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Abstract. Quantitative generalizations of classical languagesgchviissign to

each word a real number instead of a boolean value, havecapptis in mod-

eling resource-constrained computation. We use weightiéohzata (finite au-

tomata with transition weights) to define several naturatsés of quantitative
languages over finite and infinite words; in particular, thal value of an infinite

run is computed as the maximum, limsup, liminf, limit avesagr discounted

sum of the transition weights. We define the classical deciproblems of au-

tomata theory (emptiness, universality, language inclusand language equiv-
alence) in the quantitative setting and study their contfrtal complexity. As

the decidability of language inclusion remains open for sahasses of weighted
automata, we introduce a notion of quantitative simulathat is decidable and
implies language inclusion. We also give a complete chariettion of the ex-

pressive power of the various classes of weighted autonhatgarticular, we

show that most classes of weighted automata cannot be deisecth

1 Introduction

The automata-theoretic approach to verification is bool€arheck that a system sat-
isfies a specification, we construct a finite automatdo model the system and a finite
(usually nondeterministic) automatéhfor the specification. The languadé A) of A
contains all behaviors of the system, ab@3) contains all behaviors allowed by the
specification. The language of an automatboan be seen as a boolean function
that assigns (ortrue) to words inL(A), ando (or false) to words notin.(A). The ver-
ification problem “does the system satisfy the specific&ias then formalized as the
language-inclusion problem “iB(A) C L(B)?", or equivalently, “isL 4 (w) < Lp(w)
for all wordsw?”. We present a natural generalization of this frameworguantita-
tive languageL is a function that assigns a real-numbered vdlge) to each (finite
or infinite) wordw. With quantitative languages, systems and specificatianse for-
malized more accurately. For example, a system may use &gaaynount of some
resource (e.g., memory consumption, or power consumptiepgnding on its behav-
ior, and a specification may assign a maximal amount of availeesource to each
behavior, or fix the long-run average available use of theues. The quantitative
language-inclusion problem “i6 4 (w) < Lpg(w) for all wordsw?” can then be used
to check, say, if for each behavior, the peak power used bgyktem lies below the
bound given by the specification; or if for each behavior |tmg-run average response
time of the system lies below the specified average respeqgsérement.
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In the boolean automaton setting, the value of a worth L(A) is the maximal
value of a run ofA overw (if A is nondeterministic, then there may be many runs of
A overw), and the value of a run is a function that depends on the ofeagtomata:
for automata over finite words, the value of a runrig if the last state of the run is
accepting; for Biichi automata, the valueérig if an accepting state is visited infinitely
often; etc. To define quantitative languages, we use automitih weights on transi-
tions. We again set the value of a woxrdas the maximal value of all runs over,
and the value of a runis a function of the (finite or infinite) sequence of weightatth
appear along. We consider several functions, suchMsx andSum of weights for
finite runs, ancbup, LimSup, LimInf, limit average, and discounted sum of weights for
infinite runs. For example, peak power consumption can besteddas the maximum
of a sequence of weights representing power usage; eneegyansbe modeled as the
sum; average response time as the limit average [2, 3]. Qaidévre languages have also
been used to specify and verify reliability requiremerfts: $pecial symboll. is used
to denote failure and has weightwhile the other symbols have weightone can use
a limit-average automaton to specify a bound on the rateiliréain the long run [6].
Alternatively, the discounted sum can be used to specifyfires happening later
are less important than those happening soon [8]. It shoaildabed that imSup and
LimInf automata generalize Biichi and coBiichi automata, regpgct-unctions such
as limit average (or mean payoff) and discounted sum arsickdsn game theory [26];
they have been studied extensively in the branching-tinmest of games played on
graphs [12,7, 3, 14], and it is therefore natural to consitlersame functions in the
linear-time context of automata and languages.

We attempt a systematic study of quantitative languagesaetkfy weighted au-
tomata. The main novelties concern quantitative languaf&sinite words, and es-
pecially those that have no boolean counterparts (i.eit-arerage and discounted-
sum languages). In the first part, we consider generalizaid the boolean decision
problems of emptiness, universality, language inclusaod,language equivalence. The
gquantitative emptiness problem asks, given a weightedeaitinA and a rational num-
berv, whether there exists a wotdsuch thatl 4 (w) > v. This problem can be reduced
to a one-player game with a quantitative objective and isctioge solvable in polyno-
mial time. The quantitative universality problem asks vileef. 4 (w) > v for all words
w. This problem can be formulated as a two-player game (ongeplzhoosing input
letters and the other player choosing successor statds)myiterfect information (the
first player, whose goal is to construct a wardsuch thatl 4 (w) < v, is not allowed
to see the state chosen by the second player). The probleBPACGE-complete for
simple functions likeéSup, LimSup, andLimInf, but we do not know if it is decidable
for limit-average or discounted-sum automata (the coordmng games of imperfect
information are not known to be decidable either). The saituaton holds for the
gquantitative language-inclusion and language-equicag@moblems, which ask, given
two weighted automatd andB, if La(w) < Lp(w) (resp.La(w) = Lg(w)) for all
wordsw. Therefore we introduce a notion of quantitative simulatietween weighted
automata, which generalizes boolean simulation relatisniecidable, and implies lan-
guage inclusion. Simulation can be seen as a weaker verktha above game, where
the first player has perfect information about the state efgame. In particular, we



show that quantitative simulation can be decided inMNEoNP for limit-average and
discounted-sum automata.

