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Abstract

Molecular noise, which arises from the randomness of therelis events in the
cell, significantly influences fundamental biological peeses. Discrete-state
continuous-time stochastic models (CTMC) can be used to itbessuch effects,
but the calculation of the probabilities of certain evestsamputationally expen-
sive.

We present a comparison of two analysis approaches for CTM@n@hand,
we estimate the probabilities of interest using repeatdié<pie simulation and
determine the statistical accuracy that we obtain. On therdtand, we apply
a numerical reachability analysis that approximates tlodgoility distributions
of the system at several time instances. We use examplesluicgrocesses
to demonstrate the superiority of the reachability analyfsaccurate results are
required.

1. Introduction

The traditional approach for a dynamical model of cellutaation networks
is based on the assumption that the concentrations of tieichlespecies change
continuously and deterministically in time. During thetlalecade, however,
stochastic models with discrete state spaces have seemngroverest [9, 31,
35, 36, 46, 48, 50, 53]. The reason is that they take into atcihe effects of
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molecular noise in the cell. Molecular noise has a signifigaffuence on impor-
tant processes such as gene expression [3, 8, 25, 30, 38et¢8ions of the cell
fate [1, 28, 29], and circadian oscillations [2, 16, 17].

An appropriate modeling approach for systems that are sutgemolecular
noise is a discrete-state continuous-time Markov proass,calledcontinuous-
time Markov chair(CTMC). This is particularly evident in the presenceartfin-
sic noisearising from random microscopic events in the cell, sucthaddcation
of molecules or the order of the reactions. As opposed tameomtis models, the
discrete-state stochastic model is able to capture theetiswess of the random
events in the cell.

The evolution of such a CTMC is given by a master equation thderived
according to Gillespie’s theory of stochastic chemicalekics [13]. Since the
state space grows exponentially in the number of involveshubal species, the
state space of the CTMC is large, which renders its analy8isudi. Moreover,
the discrete structure becomes even larger when the nurhibeslecules in the
system grows. If the populations of certain chemical sygeaie large, their ef-
fect on the system’s variance is small and they can be appedgd assuming a
continuous deterministic change. For species with smalufations, however, a
continuous approximation is not appropriate and other@ppration techniques
are necessary to reduce the computational effort of the/sisal

Besides the computation of cumulative measures such astakpas and
variances of the populations of certain chemical spediessdmputation of event
probabilities is important for several reasons. Firstiutet process may decide
probabilistically between several possibilities, e.g.tHe case of developmental
switches [1, 19, 36]. In order to verify, falsify, or refineestmathematical model
based on experimental data, the likelihood for each of thessibilities has to be
calculated. But also full distributions are of interest, tsas the distribution of
switching delays [30], the distribution of the time of DNApteation initiation at
different origins [34], and the distribution of gene exmies products [52]. Fi-
nally, many parameter estimation methods require the ctatipn of the poste-
rior distribution because means and variances do not peamdugh information
to calibrate parameters [21].

Two different families of computational approaches haverbgroposed and
used to estimate event probabilities and approximate pibiyalistributions. The
first kind of approach is based on numerical simulation, tlee generation of
many sample trajectories (eimulation run$ of the system. The second kind
of approach is based on numerical reachability analyss, the propagation of
the probability mass through the state space. The formeawoapbp is known as
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Gillespie simulatiorf12], in which pseudo-random numbers are used to simulate
molecular noise. Measures of interest are obtained viestital output analysis.
The main advantage of simulation is that it is easy to implenaad the gener-
ation of trajectories is not limited by the size of the stgtace. Moreover, the
precision level of the method can be easily adjusted by pmifgg more or fewer
simulation runs. For the computation of the probability eftain events, how-
ever, simulative approaches become computationally essgenbecause a large
number of runs have to be carried out to bound the statistical appropriately.
For estimating event probabilities, a higher precisioreles necessary than for
estimating cumulative measures such as expectationsiranthion becomes ex-
pensive because doubling the precision requires four timgge simulation runs.
In contrast, approaches based on a numerical reachabilitlysis approxi-
mate probability distributions of the CTMC. As opposed to éistigal estimation
of probabilities, which yields an indirect solution, the stex equation is numer-
ically solved by integrating the system’s behavior overetinStandard numeri-
cal techniques are impractical for many systems becauseeoéiormous size
of the state space. Recently, however, more sophisticateeémcal approxima-
tion methods have been proposed, which solve the system iterative fash-
ion and consider only subsets of the state space during aey gime interval
[5, 22, 32, 44]. They are significantly more efficient thanbglbanalysis be-
cause they use localization optimizations (such as “giidinndows”) and dy-
namic adaptation (“on-the-fly” generation of windows). $aenethods efficiently
compute the probability distribution of large CTMC at seVéirae instances up
to a small approximation error. They can also be used foritafstate systems.
In this paper, we evaluate and compare the performance daivihelifferent
approaches for the computation of probabilities of cereaents, i.e., the statis-
tical estimation using simulation and the approximatiomgi® numerical reach-
ability analysis. For the latter we use a particular aldwnitas a representative
of the whole family of numerical analysis algorithms, besmwe have found it
to perform best. Similar to the sliding-window method [2@lr algorithm per-
forms a sequence of local analysis steps on dynamicallytwarted abstractions
of the system. The main improvement over the sliding-windoethod is that
our algorithm is based on adaptive uniformization [51], evhallows us to con-
sider arbitrary sets of significant states, i.e., they malpbated at different parts
of the state space and are not restricted to a specific wintlayes Moreover,
adaptive uniformization is more robust if the system undad\sis stiff, i.e., if the
chemical reactions occur at time scales that differ by s¢weders of magnitude.
In contrast to [22], here, for the first time, we perform a sysatic experimental
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performance comparison of a numerical reachability amalygh simulation.

