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Abstract

Molecular noise, which arises from the randomness of the discrete events in the
cell, significantly influences fundamental biological processes. Discrete-state
continuous-time stochastic models (CTMC) can be used to describe such effects,
but the calculation of the probabilities of certain events is computationally expen-
sive.

We present a comparison of two analysis approaches for CTMC. Onone hand,
we estimate the probabilities of interest using repeated Gillespie simulation and
determine the statistical accuracy that we obtain. On the other hand, we apply
a numerical reachability analysis that approximates the probability distributions
of the system at several time instances. We use examples of cellular processes
to demonstrate the superiority of the reachability analysis if accurate results are
required.

1. Introduction

The traditional approach for a dynamical model of cellular reaction networks
is based on the assumption that the concentrations of the chemical species change
continuously and deterministically in time. During the last decade, however,
stochastic models with discrete state spaces have seen growing interest [9, 31,
35, 36, 46, 48, 50, 53]. The reason is that they take into account the effects of
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molecular noise in the cell. Molecular noise has a significant influence on impor-
tant processes such as gene expression [3, 8, 25, 30, 33, 49],decisions of the cell
fate [1, 28, 29], and circadian oscillations [2, 16, 17].

An appropriate modeling approach for systems that are subject to molecular
noise is a discrete-state continuous-time Markov process,also calledcontinuous-
time Markov chain(CTMC). This is particularly evident in the presence ofintrin-
sic noisearising from random microscopic events in the cell, such as the location
of molecules or the order of the reactions. As opposed to continuous models, the
discrete-state stochastic model is able to capture the discreteness of the random
events in the cell.

The evolution of such a CTMC is given by a master equation that is derived
according to Gillespie’s theory of stochastic chemical kinetics [13]. Since the
state space grows exponentially in the number of involved chemical species, the
state space of the CTMC is large, which renders its analysis difficult. Moreover,
the discrete structure becomes even larger when the number of molecules in the
system grows. If the populations of certain chemical species are large, their ef-
fect on the system’s variance is small and they can be approximated assuming a
continuous deterministic change. For species with small populations, however, a
continuous approximation is not appropriate and other approximation techniques
are necessary to reduce the computational effort of the analysis.

Besides the computation of cumulative measures such as expectations and
variances of the populations of certain chemical species, the computation of event
probabilities is important for several reasons. First, cellular process may decide
probabilistically between several possibilities, e.g., in the case of developmental
switches [1, 19, 36]. In order to verify, falsify, or refine the mathematical model
based on experimental data, the likelihood for each of thesepossibilities has to be
calculated. But also full distributions are of interest, such as the distribution of
switching delays [30], the distribution of the time of DNA replication initiation at
different origins [34], and the distribution of gene expression products [52]. Fi-
nally, many parameter estimation methods require the computation of the poste-
rior distribution because means and variances do not provide enough information
to calibrate parameters [21].

Two different families of computational approaches have been proposed and
used to estimate event probabilities and approximate probability distributions. The
first kind of approach is based on numerical simulation, i.e., the generation of
many sample trajectories (orsimulation runs) of the system. The second kind
of approach is based on numerical reachability analysis, i.e., the propagation of
the probability mass through the state space. The former approach is known as
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Gillespie simulation[12], in which pseudo-random numbers are used to simulate
molecular noise. Measures of interest are obtained via statistical output analysis.
The main advantage of simulation is that it is easy to implement and the gener-
ation of trajectories is not limited by the size of the state space. Moreover, the
precision level of the method can be easily adjusted by performing more or fewer
simulation runs. For the computation of the probability of certain events, how-
ever, simulative approaches become computationally expensive, because a large
number of runs have to be carried out to bound the statisticalerror appropriately.
For estimating event probabilities, a higher precision level is necessary than for
estimating cumulative measures such as expectations, and simulation becomes ex-
pensive because doubling the precision requires four timesmore simulation runs.

In contrast, approaches based on a numerical reachability analysis approxi-
mate probability distributions of the CTMC. As opposed to a statistical estimation
of probabilities, which yields an indirect solution, the master equation is numer-
ically solved by integrating the system’s behavior over time. Standard numeri-
cal techniques are impractical for many systems because of the enormous size
of the state space. Recently, however, more sophisticated numerical approxima-
tion methods have been proposed, which solve the system in aniterative fash-
ion and consider only subsets of the state space during any given time interval
[5, 22, 32, 44]. They are significantly more efficient than global analysis be-
cause they use localization optimizations (such as “sliding windows”) and dy-
namic adaptation (“on-the-fly” generation of windows). These methods efficiently
compute the probability distribution of large CTMC at several time instances up
to a small approximation error. They can also be used for infinite-state systems.

In this paper, we evaluate and compare the performance of thetwo different
approaches for the computation of probabilities of certainevents, i.e., the statis-
tical estimation using simulation and the approximation using a numerical reach-
ability analysis. For the latter we use a particular algorithm as a representative
of the whole family of numerical analysis algorithms, because we have found it
to perform best. Similar to the sliding-window method [22],our algorithm per-
forms a sequence of local analysis steps on dynamically constructed abstractions
of the system. The main improvement over the sliding-windowmethod is that
our algorithm is based on adaptive uniformization [51], which allows us to con-
sider arbitrary sets of significant states, i.e., they may belocated at different parts
of the state space and are not restricted to a specific window shape. Moreover,
adaptive uniformization is more robust if the system under study is stiff, i.e., if the
chemical reactions occur at time scales that differ by several orders of magnitude.
In contrast to [22], here, for the first time, we perform a systematic experimental
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performance comparison of a numerical reachability analysis with simulation.
The first example that we consider is a model of intracellularsignaling through

immune receptors that are involved in antigen recognition [15]. The model con-
sists of 12 different chemical species and 19 reactions and is the most complex
example that we consider. The second example is the transcription regulation of
a repressor protein in bacteriophageλ [18]. In the first two examples, we approx-
imate the probability distribution at several time instances. In the third example,
which is a gene expression network [49], we compute the distribution of the time
until the number of produced proteins exceeds a certain threshold. Our last ex-
ample is the model of a genetic toggle switch in Escherichia coli where bistabil-
ity arises from the mutually inhibitory arrangement of two repressor genes [11].
We approximate the probability distribution until the system reaches its bistable
steady-state. Note that all examples that we consider are infinite in several dimen-
sions.

