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Abstract. Quantitative generalizations of classical languages, which assign to
each word a real number instead of a boolean value, have applications in mod-
eling resource-constrained computation. We use weighted automata (finite au-
tomata with transition weights) to define several natural classes of quantitative
languages over finite and infinite words; in particular, the real value of an infinite
run is computed as the maximum, limsup, liminf, limit average, or discounted
sum of the transition weights. We define the classical decision problems of au-
tomata theory (emptiness, universality, language inclusion, and language equiv-
alence) in the quantitative setting and study their computational complexity. As
the decidability of language inclusion remains open for some classes of weighted
automata, we introduce a notion of quantitative simulationthat is decidable and
implies language inclusion. We also give a complete characterization of the ex-
pressive power of the various classes of weighted automata.In particular, we
show that most classes of weighted automata cannot be determinized.

1 Introduction

The automata-theoretic approach to verification is boolean. To check that a system sat-
isfies a specification, we construct a finite automatonA to model the system and a finite
(usually nondeterministic) automatonB for the specification. The languageL(A) of A

contains all behaviors of the system, andL(B) contains all behaviors allowed by the
specification. The language of an automatonA can be seen as a boolean functionLA

that assigns1 (or true) to words inL(A), and0 (or false) to words not inL(A). The ver-
ification problem “does the system satisfy the specification?” is then formalized as the
language-inclusion problem “isL(A) ⊆ L(B)?”, or equivalently, “isLA(w) ≤ LB(w)
for all wordsw?”. We present a natural generalization of this framework: aquantita-
tive languageL is a function that assigns a real-numbered valueL(w) to each (finite
or infinite) wordw. With quantitative languages, systems and specifications can be for-
malized more accurately. For example, a system may use a varying amount of some
resource (e.g., memory consumption, or power consumption)depending on its behav-
ior, and a specification may assign a maximal amount of available resource to each
behavior, or fix the long-run average available use of the resource. The quantitative
language-inclusion problem “isLA(w) ≤ LB(w) for all wordsw?” can then be used
to check, say, if for each behavior, the peak power used by thesystem lies below the
bound given by the specification; or if for each behavior, thelong-run average response
time of the system lies below the specified average response requirement.
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0225610, by the Swiss National Science Foundation, and by the European COMBEST project.



In the boolean automaton setting, the value of a wordw in L(A) is the maximal
value of a run ofA overw (if A is nondeterministic, then there may be many runs of
A overw), and the value of a run is a function that depends on the classof automata:
for automata over finite words, the value of a run istrue if the last state of the run is
accepting; for Büchi automata, the value istrue if an accepting state is visited infinitely
often; etc. To define quantitative languages, we use automata with weights on transi-
tions. We again set the value of a wordw as the maximal value of all runs overw,
and the value of a runr is a function of the (finite or infinite) sequence of weights that
appear alongr. We consider several functions, such asMax andSum of weights for
finite runs, andSup, LimSup, LimInf, limit average, and discounted sum of weights for
infinite runs. For example, peak power consumption can be modeled as the maximum
of a sequence of weights representing power usage; energy use can be modeled as the
sum; average response time as the limit average [2, 3]. Quantitative languages have also
been used to specify and verify reliability requirements: if a special symbol⊥ is used
to denote failure and has weight1, while the other symbols have weight0, one can use
a limit-average automaton to specify a bound on the rate of failure in the long run [6].
Alternatively, the discounted sum can be used to specify that failures happening later
are less important than those happening soon [8]. It should be noted thatLimSup and
LimInf automata generalize Büchi and coBüchi automata, respectively. Functions such
as limit average (or mean payoff) and discounted sum are classical in game theory [26];
they have been studied extensively in the branching-time context of games played on
graphs [12, 7, 3, 14], and it is therefore natural to considerthe same functions in the
linear-time context of automata and languages.

We attempt a systematic study of quantitative languages defined by weighted au-
tomata. The main novelties concern quantitative languagesof infinite words, and es-
pecially those that have no boolean counterparts (i.e., limit-average and discounted-
sum languages). In the first part, we consider generalizations of the boolean decision
problems of emptiness, universality, language inclusion,and language equivalence. The
quantitative emptiness problem asks, given a weighted automatonA and a rational num-
berν, whether there exists a wordw such thatLA(w) ≥ ν. This problem can be reduced
to a one-player game with a quantitative objective and is therefore solvable in polyno-
mial time. The quantitative universality problem asks whetherLA(w) ≥ ν for all words
w. This problem can be formulated as a two-player game (one player choosing input
letters and the other player choosing successor states) with imperfect information (the
first player, whose goal is to construct a wordw such thatLA(w) < ν, is not allowed
to see the state chosen by the second player). The problem is PSPACE-complete for
simple functions likeSup, LimSup, andLimInf, but we do not know if it is decidable
for limit-average or discounted-sum automata (the corresponding games of imperfect
information are not known to be decidable either). The same situation holds for the
quantitative language-inclusion and language-equivalence problems, which ask, given
two weighted automataA andB, if LA(w) ≤ LB(w) (resp.LA(w) = LB(w)) for all
wordsw. Therefore we introduce a notion of quantitative simulation between weighted
automata, which generalizes boolean simulation relations, is decidable, and implies lan-
guage inclusion. Simulation can be seen as a weaker version of the above game, where
the first player has perfect information about the state of the game. In particular, we
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show that quantitative simulation can be decided in NP∩ coNP for limit-average and
discounted-sum automata.

