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Abstract—In this paper, we investigate the computational
complexity of quantitative information flow (QIF) problems.
Information-theoretic quantitative relaxations of noninterfer-
ence (based on Shannon entropy) have been introduced to
enable more fine-grained reasoning about programs in situa-
tions where limited information flow is acceptable. The QIF
bounding problem asks whether the information flow in a
given program is bounded by a constant d. Our first result
is that the QIF bounding problem is PSPACE-complete. The
QIF memoryless synthesis problem asks whether it is possible
to resolve nondeterministic choices in a given partial program
in such a way that in the resulting deterministic program, the
quantitative information flow is bounded by a given constant
d. Our second result is that the QIF memoryless synthesis
problem is also PSPACE-complete. The QIF memoryless syn-
thesis problem generalizes to QIF general synthesis problem
which does not impose the memoryless requirement (that is,
by allowing the synthesized program to have more variables
then the original partial program). Our third result is that the
QIF general synthesis problem is EXPTIME-hard.

Keywords-quantitative information flow, verification, synthe-
sis, computational complexity

I. INTRODUCTION

Security and confidentiality are growing concerns in
software development [1], [2]. The problem of ensuring
the confidentiality of data being processed by computing
systems is long-standing (see [3] for an early approach),
yet increasingly important, as systems are parts of larger
networks. The nodes on the network need to interact, often
by communicating sensitive data over the network and thus
giving an opportunity to active or passive (eavesdropping)
attackers to gain knowledge about secret data.

Noninterference is a security property often used to ensure
confidentiality. Informally, it can be described as follows:
if two input states share the same values of low-security
variables (the variables visible to the observer), then the
behaviors of the program executed from these states are
indistinguishable by the observer. See [4] for a survey of
the research on noninterference, and [5] for a Java-based
programming language with a type system that supports
information flow control based on noninterference. It is well-
known that the noninterference requirement needs to be
relaxed in various contexts. See [6] for a survey of methods
for defining such relaxations via declassification.

A different systematic way of relaxing noninterference
is to make the requirement quantitative. This allows rea-
soning about information flow at a finer granularity, and

distinguishing between two programs when both exhibit
interference, but one is intuitively significantly more secure
than the other. Quantitative versions of noninterference have
been formalized using the information-theoretic notions of
Shannon entropy and mutual information ([7], [8], [9], [10],
[11], [12]).

A classical example of a program where quantitative
reasoning about information flow is needed is the following
password-checking example:

Program P1: if H=inp then O:=0 else O:=1

In this program, H is the high-security input representing
a stored password, inp is a low-security input (possibly
provided by the attacker), and O is a low-security output
(visible to the attacker). It is clear that there is an information
flow from high-security variables (high variables for short)
to low-security variables (low variables), since by executing
P1, the attacker learns whether H is equal to inp. However,
this information leak might be acceptable, whereas the
information leak in the program P2 below might not be.

Program P2: O := H

Verification. Let SE [µ](P ) denote the Shannon-entropy
based quantitative information flow from high to low vari-
ables of the program P . It is defined, roughly, as the
amount by which the entropy of high variables decreases
for the attacker when she provides inputs and observes the
execution of the program. The parameter µ is the probability
distribution over the high and low inputs (we also model the
case where the low inputs are provided by the attacker).

Given a finite-state program P , a probability distribution
µ, and a rational number d, the quantitative information flow
(QIF) bounding problem is to decide whether SE [µ](P ) ≥
d. In other words, we ask whether the entropy on the high
variables (from the point of view of the attacker) decreases
by at least d (which might make the program unacceptable in
certain application contexts). This problem has been defined
and studied in [10], [11]. The results in [11] show that for the
special case of loop-free boolean programs, the problem is
CONP-complete, and the problem was left open for general
boolean programs. The complexity is given in terms of the
size of the program text. We solve the open problem of [11]
by presenting matching lower and upper bound for the
general problem. We show that the QIF bounding problem
is PSPACE-complete for general finite-state programs, with



the complexity in terms of the explicit-state version of the
program (that is, the program is given as a transition relation
on its state space). Thus we settle the complexity of one of
the fundamental questions in quantitative information flow.
All our complexity results are for the explicit-state version of
the program, and since we consider programs that may have
loops, there is an exponential translation required from the
implicit-state version of the program (and the exponential
translation is unavoidable in the worst case [13], [14]).
Synthesis. A very promising approach to the development
of correct programs is partial program synthesis. The goal
here is to allow the programmer to specify a part of her
intent declaratively, by saying what needs to be done or
what conditions need to be maintained. The synthesizer then
constructs a program that satisfies the specification (see for
example [15], [16], [17]). A partial program is a finite-
state concurrent program which includes non-deterministic
choices which the synthesizer has to resolve. A program
is allowed by a partial program if it can be obtained by
resolving the nondeterministic choices. We study the partial
program synthesis problem in the context of quantitative
information flow.

Let us consider the following partial program:

Partial program M:
n = choice(1..10);
for i:= 1 to n do {
read(inp);
if H=inp then

O:=0
else { O:=1; break; }

}

It gives the user n possibilities to enter/guess the password.
The programmer left the choice of n unspecified. The task of
the synthesizer is to synthesize a program, where an attacker
cannot gain too much information, i.e. a program P allowed
by M , where SE [µ](P ) < d, for a given constant d. In
this instance, it might be equally easy to specify the desired
number of iterations as it is to specify the desired level of
uncertainty of the attacker about H . However, if the queries
the attacker can use are even a little more complex (for
example if the attacker could test whether H is less than the
current guess), it might be much easier to specify a bound
on the uncertainty of the attacker.

Given a finite state partial program M , a probability
distribution µ, and a rational number d, the QIF memoryless
synthesis problem is to decide whether for every program
P such that P is allowed by M , we have SE [µ](P ) ≥
d. In other words, the question asks whether for every
memoryless refinement (choosing one transition for each
nondeterministic choice in M ), the answer to the QIF
bounding problem is yes. We prove that the QIF memo-
ryless synthesis problem is also PSPACE-complete. The QIF
memoryless synthesis problem generalizes to QIF general

Verification Memoryless Synth. Gen. Synth.
QIF PSPACE-complete PSPACE-complete EXPTIME-hard

in 2EXPTIME

Table I
MAIN COMPLEXITY RESULTS

synthesis problem which does not impose the memoryless
restriction. More specifically, the synthesized program can
add variables to the partial program (and store information
in these variables). This allows the synthesizer to produce
more general solutions to the problem. Our third result is
that the QIF general synthesis problem is EXPTIME-hard
and can be solved in 2EXPTIME.

Technical contribution. To obtain the complexity results we
present automata models of partial-information deterministic
and nondeterministic systems (refer them as PIDS and PINS,
respectively) and establish the equivalence of PIDS and PINS
with programs and partial programs, respectively. We present
our lower and upper bound proofs for the automata models
and from them derive the results for the information flow
problems for programs. Our main technical contributions are
as follows:

1) Lower bound proof. We reduce the membership prob-
lem for polynomial-space alternating Turing machines
to the QIF general synthesis problem for PINS, and the
membership problem for polynomial-space determin-
istic Turing machines to the QIF bounding problem
for PIDS. Our lower bound proofs based on reductions
of Turing machines are completely different from the
lower bound proofs of [10], [11] that used validity and
counting satisfiable instances of SAT formulas.

