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Abstract. We compare several languages for specifying Markovian pop-
ulation models such as queuing networks and chemical reaction networks.
These languages —matrix descriptions, stochastic Petri nets, stochas-
tic process algebras, stoichiometric equations, and guarded command
models— all describe continuous-time Markov chains, but they differ ac-
cording to important properties, such as compositionality, expressiveness
and succinctness, executability, ease of use, and the support they provide
for checking the well-formedness of a model and for analyzing a model.

1 Introduction

Markov chains are an omnipresent modeling approach in the applied
sciences. Often, they describe population processes, that is, they op-
erate on an multi-dimensional discrete state space, where the dimen-
sions correspond to certain types of individuals. Depending on the
application area, “individuals” are customers in a queuing network,
molecules in a chemically reacting volume, servers in a computer
network, etc.

Here, we are particularly interested in dynamical models of bio-
chemical reaction networks, such as signaling pathways, gene ex-
pression networks, and metabolic networks. They are an important
emerging application area of continuous-time Markov chains and op-
erate on an abstraction level where a state of the system is given by
an n-dimensional vector of chemical populations, that is, the sys-
tems involves n different types of molecules and the i-th entry is the
number of molecules of type i. Molecules collide randomly and may
undergo certain chemical reactions, which change the state of the
system. Classical modeling approaches in biochemistry are based on
a system of ordinary differential equations that assume a continu-
ous deterministic change of chemical concentrations. During the last
decade, however, various experimental results have shown that the



discreteness and randomness of the chemical reactions have to be
taken into account. Thus, discrete-state Markov models have gained
in importance to describe the dynamics in the cell [32, 37, 41, 34, 44,
46, 47].

Many different formalisms for the specification of Markovian pop-
ulation models exist. Most popular are matrix descriptions, stochas-
tic Petri nets, stochastic process algebras, and languages based on
guarded commands. Moreover, Markov chains for biochemical reac-
tion networks are often specified based on rules for chemical reac-
tions, called stoichiometric equations.

In this paper we give a brief survey on modeling formalisms for
Markovian population models and discuss important syntax-related
aspects, such as compositionality, expressiveness and succinctness,
executability, and well-formedness. We illustrate our considerations
with examples of population models. We highlight that, even though
all specification languages that we consider describe the same mod-
els, the choice of the language has significant implications for the
modeling process itself, but also for the analysis of the model.

2 Continuous-Time Markov Chains

Let S be a countable set. We consider a (homogeneous) continuous-
time Markov chain (X(t))t≥0 on a probability space (Ω,F , P r) with
state space S and transition function

P
(t)
ij = Pr(X(t) = j | X(0) = i), i, j ∈ S, t ≥ 0.

If initial probabilities Pr(X(0) = i) are specified for each i ∈ S, the

transient state probabilities p
(t)
j := Pr(X(t) = j), are given by

p
(t)
j =

∑

i∈S
p

(0)
i · P

(t)
ij .

The transition functions P
(t)
ij of a Markov chain are usually repre-

sented by their derivatives qij = P ′
ij(0) at t = 0, called rates. Here, we

focus on Markov chains arising from population models. We there-
fore rule out “pathological cases” by assuming that the rates are
finite and that

∑

j∈S qij = 0 for all i ∈ S. Note that this ensure

that the sample paths X(t)(ω) are right-continuous step functions



(at least until a certain random point in time). Let Q be the matrix
with components qij . Note that the diagonal elements are nonpos-
itive and the off-diagonal elements are nonnegative. The matrix Q
is called the (infinitesimal) generator of X since, if supi∈S |qii| < ∞,
the transition functions can be “generated” from Q. They are the
unique solution of the Kolmogorov backward equations

P ′(t) = Q · P (t), (1)

where the components of P (t) are the values Pij(t). As a general
solution, this gives

P (t) = exp(Qt) =
∑∞

k=0
(Qt)k/k!.

Algorithms for the computation of the vector p(t) with entries p
(t)
j

are usually based on the numerical integration of the linear system
of differential equations

p′(t) = Q · p(t), (2)

with initial condition p(0). Another approach is the approximation
of the matrix exponential exp(Qt), which gives an approximation of
p(t) = p(0) · P (t) = p(0) · exp(Qt). In the case of an infinite or very
large state space, the computation of p(t) is computationally very
expensive or even infeasible. Accurate approximations are, however,
possible if the model is truncated appropriately.

For every i ∈ S, the limit probability πi = limt→∞ pi(t) exists,
but πi may be zero for all states i ∈ S. Under certain conditions,
however,

∑

i∈S πi = 1 and the vector π with entries πi is computed
as the unique solution of the linear equation system

0 = π · Q,
∑

i∈S
πi = 1. (3)

The distribution π is then called steady-state distribution or station-
ary distribution. Note that in this case πi > 0 for all i ∈ S.

Each Markov chain has an associated state-transition graph,
called intensity graph. It is a directed graph whose node set cor-
responds to the state space of the chain. It has an edge from state
i to state j labeled by qij whenever qij > 0. The Markov chain is
uniquely determined by its intensity graph.
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Fig. 1. The intensity graph of a Poisson process with rate λ.

Example 1. Consider a Markov chain X that has the infinitesimal
generator

Q =







−λ λ 0 . . .

0 −λ λ 0 . . .
...

. . .
. . .

. . .
...