We compare the running time of our numerical reachability analysis to that of
the simulative approach for both examples, for different precision levels. Our re-
sults show that numerical approximation based on reachability analysis is superior
to statistical estimation based on repeated simulation, especially if we increase the
desired precision level. For instance, the numerical approximation of the second
example needs 39 minutes for a total approximation error of2× 10−5, which dis-
tributes among all states. Simulation requires more than six hours if the statistical
error of a single event is to be bounded by10−5 and more than sixty hours for
10−6.

2. Stochastic Model

According to the theory of stochastic chemical reaction kinetics, a continuous-
time Markov chain (CTMC) can be derived from a set of biochemical reactions [13,
24]. This discrete-state model has a regular structure, which gives rise to a func-
tional description in terms oftransition class models(TCMs) [42]. TCMs natu-
rally represent coupled chemical reactions as each chemical reaction corresponds
to a transition class. They provide, however, a more generaldescription than a set
of chemical reactions.

2.1. Transition Class Models

Consider a dynamical system with a finite number of discrete state variables
such as the number of instances of some chemical species in a reaction volume.
Assume that these variables change at discrete points in time. A transition class
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provides a rule for these changes and a function for the calculation of the state-
dependenttransition rateat which a state change occurs. LetS be a countable set
of states.

Definition 1. A transition classC is a triple (G, u, α) such that (i) the guardG ⊂
S is a subset ofS, (ii) u : G → S is an injective update function withu(x) 6= x
for all x ∈ G, (iii) α : G → R>0 is a rate function. Atransition class model
(TCM) M = (y, {C1, . . . , Ck}) consists of an initial statey ∈ S and a finite set
of transition classesC1, . . . , Ck.

The setG contains all statesx in which a transition of typeC is possible andu(x)
is the target state of the transition. The probability of theC-transition depends on
the transition rateα(x) in the way explained below.

In practice, we can usually expressG by a finite number of constraints on the
state variables, andu andα by elementary arithmetic functions. Thus, a TCM
provides a finite description of a (possibly infinite-state)system. Before we show
how a CTMC is derived from a TCM, we present some examples of TCMs that
describe biochemical reaction networks.

Biochemical Reaction Networks.We consider a fixed reaction volume withn dif-
ferent chemical species that is spatially homogeneous and in thermal equilibrium.
Then, the state space of the system is given byS = N

n
0 . We assume that molecules

collide randomly and that collisions may lead to chemical reactions. For a given
set of chemical reactions, we construct a TCM such that each transition class cor-
responds to a reaction and the associated propensity function is given by the rate
function α. Formally, assume that the network consists ofk different chemical
reactions. Letm ∈ {1, . . . , k}, and let them-th reaction be given by the stoichio-
metric equation

k1S1 + . . . + knSn −→ ℓ1S1 + . . . + ℓnSn

where fori ∈ {1, . . . , n} the symbolSi refers to thei-th chemical species and
the stoichiometric coefficientski, ℓi are non-negative integers, which specify how
many molecules of typei are consumed and how many are produced by the reac-
tion, respectively. Ifki > 0 then thei-th species is called a reactant of them-th
reaction. In stoichiometric equations, terms with coefficient0 are usually omitted
and terms of the form1Si are abbreviated bySi. The symbol∅ abbreviates the
case0 = k1 = . . . = kn or 0 = ℓ1 = . . . = ℓn. We define them-th transition class
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Cm = (Gm, um, αm) such that

Gm = {x = (x1, . . . , xn) ∈ N
n
0 | xi ≥ ki, i ∈ {0, 1, . . .}} ,

um(x) = x + (ℓ1 − k1, . . . , ℓn − kn),

αm(x) = c · ∏n
i=1

(

xi

ki

)

.

The rate functionαm takes into account that the probability of a reaction of typem
is proportional to the possible number of combinations of reactant molecules, i.e.,
if ki molecules of typei are needed and the current number of molecules of type
Si is xi then

(

xi

ki

)

is the number of possible ways to chooseki out of xi. The rate
constantc > 0 depends on the temperature, the volume, and the microphysical
properties of the reactant species [14].

Example 1. We consider a simple transition class model for transcription of a
gene into messenger RNA (mRNA), and subsequent translationof the latter into
proteins [49]. This reaction network involves three chemical species, namely,
gene, mRNA, and protein. As only a single copy of the gene exists, a state of the
system is uniquely determined by the number of mRNA and protein molecules.
Therefore,S = N

2
0 and a state is a pair(xR, xP ) ∈ S. We assume that initially

there are no mRNA molecules and no proteins in the system, i.e., y = (0, 0).
The following four types of reactions occur in the system, namely ∅ → mRNA,
mRNA → mRNA + P , mRNA → ∅, andP → ∅. Letm ∈ {1, . . . , 4} and let
cm > 0 be a constant. Transition classCm = (Gm, um, αm) describes them-th
reaction type.

• We describe gene transcription by transition classC1, which increases the
number of mRNA molecules by 1. Thus,u1(xR, xP ) = (xR + 1, xP ). This
transition class is possible in all states, i.e.,G1 = S. Transcription happens
at the constant rateα1(xR, xP ) = c1, as only one reactant molecule (the
gene) is available.

• We represent the translation of mRNA into protein byC2. A C2-transition
is only possible if there is at least one mRNA molecule in the system. We
setG2 = {(xR, xP ) ∈ S | xR > 0} andu2(xR, xP ) = (xR, xP + 1). Note
that in this case mRNA is a reactant that is not consumed. The transla-
tion rate depends linearly on the number of mRNA molecules. Therefore,
α2(xR, xP ) = c2 · xR.
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• Degradation is modeled byC3 andC4. Hence,G3 = G2, G4 = {(xR, xP ) ∈
S | xP > 0}, u3(xR, xP ) = (xR − 1, xP ), andu4(xR, xP ) = (xR, xP − 1).
We setα3(xR, xP ) = c3 · xR andα4(xR, xP ) = c4 · xP .

2.2. Chemical Master Equation

A transition class modelM = (y, {C1, . . . , Ck}) represents a time-homogeneous,
discrete-state Markov process{X(t)}t≥0, that is, a CTMC with state spaceS. The
j-th entry of the random vectorX(t) = (X1(t), . . . , Xn(t)) represents the value
of thej-th state variable. LetCm = (Gm, um, αm), 1 ≤ m ≤ k, and assume that
at timet ≥ 0 the process is in statex ∈ Gm.

