
Software Transactional Memory on Relaxed Memory
Models?

Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

EPFL, Switzerland

Abstract. Pseudo-code descriptions of STMs assume sequentially consistent pro-
gram execution and atomicity of high-level STM operations like read, write, and
commit. These assumptions are often violated in realistic settings, as STM im-
plementations run on relaxed memory models, with the atomicity of operations
as provided by the hardware. This paper presents the first approach to verify
STMs under relaxed memory models with atomicity of 32 bit loads and stores,
and read-modify-write operations. We present RML, a new high-level language
for expressing concurrent algorithms with a hardware-level atomicity of instruc-
tions, and whose semantics is parametrized by various relaxed memory models.
We then present our tool, FOIL, which takes as input the RML description of an
STM algorithm and the description of a memory model, and automatically de-
termines the locations of fences, which if inserted, ensure the correctness of the
STM algorithm under the given memory model. We use FOIL to verify DSTM,
TL2, and McRT STM under the memory models of sequential consistency, total
store order, partial store order, and relaxed memory order.

1 Introduction

Software transactional memory (STM) [11, 19] is now widely accepted as a concurrent
programming model. STM allows the programmer to think in terms of coarse-grained
code blocks that appear to be executed atomically, and at the same time, yields a high
level of parallelism. The algorithm underlying an STM is non-trivial, precisely because
it simplifies the task of the programmer by encapsulating the difficulty of synchroniza-
tion and recovery. Various correctness criteria have been proposed for STM algorithms.
One criterion, popular for its relevance to the STM designers, is opacity [8]. Opacity
is motivated by the fact that in STMs, observing inconsistent state by even an aborted
transaction can lead to unexpected side effects. Opacity builds upon strict serializabil-
ity [17], a correctness property used for database transactions. Strict serializability re-
quires that the committed transactions appear to be executed in a serial order, consis-
tent with the order of non-overlapping transactions. Opacity further requires that even
aborted transactions appear to be executed in a serial order.

Previous attempts at formally verifying the correctness of STMs [3, 6, 7] with re-
spect to different correctness criteria assumed that high-level transactional commands
like start, read, write, commit, and abort execute atomically and in a sequentially con-
sistent manner. Verification of an STM at this level of abstraction leaves much room
for errors in a realistic setting. This is because the actual hardware on which STMs run
? This research was supported by the Swiss National Science Foundation.

. . .
update global timestamp ts
for each variable v in write set

update value of v

. . .
t1 := ts
if (t1 6= t2) then abort
read value of v
t2 := ts

if (t1 6= t2) then abort

txRead :
txCommit :

. . .

Fig. 1. Code fragments of commit and read procedures of a timestamp-based STM

supports a finer-grained degree of atomicity: in practice, the set of atomic instructions
rather corresponds to load, store, and read-modify-write. Furthermore, compilers and
processors assume relaxed memory models [1] and are notorious for playing tricks to
optimize performance, e.g., by reversing the order of instructions to different addresses.
Typically, STM designers use fences to ensure a strict ordering of memory operations.
As fences hurt performance, STM designers want to use fences only when necessary
for correctness.

To illustrate some of the issues, consider the code fragments of the commit and the
read procedures of a typical timestamp-based STM like TL2 [4] in Figure 1. Assume
that at the start of a transaction, t1 and t2 are set to the global timestamp ts. The commit
procedure updates the timestamp ts before it updates the variables in the write set. The
read procedure first reads the timestamp, followed by the read of the variable, followed
by a second read of the timestamp. The read is successful only if the two timestamps
are equal. A crucial question is, given the memory model, which fences are required
to keep the STM correct. On a memory model like sequential consistency [12] or total
store order [20], the code fragment in Figure 1 is correct without fences. On the other
hand, on memory models that relax store order, like partial store order [20], we need
to add a store fence after the timestamp update in the commit procedure. For even
more relaxed memory models that may swap independent loads, like relaxed memory
order [20], as well as the Java memory model [16], we need more fences, namely, load
fences in the read procedure. But the question is how many? Do we need to ensure that
the read of v is between the two reads of ts, and thus put two fences? The answer is no.
To ensure correctness, we just need one fence and guarantee that the second read of ts
comes after the read of v.

Devising a verification technique to model check STM algorithms assuming re-
laxed memory models and hardware-level atomicity is challenging. A first challenge
is to devise a precise and unified formalism in which the STM implementations can
be expressed. A second challenge is to cope with the non-determinism explosion. Not
surprisingly, when compared to verifying an STM at a high-level atomic alphabet, the
level of non-determinism to be dealt with at hardware-level atomicity under a relaxed
memory model is much higher. For example, the implementation of DSTM [10] with 2
threads and 2 variables generates 1,000 states with a high-level atomic alphabet [6] and
1,200,000 states with a low-level one, even on a sequentially consistent memory model.
A relaxed memory model further increases the state space.

This paper takes up the challenge of bridging the gap between STM descriptions in
the literature and their real implementations on actual hardware. We start by presenting
a formalism to express memory models as a function of hardware memory instructions,
that is, loads and stores to 32 bit words. We describe various relaxed memory models,

such as total store order (TSO), partial store order (PSO), and relaxed memory order
(RMO) in our formalism. The reason for choosing these memory models is to capture
different levels of relaxations allowed by different multiprocessors. Unlike earlier for-
malisms [3, 6] used for verification, our formalism can be used to express and check
the correctness of STMs with both update semantics: direct (eager) and deferred (lazy).
Then, we present a new language, RML (Relaxed Memory Language), with a hardware-
level of atomicity, whose semantics is parametrized by various relaxed memory mod-
els. At last, we describe a new tool, FOIL (a fencing weapon), to verify the opacity of
three different STM algorithms, DSTM, TL2, and McRT STM, under different mem-
ory models. We choose these STMs as they represent three different and important
trends in STM design. DSTM is obstruction-free (does not use locks), TL2 is a lock-
based STM with deferred-update semantics, and McRT STM is a lock-based STM with
direct-update semantics. While we choose opacity as the correctness criterion, using
FOIL we can also verify other correctness properties such as strict serializability that
can be specified in our formalism.