,

where λ > 0. The process X is called Poisson process and is often
used to model the number of arrivals of identical entities during a
time interval [0, t), where λ/t is the average number of arrivals per
time unit. The intensity graph is shown in Fig. 1. ⊓⊔

3 Specifying Continuous-Time Markov Chains

In this section, we focus on the syntax of specification formalisms
for large (or infinite) Markov chains with continuous time that de-
scribe population models, that is, models with state space S = Z

n
+ =

{0, 1, . . .}n, where the i-th state variable represents the number of
instances of the i-th species. Depending on the application area,
“species” stands for types of system components, molecules, cus-
tomers, etc., and the application areas that we have in mind are
chemical reaction networks, performance evaluation of computer sys-
tems, logistics, epidemics, etc.

3.1 Matrix Descriptions

A Markov chain may be specified by defining the elements of its
generator matrix Q.

Example 2. Consider an epidemic process where individuals of a
population are infected by a certain communicable disease. A state
of the system is a pair (x, y) ∈ Z

2
+, where x is the number of in-

fected individuals and y is the number of individuals that are not



infected [38]. Given positive rate constants a, b, c, d, e, the positive
elements of the (infinite) generator matrix Q are given by

q(x,y),(x+1,y) = a for x ≥ 0 and y ≥ 0,
q(x,y),(x−1,y) = b · x for x > 0 and y ≥ 0,
q(x,y),(x,y+1) = c for x ≥ 0 and y ≥ 0,
q(x,y),(x,y−1) = d · y for x ≥ 0 and y > 0,
q(x,y),(x−1,y+1) = e · x · y for x > 0 and y > 0.

All remaining off-diagonal entries are 0 and for each row the element
on the diagonal is the negative sum of the remaining row entries. ⊓⊔
If the matrix exhibits a particular structure, it can also be de-
scribed as the Kronecker product of smaller matrices that describe
parts of the system. A general framework for descriptions based on
the Kronecker product is provided by stochastic automata networks
(SANs) [35, 15]. A stochastic automaton is equivalent to a state-
transition graph in which directed edges are labeled by rates. Sev-
eral automata can interact with each other and the state-transition
graph of the global automaton determines the intensity graph of a
Markov chain. The generator matrix of the Markov chain is then
the Kronecker product of the matrices that represent the different
automata and their interactions (compare also Section 4.1).

3.2 Stochastic Petri Nets

Petri nets are a pictorial language for describing systems of concur-
rent activities. A classical Petri net is a labeled directed bipartite
graph whose node set is the disjoint union of a set P of places and
a set T of transitions. The directed edges, called arcs, are given by
a set A ⊆ (P × T ) ∪ (T × P ) and are labeled with a multiplicity
function l : A → N. Stochastic Petri nets (SPN) [21] are an exten-
sion of classical Petri nets that associate a firing rate λτ with each
transition τ ∈ T .

A Petri net represents an infinite state-transition system with
a set of states called markings. A marking is a function m : P →
N that maps every place of the Petri net to a nonnegative integer
representing the number of tokens in that place. Given a marking m,
a transition τ ∈ T is enabled in m if all places p with an arc a leading
to τ have at least l(a) tokens in m, i.e., m(p) ≥ l(a). Note that
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Fig. 2. Stochastic Petri net of the epidemic process in Example 2.

transitions with no incoming arcs are always enabled. A transition τ
is fired by removing l(a) tokens from every place with an arc a leading
to t and adding l(b) tokens to every place with an arc b coming
from t. The firing of a transition results in a new marking m′ and
corresponds to a transition from m to m′ in the underlying transition
system. In an SPN the firing rate λτ > 0 of transition τ determines
the random delay during which τ has to be enabled before it can
fire. The underlying graph is the intensity graph of a Markov chain
if the transitions are labeled with their respective firing rates.

Example 2 (cont.) Fig. 2 shows a stochastic Petri net for the
epidemic process. The net has two places x and y depicted as circles,
and five transitions depicted as rectangles. (We omit the multiplicity
labeling of the arcs because all arcs have multiplicity 1.) The firing
rate of each transition is given by the transition label. Here, we use
functions that depend on the current marking m. The initial marking
m0 is the empty marking, i.e., m0(x) = m0(y) = 0. ⊓⊔

3.3 Stochastic Process Algebras

Stochastic process algebras can be used to specify continuous-time
Markov chains based on a high-level description language that em-
phasizes the construction of complex processes from simple processes
[25, 19, 5, 36]. They provide several types of operators, such as prefix,
choice, parallel composition, and recursion, in order to support dif-
ferent ways to combine processes. Typically, these languages are ac-
companied by structured operational semantics that defines a state-
transition graph, whose states are process terms. The graph can then
be transformed into the intensity graph of a Markov chain.

Originally, stochastic process algebras were designed to explic-
itly model different molecules of the same species, that is, the model
distinguishes instances of components being in the same local state.
Since for population models this may lead to an enormous blow-up of



the description, symmetry representations have been developed [23,
9]. They support the specification of the local state and number of
instances for a component type. In this way, as in the other lan-
guages, the separate spatial identity of each molecule is hidden on
the syntactical level.

Example 2 (cont.) In Bio-PEPA, the five reactions of the epidemic
process are modeled as five actions (r1 to r5). The two species are
models as two sequential processes (X and Y) that synchronize on
action r5 in the model component. Below we show an input file for
the Bio-PEPA workbench of the epidemic process.

r1 = [ a ];

r2 = [ b * X ];

r3 = [ c ];

r4 = [ d * Y ];

r5 = [ e * X * Y ];

X = r1>> + r2<< + r5<<;

Y = r3>> + r4<< + r5>>;

(X <r5> Y)

The first five lines specify the actions and the corresponding rates.
Line 6 and 7 specify in which reactions the components take part and
what role they play in the reaction. E.g., r1>>, which is a shortcut
for (r1,1) >> X, means X is an reactant in reaction r1 with stoi-
chiometry coefficient 1 and r2<< means X is a product in reaction r2.
The plus operator (+) is the sequential composition operator defin-
ing that the actions are sequentially interleaved. Finally, the last
line specifies that the model is the parallel composition of processes
X and Y that synchronize on reaction r5. ⊓⊔

3.4 Stoichiometric Equations

Markov chain models for networks of biochemical reactions are usu-
ally specified by means of stochiometric equations. A stochiometric
equation describes a reaction type. For instance, A + B → C means
that if a molecule of type A hits a molecules of type B, they may
form a complex molecule C. We call the species that are consumed
by a reaction reactants; in the above example, A and B are reactants.