In the second part of this paper, we present a complete deazation of the ex-
pressive power of the various classes of weighted autorbptegpmparing the classes
of quantitative languages they can define. The completangicelating the expressive
powers of weighted automata is shown in Fig. 4. For instatheeresults folL.imSup
andLimInf are analogous to the special boolean cases of Buichi andotdBiondeter-
minism is strictly more expressive faimSup, but not forLimInf). In the limit-average
and discounted-sum cases, nondeterministic automat#riatly snore expressive than
their deterministic counterparts. Also, one of our ressaliews that nondeterministic
limit-average automata are not as expressive as detetimiBischi automata (and vice
versa). It may be noted that deterministic Biichi languagesomplete for the second
level of the Borel hierarchy [28], and deterministic linaiterage languages are com-
plete for the third level [4]; so there is a Wadge reductid®] fP)om deterministic Biichi
languages to deterministic limit-average languages. @sult shows that Wadge re-
ductions are not captured by automata, and in particulatriie Wadge reduction from
Buchi to limit-average languages is not regular. We sketime details of the most
interesting proofs; complete proofs are available in [5].

Other researchers have considered generalizations ofidgeg, but as far as we
know, nobody has addressed the quantitative languagegettesented here. The lat-
tice automata of [21] map finite words to values from a finitéda. Roughly speaking,
the value of a run is the meet (greatest lower bound) of itssttimn weights, and the
value of a wordw is the join (least upper bound) of the values of all runs averhis
corresponds tdin andInf automata in our setting, and for infinite words, the Bichi
lattice automata of [21] are analogous to dumSup automata. However, the other
classes of weighted automafu, limit-average, discounted-sum) cannot be defined
using operations on finite lattices. The complexity of thepéness and universality
problems for lattice automata is given in [21] (and implies cesults forLimSup au-
tomata), while their generalization of language inclusidfers from ours. They define
the implication valuev(A, B) of two lattice automatad and B as the meet over all
wordsw of the join of L 4 (w) and Lz (w), while we uset instead of join and define
v(A, B) asmin,, (Lg(w) — La(w)).

In classical weighted automata [25, 23] and semiring autarf#9], the value of a
finite word is defined using the two algebraic operatierand- of a semiring as the sum
of the product of the transition weights of the runs over tloedvin that case, quantita-
tive languages are callddrmal power seriesOver infinite words, weighted automata
with discounted sum were first investigated in [11]. Redears have also considered
other quantitative generalizations of languages ovegfimdrds [9], over trees [10], and
using finite lattices [15]. However, these works do not adsitee quantitative decision
problems, nor do they compare the relative expressive mowafeweighted automata
over infinite words, as we do here. In [2], a quantitative galieation of languages is
defined by discrete functions (the value of a word is an injegied the decision prob-
lems only involve the extremal value of a language, whichiesponds to emptiness.

In models that use transition weights as probabilitieshsag probabilistidRabin
automata[24], one does not consider values of individual infinite s§which would



usually have a value, or measurepdpfbut only measurable sets of infinite runs (where
basic open sets are defined as extensions of finite runs). @untitative setting is or-
thogonal to the probabilistic framework: we assign quatitie values (e.g., peak power
consumption, average response time, failure rate) to iichai@l infinite behaviors, not
probabilities to finite behaviors.

2 Boolean and Quantitative Languages

We recall the classical automata-theoretic descriptidmoofean languages, and intro-
duce an automata-theoretic description of several clagspsantitative languages.

2.1 Boolean Languages

A boolean languagever a finite alphabel is either a sef. C X* of finite words or
a setlL C X“ of infinite words. Alternatively, we can view these sets asctions in
[X* —{0,1}] and[2* — {0, 1}], respectively.

Boolean automata. A (finite) automatons a tupleA = (Q, q;, X, §) where:

— @ is afinite set of states, and € Q is the initial state;

— XYis afinite alphabet;

— 0 C Q x X x Qis afinite set of labeled transitions.
The automatord is total if for all ¢ € @ ando € X, there existq,0,¢') € ¢
for at least ong/ € ). The automatom is deterministicif for all ¢ € Q ando €
Y, there existqq,0,q¢') € ¢ for exactly oneg’ € Q. We sometimes call automata
nondeterministito emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) word = o105 ... is a finite (resp. infi-
nite) sequence = gpo1q102 ... of states and letters such that) ¢ = ¢;, and ()
(gis 0iv1,qi+1) € 6 forall 0 < i < |w|. When the rumr is finite, we denote byast(r)
the last state in. Whenr is infinite, we denote bynf(r) the set of states that occur
infinitely many times in-. The prefix of length of an infinite runr is the prefix ofr
that contains the firgtstates.

