely often if
the source vertex of the edge is visited infinitely often. Translating this into
propositions, it means that at any step, cancel cannot be set forever in the
future.



Fig. 6. Example 2. The fairness assumption is highlighted
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