Assume that the system involves n different chemical species
S1, . . . , Sn. Consider a set {R1, . . . , Rm} of chemical reactions, where
the j-th reaction is given by the stochiometric equation

Rj : lj,1S1 + · · ·+ lj,nSn → kj,1S1 + · · ·+ kj,nSn.

The stoichiometric coefficients lj,1, . . . , lj,n and kj,1, . . . , kj,n are non-
negative integers and describe how many molecules of each type are
consumed and produced by the reaction. In the equation, we may
omit a species if its coefficient is 0, and we may omit coefficients
that are 1. Assume that x = (x1, . . . , xn) is the current state of the
system, that is, we have xi molecules of species i in the system. If a
reaction of type Rj occurs, then the successor state is x + vj , where
the change vector vj is given by vj = (kj,1 − lj,1, . . . , kj,n − lj,n).

For a given state x, an instance of reaction Rj may occur when-
ever there are enough reactants in the system, i.e., whenever all
entries of the vector x − (lj,1, . . . , lj,n) are nonnegative. In this case,
there is a transition in the underlying state-transition graph between
state x and state x+vj .

1 The rate of reaction Rj in state x determines
the corresponding transition label in the intensity graph.

Stochastic Chemical Kinetics. If the reaction Rj is an elementary
reaction, meaning that each instance corresponds to a single mecha-
nistic step, then the transition rate αj(x) between state x and x+vj

is given by

αj(x) = cj ·
∏n

i=1

(

xi

lj,i

)

, (4)

where cj > 0 is a constant. This definition reflects the law of mass
action kinetics, which states that the rate at which a chemical re-
action occurs is proportional to the product of the reactant con-
centrations. Stochastic chemical kinetics considers populations of
chemical species and replaces the product of reactant concentrations
by

∏n
i=1

(

xi

lj,i

)

, which is the number of distinct reactant combina-

tions [18]. Usually, the constant cj appears above the reaction arrow
in the stoichiometric equation.

1 We assume for simplicity that each change vector vj has at least one nonzero entry,
and that all change vectors are distinct.



The following example shows that stoichiometric equations can
also be used to describe population models from other application
areas.

Example 2 (cont.) We describe the epidemic process as a network
of the “reactions”:

R1 : ∅
a
→ Sx R2 : Sx

b
→ ∅ R3 : ∅

c
→ Sy

R4 : Sy
d
→ ∅ R5 : Sx + Sy

e
→ 2Sy

Here, the symbol ∅ means that all stoichiometric coefficients are
zero. Note that if the transition rates are are defined as in Eq. (4),
they agree with the rates of Example 2. ⊓⊔

Since stoichiometric equations are classically used to describe bio-
chemical reactions, we present an example from biology next.

Example 3. An enzyme-catalyzed substrate conversion is specified
by the three reactions R1 : E + S

c1−→ ES, R2 : ES
c2−→ E +

S, R3 : ES
c3−→ E + P. This network involves four chemical species,

namely, enzyme (E), substrate (S), complex (ES), and product
(P ) molecules. The change vectors are v1 = (−1,−1, 1, 0), v2 =
(1, 1,−1, 0), and v3 = (1, 0,−1, 1). For (x1, x2, x3, x4) ∈ Z

4
+, the rate

functions are α1(x1, x2, x3, x4) = c1 ·x1 ·x2, α2(x1, x2, x3, x4) = c2 ·x3,
and α3(x1, x2, x3, x4) = c3 · x3. ⊓⊔

Systems Biology Markup Language. For software tools in systems
biology, a standard language for the specification of systems is the
Systems Biology Markup Language (SBML) [27]. It is an XML-based
format that describes biochemical reaction networks by a list of com-
ponents. Each component may describe dynamic behaviors by reac-
tions, events, and mathematical rules, or give details about reacting
species or compartments. SBML also offers several mechanisms such
as unit and parameter definitions to ensure the unambiguous under-
standing of quantitative descriptions.

Example 3 (cont.) In Fig. 3, we show a part of an SBML de-
scription of the enzyme-catalyzed substrate conversion. (The SBML
description is taken from the SBML homepage [27].) Lines 22–27
define the species ES, P , S, and E. In lines 64–84, we can see the
description of the reaction R3 : ES

c3→E + P . Note that SBML uses
an extended version of stoichiometric equations to describe reactions.
Like a stoichiometric equation, every reaction has a set of reactants



and a set of products. However, the rate function is defined indepen-
dently (cf. Fig. 3, lines 72–83) and need not follow Eq. (4). ⊓⊔

3.5 Guarded Commands

Similar to Petri nets, guarded-command models (GCM) describe the
state transitions of the underlying process. However, unlike Petri
nets, GCM are textual. Often, the set of all transitions can be par-
titioned into classes of transitions. Instead of listing all states, the
modeler describes the possible classes of transitions that may occur.
As a representative for such transition class description, we present
a syntax that is inspired by Dijkstra’s guarded-command language
[14], which has subsequently been used by GCM such as Reactive
Modules [1] and by the language for specifying PRISM models [12,
39]. We describe transition classes by guarded commands that oper-
ate on the state variables of the system. Recall that the state vari-
ables of the system are nonnegative integers representing numbers
of molecules for each species. A guarded command takes the form

[] guard |- rate -> update

where the guard is a Boolean predicate over the variables, which
determines in which states the corresponding transitions are enabled.
The update is a rule that describes the change of the system variables
if a corresponding transition is performed. Syntactically, update is
a list of statements, each assigning to a variable an expression over
variables. Assume that x is a variable. If, for instance, the update
rule is that x is incremented by 1, we write x:=x+1. We assume that
variables that are not listed in the update rule do not change if the
transition is taken. Each guarded command also assigns a rate to the
corresponding transitions, which is a function in the state variables.
We do not fix an expression language for the rate functions here.