The first example that we consider is a model of intracellsiigmaling through
immune receptors that are involved in antigen recognitids].[ The model con-
sists of 12 different chemical species and 19 reactions suticei most complex
example that we consider. The second example is the tratisarregulation of
a repressor protein in bacteriophaggl8]. In the first two examples, we approx-
imate the probability distribution at several time instasicin the third example,
which is a gene expression network [49], we compute theiligton of the time
until the number of produced proteins exceeds a certairshiotd. Our last ex-
ample is the model of a genetic toggle switch in Escherichlavehere bistabil-
ity arises from the mutually inhibitory arrangement of tvepressor genes [11].
We approximate the probability distribution until the srstreaches its bistable
steady-state. Note that all examples that we consider Aangénn several dimen-
sions.

We compare the running time of our numerical reachabiliglysis to that of
the simulative approach for both examples, for differeecmion levels. Our re-
sults show that numerical approximation based on readhadilalysis is superior
to statistical estimation based on repeated simulatigpea@ally if we increase the
desired precision level. For instance, the numerical appration of the second
example needs 39 minutes for a total approximation err@r-ofl0—>, which dis-
tributes among all states. Simulation requires more thahaurs if the statistical
error of a single event is to be bounded Hy > and more than sixty hours for
10-S.

2. Stochastic Model

According to the theory of stochastic chemical reactiorekos, a continuous-
time Markov chain (CTMC) can be derived from a set of biocheimigEactions [13,
24]. This discrete-state model has a regular structurechwives rise to a func-
tional description in terms dfansition class model§TCMs) [42]. TCMs natu-
rally represent coupled chemical reactions as each cheremetion corresponds
to a transition class. They provide, however, a more gew@sdription than a set
of chemical reactions.

2.1. Transition Class Models

Consider a dynamical system with a finite number of discrette stariables
such as the number of instances of some chemical speciesacaon volume.
Assume that these variables change at discrete points @ #ntransition class
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provides a rule for these changes and a function for the ledion of the state-
dependentransition rateat which a state change occurs. [Sebe a countable set
of states.

Definition 1. Atransition clas€’ is a triple (G, u, «) such that (i) the guards C
S is a subset of, (i) v : G — S is an injective update function with(z) # x
forall z € G, (iii) a : G — R Is a rate function. Aransition class model
(TCM) M = (y,{C4,...,Cy}) consists of an initial statg € S and a finite set
of transition classe§’, . .., C}.

The setz contains all states in which a transition of typ€' is possible and (x)
is the target state of the transition. The probability of théransition depends on
the transition ratex(z) in the way explained below.

In practice, we can usually expreSsby a finite number of constraints on the
state variables, and and « by elementary arithmetic functions. Thus, a TCM
provides a finite description of a (possibly infinite-stadg3tem. Before we show
how a CTMC is derived from a TCM, we present some examples of TQsls t
describe biochemical reaction networks.

Biochemical Reaction Network¥Ve consider a fixed reaction volume withdif-
ferent chemical species that is spatially homogeneousratimrmal equilibrium.
Then, the state space of the system is give by Nj}. We assume that molecules
collide randomly and that collisions may lead to chemicatt®ns. For a given
set of chemical reactions, we construct a TCM such that eaaokition class cor-
responds to a reaction and the associated propensity danstgiven by the rate
function «. Formally, assume that the network consists: different chemical
reactions. Letn € {1,...,k}, and let then-th reaction be given by the stoichio-
metric equation

where fori € {1,...,n} the symbolS; refers to thei-th chemical species and
the stoichiometric coefficients, ¢; are non-negative integers, which specify how
many molecules of typeare consumed and how many are produced by the reac-
tion, respectively. If; > 0 then thei-th species is called a reactant of theth
reaction. In stoichiometric equations, terms with coedfitD are usually omitted
and terms of the formiS; are abbreviated by,. The symbol)) abbreviates the
case) =k =...=k,or0=1¢, = ... =/{,. We define then-th transition class



Crn = (G, U, aiy,) SUCH that
Gm = {z=(v1,...,2,) EN} | 2; > k;,i € {0,1,...}},
um(z) = o+ — ki, ..., 0, — k),
am(z) = c-J[, (il)

The rate functionv,, takes into account that the probability of a reaction of type

is proportional to the possible number of combinations attant molecules, i.e.,

if k&; molecules of type are needed and the current number of molecules of type
S; is x; then (x) is the number of possible ways to chodseut of z;. The rate
constant > 0 depends on the temperature, the volume, and the microgysic
properties of the reactant species [14].

Example 1. We consider a simple transition class model for transcoiptof a
gene into messenger RNA (MRNA), and subsequent transtdttbe latter into
proteins [49]. This reaction network involves three cherhggecies, namely,
gene, mRNA, and protein. As only a single copy of the gentseaistate of the
system is uniquely determined by the number of mMRNA andiproteglecules.
Therefore,5 = N2 and a state is a paifzg,rp) € S. We assume that initially
there are no mMRNA molecules and no proteins in the systemyi.e (0,0).
The following four types of reactions occur in the system, elgfh — mRNA,
mRNA — mRNA + P, nRNA — (,andP — (). Letm € {1,...,4} and let
c¢m > 0 be a constant. Transition class,, = (G, unm, a,,) describes then-th
reaction type.

e We describe gene transcription by transition clags which increases the
number of MRNA molecules by 1. Thugxg, zp) = (xg + 1,zp). This
transition class is possible in all states, i.€;, = S. Transcription happens
at the constant ratev; (xg,xp) = c¢1, as only one reactant molecule (the
gene) is available.

e We represent the translation of mRNA into proteindy A Cs-transition
is only possible if there is at least one mMRNA molecule in yiséesn. We
setGy = {(xg,xp) € S| xg > 0} anduy(zg,xp) = (zr,zp + 1). Note
that in this case mMRNA is a reactant that is not consumed. Emsla-
tion rate depends linearly on the number of mMRNA moleculégrefore,

OzQ(l'R,[L'p) — Cy TR



e Degradation is modeled biy; andCy. HenceG3 = Gy, G4 = {(xR,zp) €
S|xp >0}, us(xg,xp) = (xg — 1, xp), anduy(zr, zp) = (zr,zp — 1).
We sets(zg, zp) = c3 - g anday(rg, xp) = ¢4 - Tp.