The probability of a transition of typeCm occurring in the next infinitesimal
time interval[t, t + τ), τ > 0 is given by

Pr(X(t + τ) = um(x) | X(t) = x) = αm(x) · τ.

Sincey is the initial state ofM we havePr(X(0) = y) = 1, and forx ∈ S we
define the probability thatX is in statex at timet by

p(t)(x) = Pr (X(t) = x | X(0) = y) .

Recall thatum is injective. To simplify our presentation, we define the setHm as
the set of all statesx for whichu−1

m (x) is defined, that is, that can be reached by a
transition of typeCm. Thechemical master equationdescribes the behavior ofX
by the differential equation [24]

∂p(t)(x)
∂t

=
∑

m:x∈Hm

αm(u−1
m (x)) · p(t)(u−1

m (x)) − ∑

m:x∈Gm

αm(x) · p(t)(x) . (1)

Unbounded Range.For realistic systems, the state space of the Markov chain is
extremely large, because its size grows exponentially in the number of involved
chemical species. Moreover, if upper bounds on the state variables cannot derived
from certain conservation laws, their range is assumed to beinfinite although in
practice the number of molecules is bounded. Then from the infinite structure,
we can compute bounds that are kept with a very high probability. Even though
every state in the infinite state space has a non-zero probability, certain attracting
regions force most of the probability mass to remain within afinite range.

Example 2. In Ex. 1, the degradation ratesα3(x) andα4(x) grow linearly in the
state variables. Thus, the higher the number of mRNA or protein molecules the
more likely is their degradation. Depending on the rate constantsc1, . . . , c4, the
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system becomes “stable” in different regions. As time approaches infinity, the
main part of the probability mass will be close to a region whereproduction and
degradation of molecules cancel each other out. Below, we discuss in general
under which conditions the system approaches such a stable distribution.

Holding Times and Jump Probabilities.A Markov chain{X(t)}t≥0 defined in
the way above is astable and conservative jump process[4]. Thus, there exists
a sequence of jump times{τ(n)}n≥0 and a sequence{X̂(n)}n≥0 of visited states
such that

τ(0) = 0 < τ(1) < τ(2) < . . . andX(t) = X̂(n) if τ(n) ≤ t < τ(n + 1).

The distribution of then-th holding timeτ(n + 1) − τ(n) under the condition
X̂(n) = x is negative exponentially distributed with parameter

λ(x) =
∑

m:x∈Gm

αm(x),

also calledexit rateof statex.
If the sum of all holding times is finite with positive probability, the Markov

chain is said toexplodeand the limiting distribution does not exist. Explosive
Markov chains are not of interest for the application area ofthis work since in
this case the system “gets lost at infinity”. It is possible tocheck if the Markov
chain does not explode by usingReuter’s Criterion[4]. For the remainder of our
presentation we assume that the rate functionsαm are such that the Markov chain
does not explode.

Assume that then-th state of the Markov chain isx, that is,X̂(n) = x. If at
least one transition class is enabled inx, the successor state isum(x) for somem
with x ∈ Gm. The probability of successorum(x) is given by

Pr(X̂(n + 1) = um(x) | X̂(n) = x) = αm(x)
λ(x)

.

The holding times and the jump probabilities play an important role for the simu-
lation of the Markov chain, which is used to estimate the probability of a certain
events.

3. Statistical Estimation of Probabilities

In this section we shortly review the basic steps that have tobe carried out to
estimate the probability of a certain measurable event using stochastic simulation.
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Throughout this section, we will denote this event byA and its probability byγ.
For the analysis of biological systems, the events of interest may be the marginal
distributions or even the joint distributions of certain chemical species. For in-
stance,A may have the formXj(t) = k, that is, the number of typej molecules
is k.

Estimates are obtained in two steps. In the first step, a certain number of
simulation runs of the Markov chain have to be generated, andin the second step,
the results of the simulation runs are analyzed.

3.1. Trajectory Generation

A realization of the Markov chain, also calledtrajectoryor run, is the random
sequence of states visited by the process. If trajectories are produced by a com-
puter,pseudo-random numbersare used to artificially generate randomness [26].
The basic steps of producing a single trajectory that startsin the initial statey at
time0 are as follows:

1. Initialize timet = 0 and statex = y.
2. Generate the holding timeh, i.e., a sample of a random variable being ex-

ponentially distributed with parameter−λ(x).
3. Generate the successor state, i.e., a samplem of a discrete random variable

Z that has probability distributionP (Z = m) = αm(x)/λ(x).
4. Sett = t + h, x = um(x) and go to Step 2 ift < T .

In Step 2, we generate the holding time of the current statex. Pseudo-random
number generators usually draw from a uniform distribution. Thus, for a given
random sampler1 that is uniformly distributed on(0, 1), we calculate an exponen-
tially distributed sample by using the inverse transform method. More precisely,
we compute the inverse− ln r1

λ(x)
of the cumulative distribution function of the ex-

ponential distribution. In Step 3, the same idea is used to decide, which reaction
occurs next. The inverse of the cumulative distribution function of Z is given by
m = min{i :

∑i
j=1 αj(x) > r2 · λ(x)}, wherer2 is again a random sample that is

uniformly distributed on(0, 1). In the final step, the current time and the current
state are updated. The simulation is terminated if the time horizonT of interest is
reached and continued otherwise.

3.2. Output Analysis

The problem of estimating the probabilityγ of the eventA can be reformulated
as estimating the expectation of the random variableχA with
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χA(ω) =

{

1 if ω ∈ A,
0 if ω 6∈ A,

whereω is a trajectory. The expectationE[χA] equalsγ, sinceE[χA] = 1 ·
Pr(χA = 1) + 0 · Pr(χA = 0) = γ. Therefore, we can resort to the standard
estimation procedure for expectations. Assume thatN is the number of runs that
have been carried out andY1, . . . , YN are independent and identically distributed
asχA. Thus, from thei-th run we get a realization ofYi by checking ifA has
occurred or not. It is important to point out that we have to guarantee the inde-
pendence of theYi’s. This implies that we generateN independent trajectories of
the Markov chain, each time with a different initial seed1 for the pseudo-random
number generator. The sample meanȲ = 1

N

∑N
i=1 Yi is then anunbiasedand

consistent estimator[26] for E[χA]. The former means thatE[Ȳ ] = E[χA] and
the latter refers to the fact that asN increases the estimatorȲ becomes closer toγ.
Note thatȲ is equal to the relative frequency of the eventA. Let σ2 = V AR[χA]
be the variance ofχA. We evaluate the quality of the estimatorȲ by applying
the central limit theorem, which states thatȲ will approximately have a Normal
distribution with meanE[χA] = γ and varianceσ2/N . Hence, for largeN the
random variable

Z =
Ȳ − γ

√

σ2/N

has a standard Normal distribution, that is, the mean is zeroand the variance is
one. Knowing the distribution ofZ enables us reason about the difference|Ȳ −γ|.
Let β ∈ [0, 1] be theconfidence levelandz ∈ R

+ such thatβ = Pr(|Z| ≤ z).
Then

β = Pr(|Z| ≤ z) = Pr

(

|Ȳ −γ|√
σ2/N

≤ z

)

= Pr
(

|Ȳ − γ| ≤ z
√

σ2/N
)

.

