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Abstract
Felsenstein distinguished two ways by which selection can directly strengthen isolation.  
First, a modifier that strengthens prezygotic isolation can be favored everywhere.  This fits 
with the traditional view of reinforcement as an adaptation to reduce deleterious 
hybridization by strengthening assortative mating.  Second, selection can favor association 
between different incompatibilities, despite recombination.  We generalise this "two allele" 
model to follow associations amongst any number of incompatibilities, which may include 
both assortment and hybrid inviability.  Our key argument is that this process, of coupling 
between incompatibilities, may be quite different from the usual view of reinforcement: 
strong isolation can evolve through the coupling of any kind of incompatibility, whether 
prezygotic or postzygotic.   Single locus incompatibilities become coupled because 
associations between them increase the variance in compatibility, which in turn increases 
mean fitness if there is positive epistasis. Multiple incompatibilities, each maintained by 
epistasis, can become coupled in the same way. In contrast, a single-locus incompatibility 
can become coupled with loci that reduce the viability of haploid hybrids because this 
reduces harmful recombination.  We obtain simple  approximations for the limits of tight 
linkage, and strong assortment, and show how assortment alleles can invade through 
associations with other components of reproductive isolation.
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Introduction
Theoretical models of speciation have focussed on how individual incompatibilities might 
evolve, and on how incipient isolation might be reinforced by the evolution of adaptive 
mate preferences.  For example, reproductive isolation can evolve through the random 
fixation of underdominant mutations (Wright, 1941; Lande, 1979), by random drift along 
ridges in the adaptive landscape (Nei, 1976; Gavrilets, 1999; 2004), or by the substitution 
of selectively favored alleles that prove incompatible with each other (Dobzhansky, 1936; 
Muller, 1940, 1942; Orr, 1997).  Once some reproductive isolation has been established, 
selection then favours changes that reduce the loss of fitness due to mating between 
incipient species, thus reinforcing isolation (Wallace, 1889; Dobzhansky, 1940).  This last 
possibility has received much attention, in the context of both parapatric and sympatric 
speciation (Turelli et al., 2001; Servedio and Noor, 2003; Bolnick and Fitzpatrick, 2007), in 
part because it gives a direct role for natural selection in speciation.  In this paper, we draw 
attention to a different, and somewhat neglected, question: how do independent 
incompatibilities become coupled together, to build up a strong barrier to genetic 
exchange?  This issue is implicit in the existing literature (in particular, in Felsenstein's 
influential (1981) analysis), but has not received an explicit and comprehensive treatment.

In allopatric speciation, different sets of alleles accumulate, and necessarily remain 
associated with each other as a simple consequence of geographic isolation.  However, the 
coupling together of different components of reproductive isolation is an important part of 
speciation in both sympatry and parapatry.  First, consider purely sympatric divergence.  
We can imagine that in a single, initially panmictic, population, balancing selection 
maintains multiple polymorphisms, and that some of these involve disruptive selection, 
favouring lower frequencies of heterozygotes and recombinants.  As long as these different 
polymorphic systems remain independent of each other (i.e., in linkage equilibrium), the 
population may appear homogeneous, and there may be little variation in fitness between 
different mating pairs.  However, once arbitrary sets of alleles become associated, the 
population may condense into two subpopulations that are largely incompatible.  Under 
what circumstances will a single polymorphic population fragment in this way?  

Similar issues are involved when divergence occurs in parapatry.  Different 
incompatibilities may arise and spread independently of each other, and will not form a 
strong barrier to gene flow unless they are brought together, to separate two distinct 
populations.  Even if divergent populations do meet in secondary contact, differences that 
initially coincide may scatter, leading to collapse of an initially strong barrier (e.g. Hatfield 
et al., 1992; Shuker et al., 2005).  When will a strong barrier, which combines multiple 
incompatibilities, be stable?  This paper concentrates on the coupling of incompatibilities 
within an initially homogeneous population, as explained in the previous paragraph.  
However, the converse process, in which divergence collapses after secondary contact, is 
closely related.
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favouring lower frequencies of heterozygotes and recombinants.  As long as these different 
polymorphic systems remain independent of each other (i.e., in linkage equilibrium), the 
population may appear homogeneous, and there may be little variation in fitness between 
different mating pairs.  However, once arbitrary sets of alleles become associated, the 
population may condense into two subpopulations that are largely incompatible.  Under 
what circumstances will a single polymorphic population fragment in this way?  

Similar issues are involved when divergence occurs in parapatry.  Different 
incompatibilities may arise and spread independently of each other, and will not form a 
strong barrier to gene flow unless they are brought together, to separate two distinct 
populations.  Even if divergent populations do meet in secondary contact, differences that 
initially coincide may scatter, leading to collapse of an initially strong barrier (e.g. Hatfield 
et al., 1992; Shuker et al., 2005).  When will a strong barrier, which combines multiple 
incompatibilities, be stable?  This paper concentrates on the coupling of incompatibilities 
within an initially homogeneous population, as explained in the previous paragraph.  
However, the converse process, in which divergence collapses after secondary contact, is 
closely related.

In one of the first explicit models of speciation, Felsenstein (1981) distinguished between 
"one-allele" and "two-allele" mechanisms.  In the former, one allele is favoured 
everywhere, because it reduces the formation of unfit genotypes.  This reduction might 
arise through assortative mating (Felsenstein, 1981, Sanderson, 1989), reduced dispersal 
(Balkau and Feldman, 1972) or reduced recombination (Trickett and Butlin, 1994).  Such 
models fit with the classical view of reinforcement as an adaptation to reduce hybridisation; 
the evolution of modifiers that strengthen isolation can be analysed in the same way as for 
modifiers of recombination or dispersal (De Cara et al., 2008, Otto et al., 2008). In 
two-allele models, in contrast, different alleles are favoured in different places or in 
different incipient species, so that recombination opposes divergence.  In Felsenstein's 
(1981) model, alleles at one locus cause assortative mating; these may become associated 
with alleles at two other loci that cause postzygotic isolation by reducing the fitness of 
haploid recombinants.  

Both one- and two-allele models are usually regarded as forms of reinforcement (e.g. 
Servedio and Noor, 2003), and indeed, in both cases selection to reduce the formation of 
unfit hybrids leads to stronger isolation.  However, the processes involved are quite 
different.  The classical view of reinforcement is that selection can only strengthen 
prezygotic isolation, not postzygotic, because selection cannot favor a further reduction in 
the fitness of hybrids (Wallace, 1889; Dobzhansky, 1940). (Selection can favour a reduced 
fitness of juveniles where these compete with siblings, but the principle is the same; Coyne, 
1974, Cronin, 1991). This argument applies where a single allele strengthens isolation, but 
not when isolation is strengthened by an association between existing incompatibilities.  As 
we show below, the two different incompatibilities then do not have to be at different stages 
of the life cycle: each may have the same status, and we cannot say that one evolves 'in 
order to' reinforce the other. The evolution of the association itself can be seen as adaptive, 
in the sense that (directly or indirectly) it raises the mean fitness of the population. 
However, it can involve incompatibilities at any stage of hybridisation.

Speciation has received surprisingly little theoretical attentione, despite its central 
importance to evolutionary biology.  Even now, most theoretical studies are based on 
simulation, which  limits their value (see reviews by Gavrilets, 2004; Kirkpatrick and 
Ravigné, 2002). Analysis of speciation is difficult, because many of the usual 
approximations do not hold when selection is strong, as is necessarily the case when 
substantial reproductive isolation evolves within a single population.   However, the 
development of associations between independent incompatibilities lends itself to a general 
analysis, because there is a fundamental symmetry: initially, the incompatibilities are in 
linkage equilibrium with each other, and the associations that develop are as likely to be 
positive as negative.  Therefore, the key problem is to find the stability of the initial 
symmetrical state: do weak associations grow or shrink?  
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Speciation has received surprisingly little theoretical attentione, despite its central 
importance to evolutionary biology.  Even now, most theoretical studies are based on 
simulation, which  limits their value (see reviews by Gavrilets, 2004; Kirkpatrick and 
Ravigné, 2002). Analysis of speciation is difficult, because many of the usual 
approximations do not hold when selection is strong, as is necessarily the case when 
substantial reproductive isolation evolves within a single population.   However, the 
development of associations between independent incompatibilities lends itself to a general 
analysis, because there is a fundamental symmetry: initially, the incompatibilities are in 
linkage equilibrium with each other, and the associations that develop are as likely to be 
positive as negative.  Therefore, the key problem is to find the stability of the initial 
symmetrical state: do weak associations grow or shrink?  

We begin by examining the simplest model of two loci, one interpreted as subject to 
selection against heterozygotes, and the other with assortment amongst haploid individuals.  
This can be seen as a simplified version of Udovic' (1980) model of coupling between a 
locus with underdominance, and one that causes assortment amongst diploids; it is 
equivalent to the symmetric viability model, which was originally developed to describe 
overdominance at multiple loci (Lewontin and Kojima, 1960; Franklin and Lewontin, 1970; 
Karlin and Feldman, 1978; Christiansen, 1999, Ch. 8).  Whether we interpret the loci as 
inducing assortment among haploids or underdominance in diploids is arbitrary: once allele 
frequencies are taken as fixed, the population genetics are identical.  When effects multiply 
across loci, there is a simple criterion for the stability of the symmetrical equilibrium.  This 
result extends  to many such loci, interacting in arbitrary ways; a simple analytical 
expression for the threshold still obtains. We then turn to Felsenstein's (1981) model of an 
assortment locus and a pair of epistatically interacting loci, and give an explicit solution. 
Finally, we generalise Felsenstein's model in two  ways: to examine the coupling amongst 
multiple pairs of loci, and then the coupling of multiple genes with a single locus that 
causes assortative mating.  In all these models, we allow for strong selection and 
assortment.  Although our analysis is restricted to a single population, it suggests 
extensions to the parapatric case, where multiple incompatibilities meet across a cline.

Methods
We derive our results in two ways.  First, for general multilocus systems, we use the 
notation of Barton and Turelli (1991), to derive recursions for linkage disequilibria 
involving any number of genes. (See Kirkpatrick et al., 2002, for a more general account of 
this method).  Second, for examples with up to 6 loci, we use Mathematica to give explicit 
recursions for the gamete frequencies. These are used for our numerical examples, but by 
starting these recursions with symbolic expressions for the gamete frequencies in terms of 
allele frequencies and linkage disequilibria, we have an independent check on our more 
general derivations. The Mathematica packages used to derive these recursions are 
available from http://www.biology.ed.ac.uk/research/institutes/evolution/software.php, and the 
code used to generate recursions by the two methods is available as Supplementary 
Information (SI 7-9).

Throughout, we will assume that some form of frequency dependence keeps the allele 
frequencies constant.  Of course, the allele frequency dynamics may differ between 
assortment and disruptive selection. Following Felsenstein (1981), one might add frequency 
dependent selection to an underdominant locus to stabilise the polymorphism (e.g. Wilson 
and Turelli, 1986), and one might demand cost-free assortment, so that an assortment locus 
is neutrally stable. However, this does not alter the population genetics of linkage 
disequilibrium, given that there is a polymorphic equilibrium, and so does not affect the 
stability of the equilibrium towards growth of linkage disequilibrium.  (Some care is needed 
here.  Frequency dependent epistasis would affect the stability of linkage disequilibria.  
However, if the assortment and selected loci are independent in their effects on fitness, then 
it is reasonable to assume that there is no frequency dependent epistasis between these 
functionally independent sets of loci.  We focus on the dynamics of linkage disequilibria, 
but not of allele frequencies).
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Throughout, we will assume that some form of frequency dependence keeps the allele 
frequencies constant.  Of course, the allele frequency dynamics may differ between 
assortment and disruptive selection. Following Felsenstein (1981), one might add frequency 
dependent selection to an underdominant locus to stabilise the polymorphism (e.g. Wilson 
and Turelli, 1986), and one might demand cost-free assortment, so that an assortment locus 
is neutrally stable. However, this does not alter the population genetics of linkage 
disequilibrium, given that there is a polymorphic equilibrium, and so does not affect the 
stability of the equilibrium towards growth of linkage disequilibrium.  (Some care is needed 
here.  Frequency dependent epistasis would affect the stability of linkage disequilibria.  
However, if the assortment and selected loci are independent in their effects on fitness, then 
it is reasonable to assume that there is no frequency dependent epistasis between these 
functionally independent sets of loci.  We focus on the dynamics of linkage disequilibria, 
but not of allele frequencies).

