
Supplementary Information

Supplementary Information 1: Stability of three-way associations with multilocus 
underdominance/assortment

We will assume that fitness acts in the same way at each locus, and so depends only on the 
number of heterozygous loci.  However, linkage relations will in general differ amongst 
loci: indeed, they must differ if the loci are linked and there is no interference between 
crossovers. In this model, we have s1 = s2 = s3 and s12 = s23 = s13.  Close to LE, and 
assuming symmetrical allele frequencies, the recursions for linkage disequilibria are special 
cases of Eq. 15:

(35)
D12
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s12ÅÅÅÅÅÅÅÅÅ
16
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 r1,2M
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s12ÅÅÅÅÅÅÅÅÅ
16

MM
and similarly for the other DU .  With no interference, the chance of a crossover between 
any of the three loci is r123 = 1 - H1 - r1,2L H1 - r2,3L, assuming that the loci are in 
order 1,2,3.

The conditions for instability are

(36)
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We can get a concrete understanding of the model by relating the selection coefficients to 
the fitnesses Wi  of individuals with i heterozygous loci:
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and with Wêêê
= 1ÅÅÅÅ8  HW0 + 3 W1 + 3 W2 + W3L = 1 always.

giving:

(38)
s1 = 4 - W1 - 2 W2 - W3
s12 = 8 H2 - W1 - W2L
s123 = 16 H4 - 3 W1 - W3L



We can now rewrite the thresholds as:

(39)
r1,2 <

H2 - W1 - W2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHW2 + W3L  for D12 unstable

r123 <
4 - 3 W1 - W3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 W2
 for D123 unstable

We can find parameter combinations that give all four possible stability regimes. We focus 
on the extreme case where complete reproductive isolation can be achieved (W3 = 0), and 
then vary the remaining parameters W1, W2; numerical examples are given in Fig. 2. If the 
pairwise D ' s are unstable, but the third-order association is stable, then we expect the final 
outcome to be fixation of two complementary genotypes (000 and 111, 001 and 110, etc.), 
since in these states all the pairwise D ' s are maximal and the third-order association is zero 
(Fig. 3a).  When both second and third-order associations are unstable, D123may increase 
initially, but then decrease as pairwise D ' s increase.  The most interesting case is when 
D123 is unstable, but the pairwise D's are stable (Fig. 3c).   Then, four complementary 
genotypes (e.g. {0,0,1},{0,1,0},{1,0,0},{1,1,1})  predominate, in equal proportions, and any 
combination of these leads to precisely two loci being heterozygous.  Note, however, that 
the stability at linkage equilibrium does not necessarily tell us the final outcome (e.g., Fig. 
3b).
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Supplementary Information 2: Analysis of Felsenstein's (1981) model, assuming 
pb = pc = 1ÅÅÅÅ2

We can write the net contribution of each genotype to the next generation as the average 
over the two niches.  The full expression is complex, but simplifies when we assume equal 
allele frequencies at loci b, c:

(40)

W =

J1 +
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa qa

 za  za
*N H1 + g Hzb  zc - DbcLL H1 + g Hzb

*  zc
* - DbcLL

where g =
e

ÅÅÅÅÅÅÅ
WêI

, WêI = WêII = 1 + s + e J 1
ÅÅÅÅ
4

+ DbcN, pb = pc =
1
ÅÅÅÅ
2
.

WêI = WêII  denote the average fitness within each niche.  The parameter e measures the 
deviation from additivity within each niche, and would equal s2 with multiplicative fitness.  
The dynamics depend on the scaled coefficient of epistasis, g = eÅÅÅÅÅWêI

.  Thus, the following 
analysis applies to any two-locus model with net epistasis of strength g, provided that allele 
frequencies are symmetric Hpb = pc = 1ÅÅÅÅ2 L: Felsenstein's (1981) two-niche model is one of 
many ways of maintaining a stable polymorphism despite disruptive selection.

Rather than working with the full selection coefficients that give the total effect of selection 
on haploid and diploid stages (Eq. 1), it is easier to separate the effects of viability selection 
on haploids, and of assortment amongst haploids (or, underdominance of diploids).  
Haploid viability is written in terms of a set of selection coefficients aX . Using the haploid 
equivalent of Eq. 2, DU

* = DU + ⁄X aX  HDU X - DU  DX L.  In this case, the only selection 
coefficient for haploid viability is abc = g, and so we find the pairwise associations after 
viability selection:

(41)
Dab
' = Dab + g Hhb  Dac - Dbc  DabL

Dac
' = Dac + g Hhc  Dab - Dbc  DacL

Dbc
' = Dbc + g Hhb  hc - Dbc

2 L
where we have used the reduction formula, Eq. 3, and assumed pb = pc = 1ÅÅÅÅ2 .  The product 
of allele frequencies is denoted by  hx = px  qx = 1ÅÅÅÅ4 ; it is convenient still to express the 
formulae in terms of hb , hc , so as to keep track of the sources of the various terms.