2.2. Chemical Master Equation

Atransition class modéel! = (y,{C},...,Cy}) represents a time-homogeneous,
discrete-state Markov proce§X (¢) }+>o, that is, a CTMC with state space The
j-th entry of the random vectoX (t) = (Xi(¢),..., X,.(t)) represents the value
of the j-th state variable. Let',,, = (G, um, o), 1 < m < k, and assume that
attimet > 0 the process is in statee G,,.

The probability of a transition of typ€’,, occurring in the next infinitesimal
time intervallt,t + 7), 7 > 0 is given by

PrX(t+7) =un(x) | X(t) =) = ap(x) - .

Sincey is the initial state of\/ we havePr(X(0) = y) = 1, and forz € S we
define the probability thaX is in stater at timet by

p(x) =Pr(X(t) =z | X(0)=y).

Recall that,, is injective. To simplify our presentation, we define the Bgt as

the set of all states for whichw,.!(z) is defined, that is, that can be reached by a
transition of typeC,,,. Thechemical master equatiaescribes the behavior of

by the differential equation [24]

W@ = e @) pO () (@)~ Y awl@) pO () | ()

m:x€Hpy, m:x€Gm

Unbounded Rangeror realistic systems, the state space of the Markov chain is
extremely large, because its size grows exponentially enntimber of involved
chemical species. Moreover, if upper bounds on the stateblas cannot derived
from certain conservation laws, their range is assumed iofbete although in
practice the number of molecules is bounded. Then from theiti structure,

we can compute bounds that are kept with a very high prolyabiiven though
every state in the infinite state space has a non-zero pilapatertain attracting
regions force most of the probability mass to remain withfimiie range.

Example 2. In EX. 1, the degradation rates;(xz) anday(z) grow linearly in the
state variables. Thus, the higher the number of mMRNA or prot®lecules the
more likely is their degradation. Depending on the rate ¢antscy, . . ., ¢4, the
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system becomes “stable” in different regions. As time apphes infinity, the
main part of the probability mass will be close to a region whaneduction and
degradation of molecules cancel each other out. Below, weudssin general
under which conditions the system approaches such a staditédtion.

Holding Times and Jump Probabilitie®s Markov chain{X (t)}:>, defined in

the way above is atable and conservative jump procgds Thus, there exists
a sequence of jump timgs(n)},.~o and a sequenceX (n)},>, of visited states
such that

~

70)=0<7(1) <7(2) <...andX(t) = X(n)if 7(n) <t <7(n+1).

The distribution of then-th holding timer(n + 1) — 7(n) under the condition
X (n) = z is negative exponentially distributed with parameter

ANa)= ) awm(),

m:x€Gm

also calleckxit rateof statex.

If the sum of all holding times is finite with positive prob#ty, the Markov
chain is said teexplodeand the limiting distribution does not exist. Explosive
Markov chains are not of interest for the application areghaf work since in
this case the system “gets lost at infinity”. It is possibleb@ck if the Markov
chain does not explode by usiiguter’s Criterion[4]. For the remainder of our
presentation we assume that the rate functigpsre such that the Markov chain
does not explode.

Assume that the-th state of the Markov chain is, that is, X (n) = z. If at
least one transition class is enabled:jrthe successor stateus, () for somem
with z € G,,,. The probability of successat, () is given by

Pr(X(n+1) =un(z) | X(n) = z) = 2=,

The holding times and the jump probabilities play an impartale for the simu-
lation of the Markov chain, which is used to estimate the phility of a certain
events.

3. Statistical Estimation of Probabilities

In this section we shortly review the basic steps that haeetoarried out to
estimate the probability of a certain measurable evengustimchastic simulation.
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Throughout this section, we will denote this eventAynd its probability byy.
For the analysis of biological systems, the events of istarey be the marginal
distributions or even the joint distributions of certaireahcal species. For in-
stance, A may have the formX;(t) = k, that is, the number of typg molecules
is k.

Estimates are obtained in two steps. In the first step, aicemtamber of
simulation runs of the Markov chain have to be generatedjratite second step,
the results of the simulation runs are analyzed.

3.1. Trajectory Generation

A realization of the Markov chain, also call&@jectoryor run, is the random
sequence of states visited by the process. If trajectoreepr@duced by a com-
puter,pseudo-random numbease used to artificially generate randomness [26].
The basic steps of producing a single trajectory that startise initial statey at
time 0 are as follows:

1. Initialize timet = 0 and stater = y.

2. Generate the holding tinTe i.e., a sample of a random variable being ex-
ponentially distributed with parameteri(z).

3. Generate the successor state, i.e., a sampéa discrete random variable
Z that has probability distributio®(Z = m) = a,,,(z) /().

4. Sett =t+ h,r = u,(zr)and goto Step 2 if < T

In Step 2, we generate the holding time of the current stat®seudo-random
number generators usually draw from a uniform distributidimus, for a given
random sample, that is uniformly distributed of0, 1), we calculate an exponen-
tially distributed sample by using the inverse transfornthd. More precisely,
we compute the inverselfg of the cumulative distribution function of the ex-
ponential distribution. In étep 3, the same idea is used ¢addewhich reaction
occurs next. The inverse of the cumulative distributionction of 7 is given by
m =min{i : Y ._, a;(x) > ry- M)}, wherer, is again a random sample that is
uniformly distributed on(0, 1). In the final step, the current time and the current
state are updated. The simulation is terminated if the tiorezbnT" of interest is
reached and continued otherwise.

