From MTL to Deterministic Timed Automata*

Dejan Ni¢kovié¢! and Nir Piterman?

L ST, Klosterneuburg, Austria
2 TImperial College London, London, UK

Abstract. In this paper we propose a novel technique for constructing timed au-
tomata from properties expressed in the logic MTL, under bounded-variability as-
sumptions. We handle full MTL and include all future operators. Our construction
is based on separation of the continuous time monitoring of the input sequence
and discrete predictions regarding the future. The separation of the continuous
from the discrete allows us to determinize our automata in an exponential con-
struction that does not increase the number of clocks. This leads to a doubly
exponential construction from MTL to deterministic timed automata, compared
with triply exponential using existing approaches.

We offer an alternative to the existing approach to linear real-time model check-
ing, which has never been implemented. It further offers a unified framework for
model checking, runtime monitoring, and synthesis, in an approach that can reuse
tools, implementations, and insights from the discrete setting.

1 Introduction

The ability to write high-level, intuitive specifications in temporal logic is what, in many
cases, underlies the success of applications in model checking, runtime monitoring,
and controller synthesis. In this paper we concentrate on applications where linear-time
temporal logic (LTL) [20] is used to describe ongoing behaviors. In the case of model-
checking the specification ¢ is effectively translated to a nondeterministic automaton
A, that is composed with the system and analyzed in the search of bad behaviors. In
runtime monitoring, it is not enough to translate ¢ to a nondeterministic automaton.
Indeed, an individual behavior of the system may induce multiple runs, which have
to be followed simultaneously. Resolving nondeterminism on-the-fly induces an extra
computational cost at every step of the monitoring. Thus, it is best to use a determinis-
tic automaton. As monitoring is usually concerned only with finite input sequences, a
simple determinization, based on the subset construction, suffices. Finally, in controller
synthesis, we would like to automatically generate an implementation of a system S
that satisfies a specification ¢ [24]. Synthesis requires to convert ¢ to a deterministic
automaton, however, full determinization of w-automata is required [26, 23].

Here, we are interested in these three applications in the context of real-time. The
main model for reasoning quantitatively about time is timed automata [3]. Timed au-
tomata are suitable for modeling certain time-dependent phenomena, and their reacha-

* Part of this work was done while both authors were at Verimag, France. The first author is
supported in part by the EU project COMBEST and the EU Network of Excellence ARTIST-
DESIGN. The second author is supported by the grant UK EPSRC EP/E028985/1.



bility (or empty language) problem is decidable, facts that have been exploited in veri-
fication tools, e.g., Kronos [29] and Uppaal [15].

As in the untimed case, we would like to combine the model of timed automata
with a powerful logic and apply algorithms for model checking, runtime monitoring,
and controller synthesis. Many variants of real-time logics [14,5, 12, 11] have been
proposed. However, unlike in the untimed case, the correspondence between simply-
defined logics and variants of timed automata is not simple. One of the most popular
dense-time extensions of LTL is the logic MITL introduced in [4] as a restriction of
the logic MTL [14]. The principal modality of MITL is the timed until I/ ;, where I is
some non-singular interval. A formula plf (, p)q is satisfied by a model at any time in-
stant ¢ that admits ¢ at some ¢y € (¢t + a,t + b), and where p holds continuously from
t to ty. Decidability of MITL was established in [4] by converting an MITL formula
to a nondeterministic timed automaton and analyzing the structure of that automaton.
Further investigations of MITL and MTL suggested alternative translations of MITL to
nondeterministic timed automata [17, 18] and used alternating timed automata to show
decidability of MTL in certain circumstances [22].

The mentioned translations of MITL to nondeterministic timed automata provide
the necessary theory for MITL model checking. However, to the best of our knowledge,
(due to their complexity) there are no tools implementing linear-time model checking
of timed systems. In addition, these constructions do not offer a viable solution for run-
time monitoring or controller synthesis, as they do not produce deterministic automata.
In general, for MITL it is impossible to construct deterministic automata [16]. Con-
sider, for example, the formula ¢ = [J(g,q)(p — <>(a7b) q), which says that for every
t € (0,a), if p is true at time ¢ then there is a time point ¢ € (¢ + a,t + b) in which
q holds. A deterministic automaton for ¢ would require infinite memory to remember
all possible occurrences of p within (0,a). Even if we find a fragment of MITL that
can be translated to deterministic timed automata, the known constructions [4, 17] can-
not be used, as arbitrary timed automata cannot be determinized [3]. Determinization
constructions rely on the ability to create a finite representation of a set of runs. When
clocks are involved, it is impossible to finitely represent all the values of the clocks
in a deterministic timed automaton. Even worse, the realizability problem for MITL is
undecidable [10]; and for MTL, realizability is undecidable even for finite words, but
becomes decidable if one restricts the number of clocks used by the controller [8].

Synthesis from specifications given as deterministic timed automata is possible [21].
In order to produce deterministic automata one has to resolve two sources of nondeter-
minism in timed automata arising from MITL:

1. Unbounded variability: there can be an unbounded number of events in a fixed inter-
val of time, which the automaton needs to remember. It follows that one cannot fix a
bound on the number of clocks that the timed automaton needs to use for memorizing
relevant events. Most examples showing that timed automata cannot be determinized
or complemented use unbounded variability.

2. Acausality: the satisfaction of a formula at time ¢ may depend on values of inputs
at time ¢ > t. In order to determine whether the input sequence satisfies the for-
mula at time ¢, the automaton “predicts” the future values of inputs, and aborts later



(at t') computations corresponding to wrong predictions. Acausality is a source of
nondeterminism for both untimed and real-time temporal logics.

Wilke showed that removing the first source of nondeterminism (i.e., bounding the
variability of input signals) enables complementation and determinization of timed au-
tomata [28]. His proof uses monadic-second order logic and offers no practical solu-
tion. Several classes of timed automata that can be determinized are identified in [7].
These automata include strongly non-Zeno timed automata, which reject words that
vary more than a certain bound. The construction in [7] is impractical for MITL speci-
fications as it is doubly exponential and uses an exponential number of clocks; leading
to a triple exponential construction with a doubly exponential number of clocks. Also,
determinization is considered only for finite words.