From Eqs. 2, 4, the effect of assortment and recombination is simply:
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(42)

Dab
'' = H1 - rbL Dab

'

Dac
'' = H1 - rcL Dac

'

Dbc
'' = H1 - rb,cL Dbc

' + rb,c  
Dab
'  Dac

'
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ha
where rx =ra,x H1 - aL measures the effective rate of recombination between the 
assorting locus and locus x œ 8b, c<, which is reduced by assortment or underdominance at 
locus a. Note that these equations apply for arbitrary Dab , Dac: we have not made any 
linear approximation, and yet the recursions for Dab , Dac  are linear.  Combining Eqs. 41, 
42, these recursions can be rewritten in matrix form:

(43)

i
k
jjjj
Dab
''

Dac
''

y
{
zzzz =

J H1 - rbL H1 - g DbcL H1 - rbL ghb
H1 - rcL ghc H1 - rcL H1 - g DbcL N.J Dab

Dac
N

Crucially, this pair of linear equations applies in general, not just for small Dab- although 
Dbc  will change as a function of the Dab , Dac.  We can therefore identify two kinds of 
equilibria.  There is always a symmetrical equilibrium with Dab = Dac = 0.  This will be 
stable if the leading eigenvalue of the matrix in Eq. 43, l, has magnitude less than 1.  If it is 
unstable, then associations with locus a will grow, and as they do so, the association 
between the selected loci, Dbc , will also grow.  We see from Eqs. 41 that as Dbc  increases, 
the rates of growth of Dab , Dac  decrease.  At some point, the leading eigenvalue falls to 
precisely l=1, and we have an alternative asymmetric equilibrium in which both pairwise 
associations are either positive, or negative. 

The leading eigenvalue can be written explicitly as the solution to a quadratic equation, and 
takes a simple form when loci b, c are equivalent (i.e., when they are unlinked, or when a 
is midway between b, c):

(44)l = H1 - rL H1 + g Hh - Db cLL
The association Dbc is given by setting Dab , Dac  to zero in Eqs. 41, 42:

(45)Dbc = Dbc
'' = H1 - rb,cL HDbc + g Hhb  hc - Dbc

2 LL
This has the solution:
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where we have dropped the subscript from rb,c  for compactness. It may be convenient to 
measure the strength of epistasis by either e or g = e ê H1 + s + eH 1ÅÅÅÅ4 + DbcLL, and so we give 
two forms for this solution.

This equilibrium is unstable to growth of Dab , Dac  if l>1.  For rb = rc = r, this condition 
can be rewritten as:

(47)
r

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 - r

< g J 1
ÅÅÅÅ
4

- DbcN
for instability.  This condition compares the strength of Dbc  (which depends on g and rbc) 
with the effective rates of recombination between a and b, c.  By substituting for Db,c from 
Eq. 46, the condition for instability is given explicitly as:

(48)
r Hrb,c - rL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - rL Hrb,c  H1 + rL - 2 rL <
g
ÅÅÅÅ
4

Figure 4 shows that for the two incompatibilities to become coupled, there must be 
sufficiently strong assortment, and sufficiently strong epistasis, relative to the rates of 
recombination.
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Supplementary Information 3: Stability of Felsenstein's (1981) three-locus model

Allele frequency at the assorting locus, pa can be arbitrary if there is no association with 
other loci, but once associations do build up, pa  will tend towards 1ÅÅÅÅ2 .  First, suppose that 
Dab , Dac = 0.  Then, Dabc can be non-zero, and pa will change if Dabc is non-zero.  
Perturbations to Dabc always decay to zero, but as they decay, they lead to a shift in pa .  So, 
we can justify assuming that Dabc=0, but can keep pa arbitrary.  Now, suppose that 
Dab , Dac are non-zero.  With arbitrary pa , Dabc  then becomes non-zero,  pa is selected to 
converge to 1ÅÅÅÅ2 , and thereafter Dabc converges to 0.  However, the transient stage becomes 
complicated, because the allele frequencies pb , pc  temporarily deviate from 1ÅÅÅÅ2 .  Thus, it is 
consistent to assume that all allele frequencies are at 1ÅÅÅÅ2 . This stability analysis, detailed 
below, justifies setting all allele frequencies to 1ÅÅÅÅ2 , on the grounds that while pa  is in 
principle arbitrary, perturbations will send it towards pa = 1ÅÅÅÅÅ2 .

The change in allele frequencies is obtained from Eq. 2:

(49)
Dpa = Dabc  Haèbc + aèabc  haL - aabc,abc  Hpa - qaL Dabc

2

Dpb = Dabc  Haa,abc  Dab + aabc,abc  hb  DacL
Dpc = Dabc  Haa,abc  Dac + aabc,abc  hc  DabL

Here, aèbc = abc,« + abc,bc  Dbc, aè abc = aabc,a + aabc,abc  Dbc . The last term in the first 
equation arises because Haabc,abc  Daabc  Dabc = aabc,abcHha  Dbc - Hpa - qaL DabcL DabcL. We 
denote the product of allele frequencies by ha = pa  qa  etc.  Since we assume pb = pc = 1ÅÅÅÅ2  
throughout, hb = hc = 1ÅÅÅÅ4 .  However, it is convenient to retain the hb, hc  since this makes 
the origin of the terms clearer.