3.2. Output Analysis

The problem of estimating the probabilifyof the eventd can be reformulated
as estimating the expectation of the random varighlevith



{1 wed
XAWI =Y 0 if we A,

wherew is a trajectory. The expectatiofi[x 4] equalsy, since E[y4] = 1 -
Pr(xa =1)4+0- Pr(xa = 0) = ~. Therefore, we can resort to the standard
estimation procedure for expectations. Assume tad the number of runs that
have been carried out ang, . . ., Yy are independent and identically distributed
asya. Thus, from thei-th run we get a realization df; by checking ifA has
occurred or not. It is important to point out that we have targmtee the inde-
pendence of th&;’s. This implies that we generaf€ independent trajectories of
the Markov chain, each time with a different initial sédor the pseudo-random
number generator. The sample méan= < S V. Y; is then anunbiasedand
consistent estimatd6] for E[x4]. The former means tha[Y] = E[x4]| and
the latter refers to the fact that Asincreases the estimatbrbecomes closer te.
Note thatY” is equal to the relative frequency of the eventLeto? = VAR[y 4]
be the variance of 4. We evaluate the quality of the estimatdrby applying
the central limit theorem, which states thawill approximately have a Normal
distribution with meanZ[y ] = v and variancer?/N. Hence, for largeV the
random variable _

Y —n

\o2/N
has a standard Normal distribution, that is, the mean is aedbthe variance is
one. Knowing the distribution of enables us reason about the differefice-|.
Let 8 € [0, 1] be theconfidence levedndz € R* such thats = Pr(|Z] < 2).
Then

6—Pdwtz@—f%(§§%3z)—f%OY—ﬂSZVGWN)

We estimater? with the sample covarianc&® = = "~ (V; — V)2, which is
an unbiased estimator fef. Then, for largeV and a large number of realizations
of theconfidence interval

[V = 2V/S7/N.¥ + /57N, 2

(3 is the fraction of intervals that cover It therefore measures the quality of the
estimatorY’.

1The seed of a pseudo-random number generator is an initisg,van which the sequence of
generated numbers depend [26].
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For a practical application, two further remarks are imgott Firstly, we usu-
ally chooses € {0.95,0.99} and the corresponding value ofcan be found in
the table of the standard Normal distribution. debe the cumulative distribu-
tion function of the standard Normal distribution. Theningsthat the Normal
distribution is symmetric,

1-8 _ 1 “11
D(z)=Pr(Z<z)=1-2 =18 — > =097t (L),

Secondly, bothy and S? can be computed efficiently if during the trajectory
generation the realizations of the two suﬁﬁl Y; andzij\i1 Y;? are calculated,
since it can be easily shown that

G _ T ()

N-1 (N-1)N *

Thus, ifr € {0,..., N} is the number of times event occurred during theV
simulation runsy = /N andS? = ]Q((]]VV‘_?).

If the interval in Eq. 2 is large relative 6 the quality of the estimator is poor
and more simulation runs have to be carried out. For our exjeatal results in
Section 5, we fixed the relative width of the interval to(b2 (which means that
we have a relative error of at mogtl) and chose confidence levgl = 0.95.
Thus,z ~ 1.96 and we can determine the number of necessary runs by bounding

the relative width

2~Z'—Vfwgo.2 s 282 N — 384.52 < N

0.01 42 ~v2
Assume now that we want to estimate the probability of everasoccur at least
with probabilityy. Using the fact that? = VAR[y4] = 7(1 — 7) and replacing
S? by o? yields N > 384 - 1‘77 [41]. For instance, the sufficient number of runs
to guarantee that probabilities, having at least the orflsragnitude ofl0~?, are
estimated with a relative error of at mastt and a confidence df5% is N =
38,000, 000. For a detailed discussion about a sufficient number ofdtajess,
we refer to [40].

During the last decade more sophisticated simulation #hgns have been
developed (see [39] for overview). Most of them, however,ndb give exact
trajectories of the Markov process but approximations dwadetrror of this ap-
proximation is difficult to determine. Therefore, we do netuhese techniques
for our comparison. An alternative would be a conversioniscreéte time as re-
cently propsed by Sandmann [38]. This method, however, iaslisadvantage
that a tight upper bound for the exit rates of all states fadunihg the simulation
must be known a priori.
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state ofY (B(t))
A

} > timet

Figure 1: Construction of the proce§s (B(t))}:>o. The gray circles represent
the state o and the black ticks on the x-axis the jump timegf

4. Numerical Reachability Analysis

Instead of indirectly approximating probabilities withasstical estimation
procedures, we can use a numerical reachability analysslte Eqg. 1. An ef-
ficient solution by applying standard numerical methodsas possible, since
for realistic systems the state space of the system is eglyelawrge. An effi-
cient approximation is, however, possible as long as tted tatmber of involved
molecules is a manageable number. We describe a method theded on a dis-
cretization of the process and numerically approximatesptiobabilitiesp®) ()
at certain time instances.

Adaptive UniformizationWe discretize the system usiraglaptive uniformiza-
tion, which has been introduced by van Moorsel [51] as a variargtafdard
uniformization[20, 37, 43, 44, 54]. Numerical methods based on unifornunat
have the advantage that they are numerically stable and witee efficient than
other methods [47].

The main idea behind uniformization methods is to constuw stochastic
processY (B(t)) }+>o such that for all states and all timeg > 0,

Pr(X(t) =z) = Pr(Y(B(t)) = z). (3)

The proces¥” “observes” the state of the original processat discrete points in
time as illustrated in Fig. 1. The observation times are rda@teed by a simple
counting proces® (see Fig. 2).

For the construction ofY (B(t)) }+>0, we define a sequenég, Sy, . . . of sub-
sets of the state spactof the CTMC X, as well as a sequengg, p1, ... such
that fork = 0,1, ... the functionp, : S — [0, 1] contains the state probabilities
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) )Y YR VD ¥

Figure 2: The birth process of the adaptive uniformizatioocpdure.

of Y after k steps ands, contains all states wheyg. is positive. Recall thay
is the initial state. At tim&), we defineS, = {y}, po(y) = 1 andpy(z) = 0

if x #y. Fork = 1,2,..., we inductively defineS, as follows. We choose a
positiveuniformization rate\, > max,cgs, A\, and set

Sip1={2" €S| 3x e Sp:pr() qx,z") >0}, 4)
where, forz € S,

Zm:um(ﬂf)iﬂf' Oém(x)//\k if =z 7é ZL”, dm : Um(l') = ZE,7
qi(z,2’) = 0 itz £2, Bmcug(z) =2, (5)