FOIL proves the opacity of the considered STM algorithms under sequential con-
sistency and TSO. As the original STM algorithms have no fences, FOIL generates
counterexamples to opacity for the STMs under further relaxed memory models (PSO
and RMO), and automatically inserts fences within the RML description of the STM
algorithms which are required (depending upon the memory model) to ensure opacity.
We observe that FOIL inserts fences in a pragmatic manner, as all fences it inserts match
those in the manually optimized official implementations of the considered STMs. Our
verification leads to an interesting observation that many STMs are sensitive to the or-
der of loads and stores, but neither to the order of a store followed by a load, nor to store
buffering. Thus, while all STM algorithms we consider need fences for opacity under
PSO and RMO, they are indeed opaque under TSO without any fences.

2 Framework

We first present a general formalism to express hardware memory instructions and
memory models. Then, we formalize the correctness of STMs at the level of hardware
instructions.
Memory instructions. Let Addr be a set of memory addresses. Let I be the set of
memory instructions that are executed atomically by the hardware. We define the set I
as follows, where a ∈ Addr :

I ::= 〈load a〉 | 〈store a〉 | 〈cas a〉
We use the 〈cas a〉 instruction as a generic read-modify-write instruction.
Memory models. Memory models [1] specify the behavior of memory instructions to
shared memory in a multiprocessor setting. For example, the memory model sequen-
tial consistency specifies that a multiprocessor executes the instructions of a thread in
program order. On the other hand, the memory model total store order specifies that a
multiprocessor may relax the order of a store followed by a load to a different address,
by delaying stores using a store buffer. In principle, a memory model offers a tradeoff
between transparency to the programmer and flexibility to the hardware to optimize

performance. Sequential consistency is the most stringent memory model, and thus the
most intuitive to the programmer. But, most of the available multiprocessors do not
support sequential consistency for reasons of performance. We present a formalism to
express relaxed memory models.

A memory model is a function M : I×I → {N ,E ,Y }. For all instructions i, j ∈ I ,
when i is immediately followed by j, we have: (i) if M (i, j) = N , then M imposes
a strict order between i and j, (ii) if M (i, j) = E , then M allows to eliminate the in-
struction j, (iii) if M (i, j) = Y , then M allows to reorder i and j. The case (ii) allows
us to model store load forwarding using store buffers, and case (iii) allows us to model
reordering of instructions. Thus, our formalism can capture many of the hardware mem-
ory models. But, our formalism cannot capture some common compiler optimizations
like irrelevant read elimination, and thus disallows many software memory models (like
the Java memory model [16]). We specify different memory models in our framework.
These memory models are chosen to illustrate different levels of relaxations generally
provided by the hardware.

1. Sequential consistency does not allow any pair of instructions to be reordered. Se-
quential consistency [12] is specified by the memory model Msc . We have Msc(i, j) =
N for all instructions i, j ∈ I .

2. Total store order (TSO) relaxes the order of a store followed by a load to a different
address. But, the order of stores cannot be reordered. TSO allows a load which follows
a store to the same address to be eliminated. TSO [20] is given by the memory model
Mtso such that for all memory instructions i, j ∈ I , (i) if i = 〈store a〉 and j = 〈load a′〉
such that a 6= a′, then Mtso(i, j) = Y , (ii) if i ∈ {〈store a〉, 〈cas a〉} and j = 〈load a〉,
then Mtso(i, j) = E , (iii) else Mtso(i, j) = N .

3. Partial store order (PSO) is similar to TSO, but further relaxes the order of stores.
PSO [20] is specified by Mpso , such that for all memory instructions i, j ∈ I , (i) if i =
〈store a〉 and j ∈ {〈load a′〉, 〈store a′〉, 〈cas a′〉} such that a 6= a′, then Mpso(i, j) =
Y , (ii) if i ∈ {〈store a〉, 〈cas a〉} and j = 〈load a〉, then Mpso(i, j) = E , (iii) else
Mpso(i, j) = N .

4. Relaxed memory order (RMO) relaxes the order of instructions even more than PSO,
by allowing to reorder loads to different addresses too. RMO [20] is specified by Mrmo ,
such that for all memory instructions i, j ∈ I , (i) if i ∈ {〈load a〉, 〈store a〉, 〈cas a〉}
and j ∈ {〈load a′〉, 〈store a′〉, 〈cas a′〉} such that a 6= a′, then Mrmo(i, j) = Y ,
(ii) if i ∈ {〈store a〉, 〈cas a〉} and j = 〈load a〉, then Mrmo(i, j) = E , (iii) else
Mrmo(i, j) = N .

Example. Figure 2 illustrates a concurrent program with two threads that distinguishes
between the different memory models in terms of the possible outcomes. Outcome O1

is allowed by Msc , while other outcomes are not. Outcomes O1 and O2 are allowed by
Mtso . Outcomes O1, O2, and O3 are allowed by Mpso . All outcomes O1, O2, O3, and
O4 are allowed by Mrmo .