We begin by briefly summarising the general recursions for allele frequencies and linkage 
disequilibria.  We assume that selection and non-random mating act symmetrically across 
the two sexes.  (This assumption is not restrictive: it would be straightforward to extend our 
results to cases where selection is asymmetric). There are two alleles at each of two loci, 
with frequencies qi , pi  at locus i, and similarly at locus j.  Following Kirkpatrick et al. 
(2002), we define an indicator variable Xi  which represents alternative alleles by 0 or 1, and 
mostly work with the deviation of Xi  from its mean, E@XiD = pi .  We denote this indicator 
by  zi = Xi - pi , which has mean zero, and takes values - pi , qi .  The state of a haploid 
population is described by the allele frequencies, and by the linkage disequilibria 
DU ª E@zU D, where zU ª ¤iœU zi , and U is a set of loci. The genotypes of the two haploid 
genomes that make up a diploid individual are indicated by the pair of vectors zi , zi

* ,  
Throughout, we denote loci by lowercase letters, and sets of loci by uppercase letters: for 
example, U might denote a set 8i, j, …< of loci.  We refer to the complete set of all loci 
involved as W.

The fitness of a diploid genotype is defined as its contribution to the next generation, 
immediately after meiosis, relative to what would be expected from the product of haploid 
genotype frequencies. This includes viability selection on haploids, non-random mating 
amongst haploids, and viability selection on diploids. We can imagine that, at the beginning 
of the generation, a hypothetical diploid population is formed, with genotype frequencies 
assumed to equal the product of the haploid frequencies.  Thus, DU,V ª E@zU  zV

* D = DU  DV .  
The relative fitness of a diploid genotype is then written as a polynomial:

(1)
W
ÅÅÅÅÅ
Wê

= 1 + ‚
U,VŒW

aU,V  HzU  zV
* - DU  DVL

where the coefficients aU,V  represent the strength of selection on the set U of loci in one 
haploid genome and the set V  in the other.  Here and below, the sum is over non-empty 
subsets of W, denoted by U, V Œ W. Non-random mating between haploid individuals is 
represented in exactly the same way as viability selection on diploids: both distort the 
contribution from sets of genes U, V  from the two haploid genomes.  (We follow 
Kirkpatrick et al. (2002) in using this definition for the selection coefficients; it differs 
slightly from Barton and Turelli (1991), but leads to simpler recursions and is easier to 
generalise).
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where the coefficients aU,V  represent the strength of selection on the set U of loci in one 
haploid genome and the set V  in the other.  Here and below, the sum is over non-empty 
subsets of W, denoted by U, V Œ W. Non-random mating between haploid individuals is 
represented in exactly the same way as viability selection on diploids: both distort the 
contribution from sets of genes U, V  from the two haploid genomes.  (We follow 
Kirkpatrick et al. (2002) in using this definition for the selection coefficients; it differs 
slightly from Barton and Turelli (1991), but leads to simpler recursions and is easier to 
generalise).

To simplify the dynamics, we begin with a hypothetical stage at which haploid gametes are 
randomly united.  Assortative mating is followed by selection on diploids.  Crucially, both 
these stages are described by a single set of selection coefficients, aU,V , whether the 
frequency changes are due to non-random mating amongst the gametes or to selection in 
the diploid phase.

With these definitions, selection changes allele frequencies by:

(2)

pi
' = pi + ‚

UŒW

aèU  DiU where aèU ª ‚
VŒW

aU,V  DV

DU,V
' = DU,V + ‚

X,YŒW

aX,Y  HDXU  DYV - DX  DY  DU  DVL

(Eqs. 9, 10 in Kirkp[atrick et al., 2002).  The leading terms often contain associations that 
involve repeated indices.  With two alleles per locus, labelled 0 or 1, these can be reduced 
using the relation: 

(3)DiiU = hi DU - Di DiU

where hi ª pi  qi , Di = pi - qi; D« = 1, Di = 0, and « is the empty set.

Recombination leaves allele frequencies unchanged and alters linkage disequilibria by: 

(4)DU
'' = ‚

ST=U

rS,T  DS,T
'

where rS,T  is the rate of recombination events in which the set of loci S is inherited from 
one parent, and T  from the other.  Note that non-random mating amongst haploids, and 
selection on diploids, leads to deviations from Hardy-Weinberg proportions (i.e., 
DS,T ≠ DS  DT ), which alter the effect of recombination. Since we assume throughout that 
allele frequencies are constant, we do not need to account for a final step, in which linkage 
disequilibria are defined relative to a new set of allele frequencies (Kirkpatrick et al., 2002).
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Underdominance and assortment due to the effects of 
single loci

Two loci that cause assortment or underdominance

The simplest model that addresses the coupling of assortment with disruptive selection 
involves two loci: one controlling assortment amongst haploid gametes, and the other with 
underdominance at the diploid zygote stage. In fact, assortment and selection are 
mathematically equivalent: both lead, at allele frequency equilibrium, to a reduced 
contribution of heterozygotes to the next generation.  It is unusual to mix assortment 
amongst haploids with selection on diploids.  However, such a model is biologically 
possible, and could apply (for example) to a marine organism in which haploid gametes 
disperse independently, and fertilize selectively, based on compatibility of their haploid 
genotypes.

We assume that allele frequencies are at equilibrium. If we look at one locus at a time, then 
from Eq. 2a,  allele frequencies will stay constant provided that fitness does not depend on 
any terms involving the allelic effects  zi , zi

* alone. Therefore, the fitness contribution of a 
single locus is H1 + si  zi  zi

*L, where si  measures the strength of underdominance.  If fitnesses 
multiply across loci, and if the population is at linkage equilibrium (LE), then allele 
frequencies will remain unchanged under this form of selection.  However, if there is 
linkage disequilibrium between loci, and if  allele frequencies are asymmetric Hpi ≠

1ÅÅÅÅ2 L, 
then allele frequencies will change.  Therefore, we can use this model to find whether the 
state of zero linkage disequilibrium is stable to changes in linkage disequilibrium for 
arbitrary allele frequencies.  However, when we examine the full dynamics of linkage 
disequilibrium, we restrict attention to the symmetric case pi = 1ÅÅÅÅ2 .  Analysis of the 
dynamics with asymmetric allele frequencies is possible, but more involved, because we 
must include terms involving zi , zi

*  alone in order to stabilise allele frequencies in the 
presence of linkage disequilibria.  By analysing equal allele frequencies, we are focussing 
on the case most conducive to evolution of stronger isolation; we believe that 
polymorphisms with extreme allele frequencies will be much less likely to couple.

We begin by looking at associations between two loci, labelled i, j. The contribution of 
each diploid genotype at LE must be W = H1 + si  zi  zi

*L H1 + s j  z j  z j
*L.  The fitness 

contribution of the three genotypes at locus i is:

(5)1 + si  pi
2 : 1 - si pi  qi : 1 + si qi

2

and similarly for locus j.  Because fitnesses cannot be negative, si  pi  qi § 1; at the 
threshold si  pi  qi = 1, reproductive isolation is complete.
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From Eq. 1, the selection coefficients are:

(6)
Wê ai,i = si Wê aj,j = sj Wê aij,ij = si sj

where Wê = 1 + si  sj  Dij
2

Here, ai,i  denotes selection favouring an association between the two homologous alleles at 
locus i in a diploid, and ai j,i j  denotes selection favouring an association between pairs of 
genes i, j in the two genomes carried by a diploid.  Where we consider the stability of the 
symmetrical equilibria HDi j = 0L, the mean fitness can be taken as Wêêê

= 1.

If a fraction a of individuals mate assortatively according to their genotype at some specific 
locus i, and the remainder mate at random, then we have a = si  pi  qi .  Under this 'cost-free' 
model of assortment, which was used by Felsenstein (1981), allele frequencies do not 
change.  In the obvious extension to two loci, a fraction a would mate with the same 
haplotype. Then, the fitness of each haplotype would be the same, and linkage disequilibria 
would not build up.  This is not the same as the multiplicative model used here: rather, it is 
a special case in which the relation between ai j,i j  and the ai,i , a j, j  is such that associations 
remain constant.

The mean fitness, Wêêê, increases with the magnitude of linkage disequilibrium, whether it is 
positive or negative; this is still true when there is overdominance or disassortment at both 
loci (si , s j < 0, rather than si , s j > 0).  This increase in mean fitness with linkage 
disequilibrium reflects the nonlinear dependence of fitness on the number of heterozygous 
loci: the arithmetic average fitness of a double heterozygote and a double homozygote is 
greater than the average of the single heterozygotes, and so mean fitness increases with the 
variance of the number of heterozygous loci (Fig. 1).  We will see that it is this selection for 
increased variance in heterozygosity that drives the increase of linkage disequilibrium that 
couples different components of reproductive isolation.  At linkage equilibrium (LE), the 
definition of Eq. 5 ensures that Wêêê

= 1. With complete linkage disequilibrium, only two 
haplotypes are present, so that pi = pj , Di j = pi  qi. Three diploid genotypes are present; 
from Eq. 5, these have fitnesses:

(7)H1 + si  p2L H1 + sj  p2L : H1 - si  p qL H1 - s j  p qL : H1 + si  q2L H1 + sj  q2L
and mean fitness is increased to Wêêê

= 1 + si  s j  p2  q2.

We denote the rate of recombination events that separate loci i, j as ri, j .  From Eqs. 2, 4, 
linkage disequilibrium changes as:

(8)
Dij
' =

H1 - ri,jL Dij + ri,j Dij  Hai,i  hi + aj,j  hjL + aij,ij  Dij  

Hri,j  Di  Dj  Dij + H1 - ri,jL Hhi hj + Di  Dj  Dij - Dij2LL
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where hi = pi  qi , Di = Hpi - qiL. An initial state of linkage equilibrium will be unstable to 
increases in Di j in either direction if:.

(9)H1 - ri,jL H1 + aij,ij  hi  hjL + ri,j  Hai,i  hi + aj,j  hjL > 1

(That is, » Di j
'' » > » Di j » for small » Di j »). Substituting for ai,i = si , ai j,i j = si  s j , and 

rewriting the threshold in terms of the recombination rate, we have instability if:

(10)ri,j < ri,j
* =

si sj  hi hjÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - si hiL H1 - sj  hjL
Recall that si  hi § 1 if fitnesses are to be non-negative; heterozygosity at locus i reduces 
fitness below the mean by a factor (1-si hi).  This reduction in the fitness can be due to 
either underdominance, or to assortative mating amongst haploids: in the latter case, if a 
fraction ai  of individuals mate assortatively for alleles at locus i, then ai = si  hi .

With weak selection Hsi  hi , s j  hj  << 1L linkage must be very tight for coupling to evolve., 
but the threshold recombination rate can become arbitrarily high as selection approaches 
the maximum possible at each locus, and linkage disequilibrium can develop even with no 
linkage Hri, j = 1ÅÅÅÅ2 L.  Disequilibria will develop between unlinked loci Hri, j = 1ÅÅÅÅ2 L that have the 
same fitness effect if si  hi = sj  hj > è!!!2 - 1 = 0.414 - that is, if heterozygosity at each locus 
reduces fitness below the mean by at least 41.4%.  

Note that the stability results of Eqs. 9, 10 apply for arbitrary allele frequencies.  If allele 
frequencies are asymmetric, then as linkage disequilibria build up, frequency-dependent 
selection must generate coefficients ai , aj  to maintain allele-frequency equilibrium.  
However, by symmetry, these coefficients are OHD2L, and so do not affect the stability 
analysis.  If allele frequencies are symmetric, then even if coefficients of dominance and 
epistasis change with linkage disequilibrium, we must have ∂aU ê∂Di j = 0, by symmetry.   
Therefore, this kind of frequency-dependence  does not alter the stability of the symmetric 
equilibrium.  However, if allele frequencies are asymmetric, our conclusions about stability 
may depend on the assumption that epistasis and dominance do not vary with the strength 
of linkage disequilibrium.

