
Aligators for Arrays ?

(tool paper)

Thomas A. Henzinger1, Thibaud Hottelier2, Laura Kovács3, and Andrey
Rybalchenko4

1IST Austria 2 UC Berkeley 3 TU Vienna 4 TUM

Abstract. This paper presents Aligators, a tool for the generation of universally
quantified array invariants. Aligators leverages recurrence solving and algebraic
techniques to carry out inductive reasoning over array content. The Aligators’
loop extraction module allows treatment of multi-path loops by exploiting their
commutativity and serializability properties. Our experience in applying Aliga-
tors on a collection of loops from open source software projects indicates the
applicability of recurrence and algebraic solving techniques for reasoning about
arrays.

1 Introduction
Loop invariants build a basis for reasoning about programs and their automatic dis-
covery is a major challenge. Construction of invariant equalities over numeric scalar
variables can be efficiently automated using recurrence solving and computer algebra
techniques [15]. A combination of quantifier elimination techniques together with a pro-
gram instrumentation using an auxiliary loop counter variable generalizes the method
of [15] to the construction of invariant inequalities [12]. While the methods of [15,
12] are restricted to reasoning over scalars, recurrence solving and algebraic techniques
can provide a basis for computing invariants over vector data types, e.g., arrays. For a
restricted class of loops that do not contain any branching statements and under non-
deterministic treatment of the loop condition, we can compute universally quantified
array invariants by using recurrence solving over the loop body [13].

In this paper we eliminate the restrictions of [15, 12, 13], and present the Aligators
tool for generating quantified array invariants for loops containing conditional state-
ments that takes loop conditions into account. Quantified loop invariants are inferred
by Aligators based on recurrence solving over array indexes. The obtained invariants
are derived without using pre- and post conditions; the specification of the loop can
be subsequently used further. The invariant inference engine of Aligators relies on two
steps (Section 3.2): (i) it applies full power of inductive reasoning provided by recur-
rence solving over scalar variables and derives the most precise inductive content over
scalars, (ii) it combines recurrence solving and algebraic techniques with the theory
of uninterpreted functions to derive invariant properties over arrays. Due to the exact
computations of the algebraic techniques, Aligators only supports loops with restricted
branching control-flow (Section 3.1).

To make Aligators amenable for practical software verification, we built and inter-
faced Aligators with a loop extraction module (Section 4.1). This module takes as input
? This research was partly supported by the Swiss NSF. The third author is supported by an FWF

Hertha Firnberg Research grant (T425-N23).

2

Program
Code

Fixed-point
abstraction

Serializability
check

Commutativity
check

Simplified
loops

ALIGATORS Quantified
invariants

Loop extraction

Fig. 1. The overall workflow of Aligators.

a large code, and applies path analysis heuristics to turn loops into the format required
by Aligators.

The overall workflow of Aligators is illustrated in Figure 1.
Implementation and Experiments. Aligators is implemented in Mathematica 5.2 [19],
whereas the loop extraction module interfaced with Aligators is written in OCaml [5].
Aligators can be downloaded from

http://mtc.epfl.ch/software-tools/Aligators/

We have successfully applied Aligators on interesting examples involving arithmetic
and array reasoning (Section 4), as well as on a large number of loops extracted from
the Netlib repository (www.netlib.org). The invariants returned by Aligators were
generated in essentially no time, on a machine with a 2.0GHz CPU and 2GB of RAM.
Related Work. Universally quantified invariants are crucial in the verification process
of programs with unbounded data structures – see e.g. [7, 14, 9, 18, 10, 16].

In [14, 9, 18] quantified invariants are inferred by deploying predicate abstraction
over a set of a priori defined predicates. Alternatively, in [10] quantified invariants are
derived by using constraint solving over the unknown coefficients of an a priori fixed
invariant template. Unlike these works, Aligators requires no user guidance in providing
predicates or templates, but it can be applied to loops with a restricted control-flow.