2) Upper bound proof. The PSPACE upper bound proofs
are obtained by considering the computation tree
unrolling of a deterministic system, and on-the-fly
construction of a witness to show that the answer to
the QIF bounding problem is yes. The upper bound
for QIF memoryless synthesis problem uses the result
of QIF bounding problem along with a polynomial
guess to obtain the desired PSPACE upper bound. The
2EXPTIME upper bound follows from a double subset
construction.

Summary of contributions. To summarize, the main con-
tributions of this work are as follows:

1) We settle the complexity of the QIF bounding problem
for general programs by providing matching upper
and lower bounds; we show the problem is PSPACE-
complete. Our result provides the precise computa-
tional complexity of one of the fundamental problems
in quantitative information flow.

2) We study the QIF partial program synthesis problem
and show that the memoryless synthesis problem is
PSPACE-complete and the general synthesis problem



is EXPTIME-hard and can be solved in 2EXPTIME.
The main complexity results of the paper are summarized
in Table I.

II. PARTIAL PROGRAMS AND QUANTITATIVE
INFORMATION FLOW PROBLEMS

In this section we first introduce partial programs, then no-
tions of noninterference, and quantitative information flow,
and finally the decision problems related to partial programs
and quantitative information flow.

A. Partial Programs

In this section we define partial programs, programs, and
their syntax and semantics.

Syntax. We present the syntax for partial programs. We start
with the definition of guards and operations.

Guards and operations. Let H , L, and I be finite sets
of variables (representing high security, low security, and
input variables, respectively) ranging over finite domains.
Informally, the high variables contain the secret (high-
security) input; the low variables are visible publicly; the
input variables are for input provided by the user (attacker).
A term t is either a variable in H , L, or I , or is defined
by t1 op t2, where t1 and t2 are terms and op is an
operator. Formulas are defined by the following grammar,
where t1 and t2 are terms and rel is a relational operator:
e := t1 rel t2 | e1 ∧ e2 | ¬e. Guards are formulae over
H , L, and I . Operations are simultaneous assignments to
variables in L, where each variable is assigned a term over
H , L, and I .

Partial programs and program. A partial program is a
tuple 〈Q,H,L, I, δ, q0〉, where:
• Q is a finite set of control locations, q0 is an initial

location;
• H , L and I are finite sets of high security, low security,

and input variables respectively, ranging over finite
domains;

• δ is a set of tuples of the form (q, g, a, q′), where q and
q′ are locations from Q, and g and a are guards and
operations over variables in H , L and G.

The set of locations Sk(C) of a partial program C =
〈Q,H,L, I, δ, q0〉 is the subset of Q containing exactly
locations where δ is non-deterministic, i.e., locations q where
for a valuation of variables in H , L, and I , there is more
than one transition whose guard evaluates to true.

A program is a partial program C, where the set Sk(C) is
empty. A program P is allowed by a partial program M if it
can be obtained by removing the outgoing transitions from
locations Sk(M) of all the threads of M , so that at most
one transition from every location is enabled for a given
valuation of variables from H , L and I . A program is thus
deterministic.

Note that programs and partial programs are defined using
their control-flow graph — there is thus no restriction on the
control-flow structures.

Semantics. We now present the semantics of partial pro-
grams in terms of transition systems.

Transition systems. A transition system is a tuple 〈S,∆, S0〉
where S is a finite set of states, ∆ ⊆ S × S is a set of
transitions, and S0 is the set of initial states.

The semantics of a partial program M is given in terms
of a transition system, and we denote the transition system
of a partial program M as Tr(M). The transition system
Tr(M) is defined as follows:
• State space. A state s in the set of states S of Tr(M)

contains a location Q a valuation of all variables in H ,
L, and I , and a boolean value turn . A state in S is
initial, if the location it contains is initial.

• Transitions. The transition function ∆ defines interleav-
ing semantics for the partial program. There are two
types of transitions: program transitions, which model
one step of the program, and environment transitions,
that model input from the environment via variables
in I . Let (q, g, a, q′) be a transition of M . There is a
program transition from a state s to a state s′ if (i)
the value of turn is false (ii) the location of M in s
is q and the location of M in s′ is q′, (iii) the guard
g evaluates to true in s, and (iv) the valuation of all
variables of M in s′, and is obtained from the valuation
of variables in s by performing the operation a. There
is an environment transition from state s to state s′ in
Tr(M) if and only if (i) the value of turn is true and
(ii) the valuations of variables in s and s′ differ only
in input variables.

B. Noninterference

In this subsection we recall the notion of noninterference.

Runs and traces. Let Tr(M) = 〈S,∆, S0〉 be a transition
system obtained from a program M = 〈Q,H,L, I, δ, q0〉.
A run r is a sequence of states s0s1s2 . . . of Tr(M) such
that for all i ≥ 0 we have (si, si+1) ∈ ∆. Given a run
s0s1s2 . . ., a trace σ is a sequence of valuations of low and
input variables of M defined as follows: l0i1l1i2l2 . . ., where
l0 is a valuation of low variables given by s0, i1 and l1 are
valuations of input and low variables given by s1, and i2 and
l2 are valuations of input and low variables given by s2. If
H is the set of valuations of high variables, L is the set of
valuations of low variables, and I is the set of valuations of
input variables, then a trace is a sequence in (L× I)∗ × L.

Note that the program is deterministic, so given the
initial valuation l of low variables, the initial valuation
h of high variables, and the sequence κ = i1i2 . . . of
valuations of input variables, a run of the program, as well
as the corresponding trace σ, are determined. We denote the
obtained trace by P (h, l, κ).



Noninterference. A program P is noninterferent, if for all
valuations h and h′ of high variables, and all valuations l
of low variables, and all sequences κ of valuations of input
variables, we have that P (h, l, κ) = P (h′, l, κ).

Let P be a program. Let H be the set of valuations
of high variables, let L be the set of valuations of low
variables, and let I be the set of valuations of input variables.
An observation-based strategy (for choosing inputs) is a
function that given a sequence in (L × I)∗ × L gives an
input in I.

C. Quantitative Information Flow

In this subsection we recall the notion of Shannon entropy
and mutual information, and then present the quantitative
information flow problem.
Shannon entropy and mutual information. We follow the
presentation of [9], [10]. We refer the reader to these works
for more details and intuition on the information-theoretic
notions and the definition of quantitative information flow.
Let X be a random variable with sample space X and µ be
a probability distribution associated with X . The Shannon
entropy of X is defined as

H[µ](X) =
∑
x∈X

µ(X = x) · log
1

µ(X = x)

with the logarithm in base 2.
Let X and Y be random variables with sample spaces X

and Y and let µ be a probability distribution associated with
X and Y . The conditional entropy of X given Y is defined
by:

H[µ](X|Y ) =
∑
y∈Y

µ(Y = y) · H[µ](X|Y = y),

where

H[µ](X|)Y = y =∑
x∈X

µ(X = x|Y = y) · log
1

µ(X = x|Y = y)

and
µ(X = x|Y = y) =

µ(X = x, Y = y)

µ(Y = y)

Let X , Y and Z be random variable with sample spaces
X, Y, and Z and let µ be a probability distribution associated
with X , Y and Z. The conditional mutual information of
X and Y given Z is defined:

I[µ](X;Y |Z) = H[µ](X|Z)−H[µ](X|Y,Z)

= H[µ](Y |Z)−H[µ](Y |X,Z)

Quantitative information flow. Let P be a program. Let
H be the set of valuations of high variables, let L be the
set of valuations of low variables. Let µ be a probability
distribution over H×L. Let h be a valuation in H, and let l be
a valuation in L. The expression µ(H = h, L = l) denotes

the probability that the valuation of the high variables
(variables in H) is h and the valuation of the low variables
(variables in L) is l.