We estimateσ2 with the sample covarianceS2 = 1
N−1

∑N
i=1(Yi − Ȳ )2, which is

an unbiased estimator forσ2. Then, for largeN and a large number of realizations
of theconfidence interval

[

Ȳ − z
√

S2/N, Ȳ + z
√

S2/N
]

, (2)

β is the fraction of intervals that coverγ. It therefore measures the quality of the
estimatorȲ .

1The seed of a pseudo-random number generator is an initial value, on which the sequence of
generated numbers depend [26].
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For a practical application, two further remarks are important. Firstly, we usu-
ally chooseβ ∈ {0.95, 0.99} and the corresponding value ofz can be found in
the table of the standard Normal distribution. LetΦ be the cumulative distribu-
tion function of the standard Normal distribution. Then, using that the Normal
distribution is symmetric,

Φ(z) = Pr(Z ≤ z) = 1 − 1−β
2

= 1+β
2

⇐⇒ z = Φ−1
(

1+β
2

)

.

Secondly, both,̄Y and S2 can be computed efficiently if during the trajectory
generation the realizations of the two sums

∑N
i=1 Yi and

∑N
i=1 Y 2

i are calculated,
since it can be easily shown that

S2 =
PN

i=1 Y 2
i

N−1
− (

PN
i=1 Yi)

2

(N−1)N
.

Thus, if r ∈ {0, . . . , N} is the number of times eventA occurred during theN
simulation runs,̄Y = r/N andS2 = r(N−r)

N(N−1)
.

If the interval in Eq. 2 is large relative tōY the quality of the estimator is poor
and more simulation runs have to be carried out. For our experimental results in
Section 5, we fixed the relative width of the interval to be0.2 (which means that
we have a relative error of at most0.1) and chose confidence levelβ = 0.95.
Thus,z ≈ 1.96 and we can determine the number of necessary runs by bounding
the relative width

2 · z·
√

S2/N

γ
≤ 0.2 =⇒ z2

0.01
S2

γ2 ≤ N =⇒ 384 · S2

γ2 ≤ N

Assume now that we want to estimate the probability of eventsthat occur at least
with probabilityγ. Using the fact thatσ2 = VAR[χA] = γ(1 − γ) and replacing
S2 by σ2 yieldsN ≥ 384 · 1−γ

γ
[41]. For instance, the sufficient number of runs

to guarantee that probabilities, having at least the order of magnitude of10−5, are
estimated with a relative error of at most0.1 and a confidence of95% is N =
38, 000, 000. For a detailed discussion about a sufficient number of trajectories,
we refer to [40].

During the last decade more sophisticated simulation algorithms have been
developed (see [39] for overview). Most of them, however, donot give exact
trajectories of the Markov process but approximations and the error of this ap-
proximation is difficult to determine. Therefore, we do not use these techniques
for our comparison. An alternative would be a conversion to discrete time as re-
cently propsed by Sandmann [38]. This method, however, has the disadvantage
that a tight upper bound for the exit rates of all states foundduring the simulation
must be known a priori.
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state ofY (B(t))

time t

Figure 1: Construction of the process{Y (B(t))}t≥0. The gray circles represent
the state ofY and the black ticks on the x-axis the jump times ofB.

4. Numerical Reachability Analysis

Instead of indirectly approximating probabilities with statistical estimation
procedures, we can use a numerical reachability analysis tosolve Eq. 1. An ef-
ficient solution by applying standard numerical methods is not possible, since
for realistic systems the state space of the system is extremely large. An effi-
cient approximation is, however, possible as long as the total number of involved
molecules is a manageable number. We describe a method that is based on a dis-
cretization of the process and numerically approximates the probabilitiesp(t)(x)
at certain time instances.

Adaptive Uniformization.We discretize the system usingadaptive uniformiza-
tion, which has been introduced by van Moorsel [51] as a variant ofstandard
uniformization[20, 37, 43, 44, 54]. Numerical methods based on uniformization
have the advantage that they are numerically stable and often more efficient than
other methods [47].

The main idea behind uniformization methods is to constructa new stochastic
process{Y (B(t))}t≥0 such that for all statesx and all timest ≥ 0,

Pr
(

X(t) = x
)

= Pr
(

Y (B(t)) = x
)

. (3)

The processY “observes” the state of the original processX at discrete points in
time as illustrated in Fig. 1. The observation times are determined by a simple
counting processB (see Fig. 2).

For the construction of{Y (B(t))}t≥0, we define a sequenceS0, S1, . . . of sub-
sets of the state spaceS of the CTMCX, as well as a sequencep0, p1, . . . such
that fork = 0, 1, . . . the functionpk : S → [0, 1] contains the state probabilities
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0 1 2 3 . . .

λ0 λ1 λ2 λ3

Figure 2: The birth process of the adaptive uniformization procedure.

of Y after k steps andSk contains all states wherepk is positive. Recall thaty
is the initial state. At time0, we defineS0 = {y}, p0(y) = 1 andp0(x) = 0
if x 6= y. For k = 1, 2, . . ., we inductively defineSk as follows. We choose a
positiveuniformization rateλk ≥ maxx∈Sk

λx and set

Sk+1 = {x′ ∈ S | ∃x ∈ Sk : pk(x) · qk(x, x′) > 0}, (4)

where, forx ∈ S,

qk(x, x′) =















∑

m:um(x)=x′ αm(x)/λk if x 6= x′,∃m : um(x) = x′,

0 if x 6= x′, 6 ∃m : um(x) = x′,

1 − ∑

x′∈S:x′ 6=x qk(x, x′) if x = x′.