Based on interval-based abstract interpretation, in [7, 11] quantified invariants are
also generated with no user guidance. Unlike these approaches, we do not use abstract
interpretation, and apply simple path analysis to translate multi-path loops into simple
ones. In [16] invariants with quantifier alternations are obtained using a first-order the-
orem prover. Contrarily to [16], we combine uninterpreted functions with recurrence
solving over array indexes, but can only infer universally quantified invariants.

2 Aligators in Action

To invoke Aligators, one uses the following command.

Command 2.1 : Aligators[Loop, IniVal → list of assignments]

Input: Loop1 and, optionally, a list of assignments specifying initial values of scalars
Output: Loop invariant φVar ∧ φArrs , where φVar is a scalar invariant and φArrs is a
quantified invariant over arrays

1 Inputs to Aligators are while-loops as in (1).

3

Benchmark Program Quantified invariant

Copy [7]

i:=0;
while (i < N) do
B[i]:=A[i]; i:=i + 1
end do

∀k. 0 ≤ k<i =⇒ (B[k] = A[k]∧k < N)

Copy Prop [14]

i:=0;
while (i < N) do
A[i]:=0; i:=i + 1
end do;
i:=0;
while (i < N) do
B[i]:=A[i]; i:=i + 1
end do

(∀k. 0 ≤ k<i =⇒ (A[k] = 0∧k < N))
∧
(∀k. 0 ≤ k<N =⇒ (B[k] = A[k]∧k < N))

Init [14]

i:=0;
while (i < N) do
A[i]:=0; i:=i + 1
end do

∀k. 0 ≤ k<i =⇒ (A[k] = 0∧k < N)

Partition [9]

i:=0; j1:=0; j2:=0;
while (i < N) do
if (A[i]≥0)
then C[j1]:=A[i]; j1:=j1 + 1
elseB[j2]:=A[i]; j2:=j2 + 1 end if;
i:=i + 1
end do

(∀k. 0 ≤ k<j1 =⇒ (k < N∧C[k]≥0))
∧
(∀k. 0 ≤ k<j2 =⇒ (k < N∧B[k] < 0))

Part Init1 [14]

i:=0; j:=0;
while (i < N) do
if (A[i]≥0)
thenB[j]:=i; j:=j + 1 end if;
i:=i + 1end do

∀k. 0 ≤ k<j =⇒ (B[k] < N∧A[B[k]]≥0)

Part Init2 [7]

i:=0; j:=0;
while (i < N) do
if (A[i] = B[i])
then C[j]:=i; j:=j + 1end if;
i:=i + 1
end do

∀k. 0 ≤ k<j =⇒ (C[k] < N∧A[C[k]]=B[C[k]])

Permutation

i:=0;
while (i < N) do
B[σ(i)]:=A[i]; ; i:=i + 1
end do

∀k. 0 ≤ k<i =⇒ (B[σ(k)] = A[k]∧k < N)

Vararg [14]

i:=0;
while (A[i] 6=0) do
i:=i + 1;
end do

∀k. 0 ≤ k<i =⇒ (A[k] < 0∨A[k] > 0)

Table 1. Aligators results on benchmarks from [7, 14, 9].

EXAMPLE 2.1 Consider the Partition program [9] given in Table 1. The loop copies
the non-negative (resp. negative) elements of an array A into an array B (resp. into an
array C). The invariant returned by Aligators is listed below.

Input: Aligators[while (i < N) do
Aligators[if (A[i] ≥ 0) then C[j1]:=A[i]; j1:=j1 + 1
Aligators[else B[j2]:=A[i]; j2:=j2 + 1 end if;
Aligators[i:=i + 1 end do,
Aligators[IniVal→ {i:=0; j1:=0; j2:=0}]

Output: (i = j1 + j2) ∧ (N > 0 =⇒ i ≤ N) ∧
(∀k)

(
0 ≤ k < j1 =⇒ (k < N ∧ C[k] ≥ 0)

)
∧

(∀k)
(
0 ≤ k < j2 =⇒ (k < N ∧ B[k] < 0)

)
The above invariant is composed of (i) two quantifier-free linear properties over the
scalars i, j1, and j2, and (ii) two quantified properties over the arrays B and C. Let us
note that the scalar invariant generation method of [15, 12] would fail deriving such a
complex invariant, as first-order reasoning over the arrays B and C would be required.