In the second part of this paper, we present a complete characterization of the ex-
pressive power of the various classes of weighted automata,by comparing the classes
of quantitative languages they can define. The complete picture relating the expressive
powers of weighted automata is shown in Fig. 4. For instance,the results forLimSup

andLimInf are analogous to the special boolean cases of Büchi and coB¨uchi (nondeter-
minism is strictly more expressive forLimSup, but not forLimInf). In the limit-average
and discounted-sum cases, nondeterministic automata are strictly more expressive than
their deterministic counterparts. Also, one of our resultsshows that nondeterministic
limit-average automata are not as expressive as deterministic Büchi automata (and vice
versa). It may be noted that deterministic Büchi languagesare complete for the second
level of the Borel hierarchy [28], and deterministic limit-average languages are com-
plete for the third level [4]; so there is a Wadge reduction [29] from deterministic Büchi
languages to deterministic limit-average languages. Our result shows that Wadge re-
ductions are not captured by automata, and in particular, that the Wadge reduction from
Büchi to limit-average languages is not regular. We sketchsome details of the most
interesting proofs; complete proofs are available in [5].

Other researchers have considered generalizations of languages, but as far as we
know, nobody has addressed the quantitative language setting presented here. The lat-
tice automata of [21] map finite words to values from a finite lattice. Roughly speaking,
the value of a run is the meet (greatest lower bound) of its transition weights, and the
value of a wordw is the join (least upper bound) of the values of all runs overw. This
corresponds toMin andInf automata in our setting, and for infinite words, the Büchi
lattice automata of [21] are analogous to ourLimSup automata. However, the other
classes of weighted automata (Sum, limit-average, discounted-sum) cannot be defined
using operations on finite lattices. The complexity of the emptiness and universality
problems for lattice automata is given in [21] (and implies our results forLimSup au-
tomata), while their generalization of language inclusiondiffers from ours. They define
the implication valuev(A, B) of two lattice automataA andB as the meet over all
wordsw of the join of¬LA(w) andLB(w), while we use+ instead of join and define
v(A, B) asminw(LB(w) − LA(w)).

In classical weighted automata [25, 23] and semiring automata [20], the value of a
finite word is defined using the two algebraic operations+ and· of a semiring as the sum
of the product of the transition weights of the runs over the word. In that case, quantita-
tive languages are calledformal power series. Over infinite words, weighted automata
with discounted sum were first investigated in [11]. Researchers have also considered
other quantitative generalizations of languages over finite words [9], over trees [10], and
using finite lattices [15]. However, these works do not address the quantitative decision
problems, nor do they compare the relative expressive powers of weighted automata
over infinite words, as we do here. In [2], a quantitative generalization of languages is
defined by discrete functions (the value of a word is an integer) and the decision prob-
lems only involve the extremal value of a language, which corresponds to emptiness.

In models that use transition weights as probabilities, such as probabilisticRabin
automata[24], one does not consider values of individual infinite runs (which would
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usually have a value, or measure, of0), but only measurable sets of infinite runs (where
basic open sets are defined as extensions of finite runs). Our quantitative setting is or-
thogonal to the probabilistic framework: we assign quantitative values (e.g., peak power
consumption, average response time, failure rate) to individual infinite behaviors, not
probabilities to finite behaviors.

2 Boolean and Quantitative Languages

We recall the classical automata-theoretic description ofboolean languages, and intro-
duce an automata-theoretic description of several classesof quantitative languages.

2.1 Boolean Languages

A boolean languageover a finite alphabetΣ is either a setL ⊆ Σ∗ of finite words or
a setL ⊆ Σω of infinite words. Alternatively, we can view these sets as functions in
[Σ∗ → {0, 1}] and[Σω → {0, 1}], respectively.

Boolean automata.A (finite) automatonis a tupleA = 〈Q, qI , Σ, δ〉 where:
– Q is a finite set of states, andqI ∈ Q is the initial state;
– Σ is a finite alphabet;
– δ ⊆ Q × Σ × Q is a finite set of labeled transitions.

The automatonA is total if for all q ∈ Q and σ ∈ Σ, there exists(q, σ, q′) ∈ δ

for at least oneq′ ∈ Q. The automatonA is deterministicif for all q ∈ Q andσ ∈
Σ, there exists(q, σ, q′) ∈ δ for exactly oneq′ ∈ Q. We sometimes call automata
nondeterministicto emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) wordw = σ1σ2 . . . is a finite (resp. infi-
nite) sequencer = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI , and (ii)
(qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|. When the runr is finite, we denote byLast(r)
the last state inr. Whenr is infinite, we denote byInf(r) the set of states that occur
infinitely many times inr. The prefix of lengthi of an infinite runr is the prefix ofr
that contains the firsti states.