Multiple loci with underdominance or assortment

Now, we extend the model to a set of underdominant or assorting loci, W.

(11)W = ‰
kœW

H1 + sk  zk  zk
*L = 1 + ‚

UŒW

sU  zU  zU
*

where the sum over all sets of loci, UŒW, does not include the empty set U = «, and where 
selection on a set, U, of loci is the product of the individual selection coefficients: 
sU ª ¤iœU si .  (Note the distinction between sums over elements of the set W, denoted kœ

W, and sums over all subsets of W, denoted U Œ W). The mean fitness is:
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where the sum over all sets of loci, UŒW, does not include the empty set U = «, and where 
selection on a set, U, of loci is the product of the individual selection coefficients: 
sU ª ¤iœU si .  (Note the distinction between sums over elements of the set W, denoted kœ

W, and sums over all subsets of W, denoted U Œ W). The mean fitness is:

(12)Wê = 1 + ‚
UŒW

sU  DU
2

Now, Wêêê
 aU,U = sU " U and all other coefficients are zero (that is, aU,V = 0 " U ≠ V).  The 

pairwise linkage disequilibria follow the recursion:

(13)
Dij
' = H1 - ri,jL Dij +

‚
UŒW

aU,U  HH1 - ri,jL DU  HDijU - Dij  DUL + ri,j DiU  DjUL

where DU  represents the association between the set of alleles U. When linkage 
disequilibria are small and of the same order, this simplifies to:

(14)
Dij
' = Dij  HH1 - ri,jL H1 + aij,ij  hi  hjL +

ri,j Hai,i hi + aj,j hjLL + O HD2L
So the criterion for instability of Dij  only involves ai j,i j , ai,i and aj, j , and for each pair of 
loci, we have exactly the same conditions as for the two-locus model (Eqs. 9, 10).  (This is 
true even after using Wêêê

 aU,U = sU to substitute for the a ' s in terms of the s ' s, because 
Wêêê

= 1 + OHD2L).  Because we are examining small perturbations from linkage equilibrium, 
the stability of associations between a pair of loci does not depend on any other loci.

So far, we have shown that » D » > 0 (i.e., coupling between incompatibilities) is favoured 
if ai j,i j is sufficiently strong relative to the opposing force of recombination. This term can 
arise with either under- or over-dominance if fitnesses multiply across loci, but will 
typically be weak, since it arises from the product of selection coefficients at the two loci. 

The stability criterion extends in a surprisingly simple way to higher-order disequilibria.  
Making the same argument as for a pair of loci (Eq. 8), we see that the leading terms are:

(15)DV
' ~

i
k
jjjjjrV,« + ‚

UŒV

rU,V\U  aU,U  hU
y
{
zzzzz DV + O HD2L

Here, rV,« is the probability that no recombination event breaks up the set V , and rU,VîU is 
the rate of recombination events by which the set U is inherited from one parent of a 
haploid individual, and the remaining loci, V\U, from the other.  We see that the condition 
for instability of pairwise Di j , Eq. 9,  is a special case of this formula.  With equal allele 
frequencies Hpi = 1ÅÅÅÅ2 L, Eq. 15 is equivalent to the recursion above Eq. 8.7 of Christiansen 
(1999), with 2 RV HUL = rU,VîU , and eU ê e« = aU,U  hU .
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Interactions amongst multiple loci with underdominance or assortment

In the multiplicative model, we have Wêêê
 aU,U = ¤iœU si .  However, the stability criterion, 

Eq. 15, applies to a much more general model.  Suppose that fitness is an arbitrary function 
of which loci are heterozygous or homozygous:

(16)W = 1 + ‚
UŒW

sU  zU  zU
*

where the sU  are now arbitrary coefficients that describe interactions between 
heterozygosity at the set of loci U. (Note that this polynomial formula for relative fitness 
can describe any assignment of fitnesses to genotypes, provided that we only distinguish 
whether loci are homozygous or heterozygous). We see that the stability of each coefficient 
of linkage disequilibrium depends simply on the rates of recombination that break down 
that association, and the strength of selection favouring associations between the specific 
set of loci on the two homologous genomes HaU,U L.  This is analogous to the result of 
Hastings (1986) and Barton (1986), who showed that close to linkage equilibrium, the 
association amongst a set of loci is directly proportional to the epistasis amongst precisely 
that set. Note that so far, we have not made any assumption about allele frequencies - these 
can be arbitrary.  

The results described so far are largely contained in the extensive literature on the 
symmetric viability model, which is reviewed by Christiansen (1999, Ch. 8). The key 
difference is that previous analyses have assumed fixed genotypic fitnesses, and so required 
overdominance to maintain stable polymorphism. Here, we assume that stable 
polymorphisms are maintained despite underdominance, because fitnesses depend on allele 
frequencies.  The symmetric viability model assumes that fitness depends only on which set 
of loci is heterozygous. It was introduced for two loci by Lewontin and Kojima (1960), 
who derived the threshold of Eq. 10 (their Eq. 20), and found that 
D = ±H1 ê 4L "######################1 - ri, j ê ri, j

*  at the asymmetric equilibria (their Eq.19).  Ewens (1968) found 
that symmetric HD = 0L and asymmetric HD ≠ 0L equilibria could both be unstable towards 
changing allele frequency for intermediate rates of recombination.  However, since we 
assume that allele frequencies are stabilised by frequency-dependent selection, this does not 
concern us here. Karlin and Feldman (1978) made a numerical investigation of the 
two-locus multiplicative model, and found that with unequal allele frequencies, equilibria 
with D = 0 and D≠0 could be simultaneously stable.  Christiansen (1990; 1999) analyses 
the symmetric viability model, using a notation similar to ours, and derives Eq. 15 
(Christiansen, 1999, above Eq. 8.7), assuming equal allele frequencies.  The most general 
analytic results are for the generalised multiplicative model (Karlin and Liberman, 1979), 
which allows interactions amongst arbitrary sets of loci, but assumes that the effects of the 
three genotypes at each locus have the same relative effects in all interactions - roughly 
speaking, fixing their dominance relations.  This model includes the symmetric viability 
model as a special case, but extends to allow unequal allele frequencies.  When a 
polymorphism at linkage equilibrium exists, its stability is given by an explicit (but 
complicated) formula (Christiansen, 1999, Eq. 8.9).   Thus, the results summarised above 
are largely contained in previous analyses, though our main result (Eq. 15) applies for 
arbitrary allele frequencies, and so extends beyond the symmetric viability model.
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polymorphisms are maintained despite underdominance, because fitnesses depend on allele 
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who derived the threshold of Eq. 10 (their Eq. 20), and found that 
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*  at the asymmetric equilibria (their Eq.19).  Ewens (1968) found 
that symmetric HD = 0L and asymmetric HD ≠ 0L equilibria could both be unstable towards 
changing allele frequency for intermediate rates of recombination.  However, since we 
assume that allele frequencies are stabilised by frequency-dependent selection, this does not 
concern us here. Karlin and Feldman (1978) made a numerical investigation of the 
two-locus multiplicative model, and found that with unequal allele frequencies, equilibria 
with D = 0 and D≠0 could be simultaneously stable.  Christiansen (1990; 1999) analyses 
the symmetric viability model, using a notation similar to ours, and derives Eq. 15 
(Christiansen, 1999, above Eq. 8.7), assuming equal allele frequencies.  The most general 
analytic results are for the generalised multiplicative model (Karlin and Liberman, 1979), 
which allows interactions amongst arbitrary sets of loci, but assumes that the effects of the 
three genotypes at each locus have the same relative effects in all interactions - roughly 
speaking, fixing their dominance relations.  This model includes the symmetric viability 
model as a special case, but extends to allow unequal allele frequencies.  When a 
polymorphism at linkage equilibrium exists, its stability is given by an explicit (but 
complicated) formula (Christiansen, 1999, Eq. 8.9).   Thus, the results summarised above 
are largely contained in previous analyses, though our main result (Eq. 15) applies for 
arbitrary allele frequencies, and so extends beyond the symmetric viability model.

The generalized model of Eq. 16 is intriguing, because we could in principle have 
instability of pairwise linkage disequilibria but not three-way - or vice versa. In SI 1, we 
show that with three loci, all possible stability regimes are possible, for appropriate choices 
of recombination rates, and of the fitness as a function of the number of heterozygous loci.  
These possibilities are illustrated in Fig. 2.

We can understand these outcomes by thinking of how selection acts on the distribution of 
numbers of heterozygotes.  If this relationship is linear (i.e., if fitness depends additively on 
heterozygosity), then there is no selection on the variance of heterozygosity. If the 
relationship curves upwards, then selection favours a maximal variance of heterozygosity, 
and hence coexistence of two complementary genotypes (lower dots in Fig. 1). Conversely, 
if fitness is concave downwards, then selection favours a reduced variance in 
heterozygosity, which is achieved at linkage equilibrium (upper dots in Fig. 1).  With more 
than two loci, we can have situations in which an intermediate variance in heterozygosity 
maximises mean fitness, so that intermediate numbers of genotypes are heterozygous.  
(Under recombination and selection, mean fitness is not maximised, and may decrease 
(Moran, 1964; Ewens, 2004, Ch. 2).  However, the effect of selection alone is always to 
increase mean fitness, and so we can identify the direction of selection by using arguments 
based on mean fitness, as above).

As different incompatibilities become coupled with each other, their effect on yet other 
incompatibilities becomes stronger, so that further coupling evolves.  Thus, a set may 
couple even if most pairs of loci, considered separately, would not. This positive feedback 
is illustrated in Fig. 3, for a five-locus example, with multiplicative fitnesses across loci.  In 
this example, selection at each locus is strong, with each heterozygote reducing fitness by 
54%.  With weaker selection, this kind of feedback is unlikely, because it requires that 
linkage is only slightly looser than the critical value that would couple each pair, 
considered separately.

Note that throughout, we treat genotypic fitnesses as being fixed, independent of the pattern 
of linkage disequilibria, according to Eq. 16, with allele frequencies poised at a (possibly 
unstable) equilibrium.  Dependence of fitness on allele frequencies can stabilise the allele 
frequencies, without altering the stability of the linkage disequilibria.  However, a 
generalised dependence of fitness on genotype frequencies (that is, on linkage disequilibria 
as well as on allele frequencies) would alter both the stability at linkage equilibrium, and 
the final outcome.
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Note that throughout, we treat genotypic fitnesses as being fixed, independent of the pattern 
of linkage disequilibria, according to Eq. 16, with allele frequencies poised at a (possibly 
unstable) equilibrium.  Dependence of fitness on allele frequencies can stabilise the allele 
frequencies, without altering the stability of the linkage disequilibria.  However, a 
generalised dependence of fitness on genotype frequencies (that is, on linkage disequilibria 
as well as on allele frequencies) would alter both the stability at linkage equilibrium, and 
the final outcome.

Incompatibilities caused by epistasis

An assortment locus and a pair of interacting loci: Felsenstein (1981)

The model of multiple single-locus incompatibilities shows that coupling can occur 
between incompatibilities that act at any stage - pre- or postzygotic; it also allows for 
arbitrary interactions amongst incompatibilities.  However, assortment and selection act at 
different stages (amongst haploids, and on diploids, respectively); while biologically 
possible, this may seem unfamiliar.  We therefore turn now to a model in which both 
assortment and selection acts on haploids. (Note, however, that our model of viaility 
selection on haploids is equivalent to one of viability selection in diploids, in the absence of 
dominance).  In its simplest form, this is just the model introduced by Felsenstein (1981), 
and analysed by Gavrilets (2004, pp. 347-350). We first set out Felsenstein's model, 
expressing it in terms of selection coefficients and linkage disequilibria, and giving some 
explicit solutions.  This will suggest a simpler and more general version, which extends to 
multiple loci.  