4

Moreover, due to the presence of conditional statements in the loop body, the technique
of [13] could not be either applied for quantified invariant generation.

3 Invariant Generation with Aligators
Aligators offers software support for automated invariant generation by algebraic tech-
niques over the rationals and arrays.

3.1 Programming Model
Notations. In what follows, K denotes the domain of values of scalar variables (e.g.
integers Z). Throughout this paper, the set of scalar and array variables will respectively
be denoted by Var and Arrs , where Arrs = RArrs ∪WArrs is a disjoint union of the
sets RArrs of read-only and WArrs of write-only array variables.
Expressions. The language of expressions of Aligators’ input contains constants from
K, variables from Var ∪Arrs , logical variables, and some function and predicate sym-
bols. We only consider the arithmetical function symbols +, −, and · as interpreted,
all other function symbols are uninterpreted. Similarly, only the arithmetical predicate
symbols =, 6=, ≤, ≥, < and > are interpreted, all other predicate symbols are treated
as uninterpreted. For an array variable A and expression e, we will write A[e] to mean
the element of A at position e.
Inputs to Aligators. The syntax of Aligators inputs is given below.

while (b0) do
if (b1) then α11; . . . ;α1s1

else . . . else if (bd) αd1; . . . ;αdsd
end if

end do

(1)

where b0, . . . , bd are boolean expressions, and αkl are assignment statements over Var∪
Arrs . For simplicity, we represent (1) by an equivalent collection of guarded assign-
ments [3], as given below.

G1 → α11; . . . ;α1s1

· · ·
Gd → αd1; . . . ;αdsd

, (2)

where formulas Gk are called the guards of the guarded assignments. The loop (2) is a
multi-path loop if d > 1. If d = 1, the loop (2) is called a simple-loop.

Similarly to [13], the following conditions on (2) are imposed:

1. For all k, l ∈ {1, . . . , d}, if k 6= l then the formula Gk ∧Gl is unsatisfiable.
2. If some αku updates an array variable Au ∈ WArrs , and some αkv for u 6= v in

the same guarded assignment updates an array variable Av ∈ WArrs , then Au and
Av are different arrays.

3. The assignments αku’s have one of the following forms:

(a) Array assignments: A[e] := f(Var∪RArrs), (3)

where A ∈ WArrs , e is an expression over Var , and f(Var∪RArrs) is an arbitrary
expression over Var∪RArrs , but contains no write-arrays.

(b) Scalar assignments: x := poly(Var), (4)

5

where x ∈ Var , and poly(Var) is a polynomial expression in K[Var] over Var
such that the total degree of any monomial in x from poly(Var) is exactly 1.

4. If some αku updates a variable v ∈ Var ∪ Arrs , and some αlv with l 6= k updates
the same variable v, then αku is syntactically the same as αlv . That is, variable v is
modified in the same way in the kth and lth guarded assignments.

In what follows, a variable v ∈ Var ∪ Arrs satisfying condition 4 above will
be called a commutable variable. Note that a commutable variable is modified in the
same way in all guarded assignments of (2). That is, updates to a commutable vari-
able are described by only one polynomial expression as given in (4). Reasoning over
commutable variables requires thus no case distinctions between various behaviors on
different guarded assignments of (2). The guarded assignments2 of (2) are called com-
mutable if their common variables are commutable.