In [18] a construction from MTL under bounded variability to deterministic timed
automata is suggested. This solution, however, only partially solves acausality: only
invariants “always ¢’ are handled, where ¢ is an MTL formula with past temporal oper-
ators and bounded future operators. Bounded future operators in the scope of an always
are syntactically changed to past operators. As the past is naturally deterministic [16],
the standard construction of [17] produces a deterministic automaton. Compared with
[7], the construction is single exponential instead of triple exponential.

It follows that bounded variability is a practical solution for constructing determinis-
tic timed automata from real-time specifications. For many applications, bounded vari-
ability is a very reasonable assumption [6]. High variability arises from the frequency
at which systems operate; and almost all systems have a bound on the frequencies in
which they operate. In general, high frequencies are hard to produce making systems
more complicated. In practice, bounded variability covers the most interesting cases.

Using the assumption of bounded-variability, we show how to fully handle acausal-
ity of MTL semantics. For that, we devise a completely new construction for converting
MTL formulas to nondeterministic automata, which relies on bounded variability. Our
construction separates the timed automata into two parts: (i) a standard timed automaton
that monitors changes in the inputs and memorizes events with clocks; and (ii) a depen-
dent timed automaton, that makes passive use of clocks controlled by the first part. The
first part is deterministic by construction. The second part, namely the dependend timed
automaton, generates discrete predictions regarding future events.

We then show that dependent timed automata with the following properties can be
determinized: (i) transitions cannot be enabled throughout the stay in a state (no dense
nondeterminism); and (ii) when a transition is enabled the automaton can stay for a
little while in the target state. Both conditions hold for the automata we construct. The
determinization itself is a slight variant of determinization for untimed finite automata
on infinite words [26, 23]. The determinization is exponential and does not change the
number of clocks. The overall result is doubly exponential construction from MTL to
deterministic timed automata.’

Our new construction has many additional advantages even when producing non-
deterministic automata. In our construction the number of clocks depends on the num-
ber of propositions, the depth of the longest chain of nested timed operators, and the

3 In contrast, an exponential determinization for general timed automata under bounded vari-
ability is impossible. The doubly exponential determinization in [7] is optimal.



bounded variability of the input. Updates to clocks are extremely simple and depend
directly on the input. In previous constructions clocks are allocated according to vari-
ability and depth of each operator separately. In our construction the number of states
associated with every unbounded-until is constant, while in previous constructions ev-
ery temporal operator requires states that are proportional to the number of active inter-
vals that the temporal operator may have. For the fragment of bounded future operators
considered in [18] our automata are deterministic by construction and do not require the
extra determinization step. Finally, previous translations read “singular” (zero-duration)
and “open” intervals, while in our construction automata use only left-closed right-open
intervals, which matches existing tools, such as Kronos [29] and Uppaal [15].

2 Signals and MTL

Let AP be a set of atomic propositions. A signal over AP is a function w : T — 247,
where T is either the non-negative reals R>( (infinite-length) or an interval [0, ) (finite
length). We denote by w), the projection of w to the proposition p. Concatenation of two
finite signals wy and wy defined over [0, r1) and [0, 73), respectively, is the finite signal
w = w1 - wa, defined over [0, 71 + 1) as w(t] = wy[t] for t < ry and w[t] = welt — 1)
for t > r1. Consider signal w over AP and signal w’ over AP’ of the same length such
that AP N AP" = (). Their product w x w’ is the signal such that for p € AP we have
(w x w'), = wy, and for p € AP we have (w x w'), = w),. Product is defined for
sets of words in the natural way. We say that w is of bounded-variability | if for every
proposition p, every t € T, and every tg < t; < --- < #; € [t,t+ 1) there is 7 such that
wp[t;] = wp[ti+1]. That is, proposition p changes its value at most [ — 1 times in every
interval of length 1. In this paper we consider only signals of bounded variability.

The syntax of the future fragment of MTL interpreted over dense-time signals is
defined by the grammar ¢ := p | =@ | ¢1 V @2 | v1 U1 w2, where p belongs to a set
AP = {p1,...,pn} of propositions and [ is an interval of one of the following forms:
[b,0], (a,b), or (a,00) where 0 < a < b are integers. An until U ; is unbounded if I is
(a, 00), otherwise it is bounded.

The semantics of an MTL formula ¢ with respect to a signal w is defined recursively
via the satisfiability relation (w,t) = ¢, indicating that signal w satisfies ¢ at time ¢:

)EP < wplt] =1

)= < (w,t) e

JE @1V < (w,t) = @ior (w,t) = @2

YEeiUrps « 3t et +Tst(w,t')Ep2 AV € (1) (w,t") E ¢

A formula ¢ is satisfied by w if (w,0) = ¢ and L(p) = {w | (w,0) = ¢}. Other
Boolean and temporal operators are derived as usual. In particular, >, ¢ = T U ¢
and [ ¢ = =< are the eventually and always operators. Similarly, intervals
such as [a, b], [a, b), [a, 00) can be expressed. When I = (0, 00), we simply omit it.
We suggest a new construction from MTL under bounded variability to timed au-
tomata. The construction is based on computing a bound f such that the automaton at
time ¢ memorizes the input signal at the interval [t — £, t). The truth value of the formula
is computed with a delay: when the automaton is reading time ¢ it computes the value



fut(p) = 0, where p is a proposition.

fut(p1 V p2) = maz(fut(er), fut(p2))

fut(—¢p1) = fut(e1)

fut(p1 U rp2) = a + 2 + mazx(fut(er), fut(ez2)), where I = (a, 00).
fut(p1 U rp2) = b+ maz(fut(p:), fut(ps2)), where I = (a,b) or I = [b, b].

Fig. 1. The function fut()

of the formula for time ¢t — f. The function fut, which determines the interval’s size, is
defined in Figure 1.