Example 2 (cont.) We define a GCM for the epidemic process.

variables x,y

[] true |- a -> x:=x+1

[] (x>0) |- b*x -> x:=x-1

[] true |- c -> y:=y+1

[] (y>0) |- d*y -> y:=y-1

[] (x>0)&(y>0) |- e*x*y -> x:=x-1; y:=y+1
⊓⊔



1 <?xml version="1.0" encoding="UTF-8"?>

2 <sbml level="2" version="3" xmlns="http://www.sbml.org/sbml/level2/version3">

3 <model name="EnzymaticReaction">

4 <listOfUnitDefinitions>

5 <unitDefinition id="per_second">

6 <listOfUnits>

7 <unit kind="second" exponent="-1"/>

8 </listOfUnits>

.. ...

19 <listOfCompartments>

20 <compartment id="cytosol" size="1e-14"/>

21 </listOfCompartments>

22 <listOfSpecies>

23 <species compartment="cytosol" id="ES" initialAmount="0" name="ES"/>

24 <species compartment="cytosol" id="P" initialAmount="0" name="P"/>

25 <species compartment="cytosol" id="S" initialAmount="1e-20" name="S"/>

26 <species compartment="cytosol" id="E" initialAmount="5e-21" name="E"/>

27 </listOfSpecies>

28 <listOfReactions>

.. ...

64 <reaction id="R3" reversible="false">

65 <listOfReactants>

66 <speciesReference species="ES"/>

67 </listOfReactants>

68 <listOfProducts>

69 <speciesReference species="E"/>

70 <speciesReference species="P"/>

71 </listOfProducts>

72 <kineticLaw>

73 <math xmlns="http://www.w3.org/1998/Math/MathML">

74 <apply>

75 <times/>

76 <ci>cytosol</ci>

77 <ci>c3</ci>

77 <ci>ES</ci>

78 </apply>

79 </math>

80 <listOfParameters>

81 <parameter id="c3" value="0.1" units="per_second"/>

82 </listOfParameters>

83 </kineticLaw>

84 </reaction>

85 </listOfReactions>

86 </model>

87 </sbml>

Fig. 3. Part of the SBML description in XML syntax of an enzymatic reaction.



Note that each guarded command specifies infinitely
many transitions. For examples, the guarded command
[] true |- a -> x:=x+1 specifies one transition from each
state, with constant rate a, to a successor state in which the number
of x molecules is incremented and the number of y molecules
remains unchanged.

Example 3 (cont.) The enzyme reaction is specified by the
guarded commands:

variables e,s,es,p

[] (e>0)&(s>0) |- c1*e*s -> e:=e-1; s:=s-1; es:=es+1

[] (es>0) |- c2*es -> es:=es-1; e:=e+1; s:=s+1

[] (es>0) |- c3*es -> es:=es-1; e:=e+1; p:=p+1
⊓⊔

Now, we show how to derive the underlying generator matrix
from a GCM. To simplify the presentation, we assume that the up-
dates of two commands differ whenever there is a state in which
both guards are true. Moreover, we do not consider commands with
empty updates, because “self-loops” do not alter the dynamics of
a Markov chain. Then, each guarded command determines an en-
try in the row of a state s in the generator matrix whenever the
guard is true in s. Assume that the state space of the underly-
ing Markov chain is S = Z

n
+, and G ⊆ S is the subset where the

guard is true. Furthermore, s = (s1, . . . , sn) and the update is a
function u : G → S. Then qs,u(s) = r(s), where r : G → R≥0

is the rate function of the command. For instance, in Example 2,
G = {(x, y) ∈ Z

2
+ | x > 0 and y > 0} is the guard set of the last

command. The update function is u(x, y) = (x − 1, y + 1), and the
rate function is r(x, y) = e · x · y, which yields the matrix entries
q(x,y),(x−1,y+1) = e · x · y for all x > 0 and y > 0.

4 Properties of Specification Languages

In this section, we discuss several properties of specification lan-
guages which are important for the construction and the analysis
of a model. We focus on the languages mentioned in the previous
section.
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Fig. 4. Composition of stochastic Petri nets.

4.1 Compositionality

Compositionality facilitates the description of complex systems. A
compositional language allows the modular description of a system
by combining submodels that describe parts of the system. Moreover,
a modular description can be advantageous for the analysis of the
model, e.g., for compositional aggregation techniques [6].

