SUPPLEMENTARY INFORMATION

Supplementary Information 1: Stability of three-way associations with multilocus
underdominance/assortment

We will assume that fitness acts in the same way at each locus, and so depends only on the
number of heterozygous loci. However, linkage relations will in general differ amongst
loci: indeed, they must differ if the loci are linked and there is no interference between
crossovers. In this model, we have s = sp = s3 and 515 = sp3 = 513. Close to LE, and
assuming symmetrical allele frequencies, the recursions for linkage disequilibria are special

cases of Eq. 15:

Diy = D1z ( (1-11,2) (1+ i—162> +%rl,z>
(35)
Diy3 = D123 ( (1 - ria3) (1+%> T123 (% +%>>

and similarly for the other Dy;. With no interference, the chance of a crossover between
any of the three lociis riy3 =1 - (1 -1ry,2) (1 -1y, 3),assuming that the loci are in
order 1,2,3.

The conditions for instability are

s
ry o < 12 for D;; unstable
4
16 -8 51 + 513
5123

64 - 16 S1 —4512 + S123

(36)

i3 < for D123 unstable

We can get a concrete understanding of the model by relating the selection coefficients to

the fitnesses W; of individuals with i heterozygous loci:

3 3 1
Wo =1+ — s — S — S 0
0 + 2 1+ 16 1,2 + 64 1,2,3 >
W1_1+isl—islz—islz3>0
4 16 ! 64 e (37)
W. 1—is—is +is >0
2 = 2 1 16 1,2 64 1,2,3
3 3 1
W3 =1- — s — S - — s 0
3 2 1+ 16 1,2 64 1,2,3 >

and with W = 4 (Wo + 3 Wy +3 W, + W3) = 1 always.
giving:
Si :4—W1—2W2—W3

S12 =8 (2-W; - Wy) (38)
S123 = 16 (4 -3 Wy - W3)
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We can now rewrite the thresholds as:

ry,2 < (2-W - W) gop D;; unstable
(W2 + W3)
4 -3 W 1% (39)
I'123 < - 4 F; — 3 for Dj;3 unstable
2

We can find parameter combinations that give all four possible stability regimes. We focus
on the extreme case where complete reproductive isolation can be achieved (W3 = 0), and
then vary the remaining parameters Wy, W»; numerical examples are given in Fig. 2. If the
pairwise D's are unstable, but the third-order association is stable, then we expect the final
outcome to be fixation of two complementary genotypes (000 and 111, 001 and 110, etc.),
since in these states all the pairwise D's are maximal and the third-order association is zero
(Fig. 3a). When both second and third-order associations are unstable, Dj;3may increase
initially, but then decrease as pairwise D's increase. The most interesting case is when
D1»3 is unstable, but the pairwise D's are stable (Fig. 3c). Then, four complementary
genotypes (e.g. {0,0,1},{0,1,0},{1,0,0},{1,1,1}) predominate, in equal proportions, and any
combination of these leads to precisely two loci being heterozygous. Note, however, that
the stability at linkage equilibrium does not necessarily tell us the final outcome (e.g., Fig.
3b).
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Supplementary Information 2: Analysis of Felsenstein's (1981) model, assuming
)
Pb =Pc =75

We can write the net contribution of each genotype to the next generation as the average
over the two niches. The full expression is complex, but simplifies when we assume equal

allele frequencies at loci b, c:

W =
(04
1+ * 1+ -D 1+ > Cr - D
Pa da Ca ga ( Y (Cp Cc be) ) ( Y (gb gc be) ) (40)
where - = Wr=W —1+s+e(i+D) = _ 1
Y = WII I=Wrir = 2 bcrpb—pc—z-

W: = Wyt denote the average fitness within each niche. The parameter € measures the
deviation from additivity within each niche, and would equal s> with multiplicative fitness.
The dynamics depend on the scaled coefficient of epistasis, y = We—I Thus, the following
analysis applies to any two-locus model with net epistasis of strength vy, provided that allele
frequencies are symmetric (pp = p. = %): Felsenstein's (1981) two-niche model is one of

many ways of maintaining a stable polymorphism despite disruptive selection.

Rather than working with the full selection coefficients that give the total effect of selection
on haploid and diploid stages (Eq. 1), it is easier to separate the effects of viability selection
on haploids, and of assortment amongst haploids (or, underdominance of diploids).