3.2 Invariant Inference with Aligators

Invariant Generation over Scalars. Invariant properties over scalars variables are in-
ferred as presented in [15, 12]. Namely, (i) assignments over scalars are modeled by
recurrence equations over the loop counter n; (ii) closed forms of variables as func-
tions of n are derived by recurrence solving; (iii) (all) scalar invariant equalities are
inferred by eliminating n from the closed forms of variables; and (iv) scalar invariant
inequalities over commutable variable are obtained using quantifier elimination over n.
Invariant Generation over Arrays. In our process of quantified invariant generation,
(i) we first rewrite (1) into (2), (ii) generate quantified invariants over non-commutable
array variables for each simple-loop given by a guarded assignment of (2), and (iii) take
conjunction of the quantified invariants to obtain a quantified invariant of (1).
(i) Input loops (1) to Aligators satisfy3 the restrictions 1-4 given on page 4. Hence,
guards are disjoint, and branches are commutable. Internally, Aligators rewrites an input
loop (1) into (2) (as illustrated in Example 3.2), and proceeds with generating invariants
for the simple-loops of (2).
(ii) Aligators next infers quantified invariants for the following simple-loop of (2):

G → α1; . . . ;αs. (5)

W.l.o.g., we assume that (5) contains only one array update, as below:
A[i] := f(Var∪RArrs), where i ∈ Var and A ∈ WArrs are non-commutable. (6)

Based on the programming model given on page 4, since variables i and A are non-
commutable, changes to i and A can only happen on the guarded assignment (5). Re-
currence solving thus can be applied to derive exact closed form representation of i
and A.

Let us denote by n ≥ 0 the loop counter. We write x(n) to mean the value of
x ∈ Var at iteration n. As array updates satisfy the restrictions of Section 3.1, we
write A[x(n)] instead of A(n)[x(n)] to speak about the value of the xth element of A at
iteration n of the loop.

2 respectively, conditional branches of (1)
3 Aligators checks whether an input loop satisfies the restrictions of Section 3.1. If this is not the

case, Aligators returns an error messages about the violated restriction.

6

Based on (5) and (6), at iteration n of (5) the following property holds:

G(n) ∧A[i(n+1)] = f(Var (n+1) ∪ RArrs), (7)

where Var (n+1) = {x(n+1) | x ∈ Var}, and G(n) is the formula obtained by substitut-
ing variables x with x(n) in G. Formula (7) holds at any iteration k upto n. Hence:

(∀k)0 ≤ k ≤ n =⇒ G(k) ∧A[i(k+1)] = f(Var (k+1) ∪ RArrs) (8)

We further eliminate n from (8), as follows. (i) If the closed forms of loop variables is
a linear system in n, linear algebra methods are used to express n as a linear function
p(V ar) ∈ K[V ar]. (ii) Otherwise, Gröbner basis computation [1] is used to compute n
as a polynomial function p(V ar) ∈ K[V ar]. We thus obtain the quantified invariant:

(∀k)0 ≤ k ≤ p(Var) =⇒ G(k) ∧A[i(k+1)] = f(Var (k+1) ∪ RArrs) (9)

EXAMPLE 3.1 Consider i < N ∧A[i] > 0 → C[j1] := A[i]; j1 := j1 + 1; i := i + 1.
Let n ≥ 0 denote its loop counter. Following (8), we have:

i(n) < N ∧A[i(n)] > 0 ∧ C[j(n+1)
1 − 1] = A[i(n+1) − 1],

where j
(n+1)
1 = j

(n)
1 + 1 and i(n+1) = i(n) + 1. Using recurrence solving and replacing

the (final) value j
(n+1)
1 by j1, we obtain n = j1 − 1− j

(0)
1 . It thus follows:

(∀k)0 ≤ k ≤ j1 − 1− j
(0)
1 =⇒ k < N ∧A[k] > 0 ∧ C[k] = A[k].

(iii) To turn (9) into a quantified invariant of (2), we finally make sure that:
- when eliminating n from (8), n is computed as a polynomial function over only non-
commutable scalar variables;
- formula (9) is simplified to contain only non-commutable scalar and array variables.

The quantified invariant of (1) is given by the conjunction of the quantified invari-
ants without commutable variables of each simple-loop of (2).

EXAMPLE 3.2 The main steps for quantified invariant generations with Aligators are
illustrated on the Partition program of Table 1. The initial values of both i and j1 are 0.