Matrix Descriptions. We can construct the generator matrix Q of
the epidemic process in Example 2 in a compositional way. We define
the three matrices A = diag([1 1 1 . . .], 1), B = diag([0 1 2 . . .], 1),
C = diag([0 1 2 . . .],−1), where for k ∈ Z the notation diag(v, k)
refers to a matrix whose nonzero elements are the elements of the
vector v that appears on the k-th diagonal of the matrix (negative
values indicate that the vector appears below the main diagonal).
Then the matrix

Q̂ = ((a · A + b · C) ⊕ (c · A + d · C)) + e · (C ⊗ B)

agrees with Q except for the main diagonal. Thus, if 1 is the column
vector with all entries equal to 1, then Q = Q̂ − diag(Q̂ · 1, 0). The
matrix Q̂ describes a network of two stochastic automata. The first
automaton represents the state variable x, and (a·A+b·C) defines its
local transitions. The second automaton represents the state variable
y, and (c ·A + d ·C) defines its local transitions. Finally, e · (C ⊗B)
describes the synchronous transitions of the network.

Thus, the composition of models with matrix representation re-
quires matrix operations such as matrix sum, Kronecker product,
and Kronecker sum.

Stochastic Petri Nets. In Fig. 4, we show the stochastic Petri
nets of three subsystems of Example 2. Their combination yields
the model shown in Fig. 2. The composition of Petri nets hinges on
the identity of the places, because places with equal labels are col-
lapsed. Thus, renaming of variables may be necessary. In the com-
posite model, the original models are often not clearly separable.



Stochastic Process Algebras. Compositionality is one of the most
important aspect of process calculi. Process algebras are equipped
with various operators that can be used to combine process terms.
This facilitates the description of different forms of interaction be-
tween subsystems. For instance, a detailed discussion on synchronous
interaction, we refer to [24]. Note that in the Bio-PEPA example in
the previous section, the epidemic process is the composition of the
two process terms X and Y.

Stoichiometric Equations. As for Petri nets, sets of stoichiometric
equations may be joined, where the interfaces are specified by the
names of the chemical species. For instance, the composition of the
three networks M1, M2, M3 of reactions specified by

M1 M2 M3

R1 : ∅
a
→ Sx R1 : ∅

c
→ Sy R1 : Sx + Sy

e
→ 2Sy

R2 : Sx
b
→ ∅ R2 : Sy

d
→ ∅

yields the description of the epidemic process in Example 2. Here,
the composite model is constructed simply by the union of reactions.

Guarded Commands. Again, we consider Example 2. The GCM
for the subsystems we discussed above are

variables x

[] true |- a -> x:=x+1

[] (x>0) |- b*x -> x:=x-1

variables y

[] true |- c -> y:=y+1

[] (y>0) |- d*y -> y:=y-1

variables x,y

[] (x>0)*(y>0) |- e*x*y -> x:=x-1; y:=y+1

Similar as for stoichiometric equations, two GCM can be composed
by a simple union of the guarded commands, where variables may
have to be renamed.

4.2 Expressiveness and Succinctness

Two important properties of a specification language are its expres-
sive power and its succinctness. For example, language A is as ex-



pressive as language B if every model that can be specified in B can
also be specified in A. Of two equally expressive language, one may
be more succinct than the other. For instance, if for some models
there are descriptions in A that are exponentially smaller than all
descriptions in B, then on these models, A is exponentially more
succinct than B. The expressiveness and succinctness of specifica-
tion languages can be compared by studying translations between
languages and the cost of such translations. Other questions that
fall under this topic concern the ease of extending a language to gain
expressive power, and an independent characterization of which se-
mantic objects (i.e., continuous-time Markov chains that arise from
population models) can be described by expressions within a given
formal syntax.

To our knowledge, no systematic and complete comparison be-
tween the various languages for describing population models has
been carried out, and we make here only a few remarks.

Matrix Descriptions. The expressive power of a matrix descrip-
tion depends on the exact syntax of expressions for describing ma-
trix entries and, in the case of infinite dimension, on the syntax
for describing sets of entries. As first step in an analysis procedure,
many other languages for specifying population models are trans-
lated into matrix descriptions. The translation from higher-level lan-
guages such as guarded commands often results in a blow-up of the
size of the description.

Stochastic Petri Nets. A stochastic Petri net can be transformed
into a guarded command model if we associate a variable with each
place and a guarded command with each transition. Many exten-
sions of stochastic Petri nets have been developed, such as general-
ized stochastic Petri nets [31], fluid stochastic Petri nets [26], etc.
They can be used to describe stochastic processes that are not nec-
essarily Markov chains. There is, however, we know of no extension
of Petri nets that can specify infinitely branching Markov chains,
whose intensity graph contains states with an infinite number of
out-going transitions. Moreover, even though firing rates may be
marking dependent, the expression syntax may not allow arbitrary
rate functions.



Stochastic Process Algebras. Stochastic process algebras such as
PEPA [25], TIPP [19], EMPA [5] and the stochastic pi-calculus [36]
consider constant transition rates, i.e., transition rates do not depend
on the state variables. This is because these languages originally were
not designed for specifying population models. The extension Bio-
PEPA [9] addresses this shortcoming, as was shown in the examples
discussed in the previous section. Although most stochastic process
algebras provide limited support for rate functions, they have re-
cursion operators for specifying Markov chains for which no basic
guarded command model can be constructed. The usefulness of such
operators, however, depends on the application area.

Stoichiometric Equations. While stoichiometric equations are
widely used to model networks of biochemical reactions, some mod-
els —such as the bistable toggle switch shown below— have rate
functions that differ from Eq. (4). Thus, they cannot be described
in the classical stoichiometric style.