Haploid viability is written in terms of a set of selection coefficients ay. Using the haploid
equivalent of Eq. 2, Dj; = Dy + ).y ax (Dyx — Dy Dx). In this case, the only selection
coefficient for haploid viability is a,. = v, and so we find the pairwise associations after

viability selection:

Dap = Dab + ¥ (hp Dac — Dpc Dab)
Dac = Dac +¥ (he Dab ~ Dbe Dac) (41)
Dpe = Dpe + ¥ (Bp he - D},
where we have used the reduction formula, Eq. 3, and assumed pj, = p, = % The product
of allele frequencies is denoted by h, = p, gy = %; it is convenient still to express the

formulae in terms of &y, h., so as to keep track of the sources of the various terms.

From Egs. 2, 4, the effect of assortment and recombination is simply:
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Dab = (1 _pb> Dab
Dac = (1 _pc) Dac ' ' (42)
i ' D_, D
Dy = (1_rb,0> Dpe + I'p,c %
a

where py =r,,x (1 - o) measures the effective rate of recombination between the
assorting locus and locus x € {b, c}, which is reduced by assortment or underdominance at
locus a. Note that these equations apply for arbitrary D,;, D,.: we have not made any
linear approximation, and yet the recursions for D,;,, D, are linear. Combining Eqs. 41,

42, these recursions can be rewritten in matrix form:

Dap
Doc )
(43)
((1—Db) (1 -¥ Dpc) (1-pp) vhp ) (Dab)
(1 -pc) vhe (1 -p¢) (1-¥Dpe) ) Dac

Crucially, this pair of linear equations applies in general, not just for small D,,- although
Dy, will change as a function of the D,;,, D,.. We can therefore identify two kinds of
equilibria. There is always a symmetrical equilibrium with D, = D, = 0. This will be
stable if the leading eigenvalue of the matrix in Eq. 43, A, has magnitude less than 1. If it is
unstable, then associations with locus a will grow, and as they do so, the association
between the selected loci, Dy, will also grow. We see from Eqgs. 41 that as Dy increases,
the rates of growth of D,;, D, decrease. At some point, the leading eigenvalue falls to
precisely A=1, and we have an alternative asymmetric equilibrium in which both pairwise

associations are either positive, or negative.

The leading eigenvalue can be written explicitly as the solution to a quadratic equation, and
takes a simple form when loci b, c are equivalent (i.e., when they are unlinked, or when a

is midway between b, c¢):

A=(1-p) (1+ v (h-Dpc)) (44)

The association Dy, is given by setting D,j;,, D, to zero in Egs. 41, 42:

Dpe = Dpe = (1 - Iy, o) (Dpe +v (hp he - DE)) (45)

This has the solution:

(46)
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where we have dropped the subscript from r . for compactness. It may be convenient to
measure the strength of epistasis by eithereory =€/(1 + s + e(% + Dy¢)), and so we give

two forms for this solution.

This equilibrium is unstable to growth of D,;,, D,. if A>1. For p;, = p. = p, this condition

can be rewritten as:

(1 )
-D 47
1—D<Y 4 be (47)

for instability. This condition compares the strength of Dj. (which depends on y and rp.)
with the effective rates of recombination between a and b, c. By substituting for D;, . from
Eq. 46, the condition for instability is given explicitly as:
o (rp ,C o) < v
(1-0) (rp,c (1 +0) -2p) 4

Figure 4 shows that for the two incompatibilities to become coupled, there must be

(48)

sufficiently strong assortment, and sufficiently strong epistasis, relative to the rates of

recombination.
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Supplementary Information 3: Stability of Felsenstein's (1981) three-locus model

Allele frequency at the assorting locus, p, can be arbitrary if there is no association with
other loci, but once associations do build up, p, will tend towards % First, suppose that
Dgp, Dye =0. Then, Dgp can be non-zero, and p, will change if D, is non-zero.
Perturbations to D, always decay to zero, but as they decay, they lead to a shift in p,. So,
we can justify assuming that D, =0, but can keep p, arbitrary. Now, suppose that

Dgp, D, are non-zero. With arbitrary p,, Dgp. then becomes non-zero, p, is selected to
converge to %, and thereafter D, converges to 0. However, the transient stage becomes
complicated, because the allele frequencies p, p. temporarily deviate from % Thus, it 1s
consistent to assume that all allele frequencies are at % This stability analysis, detailed
below, justifies setting all allele frequencies to %, on the grounds that while p, is in

principle arbitrary, perturbations will send it towards p, = 2i

The change in allele frequencies is obtained from Eq. 2:

~ ~ 2
Apa = Dapc (8pc + 8abc ha) - 8abc,abc (Pa — 9a) Dipe

APy = Dapc (@a,abc Dab + @abc,abc Bp Dac) (49)
Apc = Dapc (aa,abc Dac + aabc,abc hc Dab)
Here, dpc = ape ¢ + apebe Dies Gabe = Qabea + Gabe,abe Dpe- The last term in the first
equaﬁOH arises because (aabc,abc Daabe Dape = aabc,abc(ha Dy — (pa - Qa) Dape) Dape). We
denote the product of allele frequencies by h, = p, q, etc. Since we assume p;, = p. = %
throughout, iy, = h,. = %. However, it is convenient to retain the Ay, h,. since this makes

the origin of the terms clearer.