Felsenstein's model includes one locus that causes cost-free assortment of strength a; a 
fraction a of haploid individuals mate assortatively, and 1-a mate at random.  Two loci 
determine fitness in two niches (I, II) with (in the basic version) random mixing between 
them Hm = 0.5L :

I II
00 1 1 + 2 s + e

01 1 + s 1 + s
10 1 + s 1 + s
11 1 + 2 s + e 1

Polymorphism is maintained, because the proportion from each niche is held fixed at 50% 
(i.e., 'soft' selection, as in Levene's (1953) model).  We follow Felsenstein (1981) by 
labelling the assortment locus a, and the epistatically interacting loci b, c.  (In the original 
version, d measured assortment and e = ks2). Gavrilets (2004, p. 347) refers to these loci as 
CAB, respectively, and gives the analytical solutions for the symmetric state.

If there is any  epistasis, then an association Dbc  will be generated.  The interesting 
question is whether or not associations Dab, Dac  can build up, which associate assortment 
with epistatic selection, and hence reduce gene flow.  This analysis is relatively simple in 
the completely symmetrical case, pa = pb = pc = 1ÅÅÅÅ2 , Dabc = 0. (Note that when the 
population contains just two complementary genotypes - 000, 111 say - then Dabc = 0; a 
three-way association corresponds to an excess of four genotypes - 001, 010, 100, 111, 
say). We summarise this analysis of the completely symmetrical case in SI 2.
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If there is any  epistasis, then an association Dbc  will be generated.  The interesting 
question is whether or not associations Dab, Dac  can build up, which associate assortment 
with epistatic selection, and hence reduce gene flow.  This analysis is relatively simple in 
the completely symmetrical case, pa = pb = pc = 1ÅÅÅÅ2 , Dabc = 0. (Note that when the 
population contains just two complementary genotypes - 000, 111 say - then Dabc = 0; a 
three-way association corresponds to an excess of four genotypes - 001, 010, 100, 111, 
say). We summarise this analysis of the completely symmetrical case in SI 2.

Because assortment is assumed cost-free, allele frequencies pa  could take any value. In SI 
3, we show that although there is indeed a line of neutral equilibria with arbitrary allele 
frequencies at the assorting locus, a, perturbations away from this line tend to drive the 
allele frequency pa  towards 1ÅÅÅÅ2 . This provides some justification for focussing on the 
simplest case, where all allele frequencies are symmetrical.  We also show in SI 3 that the 
symmetrical equilibrium is stable towards fluctuations in the third-order association, Dabc  
away from zero.

Coupling between multiple pairs of interacting loci

We began our analysis by considering associations amongst multiple underdominant or 
assorting loci.  We then considered Felsenstein's (1981) model, in which a single-locus 
incompatibility becomes coupled with a pair of loci that interact to determine haploid 
viability.  We will extend Felsenstein's (1981) model in two ways.  In the following section, 
we will see how a single locus for assortment or underdominance becomes associated with 
an arbitrary set of loci that interact to determine haploid viability.  First, however, we will 
look at coupling between multiple pairs of interacting loci that influence haploid viability: 
that is, we assume random mating between haploids, but allow several pairs analogous to 
the pair of loci b, c in the Felsenstein (1981) model.  This will show how results from our 
initial model of single-locus incompatibilities, acting at both haploid and diploid stages, 
carry over to the case where selection acts solely on haploids.  In particular, this extension 
strengthens our argument that coupling can occur between incompatibilities at the same 
stage in the life cycle, in contrast to the standard view of reinforcement.  

We label each pair by i, and the loci within pair i as i1, i2; thus, the association within pair i 
is Di = Di1  i2 .  We denote a set of pairs by DU = ¤iœU Di . Similarly, ri = ri1 ,i2 . The set of 
all pairs of loci is denoted W.  We assume that there is epistasis between the loci within a 
pair, denoted by a8i1  i2 < = a8i< .  There may also be epistasis between pairs, denoted by aU , 
where U is a set of pairs of loci (e.g., U = 8i1, i2, j1, j2<).  This reflects the possibility that 
the cumulative effects of incompatibilities are not additive.  In the special case where 
effects are multiplicative across pairs, we write haploid viability as a product of 
contributions H1 + giHzi - DiLL across pairs of loci; this greatly simplifies the recursions. 
Details of the derivations are given in SI 4.
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At equilibrium, all associations involving pairs of interacting loci may exist. Clearly, we 
expect strong associations within pairs HDi1  i2 = Di ≠ 0L, generated by the epistasis between 
those  loci.  In general, however, there may also be associations between pairs (e.g. 
Di1  i2  j1  j2  k1  k2 = Di jk ≠ Di  Dj  Dk ): unless the fitness effects of different incompatibilities 
multiply, selection will make multiple incompatibilities more or less frequent than expected 
from the frequencies of each separate incompatibility.   In the special case where effects 
multiply across pairs, however, these cross-pair associations may reduce to the product of 
within-pair associations, so that there is an equilibrium with DU = ¤iœU Di .  However, 
even in this multiplicative case, different pairs of incompatibilities will become associated 
with each other if the pairs overlap on the genetic map.  This is because a recombination 
event that breaks up one pair may also break up another pair, and so the presence of an 
incompatibility involving one pair becomes correlated with incompatibility at the other.  
(For example, if loci are in the order i1  j1  i2  j2, then a recombination between j1 and j2 will 
also cause recombination between i1 and i2).  Note that there is a qualitative difference 
from the case of multiple underdominant loci, considered above, where even when the 
cumulative effects of multiple incompatibilities interact, the population can still settle to 
linkage equilibrium.

Even though all associations that involve complete pairs are non-zero in our model of 
epistasis, we assume that associations between single loci in different pairs are zero (i.e., 
Dia  jb = 0 for i ≠ j, " a, b œ 81, 2<).  That is, there can be an equilibrium in which all 
genotypes that give the same pattern of incompatibility are equally common.  For example, 
the four haploid genotypes 8Xi1  Xi2  Xj1  Xj2 <={0,0,0,0}, {0,0,1,1}, {1,1,0,0}, {1,1,1,1} have 
maximal fitness, and are equally common at the symmetrical equilibrium.  Similarly, 
{0,1,0,0}, {0,1,1,1}, {1,0,0,0}, {1,0,1,1} have a single incompatibility, at the first two loci 
Hi = 8i1, i2<L, and are again equally common.  The non-zero associations Di , Dj  and Di j , 
which involve complete pairs, determine the frequencies of the four classes of genotype 
(i.e. with or without incompatibilities at loci i, j) but within those classes, genotypes are 
equally frequent.  The question is whether, starting from this symmetrical state, pairwise 
associations such as Dia  jb will grow, so that ultimately, the population is dominated by two 
complementary haplotypes.

The symmetrical equilibrium studied here is similar to that in the symmetrical model of 
Barton (1992), Doebeli (1996) and Shpak and Kondrashov (1998), who assumed equal 
frequencies of all haploid genotypes with the same value of an additive quantitative trait. 
This assumption drastically simplifies simulations, since with n loci, only n variables need 
be followed, rather than 2n - 1.  However, although the symmetrical equilibrium exists 
when fitnesses show a corresponding symmetry, it may be unstable.  Barton and Shpak 
(2000) showed how the stability of an n locus system could be determined by examining an 
Hn + 1Lµ Hn + 1L matrix.  In our model, we will be concerned with the stability of the 
symmetrical equilibrium in a similar way.
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The symmetrical equilibrium studied here is similar to that in the symmetrical model of 
Barton (1992), Doebeli (1996) and Shpak and Kondrashov (1998), who assumed equal 
frequencies of all haploid genotypes with the same value of an additive quantitative trait. 
This assumption drastically simplifies simulations, since with n loci, only n variables need 
be followed, rather than 2n - 1.  However, although the symmetrical equilibrium exists 
when fitnesses show a corresponding symmetry, it may be unstable.  Barton and Shpak 
(2000) showed how the stability of an n locus system could be determined by examining an 
Hn + 1Lµ Hn + 1L matrix.  In our model, we will be concerned with the stability of the 
symmetrical equilibrium in a similar way.

In the symmetrical equilibrium, there is high genotypic diversity, and little reproductive 
isolation.  With m pairs of loci, each class includes 2m  different genotypes, which are 
equally frequent.  Thus, even if selection were so extremely strong that only the most 
compatible class existed (i.e., genotypes 00 and 11 only at each pair of interacting loci), 
there would still be 2m  different genotypes in the population.   In order for strong 
reproductive isolation to develop between two alternative genotypes, associations between 
pairs must develop, such that two complementary genotypes become common (e.g., {0000} 
and {1111} or {0011} and {1100}).

Recursions for this model are given in SI 4.  We can find explicit results in several special 
cases.   First, we consider maximal selection, where epistasis is so strong that recombinants 
{01, 10} at each pair are completely inviable. Then the leading eigenvalue is:

(17)l =
H1 - rêL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - riÅÅÅÅÅ2 L H1 - rjÅÅÅÅÅ2 L Vê

where rê = Hri1,j1 + ri1,j2 + ri2,j1 + ri2,j2 Lê 4 is the average rate of recombination 
between two loci in different pairs, and Vêêê is the average viability.  We see that associations 
between alleles involved in different incompatibilities will grow if the average rate at which 
such associations are broken up HrêL is small, relative to the average rate at which each pair 
is broken up Hri , rjL, causing loss of viability. In this case of complete selection, only four 
haploid genotypes are viable, and the model is equivalent to one of underdominance at two 
linked loci (see SI 4).  Also, note that Eq. 17 does not depend on assuming multiplicative 
effects across loci: when selection is so strong that all within-pair recombinants die, there is 
no difference in viability between individuals that die because they carry one 
incompatibility and those that die because they carry two. 

With no linkage, and when incompatibilities have multiplicative effects, there are no 
associations amongst incompatibilities Hi.e., Di j = Di  Dj), and the leading eigenvalue is:

(18)l =
1
ÅÅÅÅ
2

H1 + gi  Hhi - DiLL H1 + gj Hhj - DjLL
The strongest possible selection is gi = g j = 8ÅÅÅÅ3 , and Di = Dj = 1ÅÅÅÅ8 , in which case 
recombinants are completely inviable.  Then, l = 8ÅÅÅÅ9 < 1, implying that unlinked 
incompatibilities cannot become coupled unless there are between-pair interactions, aè i j .  
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When loci are very tightly linked, so that recombination is much weaker than selection, the  
linkage disequilibria Di , Dj  are close to their maximum of 1ÅÅÅÅ4 .  Then, the leading 
eigenvalue simplifies to:

(19)l = 1 +
ri + rjÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
- rê -

c
ÅÅÅÅ
4

 
Hgj + gi - gi  gjLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHgi + gj - gi  gjÅÅÅÅÅÅÅÅÅÅ2 L > 1 for instability

where c = ri j,« + ri, j - H1 - riL H1 - rjL. If the pairs of loci do not overlap, and there is no 
interference between crossovers, then c=0.  If c=0, or if selection is weak Hg << 1L, or if 
selection is as strong as possible Hgi=2 for Di = 1ÅÅÅÅ4 ), then the leading eigenvalue is 
independent of the selection coefficients, and depends only on the recombination rates.  
This is consistent with Eq. 17 above, which applies when selection is maximal, since Eq. 19 
is the limit of Eq. 17 for tight linkage when gi , g j = 2 and recombination is rare. 

Two pairs of interacting loci are much more likely to become associated if they overlap on 
the genetic map than if they are separate.  To find whether alleles involved in separate 
incompatibilities will become associated (i.e., l>1), we need to consider the three possible 
gene orders, assuming no interference between crossovers and tight linkage within pairs 
Hri , rj  << 1):

(20)

rê = Hri+rj-ri  rjLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + ri2  j1 c = 0 i1 i2  j1  j2

rê = Hri+rjLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - ri2  j1ÅÅÅÅÅÅÅÅÅÅ2 c = ri2  j1 i1 j1  i2  j2
rê = riÅÅÅÅÅ2 c = rj i1 j1  j2  i2

where we keep only the leading terms in recombination rates.  When the pairs do not 
overlap (order i1  i2  j1  j2), they will become associated only if they are very tightly 
linked (ri2  j1 < ri  rjÅÅÅÅÅÅÅÅÅÅ2  for ri2  j1  small).  If they do overlap (orders i1 j1 i2 j2 , 
i1  j1  j2 i2), then they will become associated, because ri+rjÅÅÅÅÅÅÅÅÅÅÅ2 > rê + cÅÅÅÅ4  for tight 
linkage.  If selection is strong Hgi , g j ~ 1L, then the last term in Eq. 19 will be smaller, and 
so associations will still grow.