Because assortative mating is defined to be cost-free, allele frequencies at locus a only 
change through associations with the selected loci.  Because the latter are at a stable 
equilibrium with pb = pc = 1ÅÅÅÅ2 , these loci experience no directional selection (i.e., 
ab,« = ac,«  … = 0). Therefore, locus a only experiences indirect selection via the three way 
association Dabc.  This selection acts in two ways.  First, if allele a1 is associated with the 
fitter combinations of alleles b1  c1 and b0  c0 (i.e. if aè bc > 0 and Dabc > 0), then allele a1 
will increase HDpa = Dabc  aè bc > 0L.  The second term in the equation for Dpa  is due to the 
third-order selection coefficient aèabc = aabc,a + aabc,abc Dbc , which arises through the 
multiplication of fitness components in Eq. 40, and has the same direction as the leading 
term  This coefficient involves an association between an allele aX  in one individual, and 
alleles aX  b1  c1, aX  b0  c0 in the other, represented by aa,a bc.  Thus, if allele a1(say) is 
associated with fitter combinations at loci b, c HDabc > 0L, and if allele a1 in another 
individual tends to mate with those fitter combinations Haa,abcL, then allele a1tends to 
increase.  The changes in allele frequencies at the selected loci also arise through this 
second effect (i.e., through terms such as Dabc aa,abc Dab).  To summarise: alleles at the 
assortment locus increase if they are associated with fit combinations of alleles at the 
selected loci; and alleles at all three loci increase via preferences of alleles in one haploid 
individual for fit combinations in another individual.
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Because assortative mating is defined to be cost-free, allele frequencies at locus a only 
change through associations with the selected loci.  Because the latter are at a stable 
equilibrium with pb = pc = 1ÅÅÅÅ2 , these loci experience no directional selection (i.e., 
ab,« = ac,«  … = 0). Therefore, locus a only experiences indirect selection via the three way 
association Dabc.  This selection acts in two ways.  First, if allele a1 is associated with the 
fitter combinations of alleles b1  c1 and b0  c0 (i.e. if aè bc > 0 and Dabc > 0), then allele a1 
will increase HDpa = Dabc  aè bc > 0L.  The second term in the equation for Dpa  is due to the 
third-order selection coefficient aèabc = aabc,a + aabc,abc Dbc , which arises through the 
multiplication of fitness components in Eq. 40, and has the same direction as the leading 
term  This coefficient involves an association between an allele aX  in one individual, and 
alleles aX  b1  c1, aX  b0  c0 in the other, represented by aa,a bc.  Thus, if allele a1(say) is 
associated with fitter combinations at loci b, c HDabc > 0L, and if allele a1 in another 
individual tends to mate with those fitter combinations Haa,abcL, then allele a1tends to 
increase.  The changes in allele frequencies at the selected loci also arise through this 
second effect (i.e., through terms such as Dabc aa,abc Dab).  To summarise: alleles at the 
assortment locus increase if they are associated with fit combinations of alleles at the 
selected loci; and alleles at all three loci increase via preferences of alleles in one haploid 
individual for fit combinations in another individual.

We see that allele frequencies at loci b, c will stay fixed at 1ÅÅÅÅ2  if either Dabc  is zero, or if 
Dab  and Dac are zero.  In the following, we examine two kinds of deviation from the 
symmetric equilibrium: changes in pa , Dabc , with Dab = Dac = 0, or conversely, changes 
in pairwise associations, with all allele frequencies and Dabc  symmetrical.  In both cases, 
we maintain pb = pc = 1ÅÅÅÅ2 , and Dbc > 0 because of epistatic selection on loci b, c.

First, assume that Dab , Dac = 0.  The recursion for pa  is given in Eqs. 49. For Dbc :

(50)
Dbc
' = H1 - rb,cL 

HDbc + aèbc  Hhb  hc - Dbc
2 L + Haa,abc - aabc,abc  DbcL Dabc

2 L
The pairwise association between the selected loci is built up by epistasis between them 
(aèbc), and broken down by recombination H1 - rb,cL.  In the presence of a three-way 
association of either sign, it is also generated by the higher-order coefficient aa,abc.

For the three-way association:

(51)

Dabc
' = rabc,« 

HDabc - aèbc  Dabc  Dbc + aa,abc  Hha  Dbc - Hpa - qaL DabcL 

Dabc + aabc,abc  Hha hb  hc  Dabc - Dabc
3 LL +

ra,bc  Habc,« Dabc  Dbc + abc,bc Dabc  hb  hc + aa,a  ha  Dabc +
aabc,a  Hha Dbc - Hpa - qaL DabcL DabcL - Dpa Dbc

*

This can be rearranged to give:

(52)

Dabc
' = rabc,« HDabc - aèbc  Dabc  Dbc +

aabc,abc  Hha  hb  hc  Dabc - Dabc
3 LL +

ra,bc  Habc,« Dabc  Dbc + abc,bc Dabc  hb  hc +
aa,a ha DabcL -

H1 - rb,cL Dabc  Haèabc  Hpa - qaL Dabc + aèbc  Dbc +

aabc,abc  ha  Dbc
2 L - Dpa  H1 - rb,cL 

Haèbc  Hhb  hc - Dbc
2 L + Haa,abc - aabc,abc  DbcL Dabc

2 L
In terms of the parameters a, s, g :

(53)

Wê Dpa = H1 + aL g Dabc - g2 
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa qa

Dabc2  Hpa - qaL
Wê Dbc

' =
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(53)

H1 - rb,cL J g
ÅÅÅÅÅÅÅÅ
16

+ J Dbc +
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa  qa

 g Dabc
2 N H 1 - g Dbc LN

Wê Dabc
' = H1 - rb,cL Dabc

H1 + sL H1 + s + eÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + s + e H 1ÅÅÅÅ4 + DbcLL2

JA +
DabcÅÅÅÅÅÅÅÅÅÅÅ
Wê

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
p1 q1

g HHq1 - p1L - g H1 + aL DabcLN
where A=1 - rab  (1-a), Wêêê

= 1 + aÅÅÅÅÅÅÅÅÅÅÅÅÅpa  qa
 g2  Dabc

2 .

The equilibrium at Dabc=0 is stable if :

(54)H1 - rb,cL H1 + sL H1 + s + eÅÅÅÅ2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + s + e H 1ÅÅÅÅ4 + DbcLL2

H1 - rab  H1 - aLL < 1

Now, because 0 < Dbc < 1ÅÅÅÅ4 , the middle term in Eq. 54 is necessarily less than one, and so 
Dabc=0 is always stable.  If a transient Dabc is introduced, it will decay to zero, but while it 
decays, the frequency of the assortment alleles will shift (Fig. XXX). In the following, 
therefore, we will assume Dabc = 0 and pa  arbitrary.  Then, the equilibrium Dbc is, from 
Eq. 50:

(55)

Dbc =
r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H1 - rL g

 
i

k
jjjjjj$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 +

g2 H1 - rL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 r2
- 1

y

{
zzzzzz =

1
ÅÅÅÅ
4

 
i
k
jjjjjj$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H1 - rL + 4 

r2
ÅÅÅÅÅÅÅ
e2

I1 + s +
e
ÅÅÅÅ
4
M2 - 4 

r
ÅÅÅÅ
e

I1 + s +
e
ÅÅÅÅ
4
M
y
{
zzzzzz

(Note that it may be convenient to measure the strength of epistasis by either e or 
g = e ê H1 + s + eH 1ÅÅÅÅ4 + DbcLL).