Let P be a program. Let T range over traces of P . Given
a program (by definition deterministic) and an observation-
based strategy ι, we can extend µ to traces by:

µι(T = σ) =
∑

h∈H, l∈L, P (h,l,ι)=σ

µ(H = h, L = l),

where P (h, l, ι) is the observation sequence obtained by
executing the program P with initial valuations given by
h and l, and input variables set at each step by strategy ι.

The (Shannon-entropy-based) quantitative information
flow SE [µ](P ) is defined:

SE [µ](P ) = sup
ι
I[µι](T ;H|L)

= sup
ι

(H[µι](H|L)−H[µι](H|T , L))

Note that according to this definition, the opponent has
the control of the input variables, and can choose new
input values based on the observations he or she sees. The
definition considered e.g. in [9], [11] is a special case of the
definition presented here, where there are no input variables
over which the opponent has control, and the output is just a
single value (as opposed to a sequence of values). As in [9],
[10], we obtain that requiring the information flow quantity
to be 0 amounts to requiring noninterference. The proof is
a variant of the proof in [9].

Theorem 1: Let µ be a probability distribution such that
for all h ∈ H and for all l ∈ L, we have that µ(H = h, L =
l) > 0. A program P is noninterferent iff SE [µ](P ) = 0.

D. Decision Problems

We present the three decision problems we consider.
1) Program quantitative information flow (PQIF) bound-

ing problem. Given a program P , a probability distri-
bution µ over H and L, a rational number d, the pro-
gram quantitative information flow (PQIF) bounding
problem is to decide whether SE [µ](P ) ≥ d. In other
words, the question asks whether there is an input
sequence for which the conditional mutual information
is at least d.

2) QIF memoryless synthesis problem. Given a partial
program M , let P be the set of programs allowed by
M . Given a partial program M , a probability distri-
bution µ over H and L, a rational number d, the QIF
memoryless synthesis problem is to decide whether
for every program P in P we have SE [µ](P ) ≥ d.
In other words, the question asks whether for every
memoryless refinement (choosing one transition for
each choice) the answer to the PQIF problem is yes.

3) QIF synthesis problem. Given a partial program M , let
P be the set of programs allowed by M by possibly
adding more low variables. Given a partial program



M , a probability distribution µ over H and L, a
rational number d, The QIF synthesis problem is to
decide whether for every program P in P we have
SE [µ](P ) ≥ d. In other words, the question asks
whether for every refinement of the program M (with
possibly adding more variables) the answer to the
PQIF problem is yes.

III. PARTIAL INFORMATION NON-DETERMINISTIC AND
DETERMINISTIC SYSTEMS

In this section we present the notions of partial infor-
mation non-deterministic and deterministic systems, and
establish equivalence with the partial program and program
models.

Partial information non-deterministic and deterministic
systems. A partial information non-deterministic system
(PINS) is a tuple G = 〈L,Σ,∆,O, γ, I〉, where L is a
finite set of states, Σ is a finite alphabet of input letters,
∆ ⊆ L×Σ× L is a set of labeled transitions, O is a finite
set of observations, γ : O → 2L\∅ maps each observation to
the set of states that it represents, and I is the set of initial
states. We require the following two properties on G: (i)
for all ` ∈ L and all σ ∈ Σ, there exists `′ ∈ L such that
(`, σ, `′) ∈ ∆; and (ii) the set {γ(o) | o ∈ O} partitions L. A
partial information deterministic system (PIDS) is a special
case of PINS where the transition relation is deterministic,
i.e, for all ` ∈ L and σ ∈ Σ, the set { `′ | (`, σ, `′) ∈ ∆ }
is singleton. In other words, the transition relation can be
interpreted as a function ∆ : L× Σ→ L.

Two players for PINS. A PINS is a dynamic system that
evolves by the interaction of two players: Player 1 chooses
the input letters and Player 2 resolves the non-determinism.
Player 1 will have partial-information as Player 1 will only
have access to the observations and not the precise state, i.e.,
only the observation sequence will be visible to Player 1, not
the precise state sequence.

Plays. In a PINS, in each turn, Player 1 chooses a letter
in Σ, and Player 2 resolves nondeterminism by choosing
the successor state. A play in G is an infinite sequence
π = `0σ0`1 . . . σn−1`nσn . . . such that (i) `0 ∈ I (i.e.,
`0 is an initial state), and (ii) for all i ≥ 0, we have
(`i, σi, `i+1) ∈ ∆. The set of plays in G is noted Plays(G).
The prefix up to `n of the play π is denoted by π(n);
its length is |π(n)| = n + 1; and its last element is
Last(π(n)) = `n. The observation sequence of π is the
unique infinite sequence γ−1(π) = o0σ0o1 . . . σn−1onσn . . .
such that for all i ≥ 0, we have `i ∈ γ(oi). Similarly,
the observation sequence of π(n) is the prefix up to on
of γ−1(π). The set of infinite plays in G is denoted
Plays(G), and the set of corresponding finite prefixes is
denoted Prefs(G). A state ` ∈ L is reachable in G if
there exists a prefix ρ ∈ Prefs(G) such that Last(ρ) = `.
The knowledge associated with a finite observation sequence

τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which
a play can be after this sequence of observations, that is,
K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) = τ}. In
other words, the larger is the knowledge set, the larger is
the uncertainty about the knowledge about the precise state
of the system. The following lemma gives the inductive
construction of the knowledge with observation sequence.
For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {`′ ∈ L | ∃` ∈
s : (`, σ, `′) ∈ ∆} denote the set of possible successors of
states in s.

Lemma 1: Let G = 〈L,Σ,∆,O, γ, I〉 be a PINS. For σ ∈
Σ, ` ∈ L, and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · `, let
o` ∈ O be the unique observation such that ` ∈ γ(o`). Then
K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(o`).

Strategies. Strategies are recipes for the players to extend
plays. Formally, a strategy in G for Player 1 is a func-
tion α : Prefs(G) → Σ. A strategy α for Player 1 is
observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G), if
γ−1(ρ) = γ−1(ρ′), then α(ρ) = α(ρ′). Observation-based
strategies formalizes the partial-information (or that only the
observations are visible) for Player 1. In the sequel, we are
interested in the existence of observation-based strategies
for Player 1. A strategy in G for Player 2 is a function
β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and
all σ ∈ Σ, we have (Last(ρ), σ, β(ρ, σ)) ∈ ∆. A strategy β
for Player 2 is memoryless if it is independent of the history
and depends only on the current state and input letter, i.e., for
all ρ, ρ′ ∈ Prefs(G) if Last(ρ) = Last(ρ′), then for all σ we
have β(ρ, σ) = β(ρ′, σ). A memoryless strategy for Player 2
can be interpreted as a function β : L×Σ→ L. We denote
by AG, AOG, BG, and BMG the set of all Player-1 strategies,
the set of all observation-based Player-1 strategies, the set of
all Player-2 strategies, and the set of all Player 2 memoryless
strategies in G, respectively.