Because assortative mating is defined to be cost-free, allele frequencies at locus a only
change through associations with the selected loci. Because the latter are at a stable
equilibrium with p, = p. = %, these loci experience no directional selection (i.e.,

app = a.q -.- = 0). Therefore, locus a only experiences indirect selection via the three way
association Dgp.. This selection acts in two ways. First, if allele al is associated with the
fitter combinations of alleles b! ¢! and b° ¥ (i.e. if @, > 0 and D, > 0), then allele a!
will increase (Ap, = Dyp¢ dpe > 0). The second term in the equation for Ap,, is due to the
third-order selection coefficient &3¢ = @abc,a + @abce,abe Dbe, Which arises through the
multiplication of fitness components in Eq. 40, and has the same direction as the leading
term This coefficient involves an association between an allele ¥ in one individual, and
alleles aX b' ¢!, X b0 ¥ in the other, represented by a, 45.. Thus, if allele al (say) is
associated with fitter combinations at loci b, ¢ (Dgpe > 0), and if allele a! in another
individual tends to mate with those fitter combinations (a4 qp.), then allele altends to

increase. The changes in allele frequencies at the selected loci also arise through this
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second effect (i.e., through terms such as Dapc @a,abe Dap). To summarise: alleles at the
assortment locus increase if they are associated with fit combinations of alleles at the
selected loci; and alleles at all three loci increase via preferences of alleles in one haploid

individual for fit combinations in another individual.

We see that allele frequencies at loci b, ¢ will stay fixed at % if either D, is zero, or if
Dgp and D, are zero. In the following, we examine two kinds of deviation from the
symmetric equilibrium: changes in p,, D,p., with D, = D, = 0, or conversely, changes
in pairwise associations, with all allele frequencies and D, symmetrical. In both cases,

we maintain pp = p. = %, and Dy, > 0 because of epistatic selection on loci b, c.

First, assume that D, D, = 0. The recursion for p, is given in Eqgs. 49. For Dy,:

D' = (1-rp
bc ( ) , C ) , , ( 50 )
(Dpe + @pc (hp he - Dyo) + (aa,abc — @abc,abc Dpc) Dipe)
The pairwise association between the selected loci is built up by epistasis between them
(&pc), and broken down by recombination (1 - ry, o). In the presence of a three-way

association of either sign, it is also generated by the higher-order coefficient a5, apc -

For the three-way association:

Dape = Tabe,
(Dabc - glbc Dapc Dpe + aa,abc (ha Dpc - (pa - qa) Dabc)
Dapc + @abce, abe (hg hp he Dape - ngc) )+ (51)
La,bc (abc,(Z) Dapc Dpe + @pc,be Dabe hp he + 8a,a ha Dape +
aabc,a (ha Dbc - (pa - qa) Dabc) Dabc) - Apa DZ;C

This can be rearranged to give:

D;;lbc = Tabec, (Dabc — @pe Dabe Dpe +
8abc,abc (hg hp he Dape - ngc) ) +
Ta,bc (abc,(Z) Dapc Dpe + @pc,be Dabe hp he +
8a,a ha Dabc) - (52)
(1- rb,c) Dapc (@abc (Pa — 9a) Dabe + @pc Dpe +
8abc,abc ha Dlz)c ) - Apa (1 - rb,c)
(@pc (hp he - Dlzpc) + (@a,abc — @abc,abc Dbce) Dﬁbc)

In terms of the parameters «, s, y:

WAp, = (1 +a) ¥ Dape _Yz Dabc2 (Pa — 9a)

Pa ga
W Dy =
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(04
(1-Tb,0) [ 2+ Do+ ¥ Dipe| (1 =¥ Dpe)

o (l+s) (1+s+ <)
WD,pe = (1 _rb,c> Dape 1
z + Dpc) )

(1+s+¢€ (
(A +ML
W p1aq1

where A=l - rgp (1-0), W = 1 + —2— 32 D2

The equilibrium at D=0 is stable if :

(1-15,0) (1+s) (1+s+7)

(1-rap (1-a)) <1 4
(1+s+e(%+Dbc))2 b (54)