Given a setF ⊆ Q of final (or accepting) states, thefinite-word languagedefined
by the pair〈A, F 〉 is L

f
A = {w ∈ Σ∗ | there exists a runr of A over w such that

Last(r) ∈ F}. Theinfinite-word languagesdefined by〈A, F 〉 are as follows: if〈A, F 〉
is interpreted as a Büchi automaton, thenLb

A = {w ∈ Σω | there exists a runr of A

overw such thatInf(r)∩F 6= ∅}, and if〈A, F 〉 is interpreted as a coBüchi automaton,
thenLc

A = {w ∈ Σω | there exists a runr of A overw such thatInf(r) ⊆ F}.

Boolean decision problems.We recall the classical decision problems for automata,
namely, emptiness, universality, language inclusion and language equivalence. Given a
finite automatonA, theboolean emptiness problemasks whetherLf

A = ∅ (or Lb
A = ∅,

or Lc
A = ∅), and theboolean universality problemasks whetherLf

A = Σ∗ (or Lb
A =

Σω, orLc
A = Σω). Given two finite automataA andB, theboolean language-inclusion

problemasks whetherLA ⊆ LB, and theboolean language-equivalence problemasks
whetherLA = LB. It is well-known that for both finite- and infinite-word languages,
the emptiness problem is solvable in polynomial time, whilethe universality, inclusion,
and equivalence problems are PSPACE-complete [22, 27].
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2.2 Quantitative Languages

A quantitative languageL over a finite alphabetΣ is either a mappingL : Σ+ → R or
a mappingL : Σω → R, whereR is the set of real numbers.

Weighted automata. A weighted automatonis a tupleA = 〈Q, qI , Σ, δ, γ〉 where:
– 〈Q, qI , Σ, δ〉 is a total finite automaton, and
– γ : δ → Q is aweightfunction, whereQ is the set of rational numbers.

Given a finite (resp. infinite) runr = q0σ1q1σ2 . . . of A over a finite (resp. infinite)
word w = σ1σ2 . . . , let γ(r) = v0v1 . . . be the sequence of weights that occur inr,
wherevi = γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

Given avalue functionVal : Q+ → R (resp.Val : Qω → R), theVal-automatonA
defines the quantitative languageLA such that for all wordsw ∈ Σ+ (resp.w ∈ Σω),
we haveLA(w) = sup{Val(γ(r)) | r is a run ofA overw}.

In sequel we denote byn the number of states and bym the number of transitions
of a given automaton. We assume that rational numbers that are given as pairs of in-
tegers, encoded in binary. All time bounds we give in this paper assume that the size
of the largest integer in the input is a constantp. Without this assumption, most com-
plexity results would involve a factorp2, as we use only addition, multiplication, and
comparison of rational numbers, which are quadratic operations.

Quantitative decision problems. We now present quantitative generalizations of the
classical decision problems for automata. Given two quantitative languagesL1 andL2

overΣ, we writeL1 ⊑ L2 if L1(w) ≤ L2(w) for all wordsw ∈ Σ+ (resp.w ∈ Σω).
Given a weighted automatonA and a rational numberν ∈ Q, thequantitative emptiness
problemasks whether there exists a wordw ∈ Σ+ (resp.w ∈ Σω) such thatLA(w) ≥
ν, and thequantitative universality problemasks whetherLA(w) ≥ ν for all words
w ∈ Σ+ (resp.w ∈ Σω). Given two weighted automataA andB, the quantitative
language-inclusion problemasks whetherLA ⊑ LB, and thequantitative language-
equivalence problemasks whetherLA = LB, that is, whetherLA(w) = LB(w) for
all w ∈ Σ+ (resp.w ∈ Σω). All results that we present in this paper also hold for the
decision problems defined above with inequalities replacedby strict inequalities.

Our purpose is the study of the quantitative decision problems for infinite-word
languages and the expressive power of weighted automata that define infinite-word lan-
guages. We start with a brief overview of the corresponding results for finite-word lan-
guages, most of which follow from classical results in automata theory.

Finite words. For finite words, we consider the value functionsLast, Max, andSum

such that for all finite sequencesv = v1 . . . vn of rational numbers,

Last(v) = vn, Max(v) = max{vi | 1 ≤ i ≤ n}, Sum(v) =

n
∑

i=1

vi.

Note thatLast generalizes the classical boolean acceptance condition for finite words.
One could also consider the value functionMin = min{vi | 1 ≤ i ≤ n}, which roughly
corresponds to lattice automata [21].
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Theorem 1. The quantitative emptiness problem can be solved in linear time for
Last and Max-automata, and in quadratic time forSum-automata. The quantitative
language-inclusion problem is PSPACE-complete forLast- andMax-automata.

The complexity of the quantitative emptiness problem forLast andMax-automata
is obtained by reduction to reachability in graphs, and forSum-automata, by reduc-
tion to reachability of a cycle with positive value. The quantitative language-inclusion
problem is undecidable forSum-automata [19]. However, the quantitative language-
inclusion problem for deterministicSum-automata can be solved in polynomial time
using a product construction. This naturally raises the question of the power of nonde-
terminism, which we address through translations between weighted automata.