Transactional programs. Let V be a set of transactional variables. Let T be a set of
threads. Let the set C of commands be ({read,write}×V)∪{xend}. These commands
correspond to a read or write of a transactional variable, and to a transaction end. De-
pending upon the underlying TM, the execution of these commands may correspond

Thread 1 Thread 2 O1 : r1 = 1, r2 = 1, r3 = 1, r4 = 1
O2 : r1 = 0, r2 = 0, r3 = 0, r4 = 0
O3 : r1 = 1, r2 = 1, r3 = 0, r4 = 0
O4 : r1 = 1, r2 = 1, r3 = 2, r4 = 2

x1 := 1 x2 := 1
y1 := 1 y2 := 1
r1 := y2
r3 := x2

r2 := y1
r4 := x1

x1 := 2 x2 := 2

Initially : x1 = y1 = x2 = y2 = 0

Fig. 2. A concurrent program with some possible outcomes on different memory models

to a sequence of hardware memory instructions. For example, a read of a transactional
variable may require to check the consistency of the variable by first reading a version
number. Similarly, a transaction end may require to copy many variables from a thread-
local buffer to global memory. Moreover, the semantics of the write and the xend com-
mands depend on the underlying STM. For example, a (write, v) command does not
alter the value of v in a deferred-update STM, whereas it does in a direct-update STM.

We restrict ourselves to purely transactional code, that is, every operation is part of
some transaction. We consider transactional programs as our basic sequential unit of
computation. We express transactional programs as infinite binary trees on commands,
which makes the representation independent of specific control flow statements, such
as exceptions for handling aborts of transactions. For every command of a thread, we
define two successor commands, one if the command is successfully executed, and
another if the command fails due to an abort of the transaction. Note that this definition
allows us to capture different retry mechanisms of TMs, e.g., retry the same transaction
until it succeeds, or try another transaction after an abort. We use a set of transactional
programs to define a multithreaded transactional program. A transactional program θ
on V is an infinite binary tree θ : B∗ → C. A multithreaded transactional program
prog = 〈θ1 . . . θn〉 on V is a tuple of transactional programs on V . Let Progs be the set
of all multithreaded transactional programs.

STM correctness. An STM is characterized by the set of histories (sequences of mem-
ory instructions) the STM produces for a given transactional program. In order to rea-
son about the correctness of STMs, the history must contain, apart from the sequence
of memory instructions that capture the loads and stores to transactional variables in the
program, the following information: (i) when transactions finish (captured with commit
and abort instructions), (ii) when read and write commands finish (captured with rfin
and wfin instructions), and (iii) rollback of stores to transactional variables in V (cap-
tured with rollback a). We define Î = IV ∪(rollback×V)∪{rfin,wfin, commit, abort},
where IV ⊆ I is the set of memory instructions to the transactional variables V .

Let O = Î × T be the set of operations. A history h ∈ O∗ is a finite sequence
of operations. An STM takes as input a transactional program and, depending upon the
memory model, produces a set of histories. Formally, a software transactional memory
is a function Γ : Progs ×M → 2O∗

.
A correctness property π is a subset of O∗. It is natural to require that an STM is

correct for all programs on a specific memory model. This is because an STM may be
optimized for performance for a specific memory model, while it could be incorrect on
weaker models. That is, different implementation versions may be designed for different

memory models. An STM Γ is correct for a property π under a memory model M if
for all programs prog ∈ Progs , we have Γ (prog ,M) ⊆ π.

Opacity. We consider opacity [8] as the correctness (safety) requirement of transac-
tional memories. Opacity builds upon the property of strict serializability [17], which
requires that the order of conflicting operations from committing transactions is pre-
served, and the order of non-overlapping transactions is preserved. Opacity, in addition
to strict serializability, requires that even aborting transactions do not read inconsis-
tent values. The motivation behind the stricter requirement for aborting transactions in
opacity is that in STMs, inconsistent reads may have unexpected side effects, like infi-
nite loops, or array bound violations. Most of the STMs [4, 10, 18] in the literature are
designed to satisfy opacity. However, there do exist STMs that ensure just strict seri-
alizability (for example, a variant to McRT STM), and use exception handling to deal
with inconsistent reads.

Given a history h ∈ O∗, we define the thread projection h|t of h on thread t ∈ T as
the subsequence of h consisting of all operations op in h such that op ∈ Î ×{t}. Given
a thread projection h|t = op0 . . . opm of a history h on thread t, an operation opi is
finishing in h|t if opi is a commit or an abort. An operation opi is initiating in h|t if
opi is the first operation in h|t, or the previous operation opi−1 is a finishing statement.
Given a thread projection h|t of a history h on thread t, a consecutive subsequence
x = op0 . . . opm of h|t is a transaction of thread t in h if (i) op0 is initiating in h|t,
and (ii) opm is either finishing in h|t, or opm is the last operation in h|t, and (iii) no
other operation in x is finishing in h|t. The transaction x is committing in h if opm is a
commit. The transaction x is aborting in h if opm is an abort. Otherwise, the transaction
x is unfinished in h. We say that a load of a transaction variable by thread t is used in
a history h if the load is immediately succeeded by an rfin statement in h|t. Given a
history h, we define usedloads(h) as the longest subsequence of h such that all loads of
transaction variables in usedloads(h) are used. Given a history h and two transactions
x and y in h (possibly of different threads), we say that x precedes y in h, written as
x <h y, if the last operation of x occurs before the first operation of y in h. A history
h is sequential if for every pair x, y of transactions in h, either x <h y or y <h x.
An operation op1 of transaction x and an operation op2 of transaction y (where x is
different from y) conflict in a history h if (i) op1 is a load, store, or a rollback instruction
to some transactional variable v and (ii) op2 is a store or rollback instruction to v.