Now, because 0 < Dp, < %, the middle term in Eq. 54 is necessarily less than one, and so
D,p=0 is always stable. If a transient D is introduced, it will decay to zero, but while it
decays, the frequency of the assortment alleles will shift (Fig. XXX). In the following,

therefore, we will assume D, = 0 and p, arbitrary. Then, the equilibrium Dy, is, from

Eq. 50:
Dpe = z P20t )
be = 5 1-1n) vy 4 r2 B
(55)
1 r? € 2 r €
T \/(l—r)+46—2(1+s+z> -42(1+s+z)]

(Note that it may be convenient to measure the strength of epistasis by either € or
y=¢€/(1+s+€(§ +Dpo))

We can now examine the stability of the pairwise associations, assuming that

D,y =0, pp =p. = % The association between the selected loci b, c is given by

' 1
Dy = (1_rb,c) (Dbc+Y (ﬁ_ Dbc2 )) +

X Ip,c [ (Dab2 +Dacz) Y (1 =Dpcy) + (56)

2 Y
4 Dap Dac [(1 =¥ Dpe) “ + —))
16
This simplifies to Eq. 50, as expected, if Dy, D, = 0 (first term in Eq. 56). The second
term in Eq. 56 is positive for D, > 0, D, > 0, showing that pairwise associations with an
assorting locus increase the strength of linkage disequilibrium Dj,.
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With arbitrary p,, the three-way association becomes non-zero, and so we need to consider

the full system. The change in allele frequencies is:

WApa:Y(1+O() Dapc — (Pa — 9a) Y Dipe
Pa ga
. a Y
W Apy = Y Dabe (Dab (1 -¥Dpe) + — Dac> (57)
Pa ga 4
_ a Y
WAp, = Y Dabc (Dac (1 -¥Dpe) + — Dab>
Pa ga 4

We see that three-way associations of either sign impose a stabilising force on p,, through

the term (pa - da) 5% v? D2, .. Numerical work suggests that D, always tends to
zero when p,, is %, and that together, p, tends to 1/2 and D, tends to zero. This
drastically simplifies the dynamics. One can show that near the symmetric equilibrium,
D,pc 1s stable, and so can at most exert a transient force on p,. Moreover, whenever D

is nonzero, p, will be pushed towards %
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Supplementary Information 4: Coupling between multiple pairs of interacting loci

By analogy with Eqgs. 11, 40, we define fitness as an arbitrary function of the number of
pairs that are in coupling (00 or 11) or repulsion (01 or 10). We assume random mating, so
that selection acts independently on the haploid genomes. Thus, relative fitness is the
product of two similar terms for relative viability of haploids, which is written in terms of
the general selection coefficients ay;:

w v v |4

= 7 o Whereg :1+;23U (Cy - Dy) (58)
C

Q) denotes the set of pairs of interacting loci, {i, j, ...}, and i denotes a pair of loci, so that
(i =i, ¢, and {y = [],cy ;- We assume that viability depends only on the set of pairs that
is in coupling or repulsion, and so the only coefficients are those which involve pairs of
interacting loci. Thus, a; = a; ;,, a;; = a;, ;, j, j, Will in general be non-zero, but coefficients

such as a;, j, ora;, ;, j will not contribute.

In the special case where the effects of different incompatibilities multiply, we can write
viability as:
v = [[(1+vs (€1-Di)) (59)
ieQ
If there were no associations between different incompatibilities (i.e., if Dy = [];cq Di, so

that state of each pair is statistically independent), then the mean viability would be V = 1.

However, in general we have:

v :1+Z BRZ
UucQ

ieU
where Dy — [[,cq D; measures the association amongst incompatibilities. The mean

Dy - HDi

ieQ

H (1 -vy;Dj) (60)

1eQ\U

viability at linkage equilibrium is just Vg =[] (1 - y; Dj). By identifying the

ieq
coefficients of {y in Egs. 58, 59, we see that in this special case where the effects of

incompatibilities are multiplicative, we have:

H Yi
l1-v;D;

ieU

ay = ¢ (61)

where ¢ = Vig / V is the reduction in viability which would be caused if the population
suddenly moved to linkage equilibrium; | U | is the number of pairs in the set U. Equation

61 implies a special relationship amongst the ay;:
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1-|U
ag =o' 'Y || | as

ieU

(62)

In general, however, multiple incompatibilities may interact. For example, the effects of
increasing numbers of incompatibilities may accumulate faster or slower than
multiplicatively. However, allowing these kinds of interaction between incompatibilities
does not amount to assuming a completely general model of epistasis. Our key assumption
is that the effect of a pair of loci i = {i], i2} on fitness depends only on {; =3, C;,, and not
on(C; , C;,separately. Combined with the assumption of equal allele frequencies, this
greatly simplifies the recursions. (Indeed, if allele frequencies are symmetrical, and at

equilibrium, then there can be no directional selection, and hence no terms ¢;, ).