Expressiveness.A classC of weighted automatacan be reducedto a classC′ of
weighted automata if for everyA ∈ C there existsA′ ∈ C′ such thatLA = LA′ . In
particular, a class of weighted automatacan be determinizedif it can be reduced to its
deterministic counterpart. All reductions that we presentin this paper are constructive:
whenC can be reduced toC′, we always construct the automatonA′ ∈ C′ that defines
the same quantitative language as the given automatonA ∈ C. We say that thecostof
a reduction isO(f(n, m)) if for all automataA ∈ C with n states andm transitions,
the constructed automatonA′ ∈ C′ has at mostO(f(n, m)) many states. For all reduc-
tions we present, the size of the largest transition weight in A′ is linear in the sizep
of the largest weight inA (however, the time needed to compute these weights may be
quadratic inp).

It is easy to show thatLast- andMax-automata can be determinized using a subset
construction, whileSum-automata cannot be determinized. Results about determiniz-
able sub-classes ofSum-automata can be found in [23, 18].

Theorem 2 (see also[23]). Last- and Max-automata can be determinized inO(2n)
time; Sum-automata cannot be determinized. DeterministicMax-automata can be re-
duced to deterministicLast-automata inO(n · m) time; deterministicLast-automata
can be reduced to deterministicSum-automata inO(n · m) time. DeterministicSum-
automata cannot be reduced toLast-automata; deterministicLast-automata cannot be
reduced toMax-automata.

Infinite words. For infinite words, we consider the following classical value functions
from Qω to R. Given an infinite sequencev = v0v1 . . . of rational numbers, define
• Sup(v) = sup{vn | n ≥ 0};
• LimSup(v) = lim sup

n→∞
vn = lim

n→∞
sup{vi | i ≥ n};

• LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

• LimAvg(v) = lim inf
n→∞

1

n
·

n−1
∑

i=0

vi;

• given a discount factor0 < λ < 1, Discλ(v) =

∞
∑

i=0

λi · vi.

For decision problems, we always assume that the discount factorλ is a rational number.
Note thatLimAvg(v) is defined usinglim inf and is therefore well-defined; all results
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of this paper hold also if the limit average ofv is defined instead aslim sup
n→∞

1

n
·

n−1
∑

i=0

vi.

One could also consider the value functionInf = inf{vn | n ≥ 0} and obtain results
analogous to theSup value function.

Notation. Classes of automata are sometimes denoted by acronyms of theform xyW

wherex is either N(ondeterministic) or D(eterministic), andy is one of the following:
B(üchi), C(oBüchi), SUP, LS (LimSup), L I (LimInf), LA (LimAvg), or DI (Disc).

3 The Complexity of Quantitative Decision Problems

We study the complexity of the quantitative decision problems for weighted automata
over infinite words.

Emptiness. The quantitative emptiness problem can be solved by reduction to the prob-
lem of finding the maximal value of an infinite path in a graph. This is decidable because
pure memoryless strategies for resolving nondeterminism exist for all quantitative ob-
jectives that we consider [13, 17, 1].

Theorem 3. The quantitative emptiness problem is solvable inO(m+n) time forSup-,
LimSup-, andLimInf-automata; inO(n ·m) time forLimAvg-automata; and inO(n2 ·
m) time forDisc-automata.

Language inclusion. The following theorem relies on the analogous result for finite
automata.

Theorem 4. The quantitative language-inclusion problem is PSPACE-complete for
Sup-, LimSup-, andLimInf-automata.

We do not know if the quantitative language-inclusion problem is decidable for
LimAvg- or Disc-automata. The special cases of deterministic automata areeasy, using
a product construction.

Theorem 5. The quantitative language-inclusion problemsLA ⊑ LB for LimAvg- and
Disc-automata are decidable in polynomial time whenB is deterministic.

WhenB is not deterministic, we make the following observation. There exist two
LimAvg-automataA andB such that(i) LA 6⊑ LB and(ii) there exist no finite words
w1 and w2 such thatLA(w) > LB(w) for w = w1 · wω

2 (the wordw is called a
lasso-word). Consider the twoLimAvg-automataA andB shown in Fig. 1, whereB
is nondeterministic. For all wordsw ∈ Σω, we haveLA(w) = 1. For a lasso-word
of the formw = w1 · wω

2 , if in w2 there are moreb’s thana’s, thenB choosesq′3
from q′1, and else choosesq′2 from q′1. Hence for all lasso-wordsw = w1 · wω

2 , we
haveLB(w) ≥ 1. HoweverLA 6⊑ LB. Consider the wordw generated inductively
such thatw0 is the empty word, andwi+1 is generated fromwi as follows: (i) first
generate a long enough sequencew′

i+1 of a’s after wi such that the average number
of b’s in wi · w′

i+1 falls below 1
3 ; (ii) then generate a long enough sequencew′′

i+1 of
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A
q1

B

q′1 q′2q′3
a, b

0

a, b

0
a, b

1
a, 2
b, 0

a, 0
b, 2

Fig. 1. Two limit-average automataA andB (nondeterministic) such thatLA 6⊑ LB , but there is
no word of the formw = w1 · wω

2 with LA(w) > LB(w).

b’s such that the average number ofa’s in wi · w
′
i+1 · w′′

i+1 falls below 1
3 ; and (iii) let

wi+1 = wi · w′
i+1 · w′′

i+1. The infinite wordw is the limit of this sequence. For the
word w, we haveLB(w) = 2 · 1

3 = 2
3 < 1, and thusLA 6⊑ LB. This observation is

in contrast to the case of boolean language inclusion for, e.g., parity automata, where
non-inclusion is always witnessed by a lasso-word.