It is remarkable that the expressions for both maximal selection (Eq. 17) and for tight 
linkage (Eq. 19) depend only on the recombination rates, and not directly on selection.  In 
both cases, pairwise associations will grow if the average rate of recombination between 
loci within pairs, H ri +r jÅÅÅÅÅÅÅÅÅÅÅÅÅ2 L,  is greater than the average rate of recombination between two 
loci chosen randomly from different pairs HrêL. However, in general the stability depends on 
both the strength of selection Hgi , g jL as well as on the recombination rates. Figure 5 shows  
the conditions for instability for moderate selection and recombination rates.

We have found a simple criterion for when pairwise associations between two pairs of loci 
will grow.  In this simple case where there are no interactions between pairs Haè i jL, this 
criterion depends only on the two pairs involved, and not on the full system.  (We have not 
examined higher order associations: by analogy with the case of multiple underdominant 
loci, these might also grow).  Thus, we can imagine that certain pairs of pairs, which satisfy 
the conditions on recombination rates derived above, may become associated.  That will 
change the stability of the remaining pairs of loci.  As with single-locus incompatibilities 
(Fig. 3), we might find a runaway process, in which all of the pairs become coupled.
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We have found a simple criterion for when pairwise associations between two pairs of loci 
will grow.  In this simple case where there are no interactions between pairs Haè i jL, this 
criterion depends only on the two pairs involved, and not on the full system.  (We have not 
examined higher order associations: by analogy with the case of multiple underdominant 
loci, these might also grow).  Thus, we can imagine that certain pairs of pairs, which satisfy 
the conditions on recombination rates derived above, may become associated.  That will 
change the stability of the remaining pairs of loci.  As with single-locus incompatibilities 
(Fig. 3), we might find a runaway process, in which all of the pairs become coupled.

Independent pairs of interacting loci couple together for the same reason that multiple 
underdominant loci will become associated; indeed, the two models become identical when 
within-pair recombinants are completely inviable.  As argued above, alleles involved in 
independent incompatibilities will become associated because this leads to increased 
variance in viability, and hence, increased mean viability. In the extreme case, where two 
complementary genotypes segregate, then half of individuals will be completely 
homozygous, and their offspring will be substantially less fit as a result of recombination.  
Thus, the mean viability cannot be lower than 1ÅÅÅÅ2 .  In contrast, if many strong 
incompatibilities segregate independently, then each individual will be heterozygous for 
approximately half of these, and the average fitness of its offspring may be substantially 
reduced.  One test of this interpretation is to ask whether coupling can occur if the effects of 
incompatibilities are strictly additive (i.e., if aU = 0 for » U » ¥ 2).  With four loci, it is easy 
to show that the leading eigenvalue for the growth of pairwise associations Dix  jy is precisely 
1 in the absence of recombination, implying that coupling is indeed impossible.  We believe 
that this is also true for arbitrarily many loci, but have not been able to prove it.

Coupling between an assortment locus and loci under arbitrary viability selection

Finally, we extend Felsenstein's (1981) model to find when a locus that causes assortative 
mating amongst haploids will become coupled with a set of loci that influence haploid 
viability.  (Recall that this model of assortment amongst haploids is precisely equivalent to 
selection against diploid heterozygotes).  We first consider pairwise epistasis for haploid 
viability, but with any number of selected loci. We then give a much more general result 
that allows for any kind of symmetrical epistasis.  This gives approximations for the rate of 
growth of associations with an assortment locus. 

We define fitness as:
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(21)
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a
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The first term represents assortative mating (a) at a single locus, labelled a, in the same 
way as in Felsenstein (1981).  This has the same form as Eq. 5, if we identify the selection 
coefficient as sa = a ê ha .  The second and third terms represent selection on haploid 
viability, which acts in the same way on males and females, and which involves a set of 
loci, W; the sums are over all possible sets of selected loci, U Œ W.  The selection 
coefficients aU  are arbitrary, and may generate strong associations, DU .    Viability 
selection is defined in such a way that when there is no association between the selected 
loci in the set W, and the assortment locus a, then Wêêê

= 1. We will be focussing on the 
growth of weak associations, (DaU  ~ e for U Œ W), in which case the deviation in mean 
fitness from 1 is negligible HWêêê

= 1 + OHe2L).  
Throughout this section, we assume that genotype frequencies at the selected loci are at 
equilibrium, which sets a constraint on the aU .  Crucially, we make the further assumption 
that the frequencies of all selected alleles are symmetrical (i.e., pi = qi = 1ÅÅÅÅ2  " i œ W). This 
also implies that when the selected allele frequencies are at equilibrium, all coefficients ai  
are zero.  Thus, by assuming symmetrical allele frequencies, we avoid all terms involving 
coefficients of directional selection, ai , and we can use the simple reduction formula 
DiiU = hi  DU , with hi = pi  qi = 1ÅÅÅÅ4 (Eq. 3).   The focus of this paper is on the growth of 
associations between polymorphic alleles HDa j  etc.), rather than on changes in allele 
frequencies; thus, we believe that it is reasonable to fix selected allele frequencies at one 
half.

We begin by finding the effect of assortative mating on the association between locus a and 
a selected locus j œ W.  Assortment, as defined in Eq. 21, is represented by a coefficient 
aa,a = aÅÅÅÅÅÅÅha

. From Eqs. 2, 4:

(22)Daj
'' = H1 - ra,jL Daj

' + ara,j Daj
' = H1 - rjL Daj

'

where the Da j
'  are the associations after viability selection, and where r j = ra, jH1 - aL is the 

effective rate of recombination between a and j, allowing for its reduction by assortative 
mating, a.  Equation 22 shows that recombination breaks down the association Da j  at a rate 
H1 - r jL = H1 - ra, jH1 - aLL, regardless of how selection acts on the other loci, or how they 
are linked.  Whether this association will grow or shrink depends on whether viability 
selection increases Da j  faster than it is broken down by recombination. 

We restrict attention to pairwise epistasis, ajk , by assuming that aU = 0 for » U » ≠ 2.  We 
make the further assumption that all the ajk  are positive.  We can then focus on the case 
where all the Da j  have the same sign, and grow together.  Although we have some freedom 
to change the ajk  by an arbitrary relabelling of the alleles, this assumption is still restrictive.  
It amounts to assuming that there is disruptive selection that favours two complementary 
genotypes, which we choose to label as 000… and 111….  This could represent disruptive 
selection on an additive trait, or selection for sets of alleles that are involved in adaptation 
to two alternative niches. (In the following section, we relax these assumptions)
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From Eq. 2, the effect of pairwise epistasis is:

(23)

Daj
' = Daj + ‚

kœW\j

ajk  Hhj Dak - Djk  DajL +

‚
k,lœW\j

akl  HDajkl - Dkl  DajL

This is a straightforward extension of Felsenstein's (1981) model, Eqs. 41, in which 
associations between a and j are amplified by contributions from other associations, Dak , 
through the key terms ajk  hj  Dak .  The second term in Eq. 23 leads to a set of coupled 
linear equations in the pairwise associations Da j .  However, the third term introduces a 
contribution from four-way associations, due to selection on pairs of loci that do not 
include the focal locus j.   In the previous section, we saw that these four-way associations 
are zero if the effects of different pairs of loci are multiplicative, and if interacting pairs do 
not overlap on the genetic map.  On that model of non-overlapping pairs, with 
multiplicative effects, the problem reduces to Felsenstein's (1981) model.  However, in this 
section we have assumed that the effects of different pairs are additive (Eq. 21), and so 
four-way associations will be generated.  Even without this effect of selection, 
recombination would in general produce positive four-way associations whenever the same 
recombination event separates both a, j and k, l.  We assume that the effect of 
recombination dominates, and that the signs of akl , Dkl  are the same.  With these 
assumptions, the last term in Eq. 23 is non-negative, so that we have a lower bound on the 
rate of increase in Da j :

(24)DDaj > -rj Daj + H1 - rjL ‚
kœW\j

ajk  Hhj Dak - Djk  DajL

Summing over j, noting that h j = h = 1ÅÅÅÅ4 , and using the symmetry ajk = ak j:
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(25)

D XDa\ > -rê XDa\ + ‚
j≠k

ajk  J Daj + DakÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

N Hh - DjkL

where XDa\ ª ‚
jœW

Daj, rê ª
i

k
jjjjjj‚
jœW

rj Daj
y

{
zzzzzz ì XDa\

Because h > Djk , and we assume that ajk , Da j > 0,  the last term is positive.  Therefore, if 
assortative mating is sufficiently strong (a~1), rêê = H1 - aL rê will be small, and associations 
will grow: there must always be a critical strength of assortment above which coupling will 
develop.  We can make a rough estimate of this by noting that when the population is at this 
critical point, rêê will be small, and so selection ajk  can be weak.  The linkage disequilibria 
Djk  are then negligible, and the rate of increase is approximately Hnah - H1 - aL rêaL, where 
there are n loci, with typical pairwise epistasis ~ a, and where the average linkage between 
the assortment and the selected loci is rêa .  Thus, the critical strength of assortment is 
1 - a* = nah ê rêa .  It is tempting to argue that if linkage with the assortment locus, rêa , is 
sufficiently tight, then rêê will also be small, and associations will grow.  However, if all the 
selected loci are tightly linked to the assortment locus, then they must be tightly linked with 
each other, and therefore h - Djk  will be small. The rate of growth of associations therefore 
depends on two opposing terms, both proportional to the recombination rates.  (Recall Eq. 
19 for the four-locus model). It does not seem possible to find an explicit expression, 
although the set of linear equations could readily be solved for any specific parameters.

We now generalise from pairwise epistasis to allow higher-order epistasis and linkage 
disequilibria.  However, we maintain symmetry between alleles, such that pi = qi = 1ÅÅÅÅ2 , and 
also, set all odd-order epistasis coefficients and linkage disequilibria to zero (i.e., aU , DU  = 
0 for » U » odd, U Œ W).  We must now follow associations between the assortment locus, a, 
and sets of selected loci, DaU .  The symmetry assumptions imply that we follow 
associations with odd-sized sets of selected loci, such as Da j , Da jkl , etc.  That is, we 
assume DaU = 0 for » U » even, and U Œ W.

Equations 2, 4 yield a set of coupled linear equations for the DaU , analogous to Eqs. 43.  
However, we can make a radical simplification by focussing on the sum of associations, 
C1êê = ⁄UŒW 2»U»-n  DaU , where the sum is over all odd-sized sets of selected loci, U, and n 
is the number of selected loci.  This measure has a simple interpretation: it is just the excess 
frequency of the assortment allele Xa = 1 within the genotype 1êê =81, 1, 1 …< at the 
selected loci, multiplied by the frequency of that genotype.  (By symmetry, it is minus the 
corresponding measure for genotype 0êê = 80, 0, 0 …<; C1êê = -C0êê).  We could relabel 
alleles to define the measure CXêêê = ⁄UŒW 2»U»-n  H¤iœU H2 Xi - 1LL DaU , where the weight 
H2 Xi - 1L is ±1, depending on the allelic state.  This would correspond to the excess 
frequency of allele Xa = 1 within genotype Xêêê.
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H2 Xi - 1L is ±1, depending on the allelic state.  This would correspond to the excess 
frequency of allele Xa = 1 within genotype Xêêê.

In SI 5, we show that the measure C1êê  increases under viability selection as:

(26)C1ê
' = C1ê 

i
k
jjjjj1 + ‚

UŒW

aU  H2-»U» - DUL
y
{
zzzzz = C1ê 

Wê1êÅÅÅÅÅÅÅ
Wê

where W1êê  is the mean fitness of genotype 1êê.  (Note that since allele frequencies are 
assumed symmetrical, the maximum value of DU  is 2-»U»).  This simple result arises just 
because the total frequency of genotype 1êê increases as HWêêê

1êê êWêêêL, and the frequencies of 
neutral alleles at locus a within that genetic background stay the same.  We choose to label 
the fittest pair of genotypes as 0êê, 1êê, so that C1êê = -C0êê  increase faster than any other 
association, CXêêê .