/

1 B Zx’ES:x’;ég; Qk(xa x/) If rT =x.

Fora' € Spi1 we setpyyi(2') = > g Pr(®) - gr(z,2") andpgya(z) = 0 if
The valuep, () is the probability of reaching stateafterk steps in a discrete-
time Markov chain{Y (k) }.en With transition probabilitiesPr (Y (k + 1) = 2/ |
Y (k) = z) = qx(x,2’) and initial distributionPr (Y (0) = y) = 1. We can recon-
structp' (z) by considering the proceds that relates steps with time. Formally,
let { B(t)}+>0 be a birth process with birth rates, A, . .., that is,B has a chain
structure as illustrated in Fig. 2 and starts initially iats) with probability one.
In [51], van Moorsel has proven that Eq. (3) hold®itioes not explode. Singé
and B are independent, the state probability (x) of the original CTMC can be
expressed as

pO(x) =3 Pr(Y(k) = 2)- Pr(B(t) = k) = > pulx) - Pr(B(t) = k). (6)

Note that in Eq. 6, there are no negative summands involveateder,p, can
be computed inductively. Lower and upper summation boundsd U can be
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obtained such that for each stat¢he truncation error

pO(z) - z (@) PrBt) =k) = % pule) - Pr(B(t) = k) <

0<k<L,

U<k<oo (7)
> Pr(B(t)=k)= 1—> Pr(B(t)=k)< €

0<k<L, k=L
U<k<oo

can be bounded by > 0. Finally, we note that from Eq. 5 itis clear that choosing
the smallest possiblg, is advantageous since this avoids high self-loop probabil-
ities ing. SinceS, C S; C ... the sequencgg, \q, ... of uniformization rates is
monotonically increasing and converges to the supremym.g A(z).

Standard UniformizationStandard uniformization is a special case of adaptive
uniformization where a global uniformization rate= \g = \; = ... has to be
chosen. If each transition in the birth process occurs ahataaot rate\, the values
Pr(B(t) = k) follow a Poisson distribution with parametgt. They can be cal-
culated efficiently using the iterative procedure introgliby Fox and Glynn [10].
Standard uniformization becomes inefficient wheneves much larger than the
exit rates\(z) of many states: that are involved in the computation. If the dy-
namics of the system is initially slow and increases as timngnesses, then adap-
tive uniformization is more efficient, since the uniforntioa rate will initially
be small and increase during the iteration. Finally, it ®iproach the global
uniformization rate\.

Approximate Discretizationln its standard form, adaptive uniformization is not
appropriate for Markov chains that describe biochemicattien networks for
two reasons. Firstly, the sizes of the s8§sSi, . . . grow after each step and the
computational complexity fop, becomes huge. Secondly, the birth process may
become fast even if the dynamics of the system becomes slwswegson is that
afterk iterations all states that are reachable withgteps from the initial state are
elements ofS,. Even if the main part of the probability mass is concenttate
states with small exit rates, there may be states. iwith a very small probability
and a large exit rate. Sincg, = max,cs, A(x), the transition rates of the birth
process are large and the truncation péinhoves to the right, which means that
many iterations are necessary to achieve the desired agcura

Both problems mentioned above can be significantly defusedeljecting
states that are very unlikely, that is, we replace Eq. 4 by

Spr1 = {2 €S|Z ) qr(z,2') > A}, (8)
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whereA is a small positive constant. This ensures that the sizelseo§eétsS),
remain manageable. Moreover, the rate of the birth processsponds to the
rates of the states having “significant” probability.

The error afterk steps introduced by the threshakl can be calculated as
1 — > ,cs, pr(x). Note that this error increases monotonicallykiisince more
and more probability “gets lost”. Therefore we chodsseveral orders of magni-
tude smaller than the desired precision. For our experiahegsults in Section 5
we chose different values fak ranging from10~'° till 10~® in order to obtain
different precision levels.

Approximate Solution of the Birth Procesdle use standard uniformization to
compute the probabilitie®r(B(t) = k), since we can afford a high global uni-
formization rate (and thus, high self-loop probabiliti@s}this case. The reason
is that the simple chain structure eases the discretizatohthe computational
effort to solve the birth process is small compared to thewation of thep,. Let
{Y5(k)}ens De the discrete-time Markov chain that results from theretsza-
tion of B and let{Ng(t)}:>o be the corresponding counting process. Since we
use standard uniformizatioryz is a Poisson process whose state probabilities
Pr(Ng(t) = k) can be computed efficiently [10]. Similar as férwe approxi-
mately solveYs by neglecting states that are “left behind”. Informally, use a
window (a set that contains all states within a certain ratig slides from left to
right to approximate the state probabilities¥gf. The total approximation error
for the computation of the probabilitied-(B(t) = i) afterk steps is then given

by1— S, Pr(B(t) = k).

Approximation Error. Both, the solution ot and B gives an underapproximation
of the valuegy () and Pr(B(t) = k). Thus, summing up their product according
to Eqg. 6 results in an underapproximation fof (z). The final approximation
error is obtained a8 = 1 — 3~ ¢ p"(z) whereU is the right truncation bound
of the birth process. The probability of states that are ndt;i is approximated
with zero. Note that this includes all approximation erroes, the approximation
error for the computation aPr(B(t) = k) andpy(x) for all £ < U and all states
x, as well as the error that arises from the truncation of theitea sum.

For our experimental results, we used the criterion in Eg ddtermine a
truncation point/. Let pg(i) be the approximation oPr(B(t) = i) that we ob-
tain by solvingB as described above. Note that it may be the case that the terms
> «cs, Pe(k) decrease so fast that an accuracy ohn never be reached. There-

fore, it is necessary to bound the total number of iterationg whereU is the
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truncation point of the solution of the birth process usitagndard uniformization.
For our experimental results it was never the case that wedtigetate untill’, i.e.
the solution of the birth process was always suchlhazg:L Pr(B(t)=k) <e
wherelU < U. We chose = 10~ for our results in Section 5.