For discounted-sum automataA with weight functionγ1 andB with weight func-
tion γ2, assume that we have a finite wordw ∈ Σ∗ such that for some runr1 of A over
w and for all runsr2 of B overw, we have

γ1(r1) + v ·
λ|w|

1 − λ
> γ2(r2) + V ·

λ|w|

1 − λ

wherev (resp.V ) is the minimal (resp. maximal) weight in (the union of)A andB.
Then, we immediately haveLA 6⊑ LB, asLA(w · w′) > LB(w · w′) for all words
w′ ∈ Σω. We say thatw is afinite witnessof LA 6⊑ LB. We claim that there always
exists a finite witness ofLA 6⊑ LB. To see this, consider an infinite wordw∞ such that
LA(w∞) = η1, LB(w∞) = η2, andη1 > η2. Let r1 be an (infinite) run ofA overw∞

whose value isη1. For i > 0, consider the prefix ofw∞ of lengthi. Then, for all runs
r2 of B overw∞, we have

γ1(r
i
1) + V ·

λi

1 − λ
≥ η1 and γ2(r

i
2) + v ·

λi

1 − λ
≤ η2

whereri
1 andri

2 are the prefixes of lengthi of r1 andr2, respectively. Then, a prefix of
lengthi of w∞ is a finite witness ofLA 6⊑ LB if

η1 − (V − v) ·
λi

1 − λ
> η2 + (V − v) ·

λi

1 − λ

which must hold for sufficiently large values ofi. Thus, we have the following theorem.

Theorem 6. The quantitative language-inclusion problem forDisc-automata is co-r.e.

Universality and language equivalence.All of the above results about language in-
clusion hold for quantitative universality and language equivalence also.

4 Quantitative Simulation

As the decidability of the quantitative language-inclusion problems for limit-average
and discounted-sum automata remain open, we introduce a notion of quantitative simu-
lation as a decidable approximation of language inclusion for weighted automata. The
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quantitative language-inclusion problem can be viewed as agame of imperfect infor-
mation, and we view the quantitative simulation problem as exactly the same game, but
with perfect information. For quantitative objectives, perfect-information games can be
solved much more efficiently than imperfect-information games, and in some cases the
solution of imperfect-information games with quantitative objectives is not known. For
example, perfect-information games with limit-average and discounted-sum objectives
can be decided in NP∩ coNP, whereas the solution for such imperfect-information
games is not known. Second, quantitative simulation implies quantitative language in-
clusion, because it is easier to win a game when information is not hidden. Hence, as
in the case of finite automata, simulation can be used as a conservative and efficient
approximation for language inclusion.

Language-inclusion game.Let A andB be two weighted automata with weight func-
tion γ1 andγ2, respectively, for which we want to check ifLA ⊑ LB. The language-
inclusion game is played by achallengerand asimulator, for infinitely many rounds.
The goal of the simulator is to prove thatLA ⊑ LB, while the challenger has the op-
posite objective. The position of the game in the initial round is 〈q1

I , q2
I 〉 whereq1

I and
q2
I are the initial states ofA andB, respectively. In each round, if the current posi-

tion is 〈q1, q2〉, first the challenger chooses a letterσ ∈ Σ and a stateq′1 such that
(q1, σ, q′1) ∈ δ1, and then the simulator chooses a stateq′2 such that(q2, σ, q′2) ∈ δ2.
The position of the game in the next round is〈q′1, q

′
2〉. The outcome of the game is a

pair (r1, r2) of runs ofA andB, respectively, over the same infinite word. The simula-
tor wins the game ifVal(γ2(r2)) ≥ Val(γ1(r1)). To make this game equivalent to the
language-inclusion problem, we require that the challenger cannot observe the state of
B in the position of the game.

Simulation game. The simulation game is the language-inclusion game withoutthe
restriction on the vision of the challenger, that is, the challenger is allowed to ob-
serve the full position of the game. Formally, givenA = 〈Q1, q

1
I , Σ, δ1, γ1〉 and

B = 〈Q2, q
2
I , Σ, δ2, γ2〉, astrategyτ for the challenger is a function from(Q1×Q2)

+ to
Σ×Q1 such that for allπ ∈ (Q1×Q2)

+, if τ(π) = (σ, q), then(Last(π|Q1
), σ, q) ∈ δ1,

whereπ|Q1
is the projection ofπ on Q+

1 . A strategyτ for the challenger isblind if
τ(π) = τ(π′) for all sequencesπ, π′ ∈ (Q1 × Q2)

∗ such thatπ|Q1
= π′

|Q1
. The set

of outcomesof a challenger strategyτ is the set of pairs(r1, r2) of runs such that if
r1 = q0σ1q1σ2 . . . andr2 = q′0σ1q

′
1σ2 . . . , thenq0 = q1

I , q′0 = q2
I , and for alli ≥ 0,

we have(σi+1, qi+1) = τ((q0, q
′
0) . . . (qi, q

′
i)) and(q′i, σi+1, q

′
i+1) ∈ δ2. A strategyτ

for the challenger iswinning if Val(γ1(r1)) > Val(γ2(r2)) for all outcomes(r1, r2)
of τ .