We can now examine the stability of the pairwise associations, assuming that 
Dabc = 0, pb = pc = 1ÅÅÅÅ2 .  The association between the selected loci b, c is given by

(56)

Dbc
' = H1 - rb,cL J Dbc + g J 1

ÅÅÅÅÅÅÅ
16

- Dbc2 NN +

a rb,c
i
k
jj HDab2 + Dac2L g H1 - Dbc gL +

4 Dab Dac
i
k
jjH1 - g DbcL2 +

g2
ÅÅÅÅÅÅÅ
16

y
{
zzy{
zz

This simplifies to Eq. 50, as expected, if Dab , Dac = 0 (first term in Eq. 56). The second 
term in Eq. 56 is positive for Dab > 0, Dac > 0, showing that pairwise associations with an 
assorting locus increase the strength of linkage disequilibrium Dbc .
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With arbitrary pa , the three-way association becomes non-zero, and so we need to consider 
the full system.  The change in allele frequencies is:

(57)

Wê Dpa = g H1 + aL Dabc - Hpa - qaL 
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa qa

 g2  Dabc
2

Wê Dpb =
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa qa

 g Dabc  IDab  H1 - gDbcL +
g
ÅÅÅÅ
4

 DacM

Wê Dpc =
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa qa

 g Dabc  IDac  H1 - gDbcL +
g
ÅÅÅÅ
4

 DabM
We see that three-way associations of either sign impose a stabilising force on pa , through 
the term Hpa - qaL aÅÅÅÅÅÅÅÅÅÅpa  qa

 g2 Dabc
2 .  Numerical work suggests that Dabc  always tends to 

zero when pa  is 1ÅÅÅÅ2 , and that together, pa tends to 1/2 and Dabc  tends to zero.  This 
drastically simplifies the dynamics.  One can show that near the symmetric equilibrium, 
Dabc is stable, and so can at most exert a transient force on pa .  Moreover, whenever Dabc 
is nonzero, pa  will be pushed towards 1ÅÅÅÅ2 . 
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Supplementary Information 4: Coupling between multiple pairs of interacting loci

By analogy with Eqs. 11, 40, we define fitness as an arbitrary function of the number of 
pairs that are in coupling (00 or 11) or repulsion (01 or 10). We assume random mating, so 
that selection acts independently on the haploid genomes.  Thus, relative fitness is the 
product of two similar terms for relative viability of haploids, which is written in terms of 
the general selection coefficients aU :

(58)
W
ÅÅÅÅÅ
Wê

=
V
ÅÅÅÅÅ
Vê

 
V*
ÅÅÅÅÅÅÅ
Vê

where V
ÅÅÅÅÅ
Vê

= 1 + ‚
UŒW

aU  HzU - DUL

 W denotes the set of pairs of interacting loci, 8i, j, …< , and i denotes a pair of loci, so that 
zi = zi1  zi2  and zU = ¤iœU zi . We assume that viability depends only on the set of pairs that 
is in coupling or repulsion, and so the only coefficients are those which involve pairs of 
interacting loci. Thus, ai ª ai1  i2 , ai j ª ai1  i2  j1  j2  will in general be non-zero, but coefficients 
such as ai1  j1  or ai1  i2  j1  will not contribute.   

In the special case where the effects of different incompatibilities multiply, we can write 
viability as:

(59)V = ‰
iœW

H1 + gi Hzi - DiLL

If there were no associations between different incompatibilities (i.e., if DU = ¤iœW Di , so 
that state of each pair is statistically independent), then the mean viability would be Vêêê

= 1.  
However, in general we have:

(60)Vê = 1 + „
UŒW

i
k
jjjjj‰
iœU

gi
y
{
zzzzz 
i
k
jjjjjDU -

i
k
jjjjj‰
iœW

Di
y
{
zzzzz
y
{
zzzzz ‰
iœW\U

H1 - gi DiL

where DU - ¤iœW Di  measures the association amongst incompatibilities.  The mean 
viability at linkage equilibrium is just Vêêê

LE =¤iœW H1 - gi DiL.  By identifying the 
coefficients of zU  in Eqs. 58, 59, we see that in this special case where the effects of 
incompatibilities are multiplicative, we have:

(61)aU = f 
i
k
jjjjj‰
iœU

giÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - gi Di

y
{
zzzzz

where f = VêLE ê Vê is the reduction in viability which would be caused if the population 
suddenly moved to linkage equilibrium; » U » is the number of pairs in the set U.  Equation 
61 implies a special relationship amongst the aU :
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(62)aU = f1-»U»  
i
k
jjjjj‰
iœU

ai
y
{
zzzzz

In general, however, multiple incompatibilities may interact. For example, the effects of 
increasing numbers of incompatibilities may accumulate faster or slower than 
multiplicatively.  However, allowing these kinds of interaction between incompatibilities 
does not amount to assuming a completely general model of epistasis.  Our key assumption 
is that the effect of a pair of loci i = 8i1, i2< on fitness depends only on zi ªzi1  zi2 , and not 
on zi1 , zi2 separately.  Combined with the assumption of equal allele frequencies, this 
greatly simplifies the recursions. (Indeed, if allele  frequencies are symmetrical, and at 
equilibrium, then there can be no directional selection, and hence no terms zi1 ).