(5)

For x′ ∈ Sk+1 we setpk+1(x
′) =

∑

x′∈Sk
pk(x) · qk(x, x′) andpk+1(x) = 0 if

x 6∈ Sk.
The valuepk(x) is the probability of reaching statex afterk steps in a discrete-

time Markov chain{Y (k)}k∈N with transition probabilitiesPr(Y (k + 1) = x′ |
Y (k) = x) = qk(x, x′) and initial distributionPr(Y (0) = y) = 1. We can recon-
structp(t)(x) by considering the processB that relates steps with time. Formally,
let {B(t)}t≥0 be a birth process with birth ratesλ0, λ1, . . ., that is,B has a chain
structure as illustrated in Fig. 2 and starts initially in state0 with probability one.
In [51], van Moorsel has proven that Eq. (3) holds ifB does not explode. SinceY
andB are independent, the state probabilityp(t)(x) of the original CTMC can be
expressed as

p(t)(x) =
∞

∑

k=0

Pr(Y (k) = x) · Pr(B(t) = k) =
∞

∑

k=0

pk(x) · Pr(B(t) = k). (6)

Note that in Eq. 6, there are no negative summands involved. Moreover,pk can
be computed inductively. Lower and upper summation boundsL andU can be
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obtained such that for each statex the truncation error

p(t)(x) −
U
∑

k=L

pk(x) · Pr(B(t) = k) =
∑

0≤k<L,

U<k<∞

pk(x) · Pr(B(t) = k) ≤

∑

0≤k<L,

U<k<∞

Pr(B(t) = k) = 1 −
U
∑

k=L

Pr(B(t) = k) ≤ ǫ

(7)

can be bounded byǫ > 0. Finally, we note that from Eq. 5 it is clear that choosing
the smallest possibleλk is advantageous since this avoids high self-loop probabil-
ities in qk. SinceS0 ⊆ S1 ⊆ . . . the sequenceλ0, λ1, . . . of uniformization rates is
monotonically increasing and converges to the supremumsupx∈S λ(x).

Standard Uniformization.Standard uniformization is a special case of adaptive
uniformization where a global uniformization rateλ = λ0 = λ1 = . . . has to be
chosen. If each transition in the birth process occurs at a constant rateλ, the values
Pr(B(t) = k) follow a Poisson distribution with parameterλt. They can be cal-
culated efficiently using the iterative procedure introduced by Fox and Glynn [10].
Standard uniformization becomes inefficient wheneverλ is much larger than the
exit ratesλ(x) of many statesx that are involved in the computation. If the dy-
namics of the system is initially slow and increases as time progresses, then adap-
tive uniformization is more efficient, since the uniformization rate will initially
be small and increase during the iteration. Finally, it willapproach the global
uniformization rateλ.

Approximate Discretization.In its standard form, adaptive uniformization is not
appropriate for Markov chains that describe biochemical reaction networks for
two reasons. Firstly, the sizes of the setsS0, S1, . . . grow after each step and the
computational complexity forpk becomes huge. Secondly, the birth process may
become fast even if the dynamics of the system becomes slow. The reason is that
afterk iterations all states that are reachable withink steps from the initial state are
elements ofSk. Even if the main part of the probability mass is concentrated on
states with small exit rates, there may be states inSk with a very small probability
and a large exit rate. Sinceλk = maxx∈Sk

λ(x), the transition rates of the birth
process are large and the truncation pointU moves to the right, which means that
many iterations are necessary to achieve the desired accuracy.

Both problems mentioned above can be significantly defused byneglecting
states that are very unlikely, that is, we replace Eq. 4 by

Sk+1 = {x′ ∈ S |
∑

x∈Sk

pk(x) · qk(x, x′) > ∆}, (8)
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where∆ is a small positive constant. This ensures that the sizes of the setsSk

remain manageable. Moreover, the rate of the birth process corresponds to the
rates of the states having “significant” probability.

The error afterk steps introduced by the threshold∆ can be calculated as
1 − ∑

x∈Sk
pk(x). Note that this error increases monotonically ink since more

and more probability “gets lost”. Therefore we choose∆ several orders of magni-
tude smaller than the desired precision. For our experimental results in Section 5
we chose different values for∆ ranging from10−15 till 10−8 in order to obtain
different precision levels.

Approximate Solution of the Birth Process.We use standard uniformization to
compute the probabilitiesPr(B(t) = k), since we can afford a high global uni-
formization rate (and thus, high self-loop probabilities)in this case. The reason
is that the simple chain structure eases the discretizationand the computational
effort to solve the birth process is small compared to the calculation of thepk. Let
{YB(k)}k∈N

+
0

be the discrete-time Markov chain that results from the discretiza-
tion of B and let{NB(t)}t≥0 be the corresponding counting process. Since we
use standard uniformization,NB is a Poisson process whose state probabilities
Pr(NB(t) = k) can be computed efficiently [10]. Similar as forY we approxi-
mately solveYB by neglecting states that are “left behind”. Informally, weuse a
window (a set that contains all states within a certain range) that slides from left to
right to approximate the state probabilities ofYB. The total approximation error
for the computation of the probabilitiesPr(B(t) = i) afterk steps is then given
by 1 − ∑k

i=0 Pr(B(t) = k).

Approximation Error.Both, the solution ofY andB gives an underapproximation
of the valuespk(x) andPr(B(t) = k). Thus, summing up their product according
to Eq. 6 results in an underapproximation forp(t)(x). The final approximation
error is obtained asδ = 1 − ∑

x∈SU
p(t)(x) whereU is the right truncation bound

of the birth process. The probability of states that are not in SU is approximated
with zero. Note that this includes all approximation errors, i.e., the approximation
error for the computation ofPr(B(t) = k) andpk(x) for all k ≤ U and all states
x, as well as the error that arises from the truncation of the infinite sum.

For our experimental results, we used the criterion in Eq. 7 to determine a
truncation pointU . Let pB(i) be the approximation ofPr(B(t) = i) that we ob-
tain by solvingB as described above. Note that it may be the case that the terms
∑

x∈Sk
pB(k) decrease so fast that an accuracy ofǫ can never be reached. There-

fore, it is necessary to bound the total number of iterationsby Ũ whereŨ is the
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truncation point of the solution of the birth process using standard uniformization.
For our experimental results it was never the case that we hadto iterate untilŨ , i.e.
the solution of the birth process was always such that1−∑U

k=L Pr(B(t) = k) ≤ ǫ
whereU < Ũ . We choseǫ = 10−7 for our results in Section 5.