(i) Guarded assignments: (ii) Quantified invariants
with commutable variables: without commutable variables:

i < N ∧A[i] ≥ 0 (∀k)0 ≤ k < j1 =⇒ (∀k)0 ≤ k < j1 =⇒
→ C[j1]:=A[i]; k < N ∧A[k] ≥ 0 ∧A[k] = C[k] k < N ∧ C[k] ≥ 0
→ j1:=j1 + 1; i:=i + 1

i < N ∧A[i] < 0 (∀k)0 ≤ k < j2 =⇒ (∀k)0 ≤ k < j2 =⇒
→ B[j2]:=A[i]; k < N ∧A[k] < 0 ∧B[k] = A[k] k < N ∧B[k] < 0
→ j2:=j2 + 1; i:=i + 1

The final invariant of the Partition program is given in Example 2.1.

4 Experimental Results
We report on our experimental results with Aligators, obtained on a machine with
2.0GHz CPU and 2GB of RAM.

Aligators on benchmark examples. We ran Aligators on a collection of benchmark
examples taken from [7, 14, 9]. Our results are summarized in Table 1.

7

4.1 Loop Extraction for Aligators

Aligators supports modular reasoning by analyzing one loop at a time. To run Aligators
on large programs with more than one loop, we built and interfaced Aligators with
a loop extraction module written in OCaml [5]. This module extracts and translates
loops from large C programs into the shape of (1). For doing so, the loop extraction
module takes one complex C program as input, and outputs one or more loops that can
be further fed into Aligators. To this end, three main techniques4 are applied: (i) fixed
point abstraction, (ii) serializability check, and (iii) commutativity check.
Fixed Point Abstraction. Given a loop, the goal of this step is to find the largest se-
quence of loop assignments satisfying the restrictions given in Section 3.1. To this end,
we abstract away all loop assignments that either violate the input requirements of Ali-
gators, or depend on variables whose assignments do not satisfy Section 3.1. For ab-
stracting assignment away, we check if the assignment is side-effect free. If yes, the
assignment can be soundly approximated by an uninterpreted function. We recursively
repeat the previous steps, until a fixed point is reached. As a result, we either obtain an
empty loop body which means that the loop does not fit into our programming model,
or a sequence of assignments that is a sound approximation of the original loop.
Serializability check. Let us denote by ρi the guarded assignment Gi → αi1; . . .;αisi

from (2). The role of the serialization check is to turn, if possible, a multi-path loop (2)
into an equivalent collection of simple-loops.

Using regular expression-like notation, we check whether the set of all possible loop
executions is included in the set L = {ρ∗i1 ; . . . ; ρ

∗
id
| (ρi1 , . . . , ρid

) is a permutation of
(ρ1, . . . , ρd)}. Solving this query involves reasoning in the combined quantifier-free
theory of integers, arrays, and uninterpreted functions, which can be efficiently solved
using SMT solvers. To this end, we make use of the SMT solver Z3 [2].

Note that the serializability check requires the construction of all permutations of
length d over (ρ1, . . . , ρd). Our experimental results show that the number d of loop
paths in practice is small. For the programs we analyzed, more than 80% of the loops
have less than 3 branches, and 5% of the loops have been simplified with the serializ-
ability check.
EXAMPLE 4.1 Consider the loop given below.

i:=1;
for(i:=1; i≤n; i++) do
if (i≤a) then A[i]:=B[i] else A[i]:=0 end if

end do

The result of serializability check on the above loop is a collection of two simple-loops,
as follows.

i := 1 i:=a + 1
while(i≤a) do while(i≤n) do

A[i]:=B[i]; i := i + 1 A[i]:=0; i := i + 1
end do end do

4 The loop extraction module performs other small steps as well – e.g. for-loops are rewritten in
their while-loop format.