Given a setF’ C @ of final (or accepting) states, tlimite-word languagelefined
by the pair(A, F) is LQ = {w € X* | there exists a rum of A overw such that
Last(r) € F'}. Theinfinite-word languagedefined by(A, F') are as follows: if A, F)
is interpreted as a Biichi automaton, thelh = {w € X% | there exists a run of A
overw such thatnf(r) N F # @}, and if (A, F') is interpreted as a coBuichi automaton,
thenLs = {w € X | there exists a run of A overw such thatnf(r) C F}.

Boolean decision problems.We recall the classical decision problems for automata,
namely, emptiness, universality, language inclusion anduage equivalence. Given a
finite automatom, theboolean emptiness problessks whetheLfi1 =@ (orLh = o,

or LS = o), and theboolean universality problerasks whetheLfﬁ1 = Y*(or LY =

X, orLg = X¢). Given two finite automata and B, theboolean language-inclusion
problemasks whethef. , C Lp, and theboolean language-equivalence problasks
whether 4 = Lg. Itis well-known that for both finite- and infinite-word langges,
the emptiness problem is solvable in polynomial time, wttikeuniversality, inclusion,
and equivalence problems are PSPACE-complete [22, 27].



2.2 Quantitative Languages

A gquantitative languagé over a finite alphabeY is either a mappind. : ¥+ — R or
a mappingL : X — R, whereR is the set of real numbers.

Weighted automata. A weighted automatois a tupleA = (Q, g1, X, d, v) where:

- {Q,q1,X,0) is atotal finite automaton, and

— ~v:d — Qis aweightfunction, where) is the set of rational numbers.
Given a finite (resp. infinite) run = ggo1q102 ... of A over a finite (resp. infinite)
wordw = o109..., lety(r) = vovy ... be the sequence of weights that occurjn
wherev; = ’}/(qz, 041, Qi+1) forall0 << |’LU|

Given avalue functiorival : Q* — R (resp.Val : Q¥ — R), theVal-automatond
defines the quantitative languafig such that for all wordsy € X T (resp.w € X*),
we havelL 4 (w) = sup{Val(vy(r)) | r is a run ofA overw}.

In sequel we denote by the number of states and Iy the number of transitions
of a given automaton. We assume that rational numbers thajiaen as pairs of in-
tegers, encoded in binary. All time bounds we give in thisqagssume that the size
of the largest integer in the input is a constanWithout this assumption, most com-
plexity results would involve a factgs?, as we use only addition, multiplication, and
comparison of rational numbers, which are quadratic ojmrst

Quantitative decision problems. We now present quantitative generalizations of the
classical decision problems for automata. Given two qtetivte language$; and L,
overX, we write L1 C Ly if Li(w) < Lo(w) for all wordsw € X+ (resp.w € X%).
Given a weighted automatohand a rational number € Q, thequantitative emptiness
problemasks whether there exists a warde YT (resp.w € X*) such thatl 4 (w) >

v, and thequantitative universality problerasks whether. 4 (w) > v for all words

w € YT (resp.w € X¥). Given two weighted automata and B, the quantitative
language-inclusion problerasks whethel., C L g, and thequantitative language-
equivalence problerasks whethel 4 = Lp, that is, whethell 4 (w) = Lp(w) for
allw € YT (resp.w € X¥). All results that we present in this paper also hold for the
decision problems defined above with inequalities repldwyestrict inequalities.

Our purpose is the study of the quantitative decision probléor infinite-word
languages and the expressive power of weighted automatdefiae infinite-word lan-
guages. We start with a brief overview of the correspondésglts for finite-word lan-
guages, most of which follow from classical results in aldtartheory.

Finite words. For finite words, we consider the value functidnst, Max, andSum
such that for all finite sequences= v, ... v, Of rational numbers,

Last(v) = vy, Max(v) = max{v; | 1 <i <n}, Sum(v) = Zw
i=1

Note thatLast generalizes the classical boolean acceptance conditidinfee words.
One could also consider the value functdim = min{v; | 1 < i < n}, which roughly
corresponds to lattice automata [21].



Theorem 1. The quantitative emptiness problem can be solved in lineae tfor
Last and Max-automata, and in quadratic time fdum-automata. The quantitative
language-inclusion problem is PSPACE-completd fat- and Max-automata.