Strategies for PIDS. Observe that in a PIDS, since the
transition function is deterministic there is only one strategy
for Player 2, and in PIDS it is only Player 1 that has choice
of strategies.

Outcome. The outcome of two strategies α (for Player 1)
and β (for Player 2) in G is the play π =
`0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G) such that for all i ≥ 0,
we have σi = α(π(i)) and `i+1 = β(π(i), σi). This play is
denoted outcome(G,α, β). The outcome set of the strategy
α for Player 1 in G is the set Outcomei(G,α) of plays
π such that there exists a strategy β for Player 2 with
π = outcome(G,α, β) The outcome sets for Player 2 are
defined symmetrically.

Objectives. An objective for G in general is a set φ
of the plays. that is, φ ⊆ Plays(G). A play π =
`0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G) satisfies the objective
φ, denoted π |= φ, if π ∈ φ. In this work we consider
the bounded knowledge objective. The bounded knowledge



objective consists of a number q ∈ N and requires that
the knowledge set is at most of size q at some point.
Formally, the bounded knowledge objective φK(q) is defined
as the following set: { `0σ0`1σ1 . . . ∈ Plays(G) | ∃k ≥
0. |K(γ−1(`0σ1`1 . . . `k))| ≤ q}. Observe that by definition,
for objectives φK(q), if π |= φK(q) and γ−1(π) = γ−1(π′),
then π′ |= φK(q). We also distinguish the special case of
qualitative bounded knowledge objective for the case when
q = 1, i.e., the objective requires that at some point there
is perfect or precise knowledge (i.e., the knowledge set is
singleton, and hence the knowledge is perfect).

Winning and winning strategies. A strategy λi for Player i
in G is winning for an objective φ if for all π ∈
Outcomei(G,λi), we have π |= φ. In this work we are
interested in the existence of observation-based winning
strategies for Player 1 for objectives φK(q). For the memo-
ryless question we ask whether there is an observation-based
strategy for Player 1 that is winning against all memoryless
strategies for Player 2.

(Partial) Programs, PIDS, and PINS: In order to prove
upper and lower bounds for decision problems concerning
information flow in programs and partial programs, we
will use the following correspondence between (partial)
programs on one side, and PIDS and PINS on the other side.

Given a PINS G = 〈LG,Σ,∆,O, γ, IG〉, we construct
a partial program P = 〈Q,H,L, I, δ, q0〉 as follows. The
set of control locations is LG. The location q0 is the initial
location. The program has one high variable h which ranges
over the set LG. There is one low variable which ranges
over the set O. The program will have one input variable
ranging over the set Σ. The transition function δ encodes the
transition function ∆. The partial program obtained from a
PINS G is denoted by ρ(G). We remark that by using the
same construction on a PIDS we obtain a (deterministic)
program.

Given a partial program M = 〈Q,H,L, I, δ, q0〉, we
construct a PINS G = 〈LG,Σ,∆,O, γ, IG〉 as follows. A
state in the set LG of states consists of a control location
of M , and of valuations of high, low, and input variables
of M . The set Σ is the set of valuations of input variables.
The set O is the set of valuations of low variables. The
function γ maps each observation (i.e. a valuation of low
variables) to the subset of LG which has the same valuation
of low variables. The set IG of initial states is the set of states
corresponding to the initial location q0 of P . The function ∆
intuitively combines both the program and the environment
transition in the transition system Tr(M). Let (q, g, a, q′)
be a transition of M . There is a program transition from a
state s to a state s′ labeled by σ ∈ Σ if and only if (i) the
location of M in s is q and the location of M in s′ is q′,
(ii) the valuations of input variables in s′ are exactly those
given in Σ (iii) the guard g evaluates to true in high and low
variables in s and input variables in σ (i.e. the new input

is considered), and (iv) the valuation of low variables of M
in s′, and is obtained from the valuation of low and high
variables in s and input in σ by performing the operation a.
The PINS obtained from a partial program M is denoted by
ξ(M). We remark that by using the same construction on a
(deterministic) program, we obtain a PIDS.

IV. LOWER BOUNDS

In this section we show that the decision problems of
whether there is an observation-based winning strategy for
Player 1 for qualitative bounded knowledge objectives is
EXPTIME-hard for PINS and PSPACE-hard for PIDS. The
EXPTIME and PSPACE lower bound proofs will follow from
reductions of membership problem for polynomial space
Alternating and Deterministic Turing machines, respectively.
We first recall the definitions of Alternating and Determin-
istic Turing Machines.

Alternating Turing Machine. An Alternating Turing ma-
chine (ATM) is a tuple M = 〈Q, q0, g,Σi,Σt, δ, F 〉 where:
• Q is a finite set of control states;
• q0 ∈ Q is the initial state;
• g : Q→ {∧,∨};
• Σi = {0, 1} is the input alphabet;
• Σt = {0, 1, 2} is the tape alphabet and 2 is the blank

symbol;
• δ ⊆ Q×Σt×Q×Σt×{−1, 1} is a transition relation;

and
• F ⊆ Q is the set of accepting states.

We say that M is a polynomial space ATM if for some
polynomial p(·), the space used by M on any input word
w is bounded by p(|w|). An Alternating Turing Machine
is deterministic if the transition relation δ is deterministic.
We write ATM for Alternating Turing Machines, and DTM
for Deterministic Turing Machines. For details of ATM and
DTM see [18], [19].

The membership problem. Without loss of generality, we
make the hypothesis that the initial control state of the
machine is a ∨-state and that transitions link ∨-state to ∧-
state and vice versa. A word w is accepted by an ATM M
if there exists a run tree of M on w whose all leaf nodes
are accepting configurations (see [19] for details). The AND-
OR graph of the polynomial space ATM (M,p) on the input
word w ∈ Σ∗ is G(M,p) = 〈S∨, S∧, s0,⇒, R〉 where
• S∨ = {(q, h, t) | q ∈ Q, g(q) = ∨, 1 ≤ h ≤ p(|w|)

and t ∈ Σ
p(|w|)
t };

• S∧ = {(q, h, t) | q ∈ Q, g(q) = ∧, 1 ≤ h ≤ p(|w|)
and t ∈ Σ

p(|w|)
t };

• s0 = (q0, 1, t) where t = w.Σ
p(|w|)−|w|
t ;

• ((q1, h1, t1), (q2, h2, t2)) ∈⇒ iff there exists
(q1, t1(h1), q, γ, d) ∈ δ such that q2 = q, h2 = h1 + d,
t2(h1) = γ and t2(i) = t1(i) for all i 6= h1;

• R = {(q, h, t) ∈ S∨ ∪ S∧ | q ∈ F}.