We compute the truth value of a formula ¢ at time ¢ by looking on the inter-
val [t,t + fut(p)). The only non-trivial part of this definition is the unbounded until
© = 91U (4,00) P2, Which, apart from a, requires two additional lookaheads (a + 2). In
this paragraph, we give an informal overview of the ingredients needed for our construc-
tion of determinizable timed automata from an unbounded until formula. The formal
definition of the construction is presented in Section 4 and illustrated by Figure 4. We
want an automaton to know for sure that ¢ is true without remembering how long ¢4
held. For that, the interval (¢, ¢ + a] is never sufficient: if 7 holds throughout (¢, ¢ + a],
we must guess that ¢; continues until o holds later and if ¢; holds until 5 holds
within [t,t 4+ a), then we need to know whether ¢ held also before ¢. Thus, we mem-
orize 1 and ¢ in (¢, ¢ + a + 1], which is sometimes sufficient to know for sure that
 is true. For example, o holds for sure if ¢ holds throughout (¢,¢ + a 4+ 0.5] and @5
holds at ¢ + a + 0.5. We use the information recorded in (¢,¢ + a + 1], combined with
a purely discrete guess about the satisfaction of the untimed formula ¢1U>qp2 at time
t + a + 1, to construct an automaton that determines the truth value of ¢ at t. It dis-
tinguishes between three situations: (1) ¢2 is true at some ¢’ € (¢t + a,t + a + 1] and
1 holds throughout (¢,t’), hence ¢ clearly holds at ¢; (2) ¢ does not hold at some
t' € (t,t + a + 1] and ¢, is false during (¢ + a,t’), hence ¢ is false at ¢; (3) ¢; is
true during (¢,¢ + a + 1] and 9 is false throughout (¢ + a,t + a + 1], and we need
to predict the truth value of U2 at t + a + 1. The automaton is nondeterministic:
it makes wrong guesses and aborts runs. We use the additional lookahead to eliminate
one type of wrong guess. Consider, for example, some ¢ > 0 and the case that ¢; holds
continuously throughout [0, c0) and ¢5 holds in (0, ¢ +a) and (t+a+ 1, o). For every
t' < t we have © holds at time ¢’ and our automaton sees that ¢ is true. At exactly time
t, the automaton is blind: o does not hold throughout (¢ + a, t + a + 1]. It has to guess
whether o continues to hold. If it guesses that (o is false, then at every t” > t it realizes
its mistake and aborts as, indeed, o2 holds at t”/ +a+ 1. Hence, the “length of error” was
0: exactly at time ¢. We eliminate O-duration errors using the second lookahead t+a+2,
which provides enough ‘prediction” power to avoid such errors. It follows that the 0-
duration error elimination results in an automaton that remains non-deterministic, but
this step is important for its determinization described in Section 5.

The function fut is used also to decide where the truth value of a formula expires.
For example, if at time ¢ we know the value of ¢ and  in [t — 8, ¢), our knowledge for
the formula qU (3 o) expires at time ¢ — 2 — 2. As ¢U (3,00)7 is unbounded, this truth
value may depend further on a guess.



3 Timed Automata

We use a variant of timed automata that differs slightly from the classical definitions
[3, 13, 1]. Our automata read multi-dimensional dense-time Boolean signals and output
Boolean signals. Input and output are associated with states and transitions. We also
extend the domain of clock values to include the special symbol L indicating that the
clock is currently inactive and extend the order relation on R accordingly by letting
1L < v forevery v € Ry>(. We freely use multiplication by —1 and comparison with
negative values. It follows that — L > —wv for every v € R>(. Foraset A C RZ; we
use cl(A) to denote its (topological) closure. -

The set of valuations of a set C = {z1,...,z,} of clock variables, each denoted as
v = (v1,...,v,), defines the clock space H = (R>o U {L})". A configuration of a
timed automaton is a pair of the form (g, v) with ¢ being a discrete state. For a clock
valuation v = (v1,...,Un), v + ¢ is the valuation (v],...,v]) such that v; = v; if
v; = L and v] = v; + ¢ otherwise. An atomic clock constraint is a condition of the
form x <1 y + d or x < d, where x and y are clocks, < € {<,<,> >}, and d is
an integer. Let A(C) denote the set of atomic constraints over the set C of clocks. For
a set X, let BT (X) denote the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using A and V). Let C(C) = BT (A(C)) denote the
set of constraints over the set of clocks C. We view a constraint ¢ € C(C) as a subset
¢ C 'H. We also introduce free real variables to constraints and quantify over them. That
is, we use constraints in the first-order theory of the reals, where clocks in C are free
variables. In the full version we show that application of quantifier elimination results
in clock constraints in C(C). We used the tool in [19] to eliminate quantifiers in some
of the examples below.

Definition 1. A timed automaton (TA) is A = (X, Q,C,\, I, A, qo, F), where X is
the input alphabet, Q) is a finite set of discrete states, and C is a set of clock variables.
We assume that X is 227 for some set of propositions AP. We freely use Boolean
combinations of propositions to denote sets of letters. The labeling function \ : Q — X
associates an input letter with every state. The staying condition (invariant) I assigns
to every state q a constraint I(q) € C(C). The transition relation A consists of elements
of the form (q, g, p,q') where q and ¢’ are discrete states, the transition guard g is a
subset of H defined by a clock constraint, and p is the update function, a transformation
of H defined by an assignment of the form x := 0, x := L, or © := y or a set of such
assignments. Finally, qq is the initial state. Transitions leaving qo have the guard True
and use only updates of the form x := 0. We consider generalized Biichi automata,
where F C 29, and parity automata, where F = (Fy, ..., Fy) partitions Q. Unless
mentioned explicitly, automata are of the first type.

The behavior of a TA as it reads a signal w consists of a strict alternation between
time progress periods, where the TA stays in a state ¢ as long as w[t] = A\(q) and I(q)
holds, and discrete instantaneous transitions guarded by clock conditions. Formally, a
step of the TA is one of the following:

— A time step (¢, v) “, (g,v+1t)t € Ryg where 0 = A(q) and (v,v+t) C cl(I(q)).