With viability selection alone, the fittest pair of genotypes would fix, and the association 
C1êê  would increase to at most the initial excess frequency of allele Xa = 1 within that 
genotype.  If that excess frequency were initially small, then it would remain small after 
any amount of viability selection.  Yet, in Felsenstein's (1981) model, the association C1êê  
increases to a high level, independent of its initial value, as a result of successive rounds of 
selection, assortment, and recombination.  If selection and recombination acted alone, with 
random mating, then any associations with a neutral allele must decline to zero: the 
increase due to viability selection must be outweighed by the decrease due to 
recombination.  Amplification of a small initial association depends on the combined action 
of the three processes of selection, assortment and recombination.

We now find the effects of assortment and recombination on associations with sets of 
selected loci, DaU . In SI 5, we show that the change due to assortment and recombination is 
the sum of two components:

(27)
DDaU = DaU

'' - DaU
' =

‚
ST=U

rs,T  HDaS'  DT
' - DaU

' L - H1 - aL ‚
ST=U

raT,S  DaS
'  DT

'
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The first term is independent of assortment, a, and independent of the map position of the 
assortment locus, a.  It arises from recombination within the set of selected loci, U, which 
replaces the association of a with U by a lower-order association, DaS , S Œ U.  This term is 
zero for pairwise associations, and is negligible in both the limits of strong assortment and 
of tight linkage, considered below.  The second term is due to recombination involving the 
assortment locus, and is necessarily zero with complete assortment, a=1: then, the 
assortment locus is always homozygous and there is no effective recombination.  The 
leading component of this second term is when T=«, giving -H1 - aL ra,U  DaU ; this gives a 
rate of decay proportional to the rate at which a separates from the set of selected loci, U.

This expression does not seem to simplify when we sum over all sets U, to give the 
increase in C1êê .  If the covariance between the set of alleles aS, and the set T  is always 
positive (i.e., DaU' > DaS

'  DT
'  " ST = U), and if the associations DaS

' , DT
'  are always 

positive, then we have the bound DDaU § -H1 - aL ra,U  DaU .  Hence, the decrease in 
C1êê due to recombination is at least as fast as the average rate of recombination between a 
and selected sets, U.  Including the increase due to viability selection (Eq. 26):

(28)C1ê
'' § C1ê H1 - H1 - aL rêaL 

Wê1êÅÅÅÅÅÅÅ
Wê

where rêa =
⁄UŒW 2

»U»-n  ra,U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄UŒW 2»U»-n

However, it is not clear what assumptions about epistasis and recombination are needed for 
this upper bound on the growth of associations to hold.

Although a completely general expression for the rate of growth in coupling does not seem 
possible, we can find simple results in two limiting cases: strong assortment with weak 
selection, and conversely, tight linkage.  First, suppose that assortment is almost complete 
(a~1), Then, associations can grow even when epistasis is weak, and linkage is loose.  
Therefore, we can assume that  aU ~ e << rs,T , so that associations amongst selected loci 
will be weak HDU ~ eL.  In this limit, the quasi-linkage equilibrium approximation (QLE) for 
the linkage disequilibria holds (Barton and Turelli, 1991).  Because products of linkage 
disequilibria are negligible, the first term in Eq. 27 simplifies to -RU  DaU

' , where RU is the 
total rate of recombination amongst the selected loci, RU = ⁄ST=U rs,T; this is zero for 
single selected loci H » U » = 1L, but large for more than one selected locus.  The second term 
simplifies to -H1 - aL ra,U  DaU , which under our assumption that a~1 is small.  Therefore, 
we expect only pairwise associations such as Da j  to contribute, since higher-order 
associations will dissipate rapidly.  The net increase in associations with locus a due to 
selection (Eq. 26) is just the relative fitness of the fittest genotype, which we write as 
Wêêê

1êê êWêêê
= 1 + S1êê , where Wêêê is the mean fitness of a population that is approximately in 

linkage equilibrium. Overall, then:
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(29)

C1ê
'' = C1ê H1 + S1ê - H1 - aL rêaL

where rêa =
⁄jœW Daj  ra,j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄jœW Daj

which is at the tentative bound of Eq. 28.  Associations will grow if assortment is 
sufficiently strong that H1 - aL <S1ê /rêa .  Since S1êê  is assumed small relative to 
recombination rates, this is a stringent condition.  (Eq. 29 is not a closed expression for the 
rate of increase of C1êê , because the recombination rates are weighted by the associations, 
Da j , which are determined by the leading eigenvector of the full matrix recursion.  
However, since we assume that the DaU  are positive, these averages are bounded by the 
ra,U , and we can approximate rêa  by the unweighted mean).

Next, suppose that linkage is tight, so that the population is dominated by the 
complementary genotypes 0êê, 1êê.  We show in SI 5 that in this limit, associations grow as:

(30)C1ê
'' = C1ê J1 +

1
ÅÅÅÅ
2

 RWN I1 - H1 - aL I RWÅÅÅÅÅÅÅ
2

+ ra,WMM
where RW  is the total rate of recombination amongst selected loci, and ra,W  is the rate of 
recombination events that precisely separate the assortment loci from all the selected loci. 
Equation 30 is similar to Eq. 19, which applies to the coupling between two pairs of 
interacting loci in the same limit of tight linkage.  This expression is independent of the 
form of epistasis, and depends only on the relative rates of recombination.  This is because 
one of the fittest genotypes H0êê or 1êêL has probability half of meeting its complement, in 
which case less fit recombinant offspring are produced at a rate RW . The reduction in mean 
fitness (i.e., the recombination load; Crow, 1970; Charlesworth and Barton, 1996) is equal 
to the half the total rate of recombination, in the same way that the load due to deleterious 
mutations is equal to the total mutation rate.

Since we assume that RW, 2 ra,W << 1, associations grow at a rate of approximately 
1ÅÅÅÅ2  aRW - ra,WH1 - aL.  When the assortment locus lies outside the set of selected loci, with 
recombination rate ra

*  to the nearest of them, we have that ra,W ~ ra
* ; if assortment is 

stronger than a* = 2 ra
*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅRW +2 ra
* , then associations will increase.  We see that even when the 

assortment locus is relatively far from the selected loci (RW  << ra
* L it can become coupled 

to them if assortment is very strong.  When the assortment locus is embedded within the 
selected loci, at least two cross-overs are needed to separate it from them, and so ra,W  is 
very weak compared with the recombination amongst the selected loci Hra,W ~ RW

2 L.  
Therefore, very weak assortment Ha ~rL is needed to induce coupling.  The first-order 
approximation given in SI 5 cannot determine this value, and we expect that it will depend 
on the form of selection.  Figure 6 illustrates these two cases, using a model of four loci: as 
predicted, the threshold strength of assortment is independent of selection when locus a lies 
outside the selected loci (Fig. 6a, lower left), but decreases as selection becomes stronger 
when the assortment locus lies within the selected set (Fig. 6b, left).
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Therefore, very weak assortment Ha ~rL is needed to induce coupling.  The first-order 
approximation given in SI 5 cannot determine this value, and we expect that it will depend 
on the form of selection.  Figure 6 illustrates these two cases, using a model of four loci: as 
predicted, the threshold strength of assortment is independent of selection when locus a lies 
outside the selected loci (Fig. 6a, lower left), but decreases as selection becomes stronger 
when the assortment locus lies within the selected set (Fig. 6b, left).

The focus of this paper is on the evolution of coupling between different components of 
reproductive isolation, rather than on changes in allele frequency.  However, we conclude 
our analysis by considering the invasion of an allele for which there is assortative mating - 
a generalisation of the analysis of Felsenstein's (1981) model (SI 2). This extension remains 
tractable, because we still assume symmetric allele frequencies at loci under viability 
selection Hpi = 1ÅÅÅÅ2 for i œ WL. The only change to the analysis of associations between the 
assortment and selected loci, which led to Eqs. 26, 27, is that associations with repeated 
indices DaaU  reduce to pa  qa  DU - Hpa - qaL DaU  (Eq. 3), giving an extra term when 
pa ≠ qa . 

Because assortment is assumed to be cost-free, allele frequency at locus a is not affected by 
assortment or recombination, but changes only through associations with selected loci: 

(31)Dpa = ‚
UŒW

aU  DaU

where we assume that selection acts only on even-sized sets of loci HaU = 0 for » U » oddL.  
Thus, we must determine whether associations DaU  will grow, with » U » even.  To keep 
the analysis simple, we consider just pairwise epistasis H » U » = 2L.
By analogy with C1êê , which is a sum over associations with odd-sized sets of selected loci 
(i.e., Da j  …L, we define B1êê = ⁄UŒW 2»U»-n  DaU , which is summed over even-sized sets.  
Provided that selection acts only on even-sized sets of loci, we find that B1êê  is inflated by 
viability selection in the same way, by a factor Wê1ê êWê (Eq. 26).   In SI 5, we show that 
assortment and recombination changes the DaU  by:

(32)

DDaU

= ‚
ST=U

rs,T  HDaS'  DT
' - DaU

' L - H1 - aL ‚
ST=U

raT,S  DaS
'  DT

'

-a 
Hpa - qaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa  qa

 ‚
ST=U

rS,T  DaS  DaT

As in Eq. 27, the first two terms give a set of coupled linear equations which represent the 
decay of associations, slowed by assortment a.  The last term arises when assorting alleles 
deviate from equal frequency.  We can understand its contribution most easily by 
considering three-way associations Da jk :

(33)
DDajk = -rj,k  Dajk

' -

H1 - aL ra,jk  Dajk
' - a 

Hpa - qaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pa  qa

 rj,k  Daj
'  Dak

'

We see that when Da j , Dak  grow with the same sign (as they will if ajk > 0), and when 
pa < 1ÅÅÅÅ2 , Da jk  will be driven to positive values by assortative mating.  This in turn will 
cause pa  to increase, if (as assumed) ajk > 0.  More generally, if 
⁄U aU ⁄ST=U rS,T  DaS DaT  is positive, then the extra term in Eq. 32 causes an effective 
overdominance that drives the assortment locus towards maximum polymorphism. We can 
be slightly more specific if we assume that initially, the assortment allele is rare, and is only 
weakly associated with the selected loci.  Then, the Da j , Dak  will each increase at a rate l, 
the leading eigenvalue of the linear equations for these associations.  Both Da jk  and pawill 
increase at the same rate as long as pa  << 1; as pa  approaches 1ÅÅÅÅ2 , Da jk  declines to zero.  
Supplementary Information 6 shows a figure that illustrates these dynamics, with four 
selected loci.
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When assortment is strong (a~1), Da jk  will tend to a quasi-equilibrium value of 
-a Hpa-qaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpa  qa

 Daj Dak , and so the effective selection on pa  is sa ~ -a Hpa -qa LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpa  qa
 aj,k  Da j  Dak .  

This is proportional to the increase in mean fitness of offspring that is caused by 
associations Da j , Dak .  However, if one follows the population from an initially 
symmetrical equilibrium with Da j , Dak small and Da jk  zero, then all these will increase 
together, and this QLE approximation  may not be accurate.  It may be possible to find 
more general results for the invasion of assortment alleles in the limits of tight linkage and 
of strong assortment; we leave this task for the future.

Discussion
Felsenstein (1981) showed that gene flow could be reduced by the growth of associations 
between independent components of reproductive isolation - in his model, between a locus 
a that causes assortative mating between haploids, and a pair of epistatically interacting loci 
8b, c< that cause disruptive selection on haploid viability.  Assortment has no direct effects 
on individual fitness, and the selected loci are kept polymorphic by frequency-dependent 
selection.  We extend Felsenstein's model in a variety of ways, in order to find more 
general conditions for when reproductive isolation can be strengthened in this way, and to 
find just what drives this process.