The complexity of the quantitative emptiness problemlfast and Max-automata
is obtained by reduction to reachability in graphs, andSem-automata, by reduc-
tion to reachability of a cycle with positive value. The qtitative language-inclusion
problem is undecidable fd§um-automata [19]. However, the quantitative language-
inclusion problem for deterministiSum-automata can be solved in polynomial time
using a product construction. This naturally raises thestioe of the power of nonde-
terminism, which we address through translations betwesighted automata.

Expressiveness. A classC of weighted automataan be reducedo a classC’ of
weighted automata if for everyt € C there existsA’ € C' such thatL4 = L. In
particular, a class of weighted automatm be determinized it can be reduced to its
deterministic counterpart. All reductions that we preserthis paper are constructive:
whenC can be reduced t6’, we always construct the automatdh € C’ that defines
the same quantitative language as the given autométarC. We say that theostof
a reduction iSO(f(n,m)) if for all automatad € C with n states andn transitions,
the constructed automatoti € C’ has at mosO( f(n, m)) many states. For all reduc-
tions we present, the size of the largest transition weight’iis linear in the size
of the largest weight il (however, the time needed to compute these weights may be
quadratic inp).

It is easy to show thdtast- andMax-automata can be determinized using a subset
construction, whil&Sum-automata cannot be determinized. Results about determini
able sub-classes 6iim-automata can be found in [23, 18].

Theorem 2 (see alsd23]). Last- and Max-automata can be determinized @n(2")
time; Sum-automata cannot be determinized. Determinisfiex-automata can be re-
duced to deterministitast-automata inO(n - m) time; deterministid_ast-automata
can be reduced to deterministtwm-automata inO(n - m) time. DeterministiSum-
automata cannot be reducedltast-automata; deterministitast-automata cannot be
reduced toMax-automata.

Infinite words. For infinite words, we consider the following classical w&functions
from Q“ to R. Given an infinite sequenae= vgv; ... of rational numbers, define

e Sup(v) = sup{v, | n > 0};

e LimSup(v) = limsup v, = hm sup{v; | ¢ > n};

n— oo

e LimInf(v) = hmlnf Up = hm mf{m |i>n};

n— 1

1
LimA = liminf — - il
e LimAvg(v) iminf — ;ZO'U
e given a discount factdy < A < 1, Discy (v E M

For decision problems, we always assume that the discoctor fais a rational number.
Note thatLimAvg(v) is defined usindim inf and is therefore well-defined; all results



n—1

of this paper hold also if the limit average ofs defined instead dam sup o Z v;.

n—0o0

=0
One could also consider the value functiafi = inf{v,, | n > 0} and obtain results
analogous to th8up value function.

Notation. Classes of automata are sometimes denoted by acronymsfofthey 1V
wherez is either N(ondeterministic) or D(eterministic), ands one of the following:
B(tichi), C(oBiichi), P, Ls (LimSup), L1 (LimInf), LA (LimAvg), or Di (Disc).

3 The Complexity of Quantitative Decision Problems

We study the complexity of the quantitative decision praiddor weighted automata
over infinite words.

Emptiness. The quantitative emptiness problem can be solved by remtuttithe prob-
lem of finding the maximal value of an infinite path in a graphisiis decidable because
pure memoryless strategies for resolving nondeterminigst &r all quantitative ob-
jectives that we consider [13,17, 1].

Theorem 3. The quantitative emptiness problemis solvabl@{m:+n) time forSup-,
LimSup-, andLimInf-automata; inO(n - m) time forLimAvg-automata; and irO(n? -
m) time for Disc-automata.

Language inclusion. The following theorem relies on the analogous result fotdini
automata.

Theorem 4. The quantitative language-inclusion problem is PSPACHEyglete for
Sup-, LimSup-, andLimInf-automata.

We do not know if the quantitative language-inclusion pewnblis decidable for
LimAvg- or Disc-automata. The special cases of deterministic automateane using
a product construction.

Theorem 5. The quantitative language-inclusion probleims C L s for LimAvg- and
Disc-automata are decidable in polynomial time whiris deterministic.

When B is not deterministic, we make the following observationefiéhexist two
LimAvg-automatad and B such that(i) L4 Z Lg and(ii) there exist no finite words
wy andws such thatL 4 (w) > Lp(w) for w = w; - w§ (the wordw is called a
lasso-word. Consider the twd.imAvg-automatad and B shown in Fig. 1, where3
is nondeterministic. For all words € X, we haveL 4(w) = 1. For a lasso-word
of the formw = wy - wy, if in wy there are moré’s thana’s, then B choosesy,
from ¢}, and else chooseg, from ¢}. Hence for all lasso-worde = w; - wy, we
have Lp(w) > 1. HoweverL s [Z Lp. Consider the wordy generated inductively
such thatw, is the empty word, and; ., is generated fromw; as follows: () first
generate a long enough sequengg, of a's afterw; such that the average number
of b's in w; - wi,, falls below%; (ii) then generate a long enough sequemgg, of
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Fig. 1. Two limit-average automatd and B (nondeterministic) such thdis [Z Lg, but there is
no word of the formw = w; - w§ with L (w) > Lp(w).

b's such that the average numbera in w; - w],, - w/,, falls belows; and i) let
wit1 = w; - wi,, - wi,,. The infinite wordw is the limit of this sequence. For the
word w, we haveLg(w) = 2- 3 = 2 < 1, and thusL4 Z Lp. This observation is
in contrast to the case of boolean language inclusion fgr, parity automata, where
non-inclusion is always witnessed by a lasso-word.