Theorem 7. For all value functions and weighted automataA andB, we haveLA ⊑
LB iff there is no blind winning strategy for the challenger in the language-inclusion
game forA andB.

Given two weighted automataA andB, there is aquantitative simulationof A by
B if there exists no (not necessarily blind) winning strategyfor the challenger in the
simulation game forA andB. We note that for the special cases of Büchi and coBüchi
automata, quantitative simulation coincides withfair simulation[16].
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Corollary 1. For all value functions and weighted automataA and B, if there is a
quantitative simulation ofA byB, thenLA ⊑ LB.

Given two weighted automataA andB, thequantitative simulation problemasks if
there is a quantitative simulation ofA by B.

Theorem 8. The quantitative simulation problem is in NP∩ coNP for LimSup-,
LimInf-, LimAvg-, andDisc-automata.

The proof of Theorem 8 is obtained as follows. The quantitative simulation
problems forLimSup- andLimInf-automata is reduced to perfect-information parity
games; the quantitative simulation problem forLimAvg-automata is reduced to perfect-
information limit-average games; and the quantitative simulation problem forDisc-
automata is reduced to perfect-information discounted-sum games. All reductions are
polynomial time, and the resulting games can all be solved inNP∩ coNP.

5 The Expressive Power of Weighted Automata

We study the expressiveness of different classes weighted automata over infinite words
by comparing the quantitative languages they can define. Forthis purpose, we show
the existence and non-existence of translations between classes of finite and weighted
automata. We will use the following definition. A classC of finite automatacan be
weakly reducedto a classC′ of weighted automata if for everyA ∈ C there exists an
A′ ∈ C′ such thatinfw∈LA

LA′(w) > supw 6∈LA
LA′(w).

5.1 Positive Reducibility Results

We start with the positive results about the existence of reductions between various
classes of weighted automata, most of which can be obtained by generalizing corre-
sponding results for finite automata. Our results also hold if we allow transition weights
to be irrational numbers.

First, it is clear that Büchi and coBüchi automata can be reduced toLimSup- and
LimInf-automata, respectively. In addition, we have the following results.

Theorem 9. Sup-automata can be determinized inO(2n) time; LimInf-automata can
be determinized inO(m · 2n) time. DeterministicSup-automata can be reduced to de-
terministicLimInf-, to deterministicLimSup-, and to deterministicLimAvg-automata,
all in O(n · m) time. LimInf-automata can be reduced toLimSup- and toLimAvg-
automata, both inO(n · m) time.

The reduction fromLimInf- to LimSup-automata (resp. toLimAvg-automata) essen-
tially consists of guessing a positioni and a transition weightv such that only weights
greater thanv are seen after positioni. Once the guess is made, all transitions have
weightv.

All reducibility relationships are summarized in Fig. 4, where the notationD
NyW is

used to denote the classes of automata that are determinizable.

10



q0 q1 sink

a, b, 0

a, b, 0

b, 1

a, 0

a, b, 0

Fig. 2. A nondeterministic limit-average automaton.

5.2 Negative Reducibility Results

We show that all other reducibility relationships do not hold. The most important re-
sults in this section show that(i) deterministic coBüchi automata cannot be reduced
to deterministicLimAvg-automata, deterministic Büchi automata cannot be reduced to
LimAvg-automata, and(ii) neitherLimAvg- nor Disc-automata can be determinized.
Over the alphabet̂Σ = {a, b}, we use in the sequel the boolean languagesLF , which
contains all infinite words with finitely manya’s, andLI , which contains all infinite
words with infinitely manya’s.

The classical proof that deterministic coBüchi automata cannot reduced to deter-
ministic Büchi automata can be adapted to show the following theorem.

Theorem 10. Deterministic coB̈uchi automata cannot be reduced to deterministic
LimSup-automata.

Since deterministicLimAvg- and deterministicDisc-automata can define quantita-
tive languages whose range is infinite, whileLimSup-automata cannot, we obtain the
following result.

Theorem 11. DeterministicLimAvg-automata and deterministicDisc-automata can-
not be reduced toLimSup-automata.

The next theorem shows that nondeterministicLimAvg-automata are strictly more
expressive than their deterministic counterpart. Theorem13 will show that the expres-
sive powers ofLimAvg- andLimSup-automata are incomparable.

Theorem 12. Deterministic coB̈uchi automata cannot be weakly reduced to determin-
istic LimAvg-automata, and therefore they cannot be reduced to deterministic LimAvg-
automata.LimAvg-automata cannot be determinized.

Proof. Consider the languageLF of finitely manya’s, which is obviously accepted by
a DCW. It is also easy to see that the NLAW shown in Fig. 2 definesLF . We show
thatLF cannot be defined by any DLAW to prove the desired claims. By contradiction,
assume thatA is a DLAW with set of statesQ and the initial stateqI that definesLF .
We assume without loss of generality that every stateq ∈ Q is reachable fromqI by a
finite wordwq.

Let α = infw∈LF
LA(w). We claim that allb-cycles (ab-cycle is a cycle inA that

can be executed with onlyb’s) must be such that the average of the weights on the cycle
is at leastα. Indeed, if there is ab-cycle C in A with average weights less thanα,
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then consider a stateq ∈ C and the wordw = wq · bω. We haveLA(w) < α. Since
w = wq · b

ω ∈ LF , this contradicts thatα = infw∈LF
LA(w).