The change in allele frequency is:

(63)Dpi1 = ‚
U

aU  Di1  U

We can separate the selection coefficients aU into those that include the pair i, and those 
that do not.  Then, Di1  i1  i2  U  simplifies to hi1  Di2  U  when pi1 = pi2 = 1ÅÅÅÅ2  " i.  On this 
assumption of symmetrical allele frequencies, hi1 = 1ÅÅÅÅ4 , but it is convenient to leave it as hi1 .

(64)Dpi1 = ‚
UŒW\i

aU  Di1  U + ‚
UŒW\i

ai1  U  hi1  Di2  U

Therefore, allele frequencies will be at equilibrium if  Di1  U = Di2  U = 0 " U Œ W.

We denote associations after viability selection by DU
' , and after selection and 

recombination, by DU
'' .  The association within pairs changes as:

(65)
Di
' = Di + ‚

UŒW

aU  HDiU - Di  DUL

Di
'' = H1 - riL Di

'

Separating the cases where U does or does not contain i:

(66)Di
' = Di + ‚

UŒWîi
aiU  Hhi  DU - Di  DiUL + ‚

UŒWîi
aU  HDiU - Di DUL

In general, this has no closed-form solution, because it depends on higher-order 
associations, DiU ; the recursions for the DiU  depend on both higher and lower-order 
associations, and so no general explicit solution is possible.  In the special case where there 
is no association between incompatibilities HDU = ¤iœU Di), the second term in Eq. 66  
vanishes, and the equilibrium for Di  depends only on selection coefficients that involve the 
pair i.  With the further assumption that the effects of incompatibilities are multiplicative, 
Eq. 66 gives essentially the same solution as the two-locus model (Eq. 46).
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In general, this has no closed-form solution, because it depends on higher-order 
associations, DiU ; the recursions for the DiU  depend on both higher and lower-order 
associations, and so no general explicit solution is possible.  In the special case where there 
is no association between incompatibilities HDU = ¤iœU Di), the second term in Eq. 66  
vanishes, and the equilibrium for Di  depends only on selection coefficients that involve the 
pair i.  With the further assumption that the effects of incompatibilities are multiplicative, 
Eq. 66 gives essentially the same solution as the two-locus model (Eq. 46).

We are primarily concerned with whether pairwise associations between loci (Di1  j1 etc,) in 
different pairs will grow, thus coupling together different incompatibilities.  Before 
considering these, however, we must establish whether different incompatibilities will 
become associated with each other. We will see that even when effects on viability are 
multiplicative across pairs, associations between incompatibilities may still be generated by 
recombination, complicating the analysis.

Consider the four-way association, Di j = Di1  j1  i2  j2 .  We assume that only associations 
involving pairs of interacting loci are non-zero.  Then, the association between pairs i and j 
after recombination is a sum over meioses where all four genes stay together (at rate ri j,«), 
and meioses where one pair is inherited from one parent, and the other from the other 
parent (at rate ri, j):

(67)Dij
'' = rij,« Dij

' + ri,j  Di
' Dj

'

where the DU
'  are the associations after viability selection. Writing the deviation from 

random association between pairs as qi j = Di j - Di  Dj  we have:

(68)qij
'' = rij,« qij

' + c Di
'  Dj

'

where c = ri j,« + ri, j - H1 - riL H1 - rjL, and ri ª ri1 ,i2 is the recombination rare between the 
genes in pair i.  We see that there is a contribution to the four-way association proportional 
to c, which is just the covariance between recombination events involving pair i, and pair j.  
If the pairs do not overlap on the genetic map, and there is no interference between 
crossovers, then c=0, and recombination does not generate any association between the 
pairs.  However, if the interacting pairs overlap, then c>0, because a single recombination 
event can break up both pairs; this  generates a four-way association, qi j , even when there 
is no epistasis between different pairs of loci.

To find the effect of viability selection on the four-way association Di j , we proceed as in 
Eq. 66, for Di , by separating selection coefficients according to whether they include loci i 
and j: 

(69)

Dij
' = Dij + ‚

UŒWîij
aijU  Hhi  hj  DU - Dij  DijUL +

‚
UŒWîij

aiU  Hhi  DjU - Dij DiUL +

‚
UŒWîij

ajU  Hhj  DiU - Dij DjUL + ‚
UŒWîij

aU  HDijU - Dij DUL
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Now, suppose that there are no associations between incompatibilities, except for the focal 
pair 8i, j<.  Writing Di j = Di  Dj + qi j :

(70)

Dij
' =

Dij + ‚
UŒWîij

aijU  DU  Hhi  hj - Di
2  Dj

2 - 2 qijDi  Dj - qij
2 L +

‚
UŒWîij

aiU  DU  Hhi Dj - Di
2 Dj - qijDiL +

‚
UŒWîij

ajU  DU  Hhj Di - Di  Dj
2 - qijDjL

We define the marginal selection on pair i and on the pair of pairs i j as:

(71)aèi ª ‚
UŒW îi

aiU  DU, aèij ª ‚
UŒW îi,j

aijU  DU

In the special case of multiplicative effects, these marginal coefficients simplify to 
aèU = H¤iœU giL êVêêê.

After some rearrangement, and using the relation aèi=aèij Dj + ⁄UŒWîij aiU  DU , Eq. 70 
leads to:

(72)
qij
' = qij - DDi DDj + aèij  HHhi - Di

2L Hhj - Dj
2L - qij

2 L
-2 qij  Haèi Di + aèj  Dj - 2 aèij Di DjL

The change in the pairwise associations due to selection HDDi = Di
* - Di  etc.), assuming 

that only pairs i, j are associated via qi j ,  can be found in a similar way from Eq. 66:

(73)DDi = aèi  Hhi - Di
2L + Haèj - 2 aèij DiL qij

We see that when qi j = 0, qij* = Haèij - aèi  aèjL Hhi - Di
2L Hhj - Dj

2L; thus, four-way 
associations are not generated by multiplicative selection.  Indeed, under the multiplicative 
model, Eq. 72 simplifies to:

(74)qij
' =

qijÅÅÅÅÅÅÅÅÅ
Vê2

 HH1 - gi DiL2 - gi
2 hiL HH1 - gj DjL2 - gj

2 hjL
which is always smaller than 1.  