The change in allele frequency is:

Api1 :ZaUDilU (63)
U

We can separate the selection coefficients ay into those that include the pair i, and those

that do not. Then, D;, ; ;, v simplifies to h; D;, y when p; =p;, = % ¥ i. On this

assumption of symmetrical allele frequencies, h; = %, but it is convenient to leave it as A;, .
Ap;, = Z ay Di, v + Z ai, v hi, Di, v (64)
Uco\i Uco\i

Therefore, allele frequencies will be at equilibrium if D; y =D;, y =0 V U C (.

We denote associations after viability selection by Dy;, and after selection and

recombination, by Dy;. The association within pairs changes as:

D; = Di + ) ay (Diy - Dj Dy)
Uce (65)

D;' = (1-r;) Dj

Separating the cases where U does or does not contain i:

D; =Di+ ) aiy (hiDy-DiDiy)+ ) av (Div-DiDu) (g
UcQ\ i Uco\ 1

In general, this has no closed-form solution, because it depends on higher-order
associations, D;y; the recursions for the D;; depend on both higher and lower-order
associations, and so no general explicit solution is possible. In the special case where there
is no association between incompatibilities (Dy = [];.; D), the second term in Eq. 66

vanishes, and the equilibrium for D; depends only on selection coefficients that involve the
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pair i. With the further assumption that the effects of incompatibilities are multiplicative,

Eq. 66 gives essentially the same solution as the two-locus model (Eq. 46).

We are primarily concerned with whether pairwise associations between loci (D;, ;, etc,) in

Wi
different pairs will grow, thus coupling together different incompatibilities. Before
considering these, however, we must establish whether different incompatibilities will
become associated with each other. We will see that even when effects on viability are
multiplicative across pairs, associations between incompatibilities may still be generated by

recombination, complicating the analysis.

Consider the four-way association, D;; = D;, j, ;, j,- We assume that only associations
involving pairs of interacting loci are non-zero. Then, the association between pairs i and j
after recombination is a sum over meioses where all four genes stay together (at rate r;; ),
and meioses where one pair is inherited from one parent, and the other from the other

parent (at rate r; ;):

Dij:rij,@Dij+ri,jDiDj (67)
where the Dy, are the associations after viability selection. Writing the deviation from

random association between pairs as 8;; = D;; — D; D; we have:

= Tij,p 655 +XD; D; (68)
where y =r; 0T~ (I =r;)(I=rj), and r; = r; ;, is the recombination rare between the
genes in pair i. We see that there is a contribution to the four-way association proportional
to x, which is just the covariance between recombination events involving pair #, and pair ;.
If the pairs do not overlap on the genetic map, and there is no interference between
crossovers, then y=0, and recombination does not generate any association between the
pairs. However, if the interacting pairs overlap, then >0, because a single recombination
event can break up both pairs; this generates a four-way association, 6;;, even when there

1s no epistasis between different pairs of loci.

To find the effect of viability selection on the four-way association D;;, we proceed as in

VK
Eq. 66, for D;, by separating selection coefficients according to whether they include loci i
and j:
D;; =Dij+ Z ajjy (hi hj Dy - Djj Dijy) +
UCO\1j
Z ajy (hj Djy - Dij Diy) + (69)
UcQ\1ij
Z ajy (hj Diy - Dij Djy) + Z ay (Dijv - Dij Dy)
UCQ\1j UcQ\ij
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Now, suppose that there are no associations between incompatibilities, except for the focal
pair {i, j}. Writing D;; = D; D; + 6;:

Dij =
2 2 2
Dij + Z aiju Dy (hj hj - D3 Dj - ZeijDi Dj —Qij) +
UCQ\ 1 j
2
Z ajy Dy (hj Dj_Di Dj_eijDi) + (70)
UcO\ig
2
Z aju Dy (hj D; - D; Dj —Qiij)
UcO\ig

We define the marginal selection on pair i and on the pair of pairs i as:

a;i = Z:I ajy Dy, aij = Z:I ajju Dy (71)
UcQ \ 1 UcQ\i,j

In the special case of multiplicative effects, these marginal coefficients simplify to
ZZU = (HieU 71)/7

After some rearrangement, and using the relation 8;=8;§ Dy + ZUQQ\ij ajy Dy, Eq. 70

leads to:

. = 2 2 2

©;; =6ij —AD;i ADj + &j ((h; - Dj) (hj—Dj)—Qij) (72)
-20j5 (a; D;j +ajDj-2a;;jD;j Dy)

The change in the pairwise associations due to selection (AD; = D} — D; etc.), assuming

that only pairs i, j are associated via 6;;, can be found in a similar way from Eq. 66:

AD; = &; (hj -D3) + (&5 -2 &;§ Di) 015 (73)

We see that when 6;; =0, 635 = (&35 - &; &) (h; - D) (hj - D3); thus, four-way
associations are not generated by multiplicative selection. Indeed, under the multiplicative
model, Eq. 72 simplifies to:
, O
015 = Vl; ((1-v;Di)% -5 hi) ((1-v;5D5)%-v5 hj) (74)

which is always smaller than 1.

Thus, incompatibilities will not be associated with each other (D;; = 0) if there are
multiplicative effects, if pairs of loci do not overlap on the genetic map, and if there is no
interference between crossovers (y=0). However, even with no epistasis between
incompatibilities, incompatibilities will be associated if pairs of loci overlap (x>0). The
equilibrium association, ¢;;, is given by Eqs. 68, 74; from Eq. 74, its effect is to increase the

strength of each pairwise association D;, D;.
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Selection changes associations between loci in different pairs i, j:

Dy, j, =Di 5 + ) @ (Di, 5,0 - Di, 3, Du) (75)
ucQ

Dividing the sum according to whether the set U includes i, j:

Dil ji Dil ji t Z aU (Dil J1U _Dil J1 DU) +

Uc\{1i,j}
Z ajy (hi, Di, ;v - Di, 5, Div) +
Uco\ {1, 7}
(76)
Z aju (hj Di, j,u - Di, 5, Dju) +
Uuco\{i,j}

aiju (hi, hj Di, j,u - Di, 5, Diju)

This does not have a closed form solution. However, it does include only associations of
the form D; ;, v, where U C Q\{i, j}; the same is true for the more general recursion for

the D; ;, y. We can, therefore, examine the growth of just this class of associations.

We now assume that there are no associations between incompatibilities, except between
pairs i, j. As above, the recursions now simplify to depend only on the four loci {i, j},
and on the marginal selection coefficients @;, &;, a;;. We have not made any explicit
assumption about interactions between incompatibilities. However, such interactions
would generate associations such as Dj, and would also enter into the marginal
coefficients @y. Therefore, the following analysis will not apply if any of the background
pairs of loci interact with loci i, j, or if any of them overlap on the genetic map. Proceeding

as before:

Dil ji = Di, j, + a;i - aij Dj (hil Di, 3, - Di, 3, D;j) +

77
(h_71 Dil J2 ~ Dil Ja DJ) + ( )

ajj (hi hj Di, j, -Di, 5, (Di Dj +6ij))

This, together with the corresponding equations for the other three cross-locus associations,
defines a 4x4 matrix whose eigenvalues determine whether loci in different pairs will

become associated with each other.

With multiplicative fitnesses, the matrix simplifies to:
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b1 @5 Yi hoj vjhoi  vivjh?
1 | Yiho; i 5 Yivjh® vjho;
v Yihoi vivjh? i 5 Yihoj
vi¥jh* ¥yjhoi Yihoj bi d5

where h = % and ¢; = 1 —v; D; is the reduction in viability at LE due to locus i.
Remarkably, this matrix does not depend explicitly on any association between the pairs of
loci, 6;j, except through the mean viability, V = 1 +y; v, 6;;, and indirectly, through the
strength of linkage disequilibria D;, D;. It has leading eigenvalue

A= % (1+y:(h = D) (1 + y;(h - D)) (assuming y;, y; > 0). Since h = ¢ > D;, D;, we
see that under selection alone, pairs of loci will tend to become associated with each other;
this tendency is countered by recombination, which reduces D; ; by a factor (1 —r;_j ).

With no linkage, all the r;_;, are <, leading to Eq. 18.

The stability of this system cannot be determined explicitly for general recombination rates.
We deal with three special cases: no linkage; very tight linkage; and selection as strong as
possible. With maximal selection, where recombinants {01, 10} at each pair are completely
inviable, the least fit genotype cannot have negative fitness, and so 1 — yi(% +D;) = 0.
Substituting for the equilibrium from Eq. 46, we find that y; < 5=, which is  with no

linkage. At this maximum value of y;, we have that D; = (1;") ; this corresponds simply

to the linkage disequilibrium after selection, but before recombination, taking its maximum

value of % .