Note that, alternatively, we can monitor the total error

ǫk = 1 −
k

∑

i=0

∑

x∈Si

pi(x) · pB(i)

afterk iterations and stop the iteration if “enough” summands havebeen added,
i.e., if a certain accuracyǫk is reached. Again, this criterion is not sufficient to
guarantee termination of the algorithm and an additional bound on the number of
iterations is necessary.

The computational savings achieved by solvingY as well asB in the way
described above are substantial. The reason is that the number of states inB and
Y that are significant afterk steps is several orders of magnitudes smaller than the
number of all states reachable afterk steps. Moreover, our experimental results
show that if we choose∆ several orders of magnitude smaller thanǫ, then the
desired accuracy is always achieved.

We summarize the algorithm as follows:

1. Initialize the significant setS := {y}.
2. Initialize probability functionsr, p, andq on S with r(y) := 0, p(y) := 1,

andq(y) := 1.
3. Initialize the sum of coefficients withsum := 0.
4. Initiailize the step count withk := 0.
5. Whilesum < 1 − ǫ andk < Ũ

(a) Setλk = maxx∈S λ(x).
(b) Computecoeff = Pr(B(t) = k) usingλk.
(c) For allx ∈ S

For all transition classesCm = (Gm, um, αm)

i. If um(x) 6∈ S then addum(x) to S.
ii. Setprop := p(x) · αm(x)/λk.

iii. Propagate probabilityprop from x to um(x) by setting
q(x) = q(x) − prop andq(um(x)) = q(um(x)) + prop.

(d) For all statesx in S

i. If p(x) < ∆, then removex from S.
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ii. Update probabilities by settingp(x) := q(x).
(e) Update sum of coefficients by settingsum = sum + coeff .
(f) k = k + 1.

6. For allx ∈ S setr(x) := r(x) + coeff · p(x).
7. Returnr.

If a small threshold∆ is chosen, the proposed method gives accurate approx-
imations for models where all populations are small. If the expected number of
a certain population is high, then the number of significant states is large. In
this case the memory requirements may exceed the memory capacities and the
computation will take a long time to complete. Since high populations can be ac-
curately approximated by deterministically and continuously changing variables,
a stochastic hybrid model is more advantageous in such cases[23] which goes
beyond the scope of this paper. Note that if one is interestedin qualitative trends
only, it is possible to get a rough idea of the dynamics of the system by choos-
ing a much higher threshold∆. This is similar to generating a small number of
simulation runs in order to determine qualitative trends ofthe system.

Iteration Over Time.Our algorithm can be used in an iterative fashion to approx-
imate the distribution ofX at several time instances. To see this, first note that we
can use the method described above for systems starting witharbitrary initial dis-
tributions by definingS0 as the set of states that have an initial probability greater
than∆. After computing an approximation ofp(t)(x) for all x ∈ S we can use it
as an initial distribution for the next step to obtain an approximation forp(t′)(x)
wheret′ > t and the step size ist′ − t. In this way, we obtain approximations for
several time instances.

Related Work.Other approaches for an approximate numerical solution of the
underlying Markov chains have been proposed [5, 32]. They differ from our ap-
proach in that they compute a finite projection of the state space that is based solely
on the structure of the underlying graph. In our method, we add and neglect states
in an on-the-fly fashion based on the stochastic properties of the Markov chain.
Therefore, we consider a significantly smaller set of statesduring a certain time
interval, without being less accurate. The projection algorithms include all states
that are reachable within a fixed path depth. In our algorithm, for each single
state, we dynamically decide if it significantly contributes to the overall solution
or not. We have found this dynamic adaptation of the analysisto be essential for
efficiency.
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Gillespie simulation

running time single event error # runs

> 500 h 10−8 > 3 × 1010

> 50 h 10−7 > 3 × 109

> 5 h 10−6 > 3 × 108

> 30 min 10−5 > 3 × 107

> 3 min 10−4 > 3 × 106

> 18 sec 10−3 > 3 × 105

numerical approximation

running time total approx. error |Sk| maxk |Sk| ∆

10 min 31 sec 6 × 10−6 1 × 106 2 × 106 10−14

4 min 57 sec 2 × 10−5 5 × 105 1 × 106 10−13

2 min 12 sec 1 × 10−4 3 × 105 6 × 105 10−12

40 sec 5 × 10−4 1 × 105 3 × 105 10−11

15 sec 1 × 10−3 5 × 104 1 × 105 10−10

Table 1: Comparison of the running times for the signaling example.

5. Experimental Results

For our experimental results, we consider four examples from biology. Our
first example is the model of intracellular signaling through receptors of the im-
mune system considered in [15]. The second example is a modelfor the tran-
scription regulation of a repressor protein in bacteriophageλ [18]. This protein
is responsible for maintaining lysogeny of theλ virus in E. coli [1]. For both
the first and the second example, we compute the full probability distribution for
different precision levels. Our third example uses the geneexpression model of
Ex. 1. We calculate the distribution of the time until the number of produced pro-
teins exceeds500. The last example is the model of a genetic toggle switch in
Escherichia coli presented in [11]. It is a prototype of a bistable system where the
bistability arises from the mutually inhibitory arrangement of the repressor genes.
Again, we compute the full probability distribution for different precision levels.

We implemented our direct numerical method as well as the Gillespie simula-
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tion algorithm in a C++ tool called SABRE [7]. All our experiments are performed
on a 3.16 GHz Intel Linux PC with 6 GB of RAM. There is no one-to-one cor-
respondence between the statistical accuracy of the estimates that we derive via
simulation and the precision of the numerical method. However, by assuming that
the smallest event probability that has to be estimated isγ all results of the sim-
ulation have a “precision” of at leastγ. Intuitively, we simulate often enough to
reason about events that occur with a probability of at leastγ. We therefore refer
to γ as thesingle event error. Note that the simulation results are still subject to
the statistical errors since the true values may not be covered by the confidence
interval (compare Section 3.2).

The approximation errorδ of the numerical method is the sum of the approxi-
mation error ofall states in the Markov chain. Note that the probabilities of states
not in Sk are underapproximated with zero and their true probabilities increase
depending on how close they are to an attracting region. The error of a single
state probabilityp(t)(x) is much smaller thanδ but precise values for the single
error are hard to obtain. A rough estimation of the single errors can be obtained
by dividing the total error by the average size|Sk| of the significant sets (cf. Ta-
ble 2 and 3), even thoughδ may not be uniformly distributed on the significant
set. On the other hand,δ also includes the error of insignificant states and, thus,
distributes among much more states than only those inSk.