A word w is accepted by (M,p) iff the set R is alternately
reachable (reachable in AND-OR graph sense) in G(M,p)
(see [19] for details related to AND-OR graphs and reach-
ability in AND-OR graphs). The membership problem is to
decide if a given word w is accepted by a given polynomial
space ATM (M,p). The membership problem is EXPTIME-
hard for ATM [19] and PSPACE hard for DTM [18].

Idea of the reduction. We first start with the main idea
of the reduction. Given a polynomial space ATM M and a
word w, we construct a PINS of size polynomial in the size
of (M,w) to simulate the execution of M on w. Player 1
makes choices in ∨-states and Player 2 makes choices in ∧-
states. Furthermore, Player 1 is responsible for maintaining
the symbol under the tape head. The objective for Player 1
is to reach an accepting configuration of the ATM, and once
an accepting configuration is reached we will ensure that the
qualitative bounded knowledge objective is satisfied.

Each turn proceeds as follows. In an ∨-state, by choosing
a letter (t, a) in the alphabet of the PINS, Player 1 reveals
(i) the transition t of the ATM that he has chosen (this
way he also reveals the symbol that is currently under the
tape head) and (ii) the symbol a under the next position of
the tape head. If Player 1 lies about the current or the next
symbol under the tape head, he should lose for the objective
(objective not satisfied), otherwise the PINS proceeds. The
machine is now in an ∧-state and Player 1 has no choice:
he announces a special symbol ε and Player 2, by resolving
nondeterminism on ε, chooses a transition of the Turing
machine which is compatible with the current symbol under
the tape head revealed by Player 1 at the previous turn. The
state of the ATM is updated and the PINS proceeds. The
transition chosen by Player 2 is visible in the next state of
the PINS and so Player 1 can update his knowledge about
the configuration of the ATM. Player 1 wins whenever an
accepting configuration of the ATM is reached, that is w is
accepted. In other words, when an accepting configuration
is reached, the state is revealed by a unique observation and
then Player 1 has the perfect knowledge.
Two difficulties. There are two main difficulties in the
reduction. We describe the difficulties and the solutions to
overcome them below. Then we present the formal reduction.
Difficulty 1: Prevention of cheating. We say that Player 1
cheats if the player does not faithfully simulate the Turning
machine and announces wrong content of the tape head.
The first difficulty is to ensure that Player 1 loses when
he announces a wrong content of the cell under the tape
head. As the number of configurations of the polynomial
space ATM is exponential, we cannot directly encode the
full configuration of the ATM in the states of the game.
To overcome this difficulty, we use the power of partial
information as follows. Initially, Player 2 chooses a position
k, 1 ≤ k ≤ p(|w|), on the tape: this number as well as
the symbol σ ∈ {0, 1, 2} that lies in the tape cell number

k is maintained all along the game in the non-observable
portion of the PINS states. The pair (σ, k) is thus private
to Player 2 and invisible to Player 1. Hence, at any point
in the game, Player 2 can check whether Player 1 is lying
when announcing the content of cell number k, and go to a
sink state if Player 1 cheats (no other states can be reached
from there). Since Player 1 does not know which cell is
monitored by Player 2 (k is private), to avoid losing, he
should not lie about any of the tape cells and thus he should
faithfully simulate the machine. Then, he wins the PINS for
the knowledge objective if and only if the ATM accepts the
word w.

Difficulty 2: One cheating is allowed. The second difficulty
is that one cheating is allowed for Player 1 in the construc-
tion described above. Suppose Player 1 cheats for a tape cell
j and by doing so reaches the accepting configuration in all
other copies, other than tape cell j. Since Player 1 knows the
cell where he is cheating, if all other runs corresponding to
other tape cells reaches the accepting configuration, Player 1
can infer perfect knowledge in the end. To prevent this
we duplicate the above reduction, and there is a copy of
each state. If an accepting configuration is reached, then the
perfect observation is revealed. If Player 1 cheats, then a
sink state is reached, and then the observation is not revealed.
Since there is a duplicate copy for sink states, it follows that
if Player 1 cheats, then he cannot have perfect knowledge.
It follows that Player 1 wins in the PINS if and only if the
ATM accepts the word w.

We now present the details of the reduction of the hard-
ness proof. For sake of clarity we first present the reduction
that takes care of difficulty 1 (that is prevention of cheating)
and the construction for duplicating is presented after that.

Reduction. Given a polynomial space ATM (M,p), with
M = 〈Q, q0, g,Σi,Σt, δ, F 〉 and a word w, we construct
the following game structure GM,p,w = 〈L,Σ,∆,O, γ, I〉,
where:
• The set of states L = {(sink, i) | 1 ≤ i ≤ p(|w|)} ∪
L1∪L2 where: L1 = (δ∪{−})×Q×{1, . . . , p(|w|)}×
{1, . . . , p(|w|)} × Σt. A state (t, q, h, k, σ) consists of
a transition t ∈ δ of the ATM chosen by Player 2 at
the previous round or − if this is the first round where
Player 1 plays, the current control state q of M , the
position h of the tape head, the pair (k, σ) such that
the k-th symbol of the tape is σ, this pair (k, σ) will be
kept invisible for Player 1. L2 = Q×{1, . . . , p(|w|)}×
Σt×{1, . . . , p(|w|)}×Σt. A state (q, h, γ, k, σ) consists
of q, h, k, σ as in L1 and γ is the symbol that Player 1
claims to be under the tape head. The objective for
Player 1 will be to reach a state ` ∈ L associated with
an accepting control state of M , and once such a state
is reached then Player 1 can observe the precise state.

• I = {(−, q0, 1, k, σ) | where (i) 1 ≤ k ≤ p(|w|) and
(ii) σ = w(k) if 1 ≤ k ≤ |w| and σ = 2 otherwise



}. In other words, the initial state describes that tape
cell is being monitored by Player 2, and is invisible to
Player 1 (unless an accepting state is reached).

• Σ = {ε} ∪ (δ × Σt).
• The transition relation ∆ contains the following sets of

transitions:
– The sink transitions that contains transitions

((sink, i), σ, (sink, i)) for all σ ∈ Σ and 1 ≤ i ≤
p(|w|). In other words, when a sink state is entered,
the PINS stays there forever.

– We have the following transitions for L1 states:
1) L1.1 that contains transitions (`1, ε, (sink, i))

for all `1 ∈ L1 and i is the same as the fourth
component of `1;

2) L1.2 that contains transitions
((t, q, h, k, σ), ((q1, γ1, q2, γ2, d), γ3), (sink, k))
where q1 6= q or ¬(1 ≤ h+ d ≤ p(|w|));

3) L1.3 contains the transitions
((t, q, h, k, σ), ((q1, γ1, q2, γ2, d), γ3), (sink, k))
where h = k ∧ γ1 6= σ or h+ d = k ∧ γ3 6= σ;
and

4) L1.4 contains the transitions
((t, q, h, k, σ), ((q1, γ1, q2, γ2, d), γ3), (q2, h +
d, γ3, k, σ

′)) such that q = q1, 1 ≤ h + d ≤
p(|w|), h = k → (γ1 = σ ∧ σ′ = γ2), and
h 6= k → σ′ = σ.