Thus, incompatibilities will not be associated with each other HDi j = 0L if there are 
multiplicative effects, if pairs of loci do not overlap on the genetic map, and if there is no 
interference between crossovers (c=0).  However, even with no epistasis between 
incompatibilities, incompatibilities will be associated if pairs of loci overlap (c>0).  The 
equilibrium association, qi j , is given by Eqs. 68, 74; from Eq. 74, its effect is to increase the 
strength of each pairwise association Di , Dj .
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Selection changes associations between loci in different pairs i, j:

(75)Di1  j1
' = Di1  j1 + ‚

UŒW

aU  HDi1  j1 U - Di1  j1  DUL

Dividing the sum according to whether the set U includes i, j:

(76)

Di1  j1
' = Di1  j1 + ‚

UŒWî8i,j<
aèU  HDi1  j1 U - Di1  j1  DUL +

‚
UŒWî8i,j<

aiU  Hhi1  Di2  j1 U - Di1  j1  DiUL +

‚
UŒWî8i,j<

ajU  Hhj1  Di1  j2 U - Di1  j1  DjUL +

‚
UŒWî8i,j<

aijU  Hhi1  hj1  Di2  j2 U - Di1  j1  DijUL

This does not have a closed form solution.  However, it does include only associations of 
the form Dia  jb  U , where U Œ W î 8i, j<; the same is true for the more general recursion for 
the Dia  jb  U .  We can, therefore, examine the growth of just this class of associations. 

We now assume that there are no associations between incompatibilities, except between 
pairs i, j.   As above, the recursions now simplify to depend only on the four loci 8i, j<, 
and on the marginal selection coefficients aè i , aè j , aè i j .  We have not made any explicit 
assumption about interactions between incompatibilities.  However, such interactions 
would generate associations such as Dik , and would also enter into the marginal 
coefficients aè U .  Therefore, the following analysis will not apply if any of the background 
pairs of loci interact with loci i, j, or if any of them overlap on the genetic map. Proceeding 
as before:

(77)

Di1  j1
' = Di1  j1 +

i
k
jjjjjaèi - aèij Dj

y
{
zzzzz Hhi1  Di2  j1 - Di1  j1  DiL +

i
k
jjjjjaèj - aèij  Di

y
{
zzzzz Hhj1  Di1  j2 - Di1  j1  DjL +

aèij  Hhi1  hj1  Di2  j2 - Di1  j1  HDi  Dj + qijLL

This, together with the corresponding equations for the other three cross-locus associations, 
defines a 4µ4 matrix whose eigenvalues determine whether loci in different pairs will 
become associated with each other.

With multiplicative fitnesses, the matrix simplifies to:
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(78)
1
ÅÅÅÅÅ
Vê

 

i

k

jjjjjjjjjjjjjjjj

fi  fj gi  hfj gj  hfi gi gj  h2

gi  hfj fi fj gi  gj  h2 gj hfi

gj  hfi gi  gj  h2 fi fj gi hfj

gi  gj  h2 gj hfi gi hfj fi  fj

y

{

zzzzzzzzzzzzzzzz

where h = 1ÅÅÅÅ4  and  fi = 1 - gi  Di  is the reduction in viability at LE due to locus i.   
Remarkably, this matrix does not depend explicitly on any association between the pairs of 
loci, qi j , except through the mean viability, Vêêê

= 1 + gi  g j  qi j , and indirectly, through the 
strength of linkage disequilibria Di , Dj . It has leading eigenvalue 
l = 1ÅÅÅÅÅVêêê  H1 + giHh - DiLL H1 + g jHh - DjLL (assuming gi , g j > 0L. Since h = 1ÅÅÅÅ4 > Di , Dj , we 
see that under selection alone, pairs of loci will tend to become associated with each other; 
this tendency is countered by recombination, which reduces Dix  jy  by a factor H1 - rix , jy L.  
With no linkage, all the rix , iy  are 1ÅÅÅÅ2 , leading to Eq. 18.

The stability of this system cannot be determined explicitly for general recombination rates.   
We deal with three special cases: no linkage; very tight linkage; and selection as strong as 
possible. With maximal selection, where recombinants {01, 10} at each pair are completely 
inviable, the least fit genotype cannot have negative fitness, and so 1 - giH 1ÅÅÅÅ4 + DiL ¥ 0.  
Substituting for the equilibrium from Eq.  46, we find that gi § 4ÅÅÅÅÅÅÅÅÅÅÅ2-ri

, which is  8ÅÅÅÅ3  with no 
linkage.    At this maximum value of gi , we have that D

`
i = H1-ri LÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 ; this corresponds simply 

to the linkage disequilibrium after selection, but before recombination, taking its maximum 
value of 1ÅÅÅÅ4 . 