Note that, alternatively, we can monitor the total error

k

€, =1— Z sz(l’) -pp(7)

i=0 z€S;

after k iterations and stop the iteration if “enough” summands Haeen added,
i.e., if a certain accuracy, is reached. Again, this criterion is not sufficient to
guarantee termination of the algorithm and an additionahldaon the number of
iterations is necessary.

The computational savings achieved by solviigas well asB in the way
described above are substantial. The reason is that theamwhbtates i3 and
Y that are significant aftet steps is several orders of magnitudes smaller than the
number of all states reachable aftesteps. Moreover, our experimental results
show that if we choosé\ several orders of magnitude smaller tharthen the
desired accuracy is always achieved.

We summarize the algorithm as follows:

1. Initialize the significant sef := {y}.
2. Initialize probability functions:, p, andq on S with r(y) := 0, p(y) := 1,
andq(y) := 1.
3. Initialize the sum of coefficients witkum := 0.
Initiailize the step count with := 0.
5. Whilesum < 1 —eandk < U
(a) Set\, = max,cs )\(.CL')
(b) Computecoeff = Pr(B(t) = k) using\y.
(c) Forallz € S
For all transition classes,,, = (G, tm, Q)
i If u,(x) ¢ S then addu,,(x) to S.
ii. Setprop := p(x) - apm(x)/ Mg
iii. Propagate probabilityrop from z to u,,(z) by setting
q(z) = q(x) — prop andq(um(z)) = q(um(x)) + prop.
(d) For all states: in S
i. If p(z) < A, then remove: from S.

»
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ii. Update probabilities by setting(x) := ¢(x).
(e) Update sum of coefficients by settiagmn = sum + coeff .
H k=Fk+1.
6. Forallx € S setr(z) := r(x) + coeff - p(z).
7. Returnr.

If a small threshold\ is chosen, the proposed method gives accurate approx-
imations for models where all populations are small. If tkpeeted number of
a certain population is high, then the number of significdates is large. In
this case the memory requirements may exceed the memorgitepand the
computation will take a long time to complete. Since highydapons can be ac-
curately approximated by deterministically and contintlgpichanging variables,
a stochastic hybrid model is more advantageous in such §a3k#hich goes
beyond the scope of this paper. Note that if one is interastgdalitative trends
only, it is possible to get a rough idea of the dynamics of §stesn by choos-
ing a much higher threshold. This is similar to generating a small number of
simulation runs in order to determine qualitative trendthefsystem.

Iteration Over Time.Our algorithm can be used in an iterative fashion to approx-
imate the distribution oX at several time instances. To see this, first note that we
can use the method described above for systems startingwhitinary initial dis-
tributions by definings, as the set of states that have an initial probability greater
thanA. After computing an approximation @f? (z) for all x € S we can use it

as an initial distribution for the next step to obtain an apgmation forp(*)(z)
wheret’ > ¢ and the step size i$ — ¢. In this way, we obtain approximations for
several time instances.

Related Work.Other approaches for an approximate numerical solutiorhef t
underlying Markov chains have been proposed [5, 32]. Thiégrdrom our ap-
proach in that they compute a finite projection of the stasesphat is based solely
on the structure of the underlying graph. In our method, wkadl neglect states
in an on-the-fly fashion based on the stochastic properfiiseoMarkov chain.
Therefore, we consider a significantly smaller set of stdtegg a certain time
interval, without being less accurate. The projection atgms include all states
that are reachable within a fixed path depth. In our algorjtfon each single
state, we dynamically decide if it significantly contribsit® the overall solution
or not. We have found this dynamic adaptation of the anatgside essential for
efficiency.
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Gillespie simulation
running time | single event error]  #runs

> 500 h 1078 > 3 x 101

> 50 h 1077 > 3 x 107

>5h 10°¢ >3 x 108

> 30 min 107° >3 x 107

> 3 min 1074 > 3 x 108

> 18 sec 1073 >3 x 10°

numerical approximation
running time| total approx. error  [Sy| | maxy |Sk| | A

10 min 31 sec 6 x 1076 1x108| 2x10% |10~
4 min 57 sec 2 x107° 5x10° | 1x10% | 10713
2 min 12 sec 1x10°* 3x10°| 6 x10° | 10712
40 sec 5x 1074 1x10° | 3x10° | 107
15 sec 1x1073 5x10% | 1x10% | 10710

Table 1. Comparison of the running times for the signalingwgxa.

5. Experimental Results

For our experimental results, we consider four examples fology. Our
first example is the model of intracellular signaling thrbugceptors of the im-
mune system considered in [15]. The second example is a niad#éie tran-
scription regulation of a repressor protein in bacteriggh®a[18]. This protein
is responsible for maintaining lysogeny of thevirus in E. coli [1]. For both
the first and the second example, we compute the full prabadiktribution for
different precision levels. Our third example uses the geqm@ession model of
Ex. 1. We calculate the distribution of the time until the raenof produced pro-
teins exceeds500. The last example is the model of a genetic toggle switch in
Escherichia coli presented in [11]. It is a prototype of adbte system where the
bistability arises from the mutually inhibitory arrangemhef the repressor genes.
Again, we compute the full probability distribution for tifent precision levels.

We implemented our direct numerical method as well as thiespile simula-
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tion algorithm in a C++ tool called SABRE [7]. All our experimsrare performed
on a 3.16 GHz Intel Linux PC with 6 GB of RAM. There is no one-toeccor-
respondence between the statistical accuracy of the ds8rtizat we derive via
simulation and the precision of the numerical method. Hakdwy assuming that
the smallest event probability that has to be estimatedal results of the sim-
ulation have a “precision” of at least Intuitively, we simulate often enough to
reason about events that occur with a probability of at leasVe therefore refer
to v as thesingle event errar Note that the simulation results are still subject to
the statistical errors since the true values may not be edviey the confidence
interval (compare Section 3.2).