— A discrete step: (g,v) LN (¢’,v"), for some transition 6 = (q,g,p,q') € A, such
that v € g and v’ = p(v).



Letv, = (L,..., 1) bethe assignment of L to all clocks. A run of the TA starting from

a configuration (g, v ) is a finite or infinite sequence of strictly alternating time and
t t

H 2
discrete steps of the form ¢ : (qo,vo) Do, (q1,v1) 2, (q1,v1 +t1) LN (g2, v2) Z,
(g2, v2 + t2) 22, ... such that >, ti diverges. We denote by ([t] the valuation of the

clocks in ¢ at time ¢. That is, at t = 23:1 t; we have ([t] = v;41 and for t' < t;11 we
have ([t +t'] = ([t]+t'. Given arun (, the setinf(() is the set of states ¢ such that the
set of time instants in which q is visited is unbounded. A run is accepting according to
the generalized Biichi condition F if for every F' € F we have FNinf(¢) # 0. Arunis
accepting according to the parity condition F if the minimal 7 such that F; Ninf () # 0
is even. The input signal carried by the run is a? . 052 ---, where we abuse notation
and denote by afi the concatenation of the punctual signal ¢; and the open signal Uf L
That is o; : [0,t;) — X such that forall ¢ € [0,¢;) we have w(t) = o;. An input signal
is accepted if it is carried by an accepting run. The language of A, denoted L(A), is the
set of accepted input signals.
Let A;=( X;, Qi, Cis Mis Ii, Ay, qb, Fi), fori € {1,2}, be two TA such that C;NCy =
(). The composition Aq H Ay = <21 X X9, Q1 X Q2,C1 UCo, N\, I, A, (qé,q%),f},
where (g1, ¢2) = (M(q1), A2(92)), 1(q1,q2) = I1(q1) A l2(ge), and F = {SXT'| S €
Frand T = @, 0r S = Q1 and T € Fy}. The transition relation A includes:
— Simultaneous transitions ((q1, q2), g, p, (41, d5)), where (q;, gi, pi,q.) € A, fori €
{1,2},g=9g1 A g2 and p = p1 U pa,
— Left-side transitions ((q1,92),9, p, (41, q2)), where (q1,91,p,¢)) € Ay and g =
g1 N\ I2(q2), and
— Right-side transitions ((¢1,492),9, p, (q1,¢5)), where (q2,92,p,¢5) € Az and g =
Li(q1) A go.
These three types of transitions reflect the asynchronicity of the composed TA, allowing
one to take a discrete step while the other is in the middle of a time step. Note that the
alphabets of A; and A, are disjoint.

Lemma 1. L(A4; || A2) = L(A1) x L(Az2)

A TA is deterministic if from every reachable configuration every event and every
‘non-event’ leads to exactly one configuration:

Definition 2. A deterministic timed automaton is an automaton whose guards and stay-

ing conditions satisfy:

1. For every two distinct transitions (q, g1, p1,q1) and (q, g2, p2, q2) we have either
Aaq1) # A(g2) or g1 A g2 is unsatisfiable.

2. For every transition (q,g, p,q’), either X(q) # (') or the intersection of g and
1(q) is either empty or isolated, i.e., there does not exist an open interval (t,t') such
that (t,t') C I(q) and (t,t') N g # 0.

Dependent timed automata (DTA) are transducers of runs of TA. Accordingly, DTA
have output and composition of DTA allows one automaton to read the output of the
other. DTA passively read clocks of other TA and have no clocks of their own. Thus,
they depend on other TA to supply them the clocks.



Definition 3. A dependent timed automaton (DTA)is B = (X, I, Q,C,v,I, A, qo, F),
where X, Q, C, qo, and F are as in timed automata. DTA have, in addition, an output
alphabet I, and an output function v : Q — I'. The labeling function is replaced by a
more general staying condition I that assigns to every state a Boolean combination of
atomic constraints and input letters T : Q — BT (A(C) U X). The transition relation
A consists of elements of the form (q, g, 0,q’), where g € BT (A(C) U X)) is a Boolean
combination of atomic constraints and input letters, o € I' is an output, and the clock
update is removed. We assume that I' = 24 for a set AP of propositions and freely
use propositions to define staying conditions and transition guards.

Let ¢ be the run of TA A on input signal w. A run of the DTA reading ¢ and w is a

finite or infinite sequence of states and transitions, where the states are annotated by

the time the DTA stayed in them. Formally, ¢’ : qg Do, gt LN q%? - - -, such that for

every ¢ > 0, there are g; and o; such that §; = (¢;, g, 0:, ¢;+1) and g; is satisfied by
the values C[£;] and wlt;], where £; = Z;Zl t;. Furthermore, for every ¢t € (f;,;11)
we have I(g;) is satisfied by ([t] and w[t]. Acceptance is defined as for runs of TA. An
accepting run ¢’ carries the signal w’ over X' x I such that w’, = w, w'[t;]r = 0;, and
for all t € (f;,1;41) we have w'[t] = (g;). Given a TA run ¢ carrying signal w, we
denote by B(w, €) the set of signals carried by accepting runs of B.
Consider two DTA B; = (X, I, Qi, C, i, Liy A;, ¢, Fi) for i € {1,2}, where
Y9 = X1 x I7. The composition By ® Bs, where By reads the output of B, is the
following DTA. Let By ® By = (X1, I1 X Iy, Q1 X Q2, C, v, I, A, (¢5,43), F ),
where v(q1,q2) = (71(q1),72(g2)) and F = {Sx T | S € Frand T = Qq,0r S =
Q1 and T € Fy}. The staying condition is I(q1,g2) = I1(q1) A simp(y1(q1), I2(q2))
where simp(y1(q1), ) is the constraint obtained from ¢ by replacing 71 (¢1) by true
and all other letters in [ by false. The transition relation A includes:
- simultaneous transitions ((q1, g2), g, (01, 02), (¢4, ¢5)), where (g, g;, 0, q;) € A, for
i €{1,2} and g = g1 A simp(o1, g2),
— left-side transitions ((¢1,¢2), 9, (01,72(q2)), (41, ¢2)), where (q1,g1,01,q]) € 44
and g = g1 A simp(o1,72(gz2)), and
- right-side transitions ((q1, ¢2), 9, (v1(q1),02), (¢1,¢3)), where (g2, g2, 02,45) € Az
and g = I1(q1) A simp(71(q1), g2)-

Lemma 2. For every run ¢ and signal w, B1 ® Ba(w, () = Ba(B1(w, (), ().