We are comparing the two methods from the point of view of their running
times. Another possibility would be to compare the memory consumption. Since
we aim at computing the probability distribution of the underlying Markov chain,
both methods have to store the probability of all states considered at some point
in time. But this is, at least for systems with small populations, similar in both
methods. We therefore focus on the running time of the algorithms.

Immune-Receptor Signaling.The signaling example involves 12 different chem-
ical species and 19 reactions. After binding to a receptor a ligand undergoes
six modifications and can generate a signal by activating a messenger [15]. Let
x = (x1, . . . , x12) and letei ∈ N

12
0 be the vector with all entries zero except the

i-th entry which is one. We define transition classesCi = (Gi, ui, αi), 1 ≤ i ≤ 19
as given below.

• Receptor-ligand binding:G1 = {x ∈ N
12
0 | x1 > 0, x2 > 0}, u1(x) =

x − e1 − e2 + e3, α1(x) = c1x1x2.

• Forward modifications: Forj ∈ {2, . . . , 7}, we defineGj = {x ∈ N
12
0 |

xj+1 > 0}, uj(x) = x − ej+1 + ej+2, αj(x) = cjxj+1.
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• Backward modifications: Forj ∈ {8, . . . , 14}, we defineGj = {x ∈ N
12
0 |

xj−5 > 0}, uj(x) = x − ej−5 + e1 + e2, αj(x) = cjxj−5.

• Binding of inactive messengers:G15 = {x ∈ N
12
0 | x9 > 0, x10 > 0},

u15(x) = x − e9 − e10 + e11, α15(x) = c15x9x10.

• Unbinding of inactive messengers:G16 = {x ∈ N
12
0 | x11 > 0}, u16(x) =

x − e11 + e9 + e10, α16(x) = c16x11.

• Release of activated messengers:G17 = {x ∈ N
12
0 | x11 > 0}, u17(x) =

x − e11 + e9 + e12, α17(x) = c17x11.

• Unbinding of inactive messengers and ligands:G18 = {x ∈ N
12
0 | x11 > 0},

u18(x) = x − e11 + e1 + e2 + e10, α18(x) = c18x11.

• Inactivation of messengers:G19 = {x ∈ N
12
0 | x12 > 0}, u19(x) = x −

e12 + e10, α19(x) = c19x12.

Following [15], the rate constants are chosen asc1 = 6.7 · 10−3, cj = 0.25 for
j ∈ {2, . . . , 7}, cj = 0.5 for j ∈ {8, . . . , 14}, c15 = 1.2 · 10−3, c16 = 0.01,
c17 = 100, c18 = 0.5, c19 = 2 · 10−3 and the initial state isx = (x1, . . . , x12)
with x1 = 30 ligands,x2 = 900 receptors andx10 = 10000 messengers. We
simulated the system over a time horizon oft = 4. In Table 1, we list the running
times of our numerical method as well as the running time of the simulation. The
column with header|Sk| lists the average number of states in the setsS0, S1, . . .
andmaxk |Sk| lists the maximum over all these numbers of states. The columns
with header∆ lists the threshold in Eq. 8.

Phageλ Model. The Phageλ model involves 6 different species and 10 reac-
tions. Thus, a state is a vectorx = (x1, x2, x3, x4, x5, x6) ∈ N

6
0. The transition

classesCi = (Gi, ui, αi), 1 ≤ i ≤ 10 are given as follows [18].

• Production of proteins:G1 = {x ∈ N
6
0 | x3 > 0}, u1(x) = (x1 +

1, x2, x3, x4, x5, x6), α1(x) = c1x3.

• Degradation of proteins:G2 = {x ∈ N
6
0 | x1 > 0}, u2(x) = (x1 −

1, x2, x3, x4, x5, x6), α2(x) = c2x1.

• Production of mRNA:G3 = {x ∈ N
6
0 | x5 > 0}, u3(x) = (x1, x2, x3+1, x4,

x5, x6), α3(x) = c3x5.
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Gillespie simulation

running time single event error # runs

> 6000 h 10−8 > 3 × 1010

> 500 h 10−7 > 3 × 109

67 h 22 min 10−6 > 3 × 108

6 h 44 min 10−5 > 3 × 107

40 min 10−4 > 3 × 106

4 min 10−3 > 3 × 105

numerical approximation

running time total approx. error |Sk| maxk |Sk| ∆

55 min 5 sec 3 × 10−6 239792 722426 10−15

39 min 16 sec 2 × 10−5 187204 566141 10−14

25 min 2 sec 2 × 10−4 140969 427282 10−13

15 min 41 sec 1 × 10−3 101078 306130 10−12

6 min 33 sec 7 × 10−3 67540 202627 10−11

3 min 12 sec 4 × 10−2 40373 117392 10−10

Table 2: Comparison of the running times for the phageλ model.

• Degradation of mRNA:G4 = {x ∈ N
6
0 | x3 > 0}, u4(x) = (x1, x2, x3 −

1, x4, x5, x6), α4(x) = c4x3.

• First dimer binding at operator site:G5 = {x ∈ N
6
0 | x2, x4 > 0}, u5(x) =

(x1, x2 − 1, x3, x4 − 1, x5 + 1, x6), α5(x) = c5x2x4.

• First dimer unbinding:G6 = {x ∈ N
6
0 | x5 > 0}, u6(x) = (x1, x2 + 1, x3,

x4 + 1, x5 − 1, x6), α6(x) = c6x5.

• Second dimer binding at operator site:G7 = {x ∈ N
6
0 | x2, x5 > 0},

u7(x) = (x1, x2 − 1, x3, x4, x5 − 1, x6 + 1), α7(x) = c7x2x5.

• Second dimer unbinding:G8 = {x ∈ N
6
0 | x6 > 0}, u8(x) = (x1, x2+1, x3,
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Figure 3: Probability distribution of monomers and dimers in the phageλ model.

x4, x5 + 1, x6 − 1), α8(x) = c8x6.

• Dimerization:G9 = {x ∈ N
6
0 | x1 > 1}, u9(x) = (x1 − 2, x2 + 1, x3, x4,

x5, x6), α9(x) = c9x1(x1 − 1)/2.