A history h = op0 . . . opm is strictly equivalent to a history h′ if (i) for every thread
t ∈ T , we have h|t = h′|t, and (ii) for every pair opi, opj of operations in h, if opi

and opj conflict and i < j, then opi occurs before opj in h′, and (iii) for every pair
x, y of transactions in h, where x is a finished transaction, if x <h y, then it is not
the case that y <h′ x. We define opacity as the set of histories h such that there exists
a sequential history h′, where h′ is strictly equivalent to usedloads(h). We specify
correctness properties using transition systems called TM specifications [7].

TM specifications. A TM specification is a 3-tuple 〈Q, qinit , δ〉, where Q is a set of
states, qinit is the initial state, and δ : Q × O → Q is a transition function. A history
op0 . . . opm is a run of the TM specification if there exist states q0 . . . qm+1 in Q such
that q0 = qinit and for all i such that 0 ≤ i ≤ m, we have (qi, opi, qi+1) ∈ δ. The
language L of a TM specification is the set of all runs of the TM specification. A TM

l ::= lv | la[idx] g ::= gv | ga[idx] e ::= f(l, . . . , l, idx , . . . , idx) c ::= f(idx , . . . , idx)

tm stmt ::= rfin | wfin | commit | abort

mem stmt ::= g := e | l := g | l := e | idx :=c | l := cas(g, e, e) | rollback g := e

p ::= mem stmt | tm stmt | fence | p ; p | if e then p else p | while e do p

fence ::= stfence | ldfence

Fig. 3. The syntax of RML.

specification Σ defines a correctness property π if L(Σ) = π. A TM specification for
opacity at a coarse-grained alphabet of read, write, commit, and abort statements was
developed [7]. To verify the STM algorithms at the low-level atomicity, we build a new
TM specification for opacity with the alphabet O . The new TM specification is about
30 times the size of the TM specification for the coarse-grained alphabet, and has about
70,000 states.

3 The RML Language

We introduce a high-level language, RML, to express STM algorithms with hardware-
level atomicity on relaxed memory models. The key idea behind the design of RML is to
have a semantics parametrized by the underlying memory model. To capture a relaxed
memory model, RML defers a statement until the statement is forced to execute due to
a fence, and RML reorders or eliminates deferred statements according to the memory
model. We describe below the syntax and semantics of RML.
Syntax. To describe STM algorithms in RML, we use local and global integer-valued lo-
cations, which are either variables or arrays. We also have a set of array index variables.
The syntax of RML is given in Figure 3. A memory statement (denoted by mem stmt)
in RML models an instruction that executes atomically on the hardware. It can, for in-
stance, be a store or a load of a global variable. Moreover, the TM specific statements
are denoted by tm stmt , and fence statements are denoted by fence. Let SM be the set
of memory statements, Stm be the set of TM specific statements, and SF be the set of
fence statements in RML. Let P be the set of RML programs.
Semantics. Let G and L be the set of global and local addresses respectively. Let Idx
be the set of index variables. Let q : G∪L∪ Idx → N be a state of the global and local
addresses and the index variables. Let Q be the set of all states. Note that the syntax
of RML is defined in a way that the value of an index variable idx may not depend on
a global variable. Given a global location g and a valuation q , we write [[g]]q ∈ G to
denote the global address represented by g in state q . Similarly, we write [[l]]q ∈ L to
denote the local address represented by a local location l in state q .

Let γ : SM ×Q → I ∪{skip} be a mapping function for memory statements, which
for a given memory statement and a state, gives the generated hardware instruction. For
example, we have γ(g := e, q) = 〈store [[g]]q〉 in state q, as the statement g := e causes
a store to the global address represented by g in state q. The statement rollback g := e
is physically a store instruction, as a rollback undoes the effect of a previous store
instruction. We define a local-variables function lvars such that given an expression
e and a state q , lvars(e, q) is the smallest set of local addresses in L such that if the

location l appears in e, then the address [[l]]q ∈ lvars(e, q). We define a write-locals
function lw : S × Q → 2L and a read-locals function lr : S × Q → 2L to obtain the
written and read local addresses in a statement respectively. Table 1 gives the formal
definitions of the functions γ, lw , and lr . Moreover, we define a mapping function γtm :
Stm → SF ∪ {skip}, which maps the TM specific statements to fence statements. To
avoid instructions of two transactions from the same thread to interleave with each other,
we define γtm(commit) = γtm(abort) = stfence. Moreover, to ensure that during the
read of a global variable, the variable is loaded before the read is declared as finished,
we define γtm(rfin) = ldfence. We define γtm(wfin) = skip.