Those transitions are associated with states of the
PINS where Player 1 chooses a transition of the
ATM to execute (if he proposes ε, the PINS evolves
to a sink state, see L1.1). The transition proposed
by Player 1 should be valid for the current control
state of the ATM and the head should not exit the
bounded tape after execution of the transition by
the ATM, otherwise the PINS evolves to a sink
state, see L1.2. When choosing a letter, Player 1
also reveals the current letter under the tape head
(given by the transition) as well as the letter under
the next position of the tape head. If one of those
positions is the one that is monitored by Player 2,
the game evolves to a sink state in case Player 1
lies, see L1.3, L1.4.

– We have the following transitions for L2 states:
1) L2.1 contains the transitions

((q, h, γ1, k, σ), ε, ((q1, γ2, q2, γ3, d), q3, h +
d, k, σ′)) such that q = q1, q2 = q3, γ1 = γ2,
1 ≤ h + d ≤ p(|w|), h = k → σ′ = γ3, and
h 6= k → σ′ = σ;

2) L2.2 contains the transitions
((q, h, γ1, k, σ), ε, (sink, k)) such that there
does not exist a transition (q, γ1, q1, γ2, d) ∈ δ
with 1 ≤ h+ d ≤ p(|w|); and

3) L2.3 contains the transitions
((q, h, γ1, k, σ), (t, γ), (sink, k)) where

(t, γ) ∈ Σ \ {ε}.
Those transitions are associated with states of the
PINS where Player 2 chooses the next transition
of the ATM to execute. Player 1 should play ε
otherwise the game goes to the sink state (see
L2.3). Also the game goes to the sink state if there
is no valid transition to execute in the ATM (see
L2.2). In the other cases, when Player 1 proposes
ε, Player 2 chooses a valid transition by resolving
nondeterminism. The copy of the monitored cell is
updated if necessary.

• The set of observations O = {sink}∪O1∪O2∪O3∪O4

is as follows:
1) O1 = {(t, q, h) | ∃(t, q, h, k, σ) ∈ L1, q 6∈ F},
2) O2 = {(q, h, γ) | ∃(q, h, γ, k, σ) ∈ L2, q 6∈ F},
3) O3 = {(t, q, h, k, σ) | (t, q, h, k, σ) ∈ L1, q ∈

F}, and
4) O4 = {(q, h, γ, k, σ) | (q, h, γ, k, σ) ∈ L2, q ∈

F}.
• The observation mapping γ is defined as follows:

1) γ(sink) = {(sink, i) | 1 ≤ i ≤ p(|w|)},
2) for all (t, q, h) ∈ O1, γ(t, q, h) =
{(t, q, h, k, σ) ∈ L1},

3) for all (q, h, γ) ∈ O2, γ(q, h, γ) =
{(q, h, γ, k, σ) ∈ L2},

4) for all (t, q, h, k, σ) ∈ O3, γ(t, q, h, k, σ) =
{ (t, q, h, k, σ) }, and

5) for all (q, h, γ, k, σ) ∈ O4, γ(q, h, γ, k, σ) =
{(q, h, γ, k, σ)}.

Note that the observation mapping ensures that for
every observation in O3 and O4 there is a unique state
for the observation (i.e., perfect knowledge).

It follows that Player 1 has an observation-based strat-
egy to ensure that in all copies of (k, σ) an accepting
state in F is reached iff the word w is accepted by the
polynomial space ATM (M,p). To complete the reduc-
tion to PINS with qualitative bounded knowledge objective
we need the duplication step. Consider the construction
GM,p,w = 〈L,Σ,∆,O, γ, I〉, presented above, we construct
GM,p,w = 〈L,Σ,∆,O, γ, I〉 that contains duplication of
GM,p,w as follows:
• L = L × { 1, 2 } (i.e. there are two copies 1 and 2 of
L);

• I = I × { 1, 2 };
• ∆ = { ((`, i), σ, (`′, i)) | σ ∈ Σ, ` ∈ L, i ∈
{ 1, 2 }, (`, σ, `′) ∈ ∆ };

• O = {sink} ∪O1 ∪O2 ∪O3 × { 1, 2 } ∪O4 × { 1, 2 }.
• The observation mapping is as follows:

1) γ(sink) = {((sink, i), j) | 1 ≤ i ≤ p(|w|), 1 ≤
j ≤ 2},

2) for all (t, q, h) ∈ O1, γ(t, q, h) =
{((t, q, h, k, σ), j) ∈ L1 × { 1, 2 }},



3) for all (q, h, γ) ∈ O2, γ(q, h, γ) =
{((q, h, γ, k, σ), j) ∈ L2 × { 1, 2 }},

4) for all ((t, q, h, k, σ), j) ∈ O3 × { 1, 2 },
γ((t, q, h, k, σ), j) = { ((t, q, h, k, σ), j) }, and

5) for all ((q, h, γ, k, σ), j) ∈ O4 × { 1, 2 },
γ((q, h, γ, k, σ), j) = {((q, h, γ, k, σ), j)}.

Again observe that for every observation in O3×{1, 2}
and O4 × { 1, 2 } there is a unique state for the
observation.

The above construction consists of two copies of the GM,p,w

construction, but when a state in F is reached, the iden-
tity of the copy is revealed as well. Hence the perfect
knowledge can be obtained by Player 1 iff in all copies
an accepting state is reached. It follows that Player 1 has
an observation-based winning strategy for the qualitative
bounded knowledge objective iff the word w is accepted
by the polynomial space ATM (M,p). Since our reduction
is polynomial the EXPTIME-hardness follows for qualitative
bounded knowledge problem for PINS.

Remark 1. We observe that our previous reduction preserves
that if the transition function δ of the Turing Machine M
is deterministic, then the transition function ∆ of GM,p,w is
also deterministic. Hence the above reduction for DTM gives
us a PIDS and from the PSPACE-hardness of the membership
problem for DTM we obtain the PSPACE-hardness for PIDS.
Hence we have the following theorem.

Theorem 2 (Lower bounds): The decision problem of
whether Player 1 has an observation-based winning strategy
for qualitative bounded knowledge objectives is EXPTIME-
hard for PINS and PSPACE-hard for PIDS.

Lower bound for partial programs and programs. We
now show how from the lower bound for PIDS and PINS
we obtain the lower bounds for PQIF bounding, QIF mem-
oryless synthesis and QIF synthesis problems.

Lemma 2 (Lower bound for PQIF): The PQIF bounding
problem is PSPACE-hard.

Proof: Let us consider the PQIF bounding problem
given by a program P , a probability distribution µ over H
and L, and a rational number d. Recall that the problem is
to decide whether SE [µ](P ) ≥ d.

We reduce the decision problem of whether Player 1
has an observation-based winning strategy for qualitative
bounded knowledge objectives in PIDS to the PQIF bound-
ing problem.

Given a PIDS G, we create an instance of the PQIF
bounding problem as follows: we consider the program
P = ρ(G) (recall the function ρ defined in Section III)
with H and L denoting the high and low variables of P , a
probability distribution µ such that H[µ](H|L) > 0 (this
is always possible as long as the PIDS G is such that
there is more than one state corresponding to each initial
observation), and a rational number d equal to H[µ](H|L)
(we can choose µ such that d is rational ). As in Section II,

let ι denote an observation-based strategy, T a set of
sequences of observations and let µι denote the probability
distribution µ extended to traces.