Consider a TA Ay = (X1, Q1,C, A1, I1, A1, ¢§, F1) and a DTA By = (X1, I, Qa,

C, 2, Iz, As, g2, F2). Their composition A; ® By is the TA (X1, Q1 X Q2,C, A, I, A,

(qd,q3), F), where A\(q1,q2) = A1(q1),and F = {SxT|S € Frand T = Qq, 0r S =

Q1 and T € Fp}. The staying condition is 1(g1, g2) = I1(q1) A simp(M1(q1), L2(g2)).

The transition relation A includes:

— simultaneous transitions ((q1,¢2), 9, p1, (41, ¢5)), where (q1,91,p1,q1) € A1, (go,
92, 02, @3) € Ag, g = g1 A app(p1, simp(M (1), g2)), and app(p1, g2) applies the
effect of p; on g9, e.g., if p; includes = := y we replace z in g2 by v,

— left-sided transitions ((¢1, q2), g, p1, (¢}, q2)), where (q1,91,p1,¢;) € Ay and g =
g1 A app(p1, simp(Mi (1), 72(g2))) , and

— right-sided transitions ((q1,q2), 9,9, (q1,45)), where (g2, g2,02,¢5) € Az and g =
Ii(q1) A simp(Ai(q1), g2)-



A = {(qin, True, 0, qo), (gin, True,z1 := 0,q1) } U
{(@2i, 11 < fymig1 = 0,q2i+1), (q2i+1, 91 < [, ¥i+1 := 0,q2i42)} U
{(q2ir2, 11 = f{z1 = 22,91 = Y2, .., Ti = Tit1, i := Yit1,

Zit1:= L,yip1 =1}, qei)} U
{(@2it2, 91 = f{z1 = 22,91 = Y2, .-, i 1= Tit1,Yi '= Yit1,
Tiv1 = 0,Yi+1 := L}, g2it1)} U

(q2i+37y1 = f7 {3:1 =T2,Y1 = Y2, T = Ti4 1, Yi = Yit 1,
Tipr = L, yir1 = L}, qair1)} U
{(qu+37 Y1 = f7 {‘Tl =X2,Y1 = Y2, Titl = Tit2, Yitl = 07

Tit2 = L}, quit2)}

Fig. 2. The transition of proposition monitor.

Lemma 3. L(A4; ® By) = {w | 3¢y accepting run of Ay carrying w and Ba(w, (1) #
0}.

As TA have no output, the composition of a TA with a DTA removes the output.
Thus, as in the composition B; ® By DTA Bs may read the output of By, the composi-
tion A ® By ® By should be read as A ® (B; ® Bs). If A; is generalized Biichi with
F1 = {Q1} and B is parity with 5 = (Fy, ..., F}) their composition A; ® By is a
parity automaton with F = (F{, ..., F}), where F] = ()1 x F;. We do not define other
compositions of parity conditions.

4 MTL to Nondeterministic Timed Automata

We suggest a novel construction for the conversion of MTL formulas to nondetermin-
istic TA. The advantage of this construction is that it effectively distinguishes between
discrete guesses relating to occurrences in the future (made by DTA) and the accumula-
tion of knowledge with clocks (made by deterministic and extremely simple TA). This
separation allows us to construct a deterministic automaton for the formula in Section 5.
This section starts by introducing proposition monitors, deterministic TA that log infor-
mation about the input. We then show how to construct the DTA that handle general
MTL formulas. Note that the number of clocks depends on the structure of the formula
through the function fut and the construction of the proposition monitors.

We introduce a TA that memorizes the times in which a proposition is true. Given
a formula ¢ let f = fut(y). The automaton is going to memorize all events occurring
in the interval [t — f,t). Let k be the bounded-variability value (i.e., the limit on the
number of changes possible in a proposition in 1 time unit). It follows that in the interval
[t — f,t) there can be at most (%1 different sub-intervals in which the proposition is
true. Thus, we need 2 - [%] clocks to memorize their start and end times. Let n =
(%] Formally, for a proposition p, let A, = 2P Q,C,\ I, A, in, {Q}), where
Q = {dinq0, -, @2n}» Mq2i) = 0, Mazit1) = {p}. C = {le)v"'azfmy;f?"'ayg}’
for j > 1 we have I(q;) = yi < fand I(qo) = I(q1) = True and A is given in
Figure 2. One such proposition monitor is given in Figure 3.

We use the TA A, with one state and one clock z, which measures the time since
time 0, to check whether the bound f has been reached. Formally, A, = (2, {qin, q},



y1 = f; y1 = f; y1 = f;
z1 = Ll,y; ;=L @1 :=ag,y1 =L T = ®g, Y1 = Y2
9 = L zg = L,yg i= L

Fig. 3. Proposition monitor for p, where f = fut(y) and (%'\ = 2. State labels consist of: the
label p or —p; the invariant true (blank) or y1 < f; and clocks active in the state. Transition labels
consist of: the transition guard, e.g., y1 < f; and the clock update, e.g., y1 := L.

z:ngS;ﬁpw

z=fAgaipy

Fig.4. A DTA for unbounded until. States s1 and s3 correspond to [ q41) 1 A
(01U (q,a41)p2), state sz corresponds to 1l (q,q41)p2, and state sy corresponds to
_‘(D(o,a+1) 1) A=(p1 Z/[(a,a+1)902)-

{z}, M I, A, qin, {q}), where A(q) = True, I(q) = z > 0, and A = {(qin, True, {z :=
0},q)}. Let A,,, denote the composition of all proposition monitors and A.,.