The approximation erraf of the numerical method is the sum of the approxi-
mation error ofall states in the Markov chain. Note that the probabilities afest
not in Sy are underapproximated with zero and their true probadyslithcrease
depending on how close they are to an attracting region. Tiwe ef a single
state probabilityp” (z) is much smaller than but precise values for the single
error are hard to obtain. A rough estimation of the singlersrcan be obtained
by dividing the total error by the average si#&| of the significant sets (cf. Ta-
ble 2 and 3), even thoughmay not be uniformly distributed on the significant
set. On the other hand,also includes the error of insignificant states and, thus,
distributes among much more states than only thosg.in

We are comparing the two methods from the point of view ofrtinenning
times. Another possibility would be to compare the memonystonption. Since
we aim at computing the probability distribution of the urlgimg Markov chain,
both methods have to store the probability of all statesidensd at some point
in time. But this is, at least for systems with small populasiosimilar in both
methods. We therefore focus on the running time of the algos.

Immune-Receptor Signaling.The signaling example involves 12 different chem-
ical species and 19 reactions. After binding to a receptagantl undergoes
six modifications and can generate a signal by activating sserger [15]. Let

r = (z1,...,212) and lete; € N}? be the vector with all entries zero except the
i-th entry which is one. We define transition classes- (G, u;, «;), 1 <i < 19

as given below.

e Receptor-ligand bindingG;, = {x € N}? | x; > 0,25 > 0}, uy(z) =
xr — e — ey + es, ar(x) = crr s

e Forward modifications: Fof € {2,...,7}, we defineG; = {z € N§? |
x> 0}, uj(x) = v —ejq + ejpo, () = ¢jzjt.
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e Backward modifications: For € {8,...,14}, we defineGG; = {z € N§? |
x5 >0}, uj(x) = —ej_5 + €1 + ez, oj(x) = ¢jxj_s.

e Binding of inactive messengerss;s; = {z € N}? | g > 0,710 > 0},
u15(7) = x — eg — e1g + e11, a15(x) = 1579710,

e Unbinding of inactive messenger§;s = {z € N}? | z1; > 0}, uis(z) =
T — ey + eg + €19, a16(T) = 16711

e Release of activated messengets; = {x € N}? | 211 > 0}, ui7(z) =
T — e1 + eg + e, a17(7) = c17211.

e Unbinding of inactive messengers and ligan@s; = {z € N}? | z1; > 0},
Ulg(l') =T — €11 -+ €1 + ()] + €10, 0618(.%) = C18711-

e Inactivation of messengersi;g = {r € N}? | x13 > 0}, ug(z) = = —
€12 + €10, a19(T) = C19T12.

Following [15], the rate constants are choseras- 6.7 - 1073, ¢; = 0.25 for

j S {2,...,7}, cj = 0.5 forj € {8,,14}, ci5 = 1.2 - 1073, c1g = 0.01,
cir = 100, ¢13 = 0.5, cig = 2 - 1073 and the initial state is = (zy,...,212)
with z; = 30 ligands,z; = 900 receptors and:;, = 10000 messengers. We
simulated the system over a time horizont ef 4. In Table 1, we list the running
times of our numerical method as well as the running time efsimulation. The
column with heade[S| lists the average number of states in the $gts5,, . ..
andmaxy, | Sy| lists the maximum over all these numbers of states. The amdum
with headerA lists the threshold in Eq. 8.

Phage\ Model. The Phage\ model involves 6 different species and 10 reac-
tions. Thus, a state is a vector= (xy,z, r3, 14, 75, 76) € N§. The transition
classe<’; = (G, u;, o), 1 < i < 10 are given as follows [18].

e Production of proteins:G; = {z € Nj | 23 > 0}, wi(z) = (21 +
1,9, 3, T4, T5, Tg), a1 () = C123.

e Degradation of proteinsG, = {z € N§ | z; > 0}, us(z) = (21 —
1,29, w3, 14, 5E5,3U6), az(%’) = Ca21.

e Production of MRNAG; = {x € N§ | x5 > 0}, us(z) = (21, 22, 2341, 24,
x5, Tg), a3(T) = C3T5.
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Gillespie simulation
running time | single event error #runs

> 6000 h 10°8 > 3 x 1010

> 500 h 1077 > 3 x 10

67 h 22 min 106 >3 x 108

6 h 44 min 107° > 3 x 107

40 min 104 >3 x 106

4 min 1073 > 3 x 10°

numerical approximation
running time| total approx. error | Sy| maxy, | S| A

55 min 5 sec 3x 1076 239792 | 722426 | 1071
39 min 16 secg 2 x107° 187204 | 566141 | 1074
25 min 2 sec 2x 1074 140969 | 427282 | 1013
15 min 41 se¢ 1x1073 101078 306130 10712
6 min 33 sec 7x 1073 67540 | 202627 | 107!
3 min 12 sec 4 x 1072 40373 117392 | 10710

Table 2: Comparison of the running times for the phageodel.

Degradation of mMRNAG, = {z € N§ | 23 > 0}, wy(x) = (71, 29, 73 —
1,24, 25, %6), () = cazs.

First dimer binding at operator sit€i; = {z € N§ | 29,24 > 0}, us(z) =
(21,29 — 1,23, 24 — 1, 25 + 1, 76), a5(7) = 52274,

First dimer unbindingGs = {z € N§ | 25 > 0}, ug(z) = (21,29 + 1, 23,
xy+ 1,25 — 1,26), ag(z) = cers.

Second dimer binding at operator sit€; = {z € N§ | 29,25 > 0},
U?(IE) = ($17I2 — 1,23, x4, x5 — 1, 26 + 1), CV7($) = C7X2Ts5.

Second dimer unbindingss = {z € N | 75 > 0}, ug(z) = (71, z9+1, 73,
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Dimers

Figure 3: Probability distribution of monomers and dimersghe phage. model.

xg, x5+ 1,26 — 1), ag(z) = cswe.

° Dimerization:Gg = {IL‘ S Ng | T, > ]_}, Ug(l’) = (ZEI — 2,29 + 1,23, 24,
x5, T6), ag(T) = comq (1 — 1)/2.

e Dissociation into monomerssy = {z € Nj | z, > 0}, uio(x) = (21 +
2,29 — 1,23, T4, T5, T6), Q10(T) = C1072.