For discounted-sum automatawith weight functiory; and B with weight func-
tion vo, assume that we have a finite warde X* such that for some rum of A over

w and for all runs, of B overw, we have

)\|w| )\|w|
- > y2(re) +V - -

wherewv (resp.V) is the minimal (resp. maximal) weight in (the union of)and B.
Then, we immediately havé, Z Lp, asLa(w - w') > Lp(w - w') for all words
w' € X¥. We say thatw is afinite withesof L4 [Z L. We claim that there always
exists a finite witness af 4 IZ L g. To see this, consider an infinite wor®® such that
La(w®) =mn1, Lp(w™) = 1y, andn; > 1. Letr; be an (infinite) run ofA overw>
whose value ig);. Fori > 0, consider the prefix ofo>° of lengthi. Then, for all runs
ro Of B overw®™, we have

v (r) +v-

4 4

> and 4 . <
=M Y2(ry) +v L

wherer! andri are the prefixes of lengthof ; andr,, respectively. Then, a prefix of
lengthi of w*° is a finite withess of. 4 IZ L if

A\l A\l
1_)\>772+(V—’U)'1_)\

which must hold for sufficiently large values©fThus, we have the following theorem.

)+ V-

m—V-v)-

Theorem 6. The quantitative language-inclusion problem foisc-automata is co-r.e.

Universality and language equivalence.All of the above results about language in-
clusion hold for quantitative universality and languagaieglence also.

4 Quantitative Simulation

As the decidability of the quantitative language-incluspmroblems for limit-average
and discounted-sum automata remain open, we introduceéanrgdiguantitative simu-
lation as a decidable approximation of language inclusion for tteid automata. The



gquantitative language-inclusion problem can be viewed garae of imperfect infor-
mation, and we view the quantitative simulation problemxax#y the same game, but
with perfect information. For quantitative objectivesrfeet-information games can be
solved much more efficiently than imperfect-informatiomgs, and in some cases the
solution of imperfect-information games with quantitativbjectives is not known. For
example, perfect-information games with limit-averagd discounted-sum objectives
can be decided in NP\ coNP, whereas the solution for such imperfect-information
games is not known. Second, quantitative simulation insgjigantitative language in-
clusion, because it is easier to win a game when informasiorot hidden. Hence, as
in the case of finite automata, simulation can be used as @&@tive and efficient
approximation for language inclusion.

Language-inclusion game.Let A and B be two weighted automata with weight func-
tion v, and~s, respectively, for which we want to checkiifs C L. The language-
inclusion game is played by @hallengerand asimulator, for infinitely many rounds.
The goal of the simulator is to prove thAl T Lg, while the challenger has the op-
posite objective. The position of the game in the initialmdus (¢}, ¢7) whereq} and

q? are the initial states oft and B, respectively. In each round, if the current posi-
tion is (g1, ¢2), first the challenger chooses a letterc X' and a statey; such that
(q1,0,q7) € 01, and then the simulator chooses a stgtsuch that(gs, o, ¢5) € 0.
The position of the game in the next round{ig, ¢5). The outcome of the game is a
pair (r1,72) of runs of A and B, respectively, over the same infinite word. The simula-
tor wins the game i¥/al(y2(r2)) > Val(y1(r1)). To make this game equivalent to the
language-inclusion problem, we require that the challengenot observe the state of
B in the position of the game.

Simulation game. The simulation game is the language-inclusion game witktoait
restriction on the vision of the challenger, that is, thellemger is allowed to ob-
serve the full position of the game. Formally, giveh = (Q1,q}, ¥, 61,71) and
B = (Q2,¢%, X, 52, 72), astrategyr for the challenger is a function frof§); x Q2)* to
X' x @y suchthatforalir € (Q1xQ2)7",if 7(7) = (0, q), then(Last(mq, ), 0, ¢) € o1,
wherer o, is the projection ofr on Q. A strategyr for the challenger ilind if
7(m) = 7(«') for all sequences, ' € (Q1 x Q2)* such thatrp, = 7T|/Q1. The set
of outcomef a challenger strategy is the set of pairgr;, ) of runs such that if
T = qoo1q102 ... andrs = gjo1qios ..., thengy = q}, ¢f = ¢%, and for alli > 0,
we have(oiy1,qiv1) = 7((q0,qp) - - - (¢4, 4;)) and (g}, oi41,q;, 1) € 2. A Strategyr
for the challenger isvinningif Val(~;(r1)) > Val(v2(r2)) for all outcomes(ry,r2)
of 7.