We now show that for allǫ > 0, there existsw′ 6∈ LF such thatLA(w′) ≥ α − ǫ.
Fix ǫ > 0. Let β = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. Let j = ⌈ 6·|Q|·β

ǫ
⌉, and consider the

wordwǫ = (bj · a)ω. A lower bound on the average of the weights in the unique run of
A over(bj · a) is as follows: it can have a prefix of length at most|Q| whose sum of
weights is at least−|Q| ·β, then it goes throughb-cycles for at leastj−2 · |Q| steps with
sum of weights at least(j − 2 · |Q|) ·α (since allb-cycles have average weights at least
α), then again a prefix of length at most|Q| without completing the cycle (with sum of
weights at least−|Q| · β), and then weight fora is at least−β. Hence the average is at
least

(j − 2 · |Q|) · α − 2 · |Q| · β − β

j + 1
≥ α −

6 · |Q| · β

j
≥ α − ǫ;

we used above that|α| ≤ β, and by choice ofj we have6·|Q|·β
j

≤ ǫ. Hence we have
LA(wǫ) ≥ α − ǫ. Sinceǫ > 0 is arbitrary, andwǫ 6∈ LF , we havesupw 6∈LF

LA(w) ≥
α = infw∈LF

LA(w). This establishes a contradiction, and thusA cannot exist. The
desired result follows. �

Theorem 13. Deterministic B̈uchi automata cannot be weakly reduced toLimAvg-
automata, and therefore they cannot be reduced toLimAvg-automata.

Proof. We consider the languageLI of infinitely manya’s, which is obviously accepted
by a DBW.

By contradiction, assume thatA is a NLAW with set of statesQ and initial state
qI that definesLI . We assume without loss of generality that every stateq ∈ Q is
reachable fromqI by a finite wordwq.

Let α = supw 6∈LI
LA(w), andβ = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. We claim that

all b-cyclesC in A must have average weights at mostα; otherwise, consider a state
q ∈ C and the wordw = wq · bω, we haveLA(w) > α which contradicts thatα =
supw 6∈LI

LA(w).
We now show that for allǫ > 0, there existsw ∈ LI such thatLA(w′) ≤ α + ǫ.

Fix ǫ > 0. Let j = ⌈ 3·|Q|·β
ǫ

⌉, and consider the wordwǫ = (bj · a)ω. An upper bound
on the average of the weights in any run ofA over (bj · a) is as follows: it can have
a prefix of length at most|Q| with the sum of weights at most|Q| · β, then it follows
(possibly nested)b-cycles3 for at mostj steps with sum of weights at mostj · α (since
all b-cycles have average weights at mostα), then again a prefix of length at most|Q|
without completing a cycle (with sum of weights at most|Q| · β), and then weight for
a is at mostβ. So, for any run ofA overwǫ = (bj · a)ω, the average weight is at most

j · α + 2 · |Q| · β + β

j + 1
≤ α +

3 · |Q| · β

j
≤ α + ǫ

3 SinceA is nondeterministic, a run overbj may have nested cycles. We can decompose the run
by repeatedly eliminating the innermost cycles.
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Fig. 3.The nondeterministic discounted-sum automatonN .

Hence we haveLA(wǫ) ≤ α + ǫ. Sinceǫ > 0 is arbitrary, andwǫ ∈ LI , we have
infw∈LI

LA(w) ≤ α = supw 6∈LI
LA(w). The desired result follows. �

None of the weighted automata we consider can be reduced toDisc-automata (The-
orem 14), andDisc-automata cannot be reduced to any of the other classes of weighted
automata (Theorem 15, and also Theorem 11).

Theorem 14. Deterministic coB̈uchi automata and deterministic Büchi automata can-
not be weakly reduced toDisc-automata, and therefore they cannot be reduced toDisc-
automata. Also deterministicSup-automata cannot be reduced toDisc-automata.

The proofs of Theorem 14 and 15 are based on the property that the value as-
signed by aDisc-automaton to an infinite word depends essentially on a finiteprefix,
in the sense that the values of two words become arbitrarily close when they have suf-
ficiently long common prefixes. In other words, the quantitative language defined by
a discounted-sum automaton is a continuous function in the Cantor topology. In con-
trast, for the other classes of weighted automata, the valueof an infinite word depends
essentially on its tail.

Theorem 15. DeterministicDisc-automata cannot be reduced toLimAvg-automata.

The next result shows that discounted-sum automata cannot be determinized. Con-
sider the nondeterministic discounted-sum automatonN over the alphabet̂Σ = {a, b}
shown in Fig. 3. The automatonN computes the maximum of the discounted sum of
a’s andb’s. Formally, given a (finite or infinite) wordw = w0w1 . . . ∈ Σ̂∗ ∪ Σ̂ω, let

va(w) =

|w|
∑

i|wi=a

λi and vb(w) =

|w|
∑

i|wi=b

λi

be theλ-discounted sum of alla’s (resp.b’s) in w. ThenLN(w) = max{va(w), vb(w)}
for all infinite wordsw ∈ Σ̂ω. We show thatN cannot be determinized for some
discount factorsλ. The proof uses a sequence of intermediate lemmas.