We now describe when two memory statements can be reordered in a given state
under a given memory model. Let R : SM × SM × Q × M → {true, false} be a re-
ordering function such that R(s1, s2, q ,M) = true if the following conditions hold: (i)
M (γ(s1, q), γ(s2, q)) = Y , (ii) lw(s1, q)∩ lr(s2, q) = ∅, (iii) lw(s1, q)∩ lw(s2, q) =
∅, and (iv) lr(s1, q) ∩ lw(s2, q) = ∅. Here, the first condition restricts reorderings to
those allowed by the memory model, and the remaining conditions check for data de-
pendence between the statements. To defer memory statements and execute them in as
many ways as possible, we define a model-dependent enqueue function. This function
takes as input the current state, the current sequence of deferred statements, a state-
ment to defer, and a memory model, and produces the set of new possible sequences of
deferred statements. We define the enqueue function Enq : S∗

M × SM × Q × M →
2S∗

such that given a sequence d = s1 . . . sn of memory statements, a statement s,
a state q , and a memory model M , Enq(d, s, q ,M) is the largest set such that (i)
s1 . . . sk · s · sk+1 . . . sn ∈ Enq(d, s, q ,M) if for all i such that k < i < n, we
have R(si, s, q ,M) = true, and (ii) if s is of the form l := g, then s1 . . . sk · (l :=
e) ·sk+1 . . . sn ∈ Enq(d, s, q ,M) if for all i with k < i < n, we have R(si, s, q ,M) =
true, and M (γ(sk, q), γ(s, q)) = E where (a) if sk is g := f , then e = f , (b) if sk

is m := g or m := cas(g, e1, e2), then e = m. Note that the definition of the reorder-
ing function restricts the reordering of control and data-dependent statements. Thus,
we cannot capture memory models like Alpha, which allows to reorder data-dependent
loads. Similarly, the enqueue function restricts the elimination of only load instructions.
While this is sufficient to model many hardware memory models, we cannot capture co-
alesced stores or redundant store elimination.

Given a program p and a sequence d of deferred statements, we define a predicate
allowDequeue(d, p) to be true if (i) p is of the form {while e do p1 | p1 ∈ P} or
{if e then p1 else p2 | p1, p2 ∈ P}, and there exists a memory statement s in d such
that lw(s, q) ∩ lvars(e, q) 6= ∅, or (ii) p is a store fence and there exists a statement s
of the form g := l in d, or (iii) p is a load fence and there exists a statement s of the
form l := g in d. Figure 4 describes the operational semantics of a program in RML
parametrized by the underlying memory model.

STM algorithms in RML. A state of a thread carries the information of the program
currently being executed, the valuation of the local variables, the deferred statements
of the thread, and the location of the transactional program. A thread-local state z t

l

of thread t is the tuple 〈pt, qt
L, Dt, loct〉, where pt is the current RML program being

executed by thread t, qt
L : L∪ Idx → N is the valuation of the local and index variables

of thread t, Dt is the deferred statements of thread t, and loct ∈ B∗ is the location of

Table 1. Formal definitions of the functions γ, lw , and lr for a statement s in a state q

Statement s γ(s, q) lw(s, q) lr(s, q)

g := e 〈store [[g]]q〉 ∅ lvars(e, q)
l := g 〈load [[g]]q〉 {[[l]]q} ∅
l := e skip {[[l]]q} lvars(e, q)

l := cas(g, e1, e2) 〈cas [[g]]q〉 {[[l]]q} lvars(e1, q) ∪ lvars(e2, q)
rollback g := e 〈store [[g]]q〉 ∅ lvars(e, q)

idx := c skip ∅ ∅

the transactional program θt. A state z of an STM algorithm with T threads is given by
〈qG, z 1

l . . . zT
l 〉, where qG : G → N is the valuation of the global variables of the STM

algorithm, and z t
l is the thread-local state of thread t for 1 ≤ t ≤ T . An STM algorithm

A is a 4-tuple 〈pr, pw, pe, zinit〉, where pr, pw, and pe are RML programs, and zinit is the
initial state of the STM algorithm. Moreover, we define a function α : C → P that maps
a transactional command to an RML program, such that α((read, k)) = (v := k; pr),
α((write, k)) = (v := k; pw), and α(xend) = pe.

Language of an STM algorithm. Let a scheduler σ on T be a function σ : N → T .
Given a scheduler σ, a transactional program prog , and a memory model M , a run of
an STM algorithm A is a sequence 〈z0, i0〉, . . . 〈zn, in〉 such that z0 = zinit , and for all
j such that 0 ≤ j < n, if zj = 〈qG, z 1

l . . . zT
l 〉 and zj+1 = 〈q ′G, z ′1l . . . z ′Tl 〉, then (i)

〈p, qG∪qL, D〉 ij+1−−−→ 〈p′, q ′G∪q ′L, D′〉 is a step of RML with memory model M , and (ii)
for all threads t 6= σ(j), we have z ′tl = z t

l , and (iii) for thread t = σ(j), we have z ′tl =
〈p′′, q ′L, D′〉, where (a) if ij+1 ∈ {rfin,wfin, commit}, then p′′ = α(θ(loc · 1)), (b) else
if ij+1 = abort, then p′′ = α(θ(loc ·0)), (c) else p′′ = p′. A run 〈zinit , i0〉, . . . , 〈zn, in〉
of an STM algorithm A produces a history h such that h is the longest subsequence of
operations in i1 . . . in. The language L(A,M) of an STM algorithm A under a memory
model M is the set of all histories h where there exists a multi-threaded transactional
program prog and a scheduler σ such that h can be produced by A on prog with σ
under M . An STM algorithm A is safe for property π under a memory model M if
every history in the language of A under M is included in π.

We describe an STM algorithm by pr, pw, and pe programs, and a set of global
and a set of local variables, along with their initial values. As an example of an STM
algorithm expressed in RML, we present the TL2 algorithm. Similar descriptions can be
obtained for DSTM and McRT STM. DSTM is an obstruction-free STM that does not
use locks for controlling concurrency. McRT STM is a lock-based direct-update STM.

TL2 algorithm in RML. Transactional locking II (TL2) is an STM algorithm, which is
highly popular for its good performance. It is a deferred-update STM, and uses locks to
ensure safety. Figure 5 shows four RML programs: pr (read), pw (write), pe (end), and pa

(abort). The program pa can be called from within pr, pw, and pe. We use the notation
own[V] to denote that own is an array of size V . The global variables are own[V],
ver [V], g[V], and clk . The local variables are rs[V], ws[V], lver [V], localclk , c, and l.
The index variables are u and v. self denotes the thread number of the executing thread.