We turn to the construction of DTA. Consider an MTL formula ¢. We construct a
sequence of DTA that use each other’s outputs and eventually are all composed with
A, which supplies all the clocks that are read by them. For most subformulas 1) of
©, the truth value of v can be deduced from the values of clocks in .4, and the DTA
of their subformulas. For such formulas, we define constraints cw(t) that depend on
mentioned DTA and 4,,, and, intuitively, characterize the truth value of ¢ at time ¢.
These constraints are ultimately staying conditions and transition guards in DTA for
superformulas of . For an unbounded subformula 4 (i.e., Until where the upper limit
is 0o) we construct a small DTA that computes the value of v at exactly the time point
fut(y) — fut(p) (.e., fut(y) — fut(ey)) before the current time point). This DTA uses
constraints defined for subformulas of . Similar to other formulas, based on the DTA
for 1), we also define the constraint ¢y (t), which characterizes the truth value of 1) at
other times ¢ # fut()) —fut(y). This constraint is again used for staying conditions and
transition guards in superformulas of 1. Finally, we construct a DTA for the formula ¢
itself. Then, we take the composition of all DTA constructed and compose them with
A,,, to produce the TA that accepts the language of . Formally, we have the following.

10



The mentioned constraints are in the first-order theory of the reals with clocks of
A, as free variables. By eliminating quantifiers these constraints can be converted to
clock constraints that are used in staying conditions and transition guards. We think
about the current time point as 0. For example, if 27 = 2.37 and y] = 1.49, from
our point of view r was true during the interval [—2.37, —1.49). Formally, we define by
induction the DTA and constraints. For a subformula v, the constraint C, (¢) is valid for
t € [—f, —fut(e)). We assume that quantifier elimination is applied on all constraints.
— For a proposition p and for t € [—f,0). We define C,,(t) = \/, . —af <tA—y! > ¢

The finite disjunction on ¢ depends on the number of clocks in A, (part of A,,).

— For subformula 1 of the form —)1, ¢1 V2, or Y1 Ath we define Cyy (t) using Cly, (¢)
and Cy, (t) in the obvious way. The range allowed for ¢ is the minimal range allowed
by Cy, and Cy,. For example, we define Cy, vy, (t) = Cy, (1) V Cy, ().

— For ¢ = ¢ U s, where I = (a,b) or I = [b,b], by definition fut(¢p) = b +
mazx(fut(i1), fut(epz)). It follows that Cy, (¢) is defined for ¢ € [—f, —fut(¢)1)) and
Cly, (t) is defined for ¢t € [—f, —fut(e)2)). So, for t € [—f, —fut(e))) it is always the
case that ¢ + b is in the range where Cy, (t) and Cy, (t) are defined. In the case that
I = (a,b), fort € [—f, —fut(¢)) we formally define Cy(t) = 3t € (t + a,t +
b).Cy, (t') ANV € (t,1').Cy, (). In the case that I = [b, ], for t € [—f, —fut(¢))
we formally define Cy () = Cy, (t +b) AVt € (t,t +1).Cy, (t).

— Consider a formula 1) = ¥ U (4,00) 2.

By definition* fut(y)) = a + 2 + maz(fut(yr), fut(¢)e)). It follows that Cy, (¢) is

defined for t € [—f, —fut(e1)) and Cy, (¢) is defined for ¢ € [—f, —fut(¢2)). So,

fort € [—f, —fut(e)] it is always the case that (¢, ¢+ a+ 2) is contained in the range

where Cy, and Cy, are defined. We construct a DTA for 1 and use its output for

defining Cy.

o We construct a DTA for the truth value of ¢ at time ¢ = —fut(¢)). Formally, let B,,
be the automaton in Figure 4, where the guards and the invariants are as follows.

1,13 : Vt € (—fut(¢), —fut(1/1) +a+ 1).C¢,1 (t)/\
vt € (—fut(y)) + a, —fut(y)) + a + 1).=Cy, (t)
I, 3t e (—fut(®) +a,—fut(®) + a+1). Cy,(t) AVt € (—fut(y),t).Cy, (t)
I, 3t(—fut(y), —fut(y) + a + 1).-Cy, (t) AV € (—fut(v) + a,t).~Cly, ()
91,93 : [t A3t € [—fut(y)) + a+ 1, —fut(y) + a + 2).
Vt' € [—fut(y) + a + 1,8).Cy, (t') A =Cy, (')
g2 IV (I1 A3t e (—fut(y), —fut(y) + 1).
vVt € (—fut(y),t).3t" € (t' +a,t’ +a+1).Cyp, (t") AVt € (t,t")Cy, (t"")
ga  :IaV (I3 ATt e (—fut(y), —fut(v) + 1)Vt € (—fut(y),t).
I e (Ut 4+ a+1)-Cy, (") AV € (' + a,t")=Cly (t")

States s1, s and their incoming transitions are labeled by p.;, all other states and
transitions by —p,,, and s is the only unfair state.

Intuitively, the invariants realize the intuitive meaning of the states as explained in
Figure 4. The transition guards, in addition, use the extra 1 in order to make sure
that when going to the next state it is possible to stay in it (eliminate O-duration

* We note that replacing a + 2 by a + 2¢ for every € > 0 would not affect the correctness of
the construction. We choose integer values for the lookaheads to avoid normalizing the largest
constant in the guards and invariants of the timed automaton

11



errors). This is required in order to be able to apply determinization. In case that
determinization is not pursued, the extra lookahead can be removed and the guards
are I for transitions into s; and s3, Is V I; for transitions into so, and I, V I3 for
transitions into s4.

o For every t € [—fut(p), —fut(¢))] the constraint Cy(t) that describes the truth
value of v is formally defined as follows:

(t = —fut(¥h) Apy) V (t < —fut(p) Apy AV € (¢, —fut(y)].Cy, (t))V
(t < —fut(yh) ATt € (t+ a, —fut(1h)).Cy, (') AV € (t,1).Cy, (1))

This completes the inductive part of the construction®. Let 1y, ..., %, be all the un-
bounded temporal operators in ¢ such that if v; is a subformula of 1); then 7 < j. Let
By,, ..., By, be the DTA constructed in the inductive part, AP’ = {py,,...,py,},
and I' = 247" That is, I" includes the output of all DTA constructed by induction.
Note that for every ¢ we have By, is merely informative. That is, By, accepts all inputs
and adorns them with the proposition p, .