With complete selection, qi j  after selection is necessarily zero.  However, qi j  is generated 
by recombination, and so equals cDi  Dj  after recombination.  Since mean viability depends 
on qi j  HVêêê

= 1 + gi  g j  qi jL, the rate of growth of pairwise associations is reduced if pairs of 
interacting loci overlap, so that c>0.  Complete selection on two pairs of interacting loci is 
equivalent to underdominance at two loci, since recombinants within pairs do not survive.  
There is a chance ri  that pair i will be broken up, and so in effect, there is selection against 
heterozygotes H 00ÅÅÅÅÅÅÅ11 L of ri , and similarly for pair j.   If the pairs do not overlap on the genetic 
map (c=0), then recombination events within each pair are independent. Otherwise, 
however, recombination events ri  and rj  are correlated, which is equivalent to an 
interaction in the fitness effects of the two pairs: hence, the dependence of the leading 
eigenvalue (Eq. 17) on c.
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Supplementary Information 5: Coupling between an assortment locus and multiple selected 
loci

We measure the net association between locus a and the set of selected loci W by:

(79)C1ê = ‚
UŒW

2»U»-n  DaU

This measure is equal to the association between a and the genotype 1êê = 81, 1 …<.  To see 
this, recall that, DaU  is defined as E@za  zU D, where za = Xa - pa , zU = ¤iœU zi , and 
zi = Xi - 1ÅÅÅÅ2 ; the Xa , Xi  indicate allelic state, and take values 0, 1.  We can rewrite C1êê  as:

(80)

C1ê = ‚
UŒW

E@2»U»-n  za  zUD = EAza ‚
UŒW

2»U»-n zUE

= EAza  „
UŒW

Â
iœWîU

J 1
ÅÅÅÅ
2
N ‰
iœU

JXi -
1
ÅÅÅÅ
2
NE

= EAza  
i
k
jjjjj
i
k
jjjjj‰
iœU

Xi
y
{
zzzzz - J 1

ÅÅÅÅ
2
N
ny
{
zzzzzE = EAza  

i
k
jjjjj‰
iœU

Xi
y
{
zzzzzE

where we have used the relations E@zaD = 0 and ‚
UŒW

H¤iœU aiL H¤ jœHWîUL biL = 

¤iœW Hai + biL - ¤iœW  bi; the last term is subtracted because the sum over U does not 
include the empty set.  This shows that C1êê  is just the excess frequency of allele Xa = 1 
within genotype 1êê (indicated by H¤iœU XiL=1), multiplied by the frequency of that 
background.

The change in each DaU  due to selection is given by the haploid version of Eq. 2.  
Summing over UŒW:

(81)

C1ê
' = C1ê + ‚

UŒW

‚
VŒW

2»U»-n  aV  HDaUV - DaU  DVL

= C1ê + ‚
UŒW

‚
VŒW

2»U»-n aV  DaUV - C1ê 
i
k
jjjjj‚
VŒW

aV  DV
y
{
zzzzz

Reversing the order of sums, we can separate the sum over U into the sum over all subsets 
X of the selected set V , and the sum over all subsets that do not overlap with V .  Let 
V = Y Z:

(82)
C1ê
' = C1ê + „

VŒW

 aV  ‚
J YŒV
XŒWîVN

2»XY»-n  DaXYYZ - C1ê 
i
k
jjjjj‚
VŒW

aV  DV
y
{
zzzzz
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Now, linkage disequilibria with repeated indices DaXY Y Z  reduce  to 2-»Y Y »  DaXZ  (Eq. 3).  
Hence:

(83)

C1ê
' =

C1ê + „
VŒW

 aV  2-»V» ‚
J YŒV
XŒWîVN

H2»XZ»-n DaXZL - C1ê 
i
k
jjjjj‚
VŒW

aV  DV
y
{
zzzzz

= C1ê + „
VŒW

aV  2-»V» ‚
UŒW

H2»U»-n  DaUL - C1ê 
i
k
jjjjj‚
VŒW

aV  DV
y
{
zzzzz

= C1ê 
i
k
jjjjj1 + ‚

VŒW

aV  H2-»V» - DVL
y
{
zzzzz

which gives Eq. 26.  Note that from the definition of fitness (Eq. 1), the increase is by a 
factor equal to the relative fitness of genotype 1êê, W

êêê
1êê êWêêê.  (This derivation has been given 

for the genotype 1êê, but applies for any genotype: the DaU  are weighted by ¤iœU H2 Xi - 1L, 
where H2 Xi - 1L = ±1).

From Eq. 21, assortment at locus a is represented by the coefficient aa,a = aÅÅÅÅÅÅÅha
, where 

ha = pa  qa .  Substituting into Eq. 2, we see that this does not alter genotype frequencies 
within haploids HDaU L, but does generate associations between haploids, 
D''

aS,T = DaS
*  DT

* + aDS
*  DaT

* .   (The DX
'  denote associations after viability selection).  

Substituting into Eq. 4,  the change due to assortment followed by recombination is:

(84)DaU
'' = ‚

ST=U

raS,T  HDaS'  DT
' - DaU

' L + a ‚
ST=U

raS,T  DaT
'  DS

'

Now, we add ⁄ST=U raS,T DaT
'  DS

'  to the first term, and subtract it from the second.  
Exchanging S, T  in the first term, and noting that raS,T + raT ,S = rS,T  gives Eq. 27.
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First, we show that the fitness of the fittest genotypes, relative to the population mean, 
depends on the mean recombination rate; it is this which determines the increase of C1êê  
under viability selection (Eq. 26).  With tight linkage, DU  is close to its maximum, 2-»U»  for 
U even; by symmetry, DU =0 for » U » odd.  The change due to recombination is given by 
Eq. 4, as ⁄ST=U rs,T  DS

*  DT
* .  We are concerned with even-numbered sets of loci, which can 

be broken up into either two even-sized sets, or two odd-sized sets.  The former make no 
contribution, because DS

*  DT
* ~ DU

* ; for the latter, DS
* = DT

* = 0, and so the net change due 
to recombination is -Rè U  2-»U» , where Rè U  is defined as ⁄ST=U rS,T , with the sum is taken 
over odd sets S, T .   This must be balanced against the increase in DU  due to selection. Let 
DU = 2-»U»  H1 - qU L, where qU  is small and of the same order as the recombination rates.   
Substituting into the haploid version of Eq. 2, setting equal to the change due to 
recombination, and keeping leading terms:

(85)

RèU = ‚
VœW

aV  2-»V»  HqU + qV - qUVL

=

i
k
jjjjj‚
VœW

aV  2-»V»  qV
y
{
zzzzz +

i
k
jjjjj‚
VœW

aV  2-»V»y
{
zzzzz qU -

i
k
jjjjj‚
VœW

aV  2-»V»  qUV
y
{
zzzzz

Equation 85 shows that deviations of linkage disequilibria from their maxima are 
proportional to the rate of recombination events, Rè U , that split even-sized sets U into two 
odd-sized sets.  Moreover, the first term in Eq. 85 is equal to the recombination load of Eq. 
26, which determines the net rate of increase of associations under viability selection.  To 
find this term, we show that when we sum over all even-sized sets, U,  the last two terms in 
Eq. 85 cancel.  Separate U = XY  into a component Y Œ V  and a component X Œ W îV .  
Then, qUV = qXY Y Z includes duplicate indices Y ; applying Eq. 3, qUV  reduces to qXZ .  
Therefore, summing Eq. 85 over all the 2n-1 even-sized subsets of W:

(86)‚
»U» even

RèU = 2n-1  ‚
VœW

aV  2-»V» qV

This can be simplified further.  Each of the RèU is a sum over all partitions of U into 
odd-sized subsets of U.  This can be rewritten as a sum over all the partitions of the 
complete set of n selected loci. (For example, with 4 loci 
Rè 12 = r13,24 + r14,23 + r1,234 + r134,2).  This sum includes every distinct recombination 
2n-2 times, and so we have ⁄»U» even R

è
U  = 2n-2  RW .  Thus, viability selection increases C1êê  

by a factor (1+⁄VœW aV  2-»V» qV) = H1 + 1ÅÅÅÅ2  RWL, which is independent of selection.

When linkage is tight, the population is dominated by the two fittest genotypes, which we 
label as 0êê, 1êê.  Because the DaU  are defined as the covariance between alleles at locus a and 
sets of selected loci, U, they must necessarily be close to each other in the limit: when only 
those two fittest genotypes are present, DaU = 21-»U»  C1êê " U. We therefore assume that 
DaU  differs from this limiting value by a small amount, of order recombination rate.  
Equation 27 shows that recombination has two effects on the DaU . The first term is a sum 
over rS,T HDaS

*  DT
* - DaU

* L, which cancels when DaU
* ~ 21-»U»  C1êê

* , DT
* ~2-»T » .  The second 

term gives the approximation:
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When linkage is tight, the population is dominated by the two fittest genotypes, which we 
label as 0êê, 1êê.  Because the DaU  are defined as the covariance between alleles at locus a and 
sets of selected loci, U, they must necessarily be close to each other in the limit: when only 
those two fittest genotypes are present, DaU = 21-»U»  C1êê " U. We therefore assume that 
DaU  differs from this limiting value by a small amount, of order recombination rate.  
Equation 27 shows that recombination has two effects on the DaU . The first term is a sum 
over rS,T HDaS

*  DT
* - DaU

* L, which cancels when DaU
* ~ 21-»U»  C1êê

* , DT
* ~2-»T » .  The second 

term gives the approximation:

(87)

C1ê
'' = C1ê

' - H1 - aL „
UŒW

2»U»-n ‚
ST=U

raS,T  21-»S» C1ê
'  2-»T»

= C1ê
' H1 - H1 - aL rèa L

rèa =
⁄UŒW ⁄ST=U raS,TÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2n-1

where rèa is the unweighted average of raS,T , summed over all odd-sized sets 
U, with S even and T  odd, and including S = 8<. (The denominator arises because there are 
2n-1odd-sized subsets of a set of n selected loci). 

It remains to rewrite rèa  in a simpler form, in the same way that we related the sum of the 
Rè U  over all sets U Œ W to the total recombination rate, RW .  Each of the recombination rates 
involving a set U Œ W is a sum over possible partitions of the full set, W.  Therefore, the 
sum ⁄UŒW ⁄ST=U raS,T  can be rewritten as a sum of the raX,Y , where XY = W.  Now, each 
raX,Y  contributes to all raS,T  where S is an even-sized subset of X, and T is an odd-sized 
subset of Y .  A set of size » X » has 2»X»-1odd subsets and a set Y  has 2»Y »-1 even-sized 
subsets, for |Y|>0.  Therefore, raX,Y  contributes to H2»X»-1L H2»Y »-1L = 2n-2  terms raS,T , 
except for ra,W , which contributes to the 2n-1odd-sized subsets of W.  Therefore, 
rèa = 1ÅÅÅÅ2  HRW + ra,WL. Combining the successive effects of selection, assortment and 
recombination yields Eq. 30.
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Supplementary Information 6: Invasion of an assortment allele

Figure 7. The invasion of an assortment allele.  The frequency of the assorting allele (upper 
grey curve) is increased through associations with pairs of selected loci HDa jk , lower light 
dotted curve), which in turn are generated as a result of pairwise associations between the 
assortment and the selected loci HDa j , dark dotted curve).  The pairwise associations 
amongst selected loci HDjk L are shown by the heavy curve; these rapidly approach 
equilibrium, and then increase slightly as the assortment allele becomes more common.  
Note that initially, pa , Da j and Da jk  all increase exponentially at the same rate, which 
appears linear on this log scale. All loci are unlinked, so that all associations of the same 
kind are equal Selection is as in Fig. 7, with four unlinked selected loci, and selection at its 
maximum value of s = 0.2. 
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Supplementary Information 7: Generating Figs. 1-6, 8
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Supplementary Information 8: Generating Fig. 7

Supplementary Information 9: Mathematica definitions
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