• Dissociation into monomers:G10 = {x ∈ N
6
0 | x2 > 0}, u10(x) = (x1 +

2, x2 − 1, x3, x4, x5, x6), α10(x) = c10x2.

For c1, . . . , c10, we choosec1 = 0.043, c2 = 0.0007, c3 = 0.0715, c4 = 0.0039,
c5 = 1.992647 × 10−2, c6 = 0.4791, c7 = 1.992647 × 10−4, c8 = 8.765 × 10−12,
c9 = 8.30269 × 10−2, andc10 = 0.5 (see [5, 18]). The initial state of the system
is given byy = (2, 6, 0, 2, 0, 0) and the time horizon ist = 300. We approximate
the probability distributions of the underlying CTMC at 100 equidistant time in-
stances. Fig. 3 shows a plot of the distribution of dimers andmonomers at time
instantt = 300. In Table 2, we list the results of our numerical method as well as
the simulation results.

Gene Expression.For the transition classes of the gene expression example we
refer to Ex. 1. For the rate constants, we choosec1 = 0.05, c2 = 0.0058, c3 =
0.0029, andc4 = 10−4, wherec3 andc4 correspond to a half-life of 4 minutes for
mRNA and 2 hours for the protein [49]. We compute the probability that at least
500 proteins are in the system at 100 equidistant time instances. Fig 4 shows the
cumulative probability distribution of the time until the number of proteins reaches
500 for the first time (note that eventually the threshold of500 is reached with
probability one). In Table 3, we list the results for the geneexpression example,

22



 0

 0.2

 0.4

 0.6

 0.8

 1

 4000  5000  6000  7000  8000  9000  10000

P

t

Figure 4: Cumulative probability distribution of the time until the number of pro-
teins reaches 500 for the first time in the gene expression example.

where, as above,|Sk| denotes the average number of states in the setsS0, S1, . . .
and∆ is the threshold in Eq. 8.

Genetic Toggle Switch.The bistable toggle switch is a prototype of a genetic
switch with two competing repressor proteins and four reactions [11]. The tog-
gle switch involves two chemical speciesA andB and four reactions. Letx =
(x1, x2) ∈ N

2
0. The transition classesCi = (Gi, ui, αi), 1 ≤ i ≤ 4 are given as

follows:

• G1 = N2
0 , u1(x) = (x1 + 1, x2), α1(x) = c1/(c2 + xβ

2 ),

• G2 = {x ∈ N
2
0 | x1 > 0}, u2(x) = (x1 − 1, x2), α2(x) = c3 · x1,

• G3 = N2
0 , u3(x) = (x1, x2 + 1), α3(x) = c4/(c5 + xγ

1),

• G4 = {x ∈ N
2
0 | x2 > 0}, u4(x) = (x1, x2 − 1), α4(x) = c6 · x2.

For our experimental results, we chose the same parameters as Sj̈oberg et al. [45],
that is,c1 = c4 = 3 · 103, c2 = c5 = 1.1 · 104, c3 = c6 = 0.001, andβ = γ = 2.
We used the initial statex = (133, 133) and a time horizon oft = 15000. We
present our experimental results in Table 4.
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Gillespie simulation

running time single event error # runs

> 500 h 10−8 > 3 × 1010

> 50 h 10−7 > 3 × 109

> 5 h 3 min 10−6 > 3 × 108

> 30 min 10−5 > 3 × 107

> 3 min 10−4 > 3 × 106

> 15 sec 10−3 > 3 × 105

numerical approximation

running time total approx. error |Sk| max{Sk} ∆

11 sec 2 × 10−6 20919 23636 10−12

10 sec 2 × 10−5 19660 22469 10−11

9 sec 2 × 10−4 18180 20945 10−10

7 sec 2 × 10−3 16514 19273 10−9

6 sec 2 × 10−2 14707 17431 10−8

Table 3: Comparison of the running times for the gene expression example.

Discussion.Even if we consider the total approximation errorδ as a rough bound
for the single error of each state probability, thus favoring simulation, the speed-
up factor of the numerical approximation is large, especially if the precision in-
creases. The necessary precision level up to which probability distributions are
approximated may depend on the system under study. It is, however, important
to note that the occurrence of rare biochemical events can have important effects.
For instance, the spontaneous, epigenetic switching rate from the lysogenic state
to the lytic state in phageλ-infected E. coli is experimentally estimated to be in
the order of10−7 per cell per generation [27].

6. Conclusion

We have demonstrated that, for the computation of event probabilities, a nu-
merical reachability analysis provides an efficient alternative to simulation-based
methods.
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Gillespie simulation

running time single event error # runs

> 104 h 10−8 > 3 × 1010

> 103 h 10−7 > 3 × 109

> 116 h 10−6 > 3 × 108

> 11 h 10−5 > 3 × 107

> 1 h 10 min 10−4 > 3 × 106

> 7 min 10−3 > 3 × 105

numerical approximation

running time total approx. error |Sk| max{Sk} ∆

22 min 21 sec 6 × 10−6 37919 42081 10−15

19 min 26 sec 2 × 10−5 35259 39372 10−14

15 min 48 sec 1 × 10−4 32521 36572 10−13

12 min 29 sec 9 × 10−4 29652 33618 10−12

11 min 17 sec 9 × 10−3 26635 30496 10−11

9 min 41 sec 9 × 10−2 23433 27136 10−10

Table 4: Comparison of the running times for the genetic toggle switch example.

Even though simulation is widely used, the advantages of numerical meth-
ods increase as more sophisticated techniques become available. They reduce the
computational effort, especially if accurate results are desired. Moreover, for the
calibration of parameters many instances of the model have to be solved and in
this case short running times for a single solution are necessary.

Until now we have analyzed examples of intrinsically stochastic systems that
have been published in the literature. As future work, we areplanning to apply our
numerical reachability algorithm in collaboration with experimentalists working
on new stochastic models. Moreover, we are planning to combine our numerical
method with parameter estimation techniques.

Standard numerical reachability analysis methods are inefficient for large state
spaces (in the case of high dimension and/or many molecules)and inapplicable
for unbounded state spaces, and thus one resorts to simulation. We have demon-
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strated that certain optimization techniques from computer science - localization,
on the fly abstraction - put many examples within the reach of numerical reacha-
bility analysis. Indeed, when high accuracy is required these methods outperform
simulation-based techniques.
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