We now construct a final DTA B for ¢ itself. Let B be (X' x I, {0}, {q0, 91, g2}, C, 7,
I, A, qo, {{a1}}), where ¥(q0) = v(q1) = 7(q2) = 0, I(q0) = z < f, and I(q1) =
I(gq2) = True. The transition relation is A = {(qo, 91, 0,41), (90, 92,0, q2) }, where
g1 = Cu(—f) Nz = fand go = ~C,(—f) Az = f. Thatis, BB enters state ¢; if ¢ is
true at time O and state g if ¢ is false at time 0. State ¢; is an accepting sink state and
state gy is a rejecting sink state. Let B, = By, ® - -- ® By, ® B. Finally, the TA for ¢,
denoted by A, is A, ® B,.

Lemmad. L(A,) = L(p)

Corollary 1. For every MTL formula @ with m propositions, n unbounded temporal
operators, and inputs of bounded variability k, there exists a nondeterministic timed
automaton with me%t(w] + 1 clocks and ((2[%] +1)™+1)(2-4™+1) states
that accepts the language of ©.

5 Deterministic Timed Automata

We show that the automata constructed in Section 4 can be determinized. The sepa-
ration of the construction to deterministic proposition monitors and nondeterministic
DTA makes this part possible. We use a variant of Piterman’s version of Safra’s de-
terminization [23] to determinize DTA. The differences are mostly syntactic, taking
into account the ‘asynchronicity’ of transitions from a set of states. We assume that
every transition (g, g,0,¢q’) of a DTA the intersection of g and I(q) is either empty or
isolated, i.e., there does not exist an open interval (¢,¢') such that (¢,¢') C I(q) and
(t,t')Ng # @ and if (g, g, 0,q’) is enabled at time ¢ then there is a small interval (¢, ")
such that (¢,¢') C I(q'). The DTA from Section 4 satisfy this condition. We also as-
sume that the DTA takes infinitely many steps and that its acceptance set F contains
exactly one set. It is simple to modify the automaton to an automaton that takes in-
finitely many steps by adding (or reusing) a clock that keeps resetting itself and taking

> Due to the lack of space, we restrict attention to intervals of the form [b, b], (a, b) and (a, o)
and include a full treatment of all other types of intervals in the full version of the paper.

12



a transition whenever this clock reaches some value. Converting an automaton where
|F| > 1 to an automaton where |F| = 1 is standard. We make this assumption solely
to simplify presentation.

Let B=(X,I,Q,C,v,I,A,q,F) be a DTA satisfying these conditions. We con-
struct an ‘equivalent’ DTA D. The construction is based on the subset construction [25].
Thus, every state of D is associated with a set of states of B. A state of D associated
with Q" C @ follows a set of runs of B ending in the states Q'. For a set Q' C @ let
1(Q)'be A ey 1(a) and (@) be Acqr ~I(a)- Let AQ') = {(4,9,0,¢') € Al g €
Q'}. Foraset A" C Alet g(A") be A\, 4 0.01ear 9and g(A ) be A, o, ihear —9- A
set of runs of B that end in states in @’ can be extended in three different ways: Some
runs are extended by staying in the same state, some runs are extended by crossing
discrete transitions (and cannot be extended by crossing other discrete transitions), and
some runs cannot be extended. We represent such a choice by aset 7' C Q"UA(Q’). Let
stay(T) = T N Q' be the states whose runs are extended by staying in the same state.
In particular, all transitions from stay(7T') have to be disabled. Let A(T) = A(Q")NT
be the discrete transitions taken by states in Q. Let deadend(Q’, T') be the set of states
q € @' such that ¢ ¢ T and for every (¢’,g,0,¢") € T we have ¢’ # ¢. That is, the
states whose runs cannot be extended. Let move(T') = Q' \ (stay(T) U deadend(T)),
the set of states that have some transitions going out of them in T'. Let succ(Q”,T) be
stay(T)N Q" U{q| 3¢, g,0,q) € TN A(Q")}. For every T as above, a state of D
associated with ' can take a T'-transition with guard ¢(7'):

I(stay(T)) AG(A(stay(T))) A g(T 0 A) A G(A(move(T)) \ T) A
I(deadend(Q',T)) A G(A(deadend(Q’, T)))

That is, states whose run is extended by staying in the same state contribute their invari-
ants and the negation of transitions exiting them; transitions that are crossed contribute
their guards and the negation of transitions that are not crossed; and states whose run
is going to end contribute the negation of their invariants and the guards of transitions
exiting them. The case when both deadend(T") and T' N A are empty is not interesting
as all runs are extended.

Definition 4. [23] A compact Safra tree t over Q is (N, M, 1,p, 1, e, f), where the com-
ponents of t are as follows. Let |Q| = n. (a) N C [n] is a set of nodes. (b) 1 € N is the
root node. (c) p : N — N is the parent function. (d) | : N — 29 is a labeling of the
nodes with subsets of Q). The label of every node is a proper superset of the union of the
labels of its sons. The labels of two siblings are disjoint. (e) e, f € [n + 1] are used to
define the parity acceptance conditions. For a tree t, let set(t) = | 1(i) be the set
of states that label at least one node in t.

1€[n]

The deterministic DTA is D = (X, {0} ,S,C,~', I', A, sg , a), where components
are defined as follows. Differences from the construction in [23] are in bold.
S is the set of compact Safra trees over ().
S0 is the tree with a single node 1 labeled {qo}, where e = 2 and f = 1.
The parity acceptance condition o« = (Fy, ..., Fa,_1), where Fy; = {s € S| f =
i+lande> fland Fp;yy ={s€ S|e=i+2and f > e}.
For every state s € S we have v/(s) = oand I'(s) = I(set(s)).