Example 4. The bistable toggle switch is a prototype of a genetic
switch with two competing repressor proteins and four reactions [17,
45]. It involves two chemical species, A and B, and four reactions.
The reactions are ∅ → A, A → ∅, ∅ → B, and B → ∅. Let x =
(x1, x2) ∈ N

2
0. The rate functions are α1(x) = c1/(c2 + x2

2), α2(x) =
c3 · x1, α3(x) = c4/(c5 + x2

1), and α4(x) = c6 · x2. Here, the values
c1, c2, c4, and c5 are positive constants that determine the mutual
repression of A and B. The values c3 and c6 are positive constants
that determine at which rate degradation of molecules occurs. The
toggle switch can be specified using SBML syntax, as SBML provides
more flexibility than stoichiometric equations. ⊓⊔

A set of stoichiometric equations can always be transformed into a
guarded command model or a stochastic Petri net. The number of
chemical species corresponds to the number of variables (or places),
and each reaction induces a guarded command (or transition).

Guarded Commands. A guarded command model can be trans-
formed into a stochastic Petri net, where each command corresponds
to a transition and each variable to a place. Note that this transfor-
mation is only possible if the guards are lower bounds on the state
variables. Guarded command models are similar to stochastic Petri
nets in that they allow rate functions that depend on the state vari-



ables. For instance, we can describe Example 4 using the following
commands:

variables x1,x2

[] true |- c1/(c2+x2^2) -> x1:=x1+1

[] x1>0 |- c3*x1 -> x1:=x1-1

[] true |- c4/(c5+x1^2) -> x2:=x2+1

[] x2>0 |- c6*x2 -> x2:=x2-1

The limitations of basic guarded command models are similar to
those of stochastic Petri nets; for example, infinitely branching
Markov chains cannot be described by specifications consisting of
finitely many guarded commands.

4.3 Executability

For the analysis of a model it is important that we can easily com-
pute the direct transition successors of a given state from the model
description. This allows us to “execute” the model, by repeatedly
applying the next-state function [16].

Stochastic Petri Nets and Stochastic Process Algebras. Petri net
and process algebra models provide a high-level description that is
usually not directly executable. For a given marking in a stochastic
Petri net, we have to inspect each place and each arc in order to
determine the enabled transitions as well as their firing rates. Sim-
ilarly, for a given stochastic process term, we have to consider each
subterm and compute all possible transitions and their rates. Then,
the composition rules determine the possible global transitions of
the system and their rates. Therefore, most tools for the analysis of
Markov chains with high-level specification languages construct an
intermediate low-level model, such as a matrix representation [8, 4,
30, 29].

Guarded Commands and Stoichiometric Equations. For lan-
guages based on transition classes, such as guarded commands, the
construction of an intermediate low-level model is not necessary. This
i one of the main strengths of guarded commands. For a given state,
an on-the-fly calculation of all possible successor states and tran-
sition rates can be performed by iterating over the set of guarded
commands and calling their update and rate functions [22]. Note
that for stoichiometric equations we have to store for each reaction



Rj the change vector vj , the rate function αj , and the number of
necessary reactant molecules. This is essentially the representation
provided by guarded commands.

4.4 Well-formedness

In Section 3, we discussed different formalisms for the specification of
a Markov chain. In most languages, however, it is possible to specify
models whose underlying intensity graph (or generator matrix) do
not uniquely determine a Markov chain. This is due to the fact that
the Kolmogorov backward equations (see Eq. (1)) may not have a
unique solution. In Section 2, we used the following sufficient but
not necessary condition:

supi∈S |qii| < ∞ (5)

If the modeling formalism allows us to specify transition rates that
are functions in the state variables, then this condition may not
be fulfilled. Note that this can only occur if the number of reachable
states is infinite. For instance, the condition in Eq. (5) is not satisfied
in Example 2. In the sequel we discuss conditions that are weaker
than Eq. (5) but still ensure a unique solution to Eq. (1). We focus
on conditions on the matrix Q and refer to the entries of Q as qij. For
the nonpositive diagonal entries, we use the abbreviation qi = −qii.

A generator matrix Q is called stable if all entries are finite, and
conservative, if all rows sum up to zero [3]. In most of the specifica-
tion languages, stability and conservation of the underlying genera-
tor matrices are guaranteed by construction. Only models specified
as matrix descriptions have to be checked separately.

A conservative and stable generator matrix that has a unique
solution to the Kolmogorov backward equations is called regular.
The following criterion is sufficient and necessary for a generator
matrix to be regular.

Theorem 1 (Reuter’s Criterion). A stable and conservative gen-
erator Q on S is regular if and only if for any real λ > 0, the system
of equations

∑

j∈S,j 6=i
qijzj = (λ + qi)zi for all i ∈ S (6)

admits no nonnegative bounded solution other than the trivial one.



Example 5. Consider a model with the following guarded command.

x>0 |- 2^x -> x:=x+1

Recall that this model specifies a generator matrix Q with the fol-
lowing non-zero entries: qi(i+1) = 2i and qii = −2i for all i > 0. Then,
we obtain for Q the following equations from (6):

2izi+1 = (λ + 2i)zi for all i > 0.

Applying simple transformations allows us to express the solutions
for i > 1 in terms of z1 by zi = Π i−1

k=1(
λ
2k +1)z1. We choose λ = z1 = 1,

then it remainds to show that zi = Π i−1
k=1(

1
2k + 1) is bounded for all

i > 1. Since zi = eln(zi), it suffices to show that ln(Π i−1
k=1(

1
2k + 1)) =

∑i−1
k=1 ln( 1

2k + 1) ≤
∑i−1

k=1
1
2k ≤ 1

1−1/2
− 1 = 1 is bounded for all i > 1.

This shows that our model has a nontrivial bounded solution and
we can conclude that Q is not regular. ⊓⊔

Since showing that Reuter’s criterion is true for a model is rather
difficult, we discuss another condition that is sufficient but not nec-
essary. The idea is to approximate the infininte unbounded generator
matrix Q by a sequence of bounded submatrices.