A winning strategy α for Player 1 has the property that
for all plays π corresponding to α, the knowledge set is
a singleton. Given such a strategy α, let us consider a
strategy ι obtained in a natural way from α. For all such
strategies ι, H[µι](H|T , L) = 0. This is because as the
knowledge set is a singleton after Player 1 plays according to
α, after seeing the sequence σ (constructed by feeding inputs
using ι to the program), the observer knows the value of H
exactly. Therefore, the existence of a winning strategy for
the qualitative bounded knowledge objective is equivalent to
the existence of a strategy ι such that H[µι](H|T , L) = 0.

Recall that

SE [µ](P ) = sup
ι

(H[µ](H|L)−H[µι](H|T , L)).

As H[µ](H|L) does not depend on ι, we have that

SE [µ](P ) = H[µ](H|L)− inf
ι
H[µι](H|T , L)).

If we set d to H[µ](H|L), the question SE [µ](P ) ≥ d
amounts to asking infιH[µι](H|T , L) ≤ 0. The fact that
H[µι](H|T , L) is always nonnegative, and the fact that the
set of states is finite, imply that infιH[µι](H|T , L) ≤ 0
iff there exists an observation-based strategy ι of inputs
such that H[µι](H|T , L) = 0. This completes the desired
reduction. The reduction is polynomial and hence we obtain
the PSPACE hardness result.

Corollary 1 (Lower bound for synthesis problems): The
following assertions hold:
• The QIF memoryless synthesis problem is PSPACE-

hard.
• The QIF synthesis problem is EXPTIME-hard.

Proof: We prove both assertions as follows.
• We observe that a deterministic program is a special

case of partial program, and hence the PQIF bounding
problem is a special case of the QIF memoryless
synthesis problem, since given a deterministic program
the QIF memoryless synthesis problem is the same
as the PQIF bounding problem. Hence we obtain the
PSPACE-hardness result.

• The straightforward extension of the proof of the pre-
vious lemma shows that QIF synthesis problem can be
reduced to the qualitative bounded knowledge problem
for PINS. Hence from the lower bound for PINS we
obtain the EXPTIME-hardness result.

The desired result follows.

V. UPPER BOUNDS

In this section we show that for PIDS the quantitative
information flow problem can be solved in PSPACE. We
then show that with the PSPACE solution for PIDS, the
memoryless problem for PINS can also be solved in PSPACE.



Also note that the quantitative information flow problem
for PIDS is a special case of the memoryless problem for
PINS. Along with the PSPACE hardness result for PIDS we
obtain PSPACE-complete complexity for PIDS and memo-
ryless problem for PINS. To prove our result we consider
the unravelling of a PIDS as a computation tree for an
observation-based strategy.
The computation tree. Given a PIDS G and an observation-
based strategy α we construct the computation tree TG,α as
follows: we will refer to the vertices of the tree as nodes, and
each node will represent the current knowledge of Player 1.
Every node of the tree represent a set of states of G.
• The root is the set I of initial states.
• Consider a node x in the tree, and let the s(x) de-

note the set of states of x. Let the observation and
input letter sequence from the root to x be ρ =
o0σ0o1σ1 . . . σn−1on, and let σn = α(ρ) be the input
letter specified by the strategy α for the sequence ρ. Let
s′(x) = Postσn

(s(x)) be the set of possible successor
states from s(x) given σn. Consider the partition of
s(x) by the observations as s(x1), s(x2), . . . , s(xk),
i.e., for all 1 ≤ i ≤ k we have s(xi) ⊆ s′(x),
s(xi) is non-empty and there exists an observation o
such that s(xi) = s′(x) ∩ γ(o). The children of x are
x1, x2, . . . , xk and for 1 ≤ i ≤ k each xi is labeled by
s(xi).

The weight bounding problem for PIDS. Let w be a
weight function that assigns to every knowledge set K
the entropy w(K) associated with the knowledge set. The
weight function will have the monotonicity property that if
we have two knowledge sets K1 and K2 and K1 is more
refined in terms of knowledge (i.e., K1 ⊆ K2), then the
entropy for K1 is lower than K2, i.e., w(K1) ≤ w(K2). We
will show that the PQIF bounding problem (for deterministic
programs) reduces to the following weight bounding prob-
lem for PIDS: the input to the problem is a PIDS G, weight
function w, and a number λ, and the questions asks whether
there exists an observation-based strategy and a number k
of steps, such that after k steps the sum of the entropy of
the knowledge sets is at most λ. In other words, for an
observation-based strategy α, and a level k, let Wk(G,w, α)
be the sum of the entropy of level k of the computation
tree TG,α. Let W (G,w, α) = infk∈NWk(G,w, α) and let
W (G,w) = infα∈AO

G
W (G,w, α). The weight bounding

problem asks whether W (G,w) ≤ λ. We will present a
PSPACE upper bound for PIDS. For the PSPACE upper bound
we first present the key monotonicity property.
Monotonicity property. Our upper bound proof will rely on
a monotonicity property of the computation tree. Consider
a node x of the computation tree, and let x1, x2, . . . , xk
be the children nodes. Since we consider a PIDS it follows
that the size of s′(x) and s(x) are the same, i.e., |s′(x)| =
|s(x)|. Since the set s′(x) is partitioned among the children

nodes, it follows that |s(xi)| ≤ |s(x)| for all 1 ≤ i ≤ k.
Hence it follows that along a path in the computation tree
the knowledge set is non-increasing (i.e., the entropy is non-
increasing). We now present the following lemma which is
the key for the upper bound and the lemma will use the
monotonicity property.

Lemma 3: Given a PIDS G, and a number λ, if there
exists an observation-based strategy and a number k of
steps, such that after k steps the sum of the entropy of the
knowledge sets is at most λ, then there exists an observation-
based strategy that within ` ≤ 2n steps ensures that the sum
of the entropy of the knowledge sets after ` steps is at most
λ, where n is the number of states of the PIDS.

Proof: The proof is as follows: consider an observation-
based strategy α that achieves the objective in minimum
number of steps. Consider the computation tree TG,α. Con-
sider a path of length greater than 2n, then there must be
two nodes x1 and x2 in the path such that s(x1) = s(x2),
and hence by the monotonicity property the entropy does
not change along the segment of the path between x1 and
x2. Hence the segment can be collapsed without the change
of entropy. Hence it follows that if there is an observation-
based strategy to achieve the objective, then there is one to
achieve the objective in at most 2n steps.