Theorem 7. For all value functions and weighted automataand B, we havelL 4 C
Ly iff there is no blind winning strategy for the challenger lretlanguage-inclusion
game forA and B.

Given two weighted automata and B, there is aquantitative simulatiorof A by
B if there exists no (not necessarily blind) winning stratégrythe challenger in the
simulation game ford and B. We note that for the special cases of Biichi and coBiichi
automata, quantitative simulation coincides wair simulation[16].



Corollary 1. For all value functions and weighted automataand B, if there is a
quantitative simulation ofi by B, thenL o C L.

Given two weighted automat& and B, thequantitative simulation problerasks if
there is a quantitative simulation df by B.

Theorem 8. The quantitative simulation problem is in NP coNP for LimSup-,
LimInf-, LimAvg-, andDisc-automata.

The proof of Theorem 8 is obtained as follows. The quantiéasimulation
problems forLimSup- and LimInf-automata is reduced to perfect-information parity
games; the quantitative simulation problemifonAvg-automata is reduced to perfect-
information limit-average games; and the quantitativeusation problem forDisc-
automata is reduced to perfect-information discounted-games. All reductions are
polynomial time, and the resulting games can all be solvédiHm coNP.

5 The Expressive Power of Weighted Automata

We study the expressiveness of different classes weightediata over infinite words
by comparing the quantitative languages they can definetti®ipurpose, we show
the existence and non-existence of translations betwesses of finite and weighted
automata. We will use the following definition. A clagsof finite automatacan be
weakly reducedo a clasg’ of weighted automata if for everyt € C there exists an
A" € ' such thainf ez, Lar(w) > sup,gp, Lar(w).

5.1 Positive Reducibility Results

We start with the positive results about the existence oficgdns between various
classes of weighted automata, most of which can be obtaipegtberalizing corre-
sponding results for finite automata. Our results also Halekiallow transition weights
to be irrational numbers.

First, it is clear that Blichi and coBuichi automata can lokiced toLimSup- and
LimInf-automata, respectively. In addition, we have the follayiesults.

Theorem 9. Sup-automata can be determinized @(2"™) time; LimInf-automata can
be determinized i®(m - 2™) time. DeterministiSup-automata can be reduced to de-
terministicLimInf-, to deterministid.imSup-, and to deterministitimAvg-automata,
all in O(n - m) time. LimInf-automata can be reduced tdmSup- and to LimAvg-
automata, both irO(n - m) time.

The reduction fronkimInf- to LimSup-automata (resp. timAvg-automata) essen-
tially consists of guessing a positierand a transition weight such that only weights
greater tharv are seen after position Once the guess is made, all transitions have
weightv.

All reducibility relationships are summarized in Fig. 4, avh the notatiofyW is
used to denote the classes of automata that are determeizab

10



Fig. 2. A nondeterministic limit-average automaton.

5.2 Negative Reducibility Results

We show that all other reducibility relationships do notchalhe most important re-
sults in this section show thét) deterministic coBuchi automata cannot be reduced
to deterministid.imAvg-automata, deterministic Biichi automata cannot be reatitace
LimAvg-automata, andii) neitherLimAvg- nor Disc-automata can be determinized.
Over the alphabel’ = {a, b}, we use in the sequel the boolean languageswhich
contains all infinite words with finitely many’s, and L;, which contains all infinite
words with infinitely many’s.

The classical proof that deterministic coBuichi automaanot reduced to deter-
ministic Buichi automata can be adapted to show the follgwleorem.

Theorem 10. Deterministic coBichi automata cannot be reduced to deterministic
LimSup-automata.

Since deterministit.imAvg- and deterministi®isc-automata can define quantita-
tive languages whose range is infinite, whilenSup-automata cannot, we obtain the
following result.

Theorem 11. DeterministicLimAvg-automata and deterministiDisc-automata can-
not be reduced thimSup-automata.

The next theorem shows that nondeterminiktieAvg-automata are strictly more
expressive than their deterministic counterpart. Thedk8mwill show that the expres-
sive powers of.imAvg- andLimSup-automata are incomparable.

Theorem 12. Deterministic coBichi automata cannot be weakly reduced to determin-
istic LimAvg-automata, and therefore they cannot be reduced to detésticihimAvg-
automataLimAvg-automata cannot be determinized.

Proof. Consider the languager of finitely manya’s, which is obviously accepted by
a DCW. ltis also easy to see that the NW shown in Fig. 2 defined . We show
that Lz cannot be defined by any DAW to prove the desired claims. By contradiction,
assume that is a DLAW with set of states) and the initial statg; that defined.p.
We assume without loss of generality that every state( is reachable frong; by a
finite wordwy.