WHILE FALSE

IF FALSE

WHILE TRUE

IF TRUE

SKIP

STORE FENCE

LOAD FENCE

DEQUEUE LOAD

DEQUEUE CAS SUCCESS

DEQUEUE ROLLBACK

ENQUEUE

DEQUEUE LOCAL

DEQUEUE STORE

DEQUEUE CAS FAIL

INDEX

q[e] = 0 ∀s ∈ d · lw(s, q) ∩ lvars(e, q) = ∅

〈while e do p1; p, q , d〉 skip−−→ 〈p, q , d〉

q[e] = 0 ∀s ∈ d · lw(s, q) ∩ lvars(e, q) = ∅

q[e] 6= 0 ∀s ∈ d · lw(s, q) ∩ lvars(e, q) = ∅

〈if e then p1 else p2; p, q , d〉 skip−−→ 〈p2; p, q , d〉

〈while e do p1; p, q , d〉 skip−−→ 〈p1;while e do p; p, q , d〉

∀s ∈ d · lw(s, q) ∩ lvars(e, q) = ∅q[e] 6= 0

〈if e then p1 else p2; p, q , d〉 skip−−→ 〈p1; p, q , d〉

〈p′; p, q , d〉 s−→ 〈p, q , d〉

6 ∃s in d such that s = g := l

〈p′; p, q , d〉 s−→ 〈p, q , d〉

6 ∃s in d such that s = l := g

〈p′; p, q , d〉 s−→ 〈p, q , d〉

p′ = s where s = stfence or γtm(s) = stfence

p′ = s where s = ldfence or γtm(s) = ldfence

q[g] = c
allowDequeue(d, p1) = true

d = (l := g) · d′

allowDequeue(d, p1) = true

d′ ∈ Enq(d, s, q ,M)

〈s; p, q , d〉 skip−−→ 〈p, q , d′〉

〈p1; p, q , d〉 skip−−→ 〈p1; p, q [l/c], d′〉

q[e] = c d = (l := e) · d′
allowDequeue(d, p1) = true

〈p1; p, q , d〉 rollback [[g]]q−−−−−−→ 〈p1; p, q [g/c], d′〉

allowDequeue(d, p1) = true

〈p1; p, q , d〉 γ(cas(g,e1,e2),q)−−−−−−−−−→ 〈p1; p, q [g/c][l/c], d′〉

〈p1; p, q , d〉 γ(l:=g,q)−−−−−→ 〈p1; p, q [l/c], d′〉

〈p1; p, q , d〉 γ(s,q)−−−→ 〈p1; p, q [g/c], d′〉

allowDequeue(d, p1) = true

allowDequeue(d, p1) = true

q[g] = c q[e1] 6= c

q[e] = c

q[e] = c

d = (rollback g := e) · d′

d = (g := e) · d′

d = (l := cas(g, e1, e2)) · d′

q[e1] = q[g] q[e2] = c d = (l := cas(g, e1, e2)) · d′

s ∈ {g := e, l := g, l := e, l := cas(g, e1, e2), rollback g := e}

〈idx := c; p, q , d〉 skip−−→ 〈p, q [idx/c], d〉

〈p1; p, q , d〉 〈load [[g]]q〉−−−−−→ 〈p1; p, q [l/c], d′〉

p′ = s where γtm(s) = skip

Fig. 4. The operational semantics of RML.

Structural properties of STMs. As STMs provide a programmer with a flexible pro-
gramming paradigm, an STM can involve an arbitrary number of concurrent threads
and variables. Thus, an STM algorithm may have an unbounded number of states (cor-
responding to state of every variable for every thread), where every state has an un-
bounded number of transitions (corresponding to read or write for every variable). A
common technique in checking correctness of arbitrarily sized systems lies in exploit-
ing the inherent symmetry of the system [5, 9]. Guerraoui et al. [6] presented a set of
four structural properties of STMs for the alphabet of read, write, commit, and abort
commands for deferred-update STMs. The authors subsequently verified these prop-
erties by hand for different STMs. These structural properties allowed the authors to
reduce the problem of verification of an unbounded number of threads and variables to
the problem of verification for two threads and two variables. With slight modifications

01 program pa :
02 u := 0;
03 while u < V do
04 u := u + 1;
05 if own[u] = self then own[u] := 0;
06 rs[u] := 0; ws[u] := 0
07 abort

01 program pr :
02 if localclk = 0 then localclk := clk ;
03 if ws[v] = 0 then
04 l := own[v];
05 if l 6= 0 then pa

06 l := g[v];
07 lver [v] := ver [v];
08 if localclk 6= lver [v] then pa

09 rs[v] := 1;
10 rfin

01 program pw :
02 ws[v] := 1;
03 wfin

01 program pe :
02 u := 0;
03 while u < V do
04 u := u + 1;
05 if (ws[u] = 1) then
06 l := cas(own[ws[u], 0, self);
07 if l 6= self then pa

08 l := 0;
09 while l < localclk do
10 l := cas(clk , localclk , localclk + 1);
11 localclk := localclk + 1
12 u := 0;
13 while u < V do
14 u := u + 1;
15 if rs[u] = 1 then
16 rs[u] := 0;
17 l := own[u];
18 c := ver [u];
19 if c 6= lver [u] then pa