With complete selection, 6;; after selection is necessarily zero. However, 6;; is generated
by recombination, and so equals yD; D; after recombination. Since mean viability depends
on 6;; V=1+vyvy j 0i}), the rate of growth of pairwise associations is reduced if pairs of
interacting loci overlap, so that y>0. Complete selection on two pairs of interacting loci is
equivalent to underdominance at two loci, since recombinants within pairs do not survive.
There is a chance r; that pair i will be broken up, and so in effect, there is selection against
heterozygotes (%) of r;, and similarly for pair j. If the pairs do not overlap on the genetic
map (xy=0), then recombination events within each pair are independent. Otherwise,
however, recombination events r; and r j are correlated, which is equivalent to an
interaction in the fitness effects of the two pairs: hence, the dependence of the leading

eigenvalue (Eq. 17) on y.
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Supplementary Information 5: Coupling between an assortment locus and multiple selected
loci

We measure the net association between locus a and the set of selected loci (2 by:

- [U|-n

UcQ
This measure is equal to the association between a and the genotype 1 = {1, 1...}. To see
this, recall that, D, is defined as E[{, {y ], where {, = X, — p,, {y = [,y ¢i> and

=X - %; the X,,, X; indicate allelic state, and take values 0, 1. We can rewrite C; as:

¢ = ) E[21"7"c ) = E[Ca ) 27177 gy

:E[gazlﬂ (%)iDU(Xi_%)] (80)
= E|[Ca ﬂxi —(%)n]}:E[ﬁa ﬂXi}

where we have used the relations E[{,] = 0 and ZUCQ (IT;ey ai) (HJE(Q\U) b;)=
[Ticq (@i + b)) = [1;cq bi; the last term is subtracted because the sum over U does not
include the empty set. This shows that C; is just the excess frequency of allele X, = 1
within genotype 1 (indicated by (]];_y Xi)=1), multiplied by the frequency of that
background.

The change in each D,y due to selection is given by the haploid version of Eq. 2.

Summing over UC():

C, =Cy + Z ZZIUI—H av (Davv - Dav Dv)

UcQ veQ
(81)
:Cl+ZZZ|U|_naVDaUV_Cl ZavDV
UcQ vcQ VcQ

Reversing the order of sums, we can separate the sum over U into the sum over all subsets
X of the selected set V, and the sum over all subsets that do not overlap with V. Let
V=YZ

Cl':CLJf E ay Z 21X¥I°n povyyz - C1 Zava
=)

Ycv veQ
| xconv)

(82)



BartonDeCaraRevNotebookNew.nb

17

Now, linkage disequilibria with repeated indices D,xyyz reduce to 2-VYI D v, (Eq. 3).

Hence:

c =
i+ ) av2 ) (21 Daxs) - €1 | ) av Dy

veo ( YQV) \74=®]

XCO\V
(83)

-Cy+ ? ay 27 !VI Z (21U1-2 p.uv) - ¢ ZavDV

Vo UcQ 749
=c; |1+ Zav (271VI _ py)

\4=®]

which gives Eq. 26. Note that from the definition of fitness (Eq. 1), the increase is by a
factor equal to the relative fitness of genotype 1, W1 /W. (This derivation has been given
for the genotype 1, but applies for any genotype: the D,y are weighted by [];.,, 2 X; — 1),
where 2X; — 1) =+1).

From Eq. 21, assortment at locus a is represented by the coefficient a,, = hi , where
hy, = pa qq. Substituting into Eq. 2, we see that this does not alter genotype frequencies
within haploids (D, ), but does generate associations between haploids,

D s = Dig Di + aD§ Dir. (The Dy denote associations after viability selection).

Substituting into Eq. 4, the change due to assortment followed by recombination is:

Dy = Z Tas,r (Dags Dr — Day ) + & Z Tas,r Dar Ds (84)
ST=U ST-U

Now, we add Y g1y Tas,r Dar Dg to the first term, and subtract it from the second.

Exchanging S, T in the first term, and noting that r,57 + r,rs = rs7 gives Eq. 27.
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First, we show that the fitness of the fittest genotypes, relative to the population mean,
depends on the mean recombination rate; it is this which determines the increase of C
under viability selection (Eq. 26). With tight linkage, Dy is close to its maximum, 271Y! for
U even; by symmetry, Dy=0 for | U | odd. The change due to recombination is given by
Eq. 4, as Y gr_y 15,7 D5 D7. We are concerned with even-numbered sets of loci, which can
be broken up into either two even-sized sets, or two odd-sized sets. The former make no
contribution, because D D ~Dy;; for the latter, D = D7 =0, and so the net change due
to recombination is — Ry 271Ul, where Ry is defined as ¥, ¢;_; 5.7, with the sum is taken
over odd sets S, T. This must be balanced against the increase in D; due to selection. Let
Dy =27U(1 - 6y), where 6y is small and of the same order as the recombination rates.
Substituting into the haploid version of Eq. 2, setting equal to the change due to

recombination, and keeping leading terms:

Ry = Z ay 271V (oy + Oy - Oyy)
VeQ

B (85)

ZaVZ"V| Oy ZaVZ"V| ZaVZ"V| Ouv

Ve VeQ Ve

+ QU—

Equation 85 shows that deviations of linkage disequilibria from their maxima are
proportional to the rate of recombination events, R, that split even-sized sets U into two
odd-sized sets. Moreover, the first term in Eq. 85 is equal to the recombination load of Eq.
26, which determines the net rate of increase of associations under viability selection. To
find this term, we show that when we sum over all even-sized sets, U, the last two terms in
Eq. 85 cancel. Separate U = XY into a component ¥ C V and a component X C .\ V.
Then, 6yy = Oxyyz includes duplicate indices Y; applying Eq. 3, 8y v reduces to 0xz.

Therefore, summing Eq. 85 over all the 21-1 even-sized subsets of Q:

Z RU:ZH‘lZaVZ“Vl Ov (86)

|U| even VeQ
This can be simplified further. Each of the Ry is a sum over all partitions of U into
odd-sized subsets of U. This can be rewritten as a sum over all the partitions of the
complete set of n selected loci. (For example, with 4 loci
RlZ =7r1324 + 71423 + 71234 + r134,2). This sum includes every distinct recombination
2"=2 times, and so we have > U even Ry = 2"=2 Rq,. Thus, viability selection increases C|

by a factor (143, ., av 271V 6y)=(1 + % Rg), which is independent of selection.

When linkage is tight, the population is dominated by the two fittest genotypes, which we

label as O, 1. Because the D,y are defined as the covariance between alleles at locus a and
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sets of selected loci, U, they must necessarily be close to each other in the limit: when only
those two fittest genotypes are present, D,y = 2'71Y C 1 ¥ U. We therefore assume that
D,y differs from this limiting value by a small amount, of order recombination rate.
Equation 27 shows that recombination has two effects on the D,y The first term is a sum
over rs r(Dig Dy — D), which cancels when D, ~21711 €1, D3 ~271T1. The second

term gives the approximation:

¢, =c - (1-a) ? 219177 5" ras,p 2t 1% ¢y 2717

UcQ ST=U

=C (1-(1-a) £a) (87)

_ Jweo 2sr-y Fas, T
N 2n-1

where 7, is the unweighted average of r,5 1, summed over all odd-sized sets
U, with § even and T odd, and including S = {}. (The denominator arises because there are

2"~ odd-sized subsets of a set of n selected loci).

It remains to rewrite 7, in a simpler form, in the same way that we related the sum of the
Ry over all sets U C () to the total recombination rate, R. Each of the recombination rates
involving a set U C () is a sum over possible partitions of the full set, (). Therefore, the
sum Y- 2is7=y Tas,T €an be rewritten as a sum of the r,xy, where XY = (). Now, each
rqx.y contributes to all r,5 7 where S is an even-sized subset of X, and T is an odd-sized
subset of Y. A set of size | X | has 2/XI=1odd subsets and a set Y has 211! even-sized
subsets, for IYI>0. Therefore, r,x y contributes to (2XI=1) 2V1=1) = 2"=2 terms r g 7,
except for r, o, which contributes to the 21 odd-sized subsets of ). Therefore,

Fq = % Rq +r,0). Combining the successive effects of selection, assortment and

recombination yields Eq. 30.
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Supplementary Information 6: Invasion of an assortment allele

Figure 7. The invasion of an assortment allele. The frequency of the assorting allele (upper
grey curve) is increased through associations with pairs of selected loci (D jx, lower light
dotted curve), which in turn are generated as a result of pairwise associations between the
assortment and the selected loci (D, dark dotted curve). The pairwise associations
amongst selected loci (D ji) are shown by the heavy curve; these rapidly approach
equilibrium, and then increase slightly as the assortment allele becomes more common.
Note that initially, p,, D,;and D, all increase exponentially at the same rate, which
appears linear on this log scale. All loci are unlinked, so that all associations of the same
kind are equal Selection is as in Fig. 7, with four unlinked selected loci, and selection at its

maximum value of s = 0.2.
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Supplementary Information 7: Generating Figs. 1-6, 8
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Supplementary Information 8: Generating Fig. 7

Supplementary Information 9: Mathematica definitions