In the simplest model, we assume multiple loci that each cause assortment amongst 
haploids, or equivalently, selection against heterozygotes in diploids; each locus is 
analogous to locus a in Felsenstein (1981).  We find a simple condition for when 
associations amongst any set of alleles will grow (Eq.15).  This model of single-locus 
incompatibilities is just the symmetric viability model under disruptive selection (see 
Christiansen, 1999, Ch. 8).  We extend this model to allow multiple pairs of interacting 
loci, each pair being analogous to 8b, c< in Felsenstein (1981), and find similar conditions 
for when associations between these pairs will grow (see SI 4, and Eqs. 17 - 19).  Finally, 
we extend Felsenstein's (1981) model to ask when a single assortment locus (analogous to 
a) will couple with an arbitrary set of loci that influence haploid viability H8b, c, …<L. We 
show that viability selection inflates the net pairwise association between a and the selected 
loci by a factor equal to the relative fitness of the fittest genotypes (Eq. 26). When linkage 
is tight, this increase equals the recombination load; associations increase if the total rate of 
recombination that breaks up fit gene combinations is greater than the average 
recombination between assortment locus and the selected loci, multiplied by (1-a), where a 
is the strength of assortment (Eq. 30).  More generally, associations will grow if assortment 
is sufficiently strong (a~1), even if selection is weak and linkage loose.  Finally, we 
consider the invasion of a rare assortment allele: if this allele becomes associated with the 
selected loci, as described above, then it will move towards a frequency of 1ÅÅÅÅ2 , thus 
minimising gene flow.
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a) will couple with an arbitrary set of loci that influence haploid viability H8b, c, …<L. We 
show that viability selection inflates the net pairwise association between a and the selected 
loci by a factor equal to the relative fitness of the fittest genotypes (Eq. 26). When linkage 
is tight, this increase equals the recombination load; associations increase if the total rate of 
recombination that breaks up fit gene combinations is greater than the average 
recombination between assortment locus and the selected loci, multiplied by (1-a), where a 
is the strength of assortment (Eq. 30).  More generally, associations will grow if assortment 
is sufficiently strong (a~1), even if selection is weak and linkage loose.  Finally, we 
consider the invasion of a rare assortment allele: if this allele becomes associated with the 
selected loci, as described above, then it will move towards a frequency of 1ÅÅÅÅ2 , thus 
minimising gene flow.

Incompatibilities can become coupled for two distinct reasons.  With multiple single-locus 
incompatibilities, or multiple pairs of interacting loci, coupling can occur when a 
population with a high variance in compatibility (in the limit, with just two complementary 
genotypes segregating) has higher mean fitness than a diverse population, in which most 
individuals have intermediate incompatibility.  That is, coupling depends on the existence 
of disruptive selection on the degree of compatibility (Fig. 1).  This is not consistent with 
the traditional view of reinforcement, in which an association with prezygotic isolation is 
favoured because it reduces the loss of fitness due to postzygotic isolation.  In the models 
just described, incompatibilities occur at the same stage, and can be pre- or postzygotic.

We might ask why, on the usual view of reinforcement, it is impossible for a modifier that 
reduces heterozygote fitness to invade, whereas a modifier that causes assortative mating 
can do so: the population genetics of underdominance are the same as those of assortment 
amongst haploids.  The difference is in the constraints that we implicitly assume.  A 
cost-free modifier of mate choice reduces cross-mating, but this fitness loss is precisely 
compensated by increased assortative mating.  (Recall that we define fitness as the 
contribution of a pair of haploid genotypes). An allele that reduced heterozygote fitness 
could be compensated by increased homozygote fitness in just the same way.  However, we 
imagine that the fitness of homozygotes is fixed at its maximum, and so assume that alleles 
that reduce heterozygote fitness are necessarily selected against.  This argument applies to 
the increase of a modifier allele (in Felsenstein's (1981) terminology, to "one allele" 
models).  In this paper, we are concerned with the evolution of associations (i.e., linkage 
disequilibria).  This is more straightforward to analyse, because we do not need to make 
any assumptions about the fitness effects of modifier alleles.  

In Felsenstein's (1981) model, and in our generalisation to coupling of assortment with 
multiple loci affecting haploid viability, associations develop for a second, and different, 
reason.  Here, alleles that cause assortment amongst haploids, or that reduce fitness of 
heterozygotes, become associated with alleles that affect haploid viability.  In this case, 
associations develop because they reduce the production of unfit recombinants.  This is 
clear from Eq. 27, which shows that the only effect of assortment (or underdominance) a is 
to reduce the effective rate of recombination by a factor (1-a). Moreover, the association is 
with an allele that acts before meiosis, and that reduces the production of haploid 
recombinants that would die at a later stage.  It is still questionable whether this case fits 
with the traditional view of reinforcement: coupling with an underdominant locus would 
occur in just the same way as with an assorting locus.  The point here is that although a 
modifier that killed heterozygotes could not invade, once selection against heterozygotes is 
established by some kind of frequency-dependence,  a coupling with it can evolve without 
further fitness cost. 
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One way to demonstrate the distinction between the two mechanisms is to consider a model 
in which incompatibilities have additive, rather than multiplicative, effects:

(34)
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Now, mean fitness is independent of associations Dab , Dac , because the effects of loci a, 
and 8b, c< add up.  Yet, the analysis given above is almost unchanged: viability selection 
alone will inflate associations according to Eq. 26, and assortment will slow down the 
decay of associations according to Eq. 27. In models of this sort, the growth of associations 
does not depend on coefficients such as aabc , which play a crucial role when 
incompatibilities that act at the same stage are involved.

When can we see the growth of linkage disequilibria as being adaptive? Most population 
genetic analysis of adaptation asks whether alleles that affect a trait will change in 
frequency.  Indeed, Fisher (1930, Ch. 2) defined adaptation as requiring a change in allele 
frequency, and his "Fundamental Theorem" identifies the increase in mean fitness caused 
by selection on allele frequencies.  Allele frequency change is emphasised because it is 
more or less permanent, whereas in a sexual population, changes in linkage disequilibria 
are transient, being broken down by recombination.  However, this is a matter of degree: 
adaptive alleles will gradually be eliminated by mutation unless selection continues.  
Conversely, in an asexual organism, linkage disequilibria persist, since there is no 
recombination.  However, for linkage disequilibria to remain permanently, the constituent 
alleles must remain polymorphic; this requires negative frequency-dependent selection, as 
envisaged here.  Finally, we note that with assortative mating, changes in linkage 
disequilibria can become permanent even with sexual reproduction, if they lead to complete 
speciation (e.g. upper curve in Fig. 4).
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We can see the evolution of linkage disequilibria as adaptive, either because increased 
variance in compatibility increases mean fitness, or because associations with alleles that 
combine assortatively reduces the effective rate of recombination.  It is true that mean 
fitness does not necessarily increase if there is recombination as well as selection (Moran, 
1964).  Nevertheless, selection alone increases mean fitness by an amount equal to the 
genotypic variance in fitness, and moreover, the rate of increase of linkage disequilibrium 
due to selection is proportional to the gradient in log mean fitness: 
DDU = ⁄V HDUV - DU  DV L H∂ logHWêêêL ê∂DV L (Barton, 1986; Turelli and Barton, 1994).  
Thus, for example, in the model of single-locus incompatibilities, associations only grow if 
they lead to increased mean fitness; this growth is opposed by recombination, but 
nevertheless, the action of selection on linkage disequilibria is adaptive.

Coupling of independent components of reproductive isolation requires strong assortment, 
strong selection, or tight linkage.  How likely is it that these requirements will be met?  The 
symmetric viability model (the basis of our initial analysis) was developed in response to 
the discovery of extensive electrophoretic polymorphism in the 1960s, and showed that if 
this polymorphism were under strong balancing selection, then strong linkage 
disequilibrium should be seen (Franklin and Lewontin, 1970).  It soon became clear that 
genetic polymorphism  is close to linkage equilibrium, with the weak associations that are 
observed being attributable to random drift and population admixture, a pattern now 
confirmed in extraordinary detail by genome-wide data (HapMap Consortium, 2005).  
Thus, although it is plausible that a substantial fraction of polymorphism in protein 
sequence is subject to selection, this selection is unlikely to be strong enough to sustain 
linkage disequilibrium despite recombination.

However, we are concerned with those rare circumstances that may lead to speciation, 
rather than with polymorphism in general.  The simplest scenario is that individuals can be 
adapted to one or other of two limiting resources, but not to both.  If mating is associated 
with these resources, then linkage disequilibria will naturally be generated between the sets 
of alleles favoured on each resource, and coupling will be inevitable.  (This would occur for 
herbivorous insects if mating occurs on different host plants (e.g. Via, 2002).  Less 
obviously, adaptation to different ecological niches might lead to different body size, and 
hence assortment (e.g. Nagel and Schluter, 1998), or mimicry of different models might 
lead to different mating preferences; (e.g. Jiggins et al., 2001)).  However, if mating is 
random, then there need not be any systematic pressure generating associations amongst 
different components of reproductive isolation, and our analysis applies.  

To see this, think of the simple case where effects of different incompatibilities are 
additive.  Felsenstein's (1981) model assumes that alternative alleles adapt to one or other 
of two niches (see above, and SI 2, 3).  If their effects are additive (e=0), then no linkage 
disequilibrium is generated.  Now, imagine the extension to multiple pairs of interacting 
loci. Alleles 00 at two loci might add fitness  s in environment I,  alleles 11 might add s in 
environment II; and combinations 01 and 10 make no contribution in either environment.  
Thus, linkage disequilibrium would be maintained between these two loci.  The existence 
of two resources could maintain similar polymorphisms at any number of other pairs, but as 
long as their effects are additive, there would be no systematic pressure favouring 
associations between pairs.  However, introduction of alleles causing assortment at locus a 
could trigger associations between all these pairs, causing strong isolation between any pair 
of complementary genotypes (001100 and 110011, say).  The point is that even if 
polymorphism is maintained by the existence of just two alternative niches, this does not 
necessarily select for associations amongst all the alleles best adapted to each niche 
(000000 and 111111, say). Thus, the mechanisms that we discuss may be important in the 
evolution of well-isolated species.
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polymorphism is maintained by the existence of just two alternative niches, this does not 
necessarily select for associations amongst all the alleles best adapted to each niche 
(000000 and 111111, say). Thus, the mechanisms that we discuss may be important in the 
evolution of well-isolated species.

Associations between multiple selected loci and an assortment locus reduce the effective 
rate of recombination, and indeed, associations grow precisely because of that reduction.  A 
modifier allele that directly reduced recombination is also favoured when selection 
maintains stable linkage disequilibria (the "reduction principle"; Feldman et al., 1996).  
Because associations with assortment loci are opposed by recombination, whereas 
recombination modifiers by definition are not opposed by any direct force, we expect that 
reduced recombination would evolve more readily than will linkage disequilibria - the key 
point from Felsenstein's (1981) distinction between "one allele" and "two allele" models.  
Now, reduced recombination makes it easier for selection to maintain polymorphism 
despite disruptive selection: for example, genes responsible for divergence of Rhagoletis 
pomonella into host races are held together in an inversion (Feder et al., 2003).  However, 
reduced recombination only makes coupling between incompatibilities easier if the loss of 
hybrid fitness is due to heterozygosity rather than to recombination: in the latter case, the 
outcome depends on the relative rates of recombination (Eq. 30). 