8

Program LoC Loops Analyzable Loops Invariants Array Invariants
Gzip 8607 201 100 62 39
Bzip2 6698 260 106 75 35
OggEnc 58413 680 464 185 11

Table 2. The first column is the name of the program analyzed. The second and third columns
give respectively the lines of code and the total number of loops. The fourth column contains the
number of loops that fall into our programming model. The fifth column presents the number of
loops for which invariants were inferred by Aligators, whereas the last column gives the number
of those invariants which describe one or more array content.

Commutativity check. The goal of this step is to collapse multi-path loops (2) with
only commutable variables into a simple-loop. To this end, we check whether the as-
signments of variables are syntactically the same in all branches.
Aligator on large programs. We ran Aligators on two file-compression tools, Gzip [6]
and Bzip2 [17], and on the MP3 encoder OggEnc [4]. The results are presented in Table
2. The array invariants inferred by Aligators express copy/permutation/shift/initialization
relations between two arrays. Our results suggests that Aligators generated invariants
for over 25% of the extracted loops. The second column of Table 2 shows that roughly
half of the loops fits into our programming model. The obtained invariants were gen-
erated by Aligators in essentially no time; Aligators can analyze and reason about 50
loops per second.

5 Conclusion
We describe Aligators, an automated tool for quantified invariant generation for pro-
grams over arrays. Our tool requires no user guidance, it applies recurrence solving to
arrays, and has been successfully applied to generate invariants for loops extracted from
large, non-trivial programs. Further work includes integrating control-flow refinement
techniques, such as [8], into Aligators, and using our tool in conjunction with other
approaches, such as [10, 16], to invariant generation.

References

1. B. Buchberger. An Algorithm for Finding the Basis Elements of the Residue Class Ring of
a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation, 41(3-4):475–511, 2006.

2. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of TACAS, volume 4963
of LNCS, pages 337–340, 2008.

3. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
4. M. Smith et al. The OggEnc Home Page. http://www.xiph.org/, 1994.
5. X. Leroy et al. The Objective Caml system - release 3.11. INRIA, 2008.
6. J. Gailly and M. Adler. The Gzip Home Page. http://www.gzip.org/, 1991.
7. D. Gopan, T. W. Reps, and S. Sagiv. A Framework for Numeric Analysis of Array Opera-

tions. In Proc. of POPL, pages 338–350, 2005.
8. S. Gulwani, S. Jain, and E. Koskinen. Control-flow Refinement and Progress Invariants for

Bound Analysis. In Proc. of PLDI, pages 375–385, 2009.
9. S. Gulwani and A. Tiwari. Combining Abstract Interpreters. In Proc. of PLDI, pages 376–

386, 2006.
10. A. Gupta and A. Rybalchenko. InvGen: An Efficient Invariant Generator. In Proc. of CAV,

pages 634–640, 2009.

9

11. N. Halbwachs and M. Péron. Discovering Properties about Arrays in Simple Programs. In
Proc. of PLDI, pages 339–348, 2008.

12. T. A. Henzinger, T. Hottelier, and L. Kovács. Valigator: A Verification Tool with Bound and
Invariant Generation. In Proc. of LPAR, pages 333–342, 2008.

13. T. A. Henzinger, T. Hottelier, L. Kovács, and A. Voronkov. Invariant and Type Inference for
Matrices. In Proc. of VMCAI, pages 163–179, 2010.

14. R. Jhala and K. L. McMillan. Array Abstractions from Proofs. In Proc. of CAV, pages
193–206, 2007.

15. L. Kovács. Reasoning Algebraically About P-Solvable Loops. In Proc. of TACAS, volume
4963 of LNCS, pages 249–264, 2008.

16. L. Kovács and A. Voronkov. Finding Loop Invariants for Programs over Arrays Using a
Theorem Prover. In Proc. of FASE, pages 470–485, 2009.

17. J. Seward. The Bzip2 Home Page. http://www.bzip.org/, 1996.
18. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate Abstrac-

tion. In Proc. of PLDI, pages 223–234, 2009.
19. S. Wolfram. The Mathematica Book. Version 5.0. Wolfram Media, 2003.