13



— For every tree s € S and every set T' C set(s) U A(set(s)) we add to A’
the transition (s,g(T),0,s’) where s’ is obtained from s using the following
transformations.

1. For every node v with label Q' replace Q' by suce(Q’,T).

2. For every node v with label Q' such that Q' N« # (), create a new son v’ ¢ N of
v. Set its label to Q' N a. Set its name to the minimal value greater than all used
names. We may have to use temporarily names in the range [(n+1)..(2n)].

3. For every node v with label Q" and state ¢ € @’ such that ¢ belongs also to some
sibling v of v such that M (v') < M (v), remove ¢ from the label of v and all its
descendants.

4. For every node v whose label is equal to the union of the labels of its children,
remove all descendants of v. Call such nodes green. Set f to the minimum of n+1
and all green nodes. Notice that no node in [(n+1)..(2n)] can be green.

5. Remove all nodes with empty labels. Set e to the minimum of n+1 and all nodes
removed during all stages of the transformation.

6. Let Z denote the set of nodes removed during all previous stages of the transfor-
mation. For every node v let rem(v) be [{v' € Z | M(v") < M(v)}|. That is, we
count how many nodes that are smaller than v are removed during the transforma-
tion. For every node v such that I(v) # () we change v to M (v) — rem(v).

Theorem 1. For every deterministic timed automaton A, we have A ® D is determin-
isticand L(A ® D) = L(A® B).

Corollary 2. For every MTL formula ¢ with m propositions, n unbounded temporal

operators, and inputs of bounded variability k, there exists a deterministic timed au-
tomaton with Qm[%ﬂ“’)] + 1 clocks and ((2[%«0)] Y+ 1) - 227" ™) states that
accepts the language of .

We note that the double exponent in the number of unbounded temporal operators
is unavoidable, as follows from the same for LTL.

6 Conclusions

We developed a novel construction for translating full MTL to timed automata, under

bounded variability assumptions. Our construction provides a unified framework for

model checking, runtime monitoring, and controller synthesis, and offers an alternative
translation that improves exponentially on the complexity of securing a deterministic
timed automaton, avoiding a doubly exponential number of clocks.

In the future, we intend to investigate further improvements of our construction:

— Consider MTL with past operators. This extension does not increase the complexity
of the construction as satisfaction of past operators depends only on the observation
of memorized events in the proposition monitors.

— Interpret the logic over finite signals, in the context of monitoring timed behaviors.

— Optimize and improve the translation. One straightforward improvement would re-
quire a smarter memorization of events in the proposition monitors.

— Implement the translation presented in this paper and evaluate it in the context of
model checking, runtime monitoring, and controller synthesis.

14



Acknowledgements We would like to thank Dana Fisman and Oded Maler for their
insightful suggestions that helped us improve the clarity of the manuscript.

References

1

2.

3

4.

5.

6.

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
217.

28.

29

R. Alur. Timed automata. In CAV, LNCS 1633, pp. 8-22. Springer, 1999.

E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. JACM, 49(2):172-206, 2002.
R. Alur and D. Dill. A theory of timed automata. 7CS, 126(2):183-236, 1994.

R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. JACM,
43(1):116-146, 1996.

R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In Real Time: Theory
in Practice, LNCS 600, pp. 74-106. Springer, 1992.

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In

IFAC SSSC, pp. 469-474. Elsevier, 1998.

. C. Baier, N. Bertrand, P. Bouyer and T. Brihaye. When are Timed Automata Determinizable?

In ICALP, LNCS 5556, pp. 43-54. Springer, 2009.

. P. Bouyer, L. Bozzelli and F. Chevalier. Controller Synthesis for MTL Specifications. In

CONCUR, LNCS 4137, 450-464. Springer, 2006.

. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. UPPAAL-Tiga:

Time for playing games! In CAV, LNCS 4590. Springer, 2007.

L. Doyen, G. Geeraerts, J.-F. Raskin, and J. Reichert. Realizability of real-time logics. In
FORMATS, LNCS 5813, Springer, 133-148, 2009.

K. Havelund and G. Rosu. Efficient monitoring of safety properties. STTT, 2004.

T.A. Henzinger. It’s about time. In Concur, LNCS 1466, pp. 439-454. Springer, 1998.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-
time systems. /&C, 111:193-244, 1994.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-time Systems,
2(4):255-299, 1990.

K. G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & developments. In CAV, LNCS
1254, pp. 456-459. Springer, 1997.

O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Past, present, future. In
FORMATS, LNCS 3829, pp. 2—-16. springer, 2005.

O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In FORMATS, LNCS
4202, pp. 274-289. Springer, 2006.

0. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllers from bounded-response
properties. In CAV, LNCS 4590, pp. 95-107. Springer, 2007.

D. Monniaux. A quantifier elimination algorithm for linear real arithmetic. In LPAR, LNCS
5330, pp. 243-257. Springer, 2008.

Z.Manna and A. Pnueli. Temporal Verification of Reactive Systems: Specification. Springer,
1991.

O.Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In STACS, LNCS 900. Springer, 1995.

J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pp. 188—
197, 2005.

N. Piterman. From nondeterministic Biichi and Streett automata to deterministic parity au-
tomata. LMCS, 3(3):5, 2007.

A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, 179-190,1989.

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
R&D, 3:115-125, 1959.

S. Safra. On the complexity of w-automata. In FOCS, pp. 319-327, 1988.

M.Y. Vardi and P. Wolper. An Automata-theoretic Approach to Automatic Program Verifi-
cation, In LICS, pp. 322-331, 1986.

T. Wilke. Specifying Timed State Sequences in Powerful Decidable Logics and Timed Au-
tomata, In FTRTFT, LNCS 863, pp. 694-715. Springer, 1994.

S. Yovine. Kronos: A verification tool for real-time systems. ST77T, 1(1-2):123-133, 1997.

15