Although we consider only a single population,. strong disruptive selection on multiple 
polymorphisms is most likely to arise in parapatry, when continued migration maintains 
polymorphism. In his "shifting balance" theory of evolution, Wright (1931) thought of 
species as typically being subdivided into a patchwork of regions that carry different sets of 
alleles, which are somewhat incompatible with each other.  These patches would be 
separated by narrow hybrid zones, maintained by disruptive selection towards different 
'adaptive peaks'.  In principle, the geographic patterns for different incompatibilities might 
be independent of each other, so that there would be no strong subdivision of the species.  
However, various processes tend to bring independently evolved incompatibilities together 
- the most important being demographic fluctuations, and in the extreme, secondary contact 
between temporarily separated populations (Barton and Hewitt, 1985).  Once a set of 
incompatibilities are more or less coincident, however, the processes modelled in this paper 
become relevant: selection may favour stronger or weaker coupling, depending on the sign 
of epistasis.  If incompatibilities arose via a Dobzhansky-Muller process, via a set of fit 
intermediates, then selection will favour a scattering of clines, such that the fitter 
intermediates are reconstructed in the centre; there are several examples of this in nature 
(Searle, 1986; Shuker et al., 2005). When the effects of different incompatibilities multiply, 
we have shown that selection pulls clines together, via a weak interaction due to deviation 
from additivity.  In addition, linkage disequilibrium caused by  dispersal also pulls clines 
together; even with no linkage, this is a stronger effect  (Slatkin, 1975; Charlesworth and 
Charlesworth, 1979). The analysis of selection and recombination in a single population 
given here needs to be extended to allow for the effects of gene flow, in order to determine 
when a set of independent isolating factors will pull together to form a strong barrier to 
gene flow.
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become relevant: selection may favour stronger or weaker coupling, depending on the sign 
of epistasis.  If incompatibilities arose via a Dobzhansky-Muller process, via a set of fit 
intermediates, then selection will favour a scattering of clines, such that the fitter 
intermediates are reconstructed in the centre; there are several examples of this in nature 
(Searle, 1986; Shuker et al., 2005). When the effects of different incompatibilities multiply, 
we have shown that selection pulls clines together, via a weak interaction due to deviation 
from additivity.  In addition, linkage disequilibrium caused by  dispersal also pulls clines 
together; even with no linkage, this is a stronger effect  (Slatkin, 1975; Charlesworth and 
Charlesworth, 1979). The analysis of selection and recombination in a single population 
given here needs to be extended to allow for the effects of gene flow, in order to determine 
when a set of independent isolating factors will pull together to form a strong barrier to 
gene flow.

Felsenstein's (1981) simulation model has been prominent as one of the first quantitative 
studies of speciation.  The mathematical analysis here extends the model to a much wider 
range, which could not easily be studied by simulation alone. Moreover, our analysis shows 
that there are two distinct reasons why different components of reproductive isolation 
become coupled together: first, a locus that causes assortative mating may become 
associated with loci that affect haploid viability, if this reduces the production of unfit 
recombinants, and second, associations may develop if variance in compatibility increases 
mean fitness.  The first is more or less consistent with the traditional view of reinforcement, 
but the second is not.  As in many areas of evolutionary biology, understanding the cause of 
a phenomenon is not straightforward.
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Figures

Figure 1.  The relation between fitness and the number of homozygous loci, k, determines 
whether selection favors increased  linkage disequilibrium.  Black dots shows this relation 
when fitness is multiplicative across ten loci HW = H1 - sL10-k ), whilst the upper grey dots 
show the relation W = H1 - sL10 H1-Hkê10L0.1 L ; in both cases, s=0.5, and the extreme 
heterozygous and homozygous genotypes have fitness close to 0 and 1, respectively.  The 
dark bars show the distribution of k for a population in complete linkage disequilibrium, in 
which there are just two complementary genotypes.  Then, Wêêê = 0.5 for both fitness 
functions.  In contrast, a population in linkage equilibrium (grey bars) has lower mean 
fitness HWêêê

= 0.056L if fitnesses are multiplicative across loci, but higher mean fitness 
HWêêê

= 0.623L if fitnesses interact as shown by the upper dots.  Selection favours increased 
variance in homozygosity in the first case, and decreased variance in the second case. (Note 
that in Eq. 5, it is convenient to define fitness so that the mean is always 1 at linkage 
equilibrium, rather than varying with allele frequency, as here).
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Figure 2.  Examples of the varied behavior of three loci, with selection against 
heterozygotes. Each plot shows the pairwise disequilibria HD23: blue; D13 green; D12 :  
black) and the three-way association HD123 : red). Initially, these associations are small and 
positive; allele frequencies remain at 1ÅÅÅÅ2  throughout.     a) Fitness decreases with the number 
of heterozygous loci as {2.6, 0.9, 0.9, 0}. (See SI 1 for the relation between these fitnesses, 
and the coefficients aU,V ).  Then, pairwise associations Di j  increase if ri, j < 2-W1 -W2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅW2

= 
0.222 and the three-way association increases if r123 < 4-3 W1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 W2

= 0.361. In this example, 
r1,2 = 0.2, r2,3=0.3, and so r1,3 = 0.38, r123 = 0.44. (Loci are in order 1, 2, 3 and there is 
no interference between crossovers). Therefore, as predicted,  D12 increases, and the other 
associations decrease, becoming yet closer to zero.  After about 700 generations, genotypes 
000, 001, 110, 111 are each at 0.164, and the other genotypes are rarer.  However, this state 
is itself unstable: D13 and D23  increase, until the population contains only genotypes 000 
and 111.  Because the triple heterozygote has zero fitness, no recombinants survive.  b) 
This shows the same, but with tighter linkage 
Hr1,2 = 0.1, r2,3 = 0.15, and so r1,3 = 0.22, r123 = 0.235). Now, all the 
associations increase initially. Eventually, however, the pairwise associations decrease to 
zero, and an equilibrium is reached with a high value of D123.  Then, 001, 010, 100, 111 are 
each at 0.199, and the other four genotypes are rarer.  Note that the mean fitness of a 
population at linkage equilibrium is defined as Wêêê

LE = 1.  A population with only 000 and 
111 produces half homozygotes and half triple heterozygotes, and so Wêêê

= 1ÅÅÅÅ2  H2.6 + 0L = 1.3. 
In a population with 000, 001, 110, 111, each genotype has an equal chance of pairing to 
produce a zygote with 0, 1, 2, or 3 heterozygous loci.  Therefore, mean fitness is 1.1. 
Finally, in a population with only 001, 010, 100, 111, each individual has a chance 1ÅÅÅÅ4 of 
pairing to produce a triple homozygote, and 3ÅÅÅÅ4  of producing a diploid with two 
heterozygous loci.  So, mean fitness is Wêêê

= 1ÅÅÅÅ4 * 2.6 + 3ÅÅÅÅ4 * 0.9 = 1.325 - slightly higher than 
having two complementary genotypes.  We see that the population does eventually evolve 
to the state with highest mean fitness when recombination is tighter, but does not do so 
when it is looser. c) If fitness decreases with the number of heterozygous loci as {2, 1, 1, 
0}, then pairwise associations Di j  do not increase from zero, but the three-way association 
does if   r123 < 1ÅÅÅÅ4 .  Below this threshold (for example, setting r12 = r23 = 0.05 so that. 
r123 =0.0975), we find that D123increases to its maximal value, so that the four genotypes 
001, 010, 100, 111 predominate..
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Figure 3.  When two loci become associated, it is more likely that further loci will be 
associated  in turn.  This example shows the evolution of five loci, with underdominance 
s = 1.2 at each locus; this corresponds to a relative fitness of heterozygotes of 
H1+sê4LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-sê4L = 0.538, and fitness of the multiple heterozygote is 0.5385 = 0.045.   In this 
instance, the threshold for pairwise coupling is r* = s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH4-sL2 = 0.184.  The population starts 
close to linkage equilibrium, with loci recombining at rates {0.3, 0.1, 0.3, 0.3} along the 
chromosome.  The most closely linked pair couple first, followed by their neighbours, and 
finally, by the rightmost locus. There is a substantial increase in mean fitness, with the final 
population consisting of 92% of two complementary genotypes.   The top panel shows the 
increase in mean fitness over time.  The red bars show the mean fitness of successive 
populations at linkage equilibrium (left); with loci 2, 3 in complete LD and the other three 
at LE; with loci 1,2,3,4 in complete LD, and the fifth at LE; and finally, on the right, the 
mean fitness of a population containing just two complementary genotypes.  The lower 
panel shows the distribution of numbers of heterozygous loci at times t=0, 300, 450, 600 
(dark to light circles). 
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Figure 4. The threshold strengths of epistasis, g, and assortment, a, above which 
associations Dab , Dac  will increase, in Felsenstein's (1981) model.  The rightmost solid 
curve shows the threshold for unlinked loci Hrb,c = 1 ê 2L; for a, g above and to the right of 
this curve, associations will increase.  The curves to the left are for linked loci 
rb,c = 0.05, 0.1, 0.2 (left to right); the assortment locus is midway between b, c and there 
is no interference between crossovers.  The upper dashed curve shows the maximum 
possible epistasis; on this curve, epistasis causes complete reproductive isolation. Values 
are calculated from Eq. 48, substituting r = xH1 - aL, rb,c = 2 xH1 - xL, where x = ra,b = ra,c .
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Figure 5.  The conditions for growth of associations between two pairs of interacting loci.  
Each figure shows the critical strength of selection which is needed to give instability,  
plotted as a function of the linkage between pairs, ri2  j1 .  We assume ri = r j  and gi = g j ; the 
curves show recombination rates ri = rj = 1ÅÅÅÅÅÅÅ16 , 1ÅÅÅÅ8 , 1ÅÅÅÅ4 , 1ÅÅÅÅ2  (black, blue, purple, red). The top 
row is for non-overlapping pairs (gene order i1  i2  j1  j2);. the right panel shows the region 
with small ri2  j1  in more detail.  The lower row is for overlapping pairs, with gene order 
i1  j1  i2  j2, in which case ri2  j1 < ri = r j ; for this case, gcrit  is plotted for ri2  j1 < riÅÅÅÅÅ2 , since the 
curve is symmetrical for riÅÅÅÅÅ2 < ri2  j1 < ri .  Note that the critical g always increases with 
recombination between non-overlapping pairs, ri2  j1 , and usually does so with overlapping 
pairs: instability generally requires stronger selection when recombination between pairs is 
higher.  For large ri2  j1 , instability requires less selection as recombination within 
non-overlapping pairs increases (black through to red curves, top left).  However, the 
relationship is not simple when the pairs are tightly linked (top right).  When pairs overlap, 
instability requires stronger selection when there is more recombination within pairs (black 
through to red curves, bottom row).  This is because increasing ri , rj  increases 
recombination between pairs as well as increasing recombination within, and this former 
effect outweighs the latter. 
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Figure 6.  The critical strength of assortment, a, above which assortative mating becomes 
coupled with a set of four selected loci, which are evenly spaced on the genetic map. This is 
plotted against the recombination rate between adjacent selected loci, r.  In the top panel, 
the assortment locus lies outside the selected set, and recombines at rÅÅÅÅ2 with the nearest of 
these.  In the lower panel, the assortment locus lies mid-way between the first and second 
selected loci. (Note the different scales for a: assortment must be much stronger for 
coupling to occur when the assortment locus lies outwith the selected loci).  Haploid 
viability is 1 for genotypes 0000, 1111; 1 - s for 0001, 0010,…,1101, 1110, and 1 - 5 s for 
genotypes 0011, 0101, …, 1100.  The critical a decreases as selection becomes stronger: 
the series of points are for s = 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2 (top to bottom). With 
the strongest selection, s = 0.2, genotypes such as 0011 have zero fitness.  However, gene 
flow is still possible via genotypes 0111 etc.  The thick lines at top right are the 
approximations for strong assortment (Eq. 29), while the thick line at lower left in the top 
panel is the approximation for tight linkage (Eq. 30).  The critical threshold was calculated 
by a mixture of numerical calculation and computer algebra.  The recursions for the four 
selected loci were iterated until equilibrium was approached (between 150 and 2000 
generations, depending on the strength of selection).  At this equilibrium, recursions for the 
DaU  were calculated, for the five-locus system.  The strength of assortment, a, and the 
DaU , were left as symbols.  The recursions were then differentiated with respect to the 
DaU , giving an 8µ8 matrix that is a function of a.  The critical a at which the leading 
eigenvalue equals one was then determined numerically.
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Supplementary Information

Supplementary Information 1: Stability of three-way associations with multilocus 
underdominance/assortment
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Supplementary Information 2: Analysis of Felsenstein's (1981) model, assuming 
pb = pc = 1ÅÅÅÅ2
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Supplementary Information 3: Stability of Felsenstein's (1981) three-locus model
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Supplementary Information 4: Coupling between multiple pairs of interacting loci
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Supplementary Information 5: Coupling between an assortment locus and multiple selected 
loci

Supplementary Information 6: Invasion of an assortment allele
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Supplementary Information 7: Generating Figs. 1-6, 8

BartonDeCaraRevNotebookNew.nb 51



Supplementary Information 8: Generating Fig. 7

Supplementary Information 9: Mathematica definitions
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