Theorem 2 ([3] Corollary 2.16). Let Q be a conservative gen-
erator matrix over the state space S and let S1, S2, . . . be a se-
quence of subsets of S such that S1 ⊆ S2 ⊆ . . . , ∪∞

r=1Sr = S, and
supi∈Sr

qi < ∞. Suppose that zj ≥ 0, j ∈ S are such that

1. limr→∞ infj 6∈Sr
zj = ∞, and

2. there λ ∈ R such that
∑

j 6=i qijzj ≤ (λ + qi)zi for all i ∈ S.

Then Q is regular.

Given a suitable sequence Sr and values zj, the sum and the
number of conditions we have to check for regularity are infinite.
The chosen syntax for the model description may facilitate the regu-
larity check. For instance, in a GCM, it suffices to let the sum range
over the finite set of guarded commands. We can use the guards to
partition the state space into a finite number of sets such that we
have to check a single condition for each set.



x

y

. . .

. . .

. . .

P1

P2

P3

P4

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1, 1)

Fig. 5. State space partitioning w.r.t. the guarded command model of the epidemic
process.

Example 2 (cont.) Recall the GCM of the epidemic process.

variables x,y

[] true |- a -> x:=x+1

[] (x>0) |- b*x -> x:=x-1

[] true |- c -> y:=y+1

[] (y>0) |- d*y -> y:=y-1

[] (x>0)&(y>0) |- e*x*y -> x:=x-1; y:=y+1

We use the four guards to partition the state space into four sets
P1, P2, P3, P4, as shown in Fig. 5 by the dashed lines. Note that for
suitable expression languages for the guards, we can always find this
partitioning automatically. Now, for each set, we can check The-
orem 2 using the corresponding guarded commands. For instance,
in P3 (right lower corner in Fig. 5), the first three guarded com-
mands are enabled, and the second condition in Theorem 2 rewrites
to a·f(x+1, y)+b·x·f(x−1, y)+c·f(x, y+1) ≤ (λ+a+b·x+c)·f(x, y),
where the functions f refers to the values zi, i ∈ S. With f(x, y) =
x + y + 1 and Sr = {(x, y) | f(x, y) ≤ r}, which satisfy Condition 1
in Theorem 2, we obtain a ·(x+y+2)+b ·x ·(x+y)+c ·(x+y+2) ≤
(λ+a+b·x+c)·(x+y+1),which is the same as a−b·x+c ≤ λ·(x+y+1)
and true for (x, y) ∈ P3 if λ = a + c. ⊓⊔

In a similar way, it is possible to exploit the chosen syntax in
order to decide whether the limit probabilities πi = limt→∞ pi(t) of
the Markov chain form a distribution. We refer to [3] for criteria that
ensure the existence of a limit distribution as well as that it can be
calculated according to Eq. (3).

In summary, GCM offer an efficiently checkable sufficient condi-
tion for regularity and the existence of the limit probabilities.



5 Analysis of Continuous-time Markov Chains

For the analysis of Markov chains we distinguish transient and
steady-state analysis. The former refers to the computation of the
vector p(t) which contains the probabilities P (X(t) = x) for each
state x reachable from a given initial distribution. Often, p(t) is
computed at several time instances t of interest. Steady-state analy-
sis requires the computation of the limiting behaviour of the Markov
chain, i.e., of the probability vector limt→∞ p(t).

There are three different approaches to the analysis of
continuous-time Markov chains, namely, analytical solutions, numer-
ical solutions, and simulation. Since analytical solutions can only be
obtained for Markov chains with a very simple structure, we concen-
trate on the latter two approaches. Numerical solutions are based on
an exploration of the state space which proceeds in a breadth-first
search manner, by moving the probability mass through the state
space. In contrast, simulation of Markov chains is a special case of
the Monte Carlo method, which relies on the repeated generation of
random sample paths in the underlying state-transition graph.

5.1 Simulation

Monte-Carlo simulation of Markov chains is based on the idea of
generating a number of trajectories X(t)(ω) using pseudo-random
numbers [2]. Then, probabilities and expectations of certain random
variables can be statistically estimated. The main advantage of sim-
ulation is that the memory requirements are low and therefore the
analysis of systems of arbitrary size is possible. In order to achieve
a high accuracy, however, a large number of trajectories have to be
generated, which is very time consuming and often infeasible [13].

For the generation of trajectories, an executable model descrip-
tion is advantageous, as this will speed up the time needed for con-
structing each step of a trajectory.

5.2 Numerical Solutions

Several tools exist that provide algorithms for the numerical solution
of continuous-time Markov chains [30, 4, 29, 8]. They use a matrix
description with is obtained from a high-level modeling formalism



such as stochastic Petri nets [4, 8], guarded command languages [30,
29], or stochastic process algebra [30, 29]. The generator matrix of
the Markov chain is stored either symbolically using multi-terminal
BDDs [10] or sparse matrix packages are used. Moreover, if the size
of the generator matrix exceeds the available memory capacity the
matrix is stored as a Kronecker product of smaller matrices.

The implemented algorithms for the computation of p(t) are ei-
ther based on the solution of Eq. (2) or a discretization of the Markov
chain. In the former case, numerical integration methods or meth-
ods based on a Krylov subspace construction are applied [42]. They
require the construction of the generator matrix Q, which is often
infeasible for large Markov chains. It is, however, possible to exploit
the structure of the Markov chain and approximate the solution by
successively considering submatrices of Q [22].