20 if l 6= 0 then pa

21 u := 0;
22 while u < V do
23 u := u + 1;
24 if ws[u] = 1 then
25 ver [u] := localclk ;
26 g[u] := l;
27 u := 0;
28 while u < V do
29 u := u + 1;
30 if ws[u] = 1 then
31 own[u] := 0;
32 ws[u] := 0;
33 commit

Fig. 5. TL2 algorithm in RML

to two of the four properties, the structural properties can be adapted to our framework
for both, deferred and direct-update STMs. The properties P2 (thread symmetry) and
P3 (variable projection) are independent of the level of atomicity and the relaxations
of the memory model. Thus, these two properties can be directly used in our frame-
work. The property P1, transactional projection, originally [6] stated that aborting and
pending transactions have no influence on committing transactions, and can thus be
projected away. This holds for deferred-update STMs as an aborted transaction does
not write to any variable v of the transactional program. In direct-update STMs, an
aborting transaction may write a value to a variable, but that value is not read if the
transaction aborts. Thus, aborted transactions can still be projected away. On the other
hand, pending transactions can be projected away in a coarse grained alphabet [6], but
not in our fine-grained alphabet due to the fact that a pending transaction may be in the
process of committing values to memory. Furthermore, we generalize P4, the mono-
tonicity property, to handle any number of pending transactions, as opposed to just one
pending transaction in the original property [6]. Note that although this generalization

is possible for opacity, it cannot be extended to some weaker properties, like strict seri-
alizability.

We proved manually that all considered STM algorithms, DSTM, TL2, and McRT
STM, satisfy the four structural properties. This allows us to extend the reduction theo-
rem [6] to our framework.

4 The FOIL Tool

A is correct under M for π

FOIL

STM algorithm A in RML

A with ldfence at locations l1, l2 and stfence atMemory model M

Correctness property π
locations l3, l4 is correct under M for π

No fences can be added to make
A correct under M for π

Fig. 6. Inputs and examples of possible outputs of FOIL

We developed a stateful explicit-state model checker, FOIL, that takes as input the RML
description of an STM algorithm A, a memory model M , and a correctness property
π, and checks whether A is correct for π under the memory model M . FOIL uses the
RML semantics with respect to the memory model M to compute the state space of
the STM algorithm A, and checks inclusion within the correctness property π. FOIL
builds on the fly, the product of the transition system for A and the TM specification for
π. If an STM algorithm A is not opaque for a memory model M , FOIL automatically
inserts fences within the RML representation of A in order to make A opaque. FOIL
succeeds if it is indeed possible to make A opaque solely with the use of fences. In this
case, FOIL reports a possible set of missing fences. FOIL fails if inserting fences cannot
make A opaque. In this case, FOIL produces a shortest counterexample to opacity under
sequential consistency.1 We implemented FOIL in OCaml. We used FOIL to check the
opacity of DSTM, TL2, and McRT STM under different memory models.
Results under sequential consistency. We first model check the STM algorithms for
opacity on a sequentially consistent memory model. We find that all of DSTM, TL2, and
McRT STM are opaque. The state space obtained for these STM algorithms is large as it
covers every possible interleaving, where the level of atomicity is that of the hardware.
Table 2 lists the number of states of different STM algorithms with the verification
results under sequential consistency. The usefulness of FOIL is demonstrated by the
size of state spaces it can handle.
Results under relaxed memory models. Next, we model check the STM algorithms
on the following relaxed memory models: TSO, PSO, and RMO. We find that none
of the STM algorithms is opaque for PSO and RMO. FOIL gives counterexamples to
opacity. We let FOIL insert fences automatically until the STM algorithms are opaque
under different memory models. Table 3 lists the number and location of fences inserted
by FOIL to make the various STM algorithms opaque under various memory models.

1 Note that if an STM algorithm A cannot be made opaque with fences under some memory
model M , then A is not opaque even under sequential consistency.

Table 2. Time for checking the opacity of STM algorithms under sequential consistency on a 2.8
GHz PC with 2 GB RAM. The time is divided into time tg needed to generate the language of
the STM algorithm from the RML description, and time ti needed to check inclusion within the
property of opacity.

STM algorithm A Number of states A is opaque? tg ti

DSTM 1239503 Yes 212s 2.3s
TL2 2431181 Yes 471s 5.1s

McRT STM 1756115 Yes 319s 3.9s

Table 3. Counterexamples generated for opacity, and the type and location of fences required to
remove all counterexamples on different relaxed memory models. Instead of the exact location,
we list here only the RML program in which the fence has to be introduced.

STM TSO PSO RMO

DSTM No fences w1, stfence: pe w1, stfence: pe

TL2 No fences w1, stfence: pe w1, stfence: pe

w3, ldfence: pe

w4, ldfence: pr

McRT STM No fences w2, stfence: pa w2, stfence: pa

Counterexamples

w1 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈store v1〉, t1)
w2 : (〈store v1〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈load v1〉, t2), (〈rfin〉, t2), (〈rollback v1〉, t1)
w3 : (〈load v1〉, t1), (〈rfin〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈store v1〉, t2), (〈store v2〉, t1)
w4 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈load v1〉, t1), (〈rfin〉, t1)

Note that the counterexamples shown in the table are projected to the loads, stores,
and rollbacks of the transactional variables, and rfin instructions. We omit the original
long counterexamples (containing for example, a sequence of loads and stores of locks
and version numbers) for brevity. We give the exact locations of fences for the RML
description of TL2 from Figure 5. FOIL discovers that a store fence is needed after the
label 26 of pe under the memory model PSO. Similarly, for RMO, FOIL finds that three
fences are needed: one store fence after label 26 in pe, and two load fences, one after
label 17 in pe and one after label 06 in pr.