Leta = infyer,. La(w). We claim that alb-cycles (ab-cycle is a cycle inA that
can be executed with onbys) must be such that the average of the weights on the cycle
is at leasta. Indeed, if there is &-cycle C' in A with average weights less than

11



then consider a state € C' and the wordv = w, - b*. We haveL 4 (w) < «a. Since
w = wg - b € Lp, this contradicts that = inf,cr,. La(w).

We now show that for alé > 0, there existsv’ ¢ Lr such thatl 4(w') > a —e.
Fix e > 0. Let g = maxy o cQ,oef{ap}| V(e 0,q")]. Letj = (W], and consider the
wordw,. = (b’ - a)“. A lower bound on the average of the weights in the unique fun o
A over (b - a) is as follows: it can have a prefix of length at m¢@t whose sum of
weights is at least |Q|- 3, then it goes througbrcycles for at leasf — 2| Q| steps with
sum of weights at leagyj — 2 - |Q|) - « (since allb-cycles have average weights at least
«), then again a prefix of length at md&§}| without completing the cycle (with sum of
weights at least-|Q| - 5), and then weight for is at least-3. Hence the average is at

least
(-2:1Q)-a-21QI- 58 6-1Q-8 _
Jj+1 - J -

— €

we used above that| < 3, and by choice ofi we haveﬁ"?J < e. Hence we have
La(we) > o — €. Sincee > 0 is arbitrary, andv, ¢ L, We havesup,,¢p,, La(w) >
o = inf,er,. La(w). This establishes a contradiction, and thuigannot exist. The
desired result follows. [ |

Theorem 13. Deterministic Bichi automata cannot be weakly reducedLienAvg-
automata, and therefore they cannot be reducedioAvg-automata.

Proof. We consider the languadg of infinitely manya’s, which is obviously accepted
by a DBW.

By contradiction, assume that is a NLAW with set of states) and initial state
qr that definesL;. We assume without loss of generality that every state @ is
reachable frong; by a finite wordw,,.

Leta = sup, gy, La(w), andf = maxy 4 cq,oe{ab}|7(4; 0, ¢")|. We claim that
all b-cyclesC in A must have average weights at mestotherwise, consider a state
g € C and the wordw = w, - b, we haveL 4(w) > « which contradicts that =
SUDy g1, La(w).

We now show that for al¢ > 0, there existsv € L; such thatl 4 (w') < a + €.
Fixe > 0. Letj = (W], and consider the word. = (/ - a)*. An upper bound
on the average of the weights in any runfover (b’ - a) is as follows: it can have
a prefix of length at mogtY| with the sum of weights at mo§f)| - 5, then it follows
(possibly nested)-cycles for at mostj steps with sum of weights at mogt o (since
all b-cycles have average weights at magtthen again a prefix of length at mdg}|
without completing a cycle (with sum of weights at m@3t - 3), and then weight for
a is at most3. So, for any run ofd overw, = (b’ - a)*, the average weight is at most

jra+2.1Ql-B+8 _ 31018
j+1 B J

<a+e

3 SinceA is nondeterministic, a run ovéf may have nested cycles. We can decompose the run
by repeatedly eliminating the innermost cycles.
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a,l s a,l Aso\ a,0 s a,0
b,0 ¢ b0 \__J b1 b, 1

Fig. 3. The nondeterministic discounted-sum automatan

Hence we havd. 4 (w.) < « + e. Sincee > 0 is arbitrary, andw. € L, we have
infyer, La(w) < a=sup,gr, La(w). The desired result follows. |

None of the weighted automata we consider can be redudedd¢eautomata (The-
orem 14), andisc-automata cannot be reduced to any of the other classes gifite€li
automata (Theorem 15, and also Theorem 11).

Theorem 14. Deterministic coBchi automata and deterministidiBhi automata can-
not be weakly reduced @isc-automata, and therefore they cannot be reduceldisa-
automata. Also deterministitup-automata cannot be reducedBisc-automata.

The proofs of Theorem 14 and 15 are based on the propertybatalue as-
signed by aDisc-automaton to an infinite word depends essentially on a fprigdix,
in the sense that the values of two words become arbitrdasecwvhen they have suf-
ficiently long common prefixes. In other words, the quartitatanguage defined by
a discounted-sum automaton is a continuous function in #r@d® topology. In con-
trast, for the other classes of weighted automata, the \&dlaa infinite word depends
essentially on its tail.

Theorem 15. DeterministicDisc-automata cannot be reducedltonAvg-automata.