Forcy, ..., cio, we choose:; = 0.043, ¢; = 0.0007, c3 = 0.0715, ¢4, = 0.0039,

cs = 1.992647 x 1072, ¢g = 0.4791, c; = 1.992647 x 1074, cg = 8.765 x 10712,

cy = 8.30269 x 1072, andc;y = 0.5 (see [5, 18]). The initial state of the system
is given byy = (2,6,0,2,0,0) and the time horizon is = 300. We approximate
the probability distributions of the underlying CTMC at 10§u&istant time in-
stances. Fig. 3 shows a plot of the distribution of dimers motomers at time
instantt = 300. In Table 2, we list the results of our numerical method ad asl|
the simulation results.

Gene Expression.For the transition classes of the gene expression example we
refer to Ex. 1. For the rate constants, we chog@se- 0.05, ¢c; = 0.0058, ¢35 =
0.0029, andc, = 10~#, wherecs andc, correspond to a half-life of 4 minutes for
MRNA and 2 hours for the protein [49]. We compute the probigtihiat at least

500 proteins are in the system at 100 equidistant time ins&rFig 4 shows the
cumulative probability distribution of the time until thember of proteins reaches
500 for the first time (note that eventually the threshold@d is reached with
probability one). In Table 3, we list the results for the gempression example,
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Figure 4. Cumulative probability distribution of the timetiithe number of pro-
teins reaches 500 for the first time in the gene expressiamgea

where, as abovesS;| denotes the average number of states in the%ets, . . .
andA is the threshold in Eq. 8.

Genetic Toggle Switch.The bistable toggle switch is a prototype of a genetic
switch with two competing repressor proteins and four tieast[11]. The tog-
gle switch involves two chemical specidsand B and four reactions. Let =
(z1,22) € NZ. The transition classes; = (G;,u;, o), 1 < i < 4 are given as
follows:

o Go={reN2 |z >0} uy(x)=(x; —1,29), az(z) = c3 - 71,

o Gy = N2, uy(z) = (x1 + 1,22), o (z) = 1/ (ca + 25),
o G3= N2, uz(z) = (v1,25 + 1), az(x) = cy/(c5 + 27),
o Gy={r eN2|xy>0},us(x) = (71,29 — 1), ay(x) = ¢ - Ta.

For our experimental results, we chose the same paramet&gseerg et al. [45],
thatis,c; = c;, = 3-10%, ¢y = ¢5 = 1.1 - 10%, ¢5 = ¢ = 0.001, and3 = v = 2.

We used the initial state = (133,133) and a time horizon of = 15000. We
present our experimental results in Table 4.
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Gillespie simulation

running time| single event error # runs
> 500 h 1078 > 3 x 1019
>50h 1077 > 3 x 10°
> 5h 3 min 1076 >3 x 108
> 30 min 107° >3 x 107
> 3 min 1074 > 3 x 108
> 15 sec 1073 >3 x 10°

numerical approximation

running time| total approx. error  |Si| | max{Sx} | A
11 sec 2x 1076 20919 | 23636 | 1072
10 sec 2x107° 19660 | 22469 | 107!
9 sec 2x 1071 18180 | 20945 | 10719
7 sec 2x 1073 16514 | 19273 107
6 sec 2x1072 14707 | 17431 | 1078

Table 3: Comparison of the running times for the gene expyassiample.

Discussion.Even if we consider the total approximation eréas a rough bound
for the single error of each state probability, thus favgremulation, the speed-
up factor of the numerical approximation is large, espéciékhe precision in-
creases. The necessary precision level up to which pratyadistributions are
approximated may depend on the system under study. It ise\@wimportant
to note that the occurrence of rare biochemical events camihgortant effects.
For instance, the spontaneous, epigenetic switching rae the lysogenic state
to the lytic state in phagg-infected E. coli is experimentally estimated to be in
the order ofl0~" per cell per generation [27].

6. Conclusion

We have demonstrated that, for the computation of eventgiibties, a nu-
merical reachability analysis provides an efficient akiue to simulation-based
methods.
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Gillespie simulation
running time | single eventerror  # runs
> 10* h 1078 > 3 x 1019
> 10% h 1077 > 3 x 10°
> 116 h 10-¢ >3 x 108
> 11h 107° >3 x 107
> 1h 10 min 1074 >3 x 108
> 7min 1073 >3 x 10°
numerical approximation
running time| total approx. errorf  |Si| | max{Sy} | A
22 min 21 seg 6 x 1076 37919 | 42081 | 1071°
19 min 26 sec 2x107° 35259 | 39372 | 107
15 min 48 sec 1x1074 32521 | 36572 | 10713
12 min 29 sec 9x 1074 29652 | 33618 | 10712
11 min 17 sec 9x 1073 26635 | 30496 | 107!
9 min 41 sec 9 x 1072 23433 | 27136 | 10710

Table 4. Comparison of the running times for the genetic gglitch example.

Even though simulation is widely used, the advantages ofemizad meth-
ods increase as more sophisticated techniques becomaldeail hey reduce the
computational effort, especially if accurate results asittd. Moreover, for the
calibration of parameters many instances of the model habe tsolved and in
this case short running times for a single solution are rszcgs

Until now we have analyzed examples of intrinsically statltasystems that
have been published in the literature. As future work, wepdarening to apply our
numerical reachability algorithm in collaboration withpeximentalists working
on new stochastic models. Moreover, we are planning to coenbur numerical
method with parameter estimation techniques.

Standard numerical reachability analysis methods arédresit for large state
spaces (in the case of high dimension and/or many molecalek)napplicable
for unbounded state spaces, and thus one resorts to sionulatle have demon-
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strated that certain optimization techniques from compsteence - localization,
on the fly abstraction - put many examples within the reachuofierical reacha-
bility analysis. Indeed, when high accuracy is requiregémethods outperform
simulation-based techniques.
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