Currently, STM designers use intuition to place fences, as lack of fences risks cor-
rectness, and too many fences hamper performance. As FOIL takes as input a memory
model, it makes it easy to customize an STM implementation according to the relax-
ations allowed by the memory model. Although FOIL is not guaranteed to put the min-
imal number of fences, we found that FOIL indeed inserts the same fences as those in
the official STM implementations.

On the need of fences. We note that reordering a store followed by a load, and reading
own write early (due to store buffers) does not create a problem in the STMs we have
studied. This is evident from the fact that all STMs are correct under the TSO memory
model without any fences. On the other hand, relaxing the order of stores or loads can
be disastrous for the correctness of an STM. This is because most STMs use version
numbers or locks to control access. For example, a reading thread first checks that

the variable is unlocked and then reads the variable. A writing thread first updates the
variable and then unlocks it. Reversing the order of writes or reads renders the STM
incorrect.

5 Related Work

Cohen et al. [3] model checked STMs applied to programs with a small number of
threads and variables. They studied safety properties in situations where transactional
code has to interact with non-transactional accesses. Guerraoui et al. [6, 7] presented
specifications for strict serializability and opacity in STM algorithms and model checked
various STMs. All these verification techniques in STMs assumed sequentially consis-
tent execution and the atomicity of STM operations like read, write, and commit. The
only work that has looked into relaxed memory models in conjunction with transac-
tional memories focused on the testing of TM implementations [15]. We believe that,
as with any other concurrent program, it is difficult to eliminate subtle bugs in STM
implementations solely with testing.

Our RML language was inspired by +CAL [13], a language for writing and model
checking concurrent algorithms. +CAL assumes sequentially consistent behavior, and
the notion of an atomic step does not coincide with a hardware atomic step.

There has also been research in guaranteeing sequential consistency under various
relaxed memory models [14]. However, conservatively putting fences into STM imple-
mentations to guarantee sequential consistency would badly hurt STM performance.
STM programmers put fences only where necessary. Also closely related to our work is
the CheckFence tool [2], a verifier for concurrent C programs on relaxed memory mod-
els. The tool requires as input a bounded test program (a finite sequence of operations)
for a concurrent data type and uses a SAT solver to check the consistency and introduce
fences where needed. We use the structural properties of STMs which allow us to con-
sider a maximal program on two threads and two variables in order to generalize the
result to all programs with any number of threads and variables. Moreover, we model
the correctness problem as a relation between transition systems.

6 Conclusion

This paper contributes to bridging the gap between reasoning about the correctness
of STMs as described in the literature, typically in high-level pseudo-code assuming a
coarse-grained atomicity and sequential consistency, and the correctness of STM imple-
mentations on actual multiprocessors. We first presented a formalism to express STMs
and their correctness properties at the hardware level of atomicity under relaxed mem-
ory models. The formalism is general and encompasses both deferred-update and direct-
update STM schemes. We illustrated our formalism by specifying common STMs such
as DSTM, TL2, and McRT STM; memory models such as total store order (TSO), par-
tial store order (PSO), and relaxed memory order (RMO); and correctness criteria such
as opacity. We then presented a tool, FOIL, to automatically check the correctness of
STMs under fine-grained hardware atomicity and relaxed memory models. FOIL can

automatically insert load and store fences where necessary in the STM algorithm de-
scription, in order to make the STMs correct under various relaxed memory models.
We plan to extend our work to more complicated software memory models, such as
Java [16], which further relax the order of memory instructions.

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computer, 29(12):66–76, 1996.

2. S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: Checking consistency of con-
current data types on relaxed memory models. In PLDI, pages 12–21. ACM, 2007.

3. A. Cohen, A. Pnueli, and L. D. Zuck. Mechanical verification of transactional memories
with non-transactional memory accesses. In CAV, pages 121–134. Springer, 2008.

4. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages 194–208.
Springer, 2006.

5. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System
Design, pages 105–131, 1996.

6. R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh. Model checking transactional
memories. In PLDI, pages 372–382. ACM, 2008.

7. R. Guerraoui, T. A. Henzinger, and V. Singh. Nondeterminism and completeness in transac-
tional memories. In CONCUR, pages 21–35. Springer, 2008.

8. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP, pages
175–184. ACM, 2008.

9. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying sequential consistency on shared-
memory multiprocessor systems. In CAV, pages 301–315. Springer, 1999.

10. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC, pages 92–101. ACM, 2003.

11. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free
data structures. In ISCA, pages 289–300. ACM, 1993.

12. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979.

13. L. Lamport. The +CAL algorithm language. In FORTE, page 23. Springer, 2006.
14. J. Lee and D. A. Padua. Hiding relaxed memory consistency with a compiler. IEEE Trans.

Computers, 50(8):824–833, 2001.
15. C. Manovit, S. Hangal, H. Chafi, A. McDonald, C. Kozyrakis, and K. Olukotun. Testing

implementations of transactional memory. In PACT, pages 134–143, 2006.
16. J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL, pages 378–391.

ACM, 2005.
17. C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM,

26(4), 1979.
18. B. Saha, A. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: A high

performance software transactional memory system for a multi-core runtime. In PPOPP,
pages 187–197. ACM, 2006.

19. N. Shavit and D. Touitou. Software transactional memory. In PODC, pages 204–213. ACM,
1995.

20. D. Weaver and T. Germond, editors. The SPARC Architecture Manual (version 9). Prentice-
Hall, Inc., 1994.