The next result shows that discounted-sum automata caerdéterminized. Con-
sider the nondeterministic discounted-sum automafaover the alphabet = {a, b}
shown in Fig. 3. The automataN computes the maximum of the discounted sum of
a’s andb's. Formally, given a (finite or infinite) word) = wow; ... € X* U 2%, let

Jw| |w|

v (w) = Z Aoand vy (w) = Z N

tlw;=a ilw; =b

be theA-discounted sum of all's (resp.b’s) in w. ThenL y(w) = max{v,(w), vy(w)}
for all infinite wordsw € X*. We show thatV cannot be determinized for some
discount factors\. The proof uses a sequence of intermediate lemmas.

Foro € X, letg = aif ¢ = b, and7 = bif ¢ = a. We say that an infinite word
w e 3¢ preferso € 3 if v, (w) > vg(w).

Lemmal. Forall0 < A < 1,all w € ¥*, and allo € ¥, there existsy’ € % such
thatw - w' preferso iff v, (w - 0¥) > vz(w - 0%).

We say that a finite wordy € * is ambiguousf there exist two infinite words
w,,, w;, € X¥ such thatw - w, prefersa andw - w;, prefersb.

13



Lemma2. Forall 0 < A < 1 andw € *, the wordw is ambiguous iffv, (w) —

Jw|
vp(w)] < i‘_—A

Intuitively, ambiguous words are problematic for a detaristic automaton because
it cannot decide which one of the two functionsanduv, to choose.

Lemma 3. For all % < X < 1, there exists an infinite word € £ such that every
finite prefix ofw is ambiguous.

Proof. We constructv = wyws ... inductively as follows. First, letv; = a which is
an ambiguous word for al > J (Lemma 2). Assume that; . .. w; is ambiguous for

alll <i <k, thatis|z;| < 1{—A wherez; = v, (wy ... w;) —vp(wy ... w;) (Lemma 2).

We takewy, 1 = aif zj, < 0,andwy;, = botherwise. Letus show that, | < 2.
kE+1
We havelzy11| = ||| — A¥|, and thus we need to show tHak| — \¥ < 2= and

—lzg] + AF < % knowing thatjz| < % It suffices to show that

\F ko AR k
mg)\ +ﬁ and \* —

AR+
1—-X

< 0.

In other words, it suffices thdt< 1 — A + X andl — A — X < 0, which is true for all
A>3 [

The wordw constructed in Lemma 3 could be harmless for a determirasticma-
ton if some kind of periodicity is encountered iin We make this notion formal by

definingdiff (w) = 2= for all finite wordsw € £*. It can be shown that if the
setRy = {diff (w) | w € X*} N (=, =) is finite, then the automatoN can be

determinized [5], wheréu, b) denotes the open interval between two readsdb with
a < b. Lemma 4 shows that this is also a necessary condition.

Lemma4. Forall 0 < X < 1, if the setR,, is infinite, then there exists no deterministic
Disc-automatonD such thatlLp = Ly.

Proof. By contradiction, assume that, is infinite and there exists a DB D such
thatLp = Ly. Forallw € £*, let Post(w) be the (unique) state reachedlinafter
readingw. We show that for all worde, , wy € >* such thatdiff (w1), diff (w2) € Ry,
if diff (w1) # diff (w2), thenPost(wq) # Post(ws). ThereforeD cannot have finitely
many states.

We show this by contradiction. Assume tiRakt(w;) = Post(ws). Thenw; andw,
are ambiguous by Lemma 2 sinégf (w1 ), diff (w2) € Ry. Fori = 1,2, we thus have
by Lemma 1

Alwil 4L " Alwil
X an ~N(w; - )—vb(wi)—kl_)\.

Ly (w; - a®) = vg(w;) +

On the other hand, sind@st(w;) = Post(wsz), there existy, va, K,, K, € R such
that fori =1, 2,

Lp(w;-a®) =vi + Nl K, and Lp(w;-b*)=uv; + A"l . K,

14
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Fig. 4. Reducibility relations: a class of automata can be reduceddbiff ¢ —* C’.

SincelL p = Ly, this entails thaLD(wi-a‘“)—LD(wi-b“’) = LN(wi-a“’)—LN(wi-b‘“),
and therefore

va(w13\|;11‘)b(w1) K, Ky — Ua(w22\‘;2'l|)b(w2)

which yields a contradiction. |

We are now ready to prove the following theorem.

Theorem 16. Disc-automata cannot be determinized.

Proof. Let \* be a non-algebraic number in the open intefall). Then, we show
that the sef? is infinite, which establishes the theorem by Lemma 4.

By Lemma 2 and Lemma 3, there exist infinitely many finite wards £* such
that diff (w) € Rx-. Since\* is not algebraic, the polynomial equatidif (w;) =
diff (wq) cannot hold forv; # wo. Therefore R is infinite. [ |

By a careful analysis of the shape of the family of polynora@guations in the above
proof, we can show that the automatdncannot be determinized for any rational value
of A greater thar, [5].
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