For σ ∈ Σ̂, let σ = a if σ = b, andσ = b if σ = a. We say that an infinite word
w ∈ Σ̂ω prefersσ ∈ Σ̂ if vσ(w) > vσ(w).

Lemma 1. For all 0 < λ < 1, all w ∈ Σ̂∗, and allσ ∈ Σ̂, there existsw′ ∈ Σ̂ω such
thatw · w′ prefersσ iff vσ(w · σω) > vσ(w · σω).

We say that a finite wordw ∈ Σ̂∗ is ambiguousif there exist two infinite words
w′

a, w′
b ∈ Σ̂ω such thatw · w′

a prefersa andw · w′
b prefersb.
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Lemma 2. For all 0 < λ < 1 andw ∈ Σ̂∗, the wordw is ambiguous iff|va(w) −

vb(w)| < λ|w|

1−λ
.

Intuitively, ambiguous words are problematic for a deterministic automaton because
it cannot decide which one of the two functionsva andvb to choose.

Lemma 3. For all 1
2 < λ < 1, there exists an infinite word̂w ∈ Σ̂ω such that every

finite prefix ofŵ is ambiguous.

Proof. We constructŵ = w1w2 . . . inductively as follows. First, letw1 = a which is
an ambiguous word for allλ > 1

2 (Lemma 2). Assume thatw1 . . . wi is ambiguous for

all 1 ≤ i ≤ k, that is|xi| < λi

1−λ
wherexi = va(w1 . . . wi)−vb(w1 . . . wi) (Lemma 2).

We takewk+1 = a if xk < 0, andwk+1 = b otherwise. Let us show that|xk+1| < λk+1

1−λ
.

We have|xk+1| =
∣

∣|xk| − λk
∣

∣, and thus we need to show that|xk| − λk < λk+1

1−λ
and

−|xk| + λk < λk+1

1−λ
knowing that|xk| < λk

1−λ
. It suffices to show that

λk

1−λ
≤ λk + λk+1

1−λ
and λk − λk+1

1−λ
< 0.

In other words, it suffices that1 ≤ 1 − λ + λ and1 − λ − λ < 0, which is true for all
λ > 1

2 . �

The wordŵ constructed in Lemma 3 could be harmless for a deterministicautoma-
ton if some kind of periodicity is encountered in̂w. We make this notion formal by
definingdiff (w) = va(w)−vb(w)

λ|w| for all finite wordsw ∈ Σ̂∗. It can be shown that if the
setRλ = {diff (w) | w ∈ Σ∗} ∩ ( −1

1−λ
, 1

1−λ
) is finite, then the automatonN can be

determinized [5], where(a, b) denotes the open interval between two realsa andb with
a < b. Lemma 4 shows that this is also a necessary condition.

Lemma 4. For all 0 < λ < 1, if the setRλ is infinite, then there exists no deterministic
Disc-automatonD such thatLD = LN .

Proof. By contradiction, assume thatRλ is infinite and there exists a DDIW D such
thatLD = LN . For all w ∈ Σ̂∗, let Post(w) be the (unique) state reached inD after
readingw. We show that for all wordsw1, w2 ∈ Σ̂∗ such thatdiff (w1), diff (w2) ∈ Rλ,
if diff (w1) 6= diff (w2), thenPost(w1) 6= Post(w2). ThereforeD cannot have finitely
many states.

We show this by contradiction. Assume thatPost(w1) = Post(w2). Thenw1 andw2

are ambiguous by Lemma 2 sincediff (w1), diff (w2) ∈ Rλ. Fori = 1, 2, we thus have
by Lemma 1

LN (wi · a
ω) = va(wi) +

λ|wi|

1 − λ
and LN (wi · b

ω) = vb(wi) +
λ|wi|

1 − λ
.

On the other hand, sincePost(w1) = Post(w2), there existv1, v2, Ka, Kb ∈ R such
that fori = 1, 2,

LD(wi · a
ω) = vi + λ|wi| · Ka and LD(wi · b

ω) = vi + λ|wi| · Kb.
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Fig. 4. Reducibility relations: a classC of automata can be reduced toC′ iff C →∗ C′.

SinceLD = LN , this entails thatLD(wi·a
ω)−LD(wi·b

ω) = LN(wi·a
ω)−LN (wi·b

ω),
and therefore

va(w1) − vb(w1)

λ|w1|
= Ka − Kb =

va(w2) − vb(w2)

λ|w2|

which yields a contradiction. �

We are now ready to prove the following theorem.

Theorem 16. Disc-automata cannot be determinized.

Proof. Let λ∗ be a non-algebraic number in the open interval(1
2 , 1). Then, we show

that the setRλ∗ is infinite, which establishes the theorem by Lemma 4.
By Lemma 2 and Lemma 3, there exist infinitely many finite wordsw ∈ Σ̂∗ such

that diff (w) ∈ Rλ∗ . Sinceλ∗ is not algebraic, the polynomial equationdiff (w1) =
diff (w2) cannot hold forw1 6= w2. Therefore,Rλ∗ is infinite. �

By a careful analysis of the shape of the family of polynomialequations in the above
proof, we can show that the automatonN cannot be determinized for any rational value
of λ greater than12 [5].
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