During the discretization procedure, also called uniformiza-
tion [28, 20], a discrete-time Markov chain is constructed which
has essentially the same transition graph structure as the original
continuous-time Markov chain. The idea behind uniformization is
that the maximum of the diagonal entries of the generator matrix
can be used to “normalize” the time that the process remains in a
state. Thus, an a-priori exploration of the state space is necessary
to apply uniformization. For large Markov chains the memory re-
quirements are can be prohibitive, even if sparse matrix structures
or symbolic representations are used. Therefore variants of the uni-
formization method have been developed which exploit a Kronecker
representation of the matrix [7].

Most formalisms allow us to specify an infinite number of reach-
able states, but are limited to finite models for their numerical anal-
ysis, because the analysis requires the enumeration of all reachable
states and the construction of the generator matrix. An algorithm
that completely avoids the construction of any matrix and exploits
a guarded command description has been proposed recently in [13].
It can be used for the approximate analysis of infinite-state systems
and does not suffer from excessive memory requirements, at least for
systems where the significant part of the probability mass is concen-
trated on a manageable subset of states. The proposed algorithm is
enhanced by the executability properties of the guarded command
description.



For the computation of steady-state measures, most methods also
require the a-priori construction of the generator matrix from the
Markov chain specification. If the state space is large, direct meth-
ods for the solution of Eq. (3) are inefficient, and iterative meth-
ods such as the Jacobi, Gauss-Seidel, or SOR method must be ap-
plied [42]. Many iterative methods have been adapted so that they
exploit a Kronecker representations of the generator matrix [43, 33].
Other approaches are based on on-the-fly techniques [11] or reduced
state spaces that are obtained by exploiting symmetries in the model
structure and tailoring to the variable in question [40].

6 Conclusions

There are many different languages for describing Markov chains
with continuous time. The choice of an appropriate syntax usu-
ally depends on the application area. Guarded commands provide
a natural language for the description of population models. They
facilitate the specification of such models, because they are compo-
sitional, succinct, and provide sufficient expressive power. Moreover,
they support well-formedness checks and allow a direct execution of
the model.
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19. N. Götz, U. Herzog, and M. Rettelbach. Tipp – a language for timed processes

and performance evaluation. report Technical Report 4/92, IMMD VII, University
of Erlangen-Nurnberg, 1992.

20. D. Gross and D. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research, 32(2):926–
944, 1984.

21. P. J. Haas. Stochastic Petri Nets: Modelling, Stability, Simulation. Springer, 2002.
22. T. Henzinger, M. Mateescu, and V. Wolf. Sliding window abstraction for infinite

Markov chains. In Proc. CAV, LNCS. Springer, 2009. To appear.
23. H. Hermanns. An operator for symmetry representation and exploitation in

stochastic process algebras. In Proc. of PAPM 97, pages 55–70, 1997.
24. J. Hillston. The nature of synchronisation. In Proc. of PAPM’94, pages 51–70,

1994.
25. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge

University Press, 1996.
26. G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. Fluid stochastic

Petri nets: Theory, applications, and solution techniques. European Journal of

Operational Research, 105(1):184–201, 1998.
27. M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, and H. Kitano. The sys-

tems biology markup language (sbml): a medium for representation and exchange
of biochemical network models. BIOINFORMATICS, 19(4):524–531, 2003.

28. A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skandinavisk

Aktuarietidskrift, 36:87–91, 1953.
29. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In

Proc. of QEST’05, pages 243–244. IEEE Computer Society, 2005.
30. M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic model check-

ing for performance and reliability analysis. ACM SIGMETRICS Performance

Evaluation Review, 36(4):40–45, 2009.



31. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with generalized stochastic petri nets. SIGMETRICS Perform. Eval. Rev., 26(2):2,
1998.

32. H. H. McAdams and A. Arkin. It’s a noisy business! Trends in Genetics, 15(2):65–
69, 1999.

33. T. D. P. Buchholz. Block SOR preconditioned projection methods for Kronecker
structured Markovian representations. SIAM Journal on Scientific Computing,
26(4):1289–1313, 2005.

34. J. Paulsson. Summing up the noise in gene networks. Nature, 427(6973):415–418,
2004.

35. B. Plateau. On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In Proc. of the Sigmetrics Conference on Measurement

and Modeling of Computer Systems, pages 147–154, 1985.
36. C. Priami. Stochastic pi-calculus. The Computer Journal, 38(7):578–589, 1995.
37. C. Rao, D. Wolf, and A. Arkin. Control, exploitation and tolerance of intracellular

noise. Nature, 420(6912):231–237, 2002.
38. G. E. H. Reuter. Competition processes. In In Proc. 4th Berkeley Symp. Math.

Statist. Prob., volume 2, pages 421–430. University of California Press, Berkeley,
1961.

39. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph

Series. American Mathematical Society, 2004.
40. W. H. Sanders, E. Y, and J. Meyer. Reduced base model construction methods for

stochastic activity networks. In Proceedings of the Third International Workshop

on Petri Nets and Performance Models, volume 11, pages 74 – 84, 1989.
41. R. Srivastava, L. You, J. Summers, and J. Yin. Stochastic vs. deterministic mod-

eling of intracellular viral kinetics. Journal of Theoretical Biology, 218:309–321,
2002.

42. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, 1995.

43. W. J. Stewart, K. Atif, and B. Plateau. The numerical solution of stochastic
automata networks. European Journal of Operational Research, 86(3):503–525,
1995.

44. P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions to
stochasticity in gene expression. Proceedings of the National Academy of Science,

USA, 99(20):12795–12800, 2002.
45. T. Tian and K. Burrage. Stochastic models for regulatory networks of the genetic

toggle switch. Proc. Natl. Acad. Sci. USA, 103(22):8372–8377, May 2006.
46. T. E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in

vivo reactions. Computational Biology and Chemistry, 28:165–178, 2004.
47. D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall, 2006.