The PSPACE upper bound. We present a non-deterministic
polynomial space algorithm, and since NPSPACE is same
as PSPACE [18], the desired PSPACE upper bound will
follow. The non-deterministic polynomial space algorithm
is as follows: it constructs an observation-based strategy on
the fly, constructs the computation tree level by level, and
only remembers the last level. We make the following obser-
vation: if we consider any level i of the tree and let the nodes
be x1, x2, . . . , xm in level i, then |

⋃
1≤i≤m s(xi)| = |I|, i.e.,

the number of the states in the union of the sets of states
is at most the size of I . This follows because in each step
the number of states of a parent node is partitioned in the
children node. It follows that for any level i, there can be at
most n nodes, where n is the size of the state space of G. To
construct the observation-based strategy on the fly, we need
a counter to count upto 2n steps (by Lemma 3 we require
at most 2n steps). We require only polynomial space in n
to count upto 2n (since we require log r bits to count upto
r). The second useful observation is that every path in the
computation tree represents a different observation sequence.
Hence the on-the-fly strategy construction is achieved as
follows: the algorithm remembers in memory the nodes x
and the sets of states s(x) associated with the node at the
current level, and the update from the current level of the
tree to the next level is achieved as follows:

1) First, the algorithm guesses the input letter for every
node in the current level,

2) then the algorithm updates the children of the compu-
tation tree and thus constructs the new current level,



3) it erases the old level and keeps only the new level of
the tree,

4) it checks whether the sum of the entropy of the nodes
of the current level is at most λ, if Yes the algorithm
stops with success of finding an observation-based
strategy, else goes to the next step,

5) increment the counter, and if the counter reaches 2n,
then the algorithm stops with failure, if the counter is
less than 2n, then the algorithm goes to build the next
level of the tree

Note that since in each level there are at most n nodes, each
iteration is achieved in polynomial space. At any point, the
algorithm remembers the current level of the computation
tree which requires only polynomial space, along with the
polynomial space for the counter. Hence we have a PSPACE
algorithm for the entropy problem for PIDS. We obtain the
following result.

Lemma 4: The weight bounding problem for PIDS can be
decided in PSPACE.

The memoryless problem for partial-programs. The QIF
memoryless synthesis for partial programs problem reduces
to the following memoryless weight bounding problem
for PINS (a straightforward extension of the reduction for
deterministic programs): given a PINS we ask whether
against every memoryless strategy for Player 2 there is
an observation-based winning strategy for Player 1 for the
weight bounding problem. We use our results for PIDS
to obtain a PSPACE upper bound. The upper bound is
obtained as follows: suppose there is a memoryless strategy
for Player 2 against which there is no observation-based
winning strategy for Player 1, then the algorithm guesses
the memoryless strategy, and once the memoryless strategy
is fixed in the PINS we obtain a PIDS and the verification can
be achieved in PSPACE (by Lemma 4). Since the guess of
the memoryless strategy is only polynomial in the size of the
PINS (the strategy only needs to fix one transition for each
state and input letter), we can view the algorithm as a NP
algorithm (for the polynomial guess) with a PSPACE oracle
for verification. Hence we have as NPPSPACE algorithm
(NP algorithm with a PSPACE oracle) and since NP is a
subclass of PSPACE we have a PSPACEPSPACE algorithm.
It follows from [18] that PSPACEPSPACE is same as PSPACE,
and hence we have a PSPACE upper bound.

Lemma 5: The memoryless weight bounding problem for
PINS can be decided in PSPACE.

Reduction. We now present the reductions of PQIF bound-
ing and QIF memoryless synthesis problems to the weight
bounding problem of PIDS and memoryless weight bounding
problem for PINS.

Lemma 6 (Upper bound for programs): The PQIF
bounding problem is in PSPACE.

Proof: Let us consider the PQIF bounding problem.
We are given a program P , a probability distribution µ

over H and L, and a rational number d, and the problem
is to decide whether SE [µ](P ) ≥ d. We reduce the problem
to the weight bounding problem for PIDS: we construct a
PIDS G, a number λ, and a weight function w such that
W (G,w) ≤ λ. Note however that we need a probabilistic
version of the weight bounding problem, one which weighs
the entropy of knowledge sets by the probability of obser-
vation sequences leading to them. For simplicity, we did
not introduce probabilities to PIDS, however the proof of
membership in PSPACE can be modified for the probabilistic
case.

The PIDS G will be obtained as ξ(P ) defined in Sec-
tion III. Given a set of states K of ξ(P ) the weight function
w(K) will be defined by∑

h∈Sc(K)

µ(H = h) log
1

µ(H = h)
,

where Sc(K) is the set of valuations of high variables that
appear in states of K. It is easy to see that weight function
defined in this way fulfills the monotonicity requirement, as
it essentially corresponds to the entropy over H according
to an observer.

It remains to set the value λ. We set it to H[µ](H|L)−d.
We now show that the construction defines a reduction,

i.e. the answer to the instance of the PQIF bounding problem
is the same as the answer to the constructed instance of the
weight bounding problem for PIDS.

By definition,

SE [µ](P ) = sup
ι

(H[µι](H|L)−H[µι](H|T )).

As H[µι](H|L) does not depend on ι, we have that

SE [µ](P ) = H[µ](H|L)− inf
ι
H[µι](H|T ).

Let us now analyze H[µι](H|T ). We have that

H[µι](H|T ) =
∑
T=σ

µι(T = σ) · H[µι](H|T = σ),

where

H[µι](H|T = σ) =∑
H=h

µι(H = h|T = σ) · log
1

µι(H = h|T = σ)
.

Let us now consider an observation-based strategy α for
Player 1 in the PIDS ξ(P ) constructed from a strategy ι for
choosing inputs for P in the natural way.

Considering the definition of W (G,w, α) and our
construction of the weight function w, we have that
H[µι](H|T ) = W (G,w, α), for α chosen as above, as
in both cases, we are considering the entropy of H after
performing a number of steps according to the same strategy.
We thus have

SE [µ](P ) = H[µ](H|L)− infιH[µι](H|T , L)
= H[µ](H|L)− infαW (G,w, α).



The inequality SE [µ](P ) ≥ d therefore holds if and only
if infαW (G,w, α) ≤ H[µ](H|L) − d, or equivalently,
infαW (G,w, α) ≤ λ. By definition, this implies that
W (G,w) ≤ λ, which concludes the reduction. The reduc-
tion is polynomial, and hence with the upper bound for the
weight bounding problem for PIDS (Lemma 4) we obtain
the desired bound.

Corollary 2 (Upper bound for memoryless synthesis):
The QIF memoryless synthesis problem is in PSPACE.

Proof: The reduction of the QIF memoryless synthesis
problem to the memoryless weight bounding problem for
PINS is the straight forward extension of the reduction of
the previous lemma. The PSPACE upper bound (Lemma 5)
establishes the desired PSPACE upper bound.

We have the following result summarizing the upper
and lower bound for PQIF bounding and QIF memoryless
synthesis problem.

Theorem 3: The PQIF bounding and QIF memoryless
synthesis problems are PSPACE-complete.

The bound for QIF synthesis problem. We have already
established that the QIF synthesis problem is EXPTIME
hard and we now argue that the problem can be solved
in 2EXPTIME using standard subset construction technique.
The 2EXPTIME upper bound is obtained as follows:

1) The weight bounding problem for perfect information
systems. Perfect information systems are special case
of PINS where Player 1 can have precise knowledge
about the state space. The weight bounding problem
for perfect information systems can be solved in EXP-
TIME by subset construction. The subset construction
maintain sets of states which represent the frontier
of the tree. Hence the weight bounding problem for
perfect information systems can be reduced to a reach-
ability problem on a exponential size AND-OR graphs.
Since reachability in AND-OR graphs can be solved in
linear time, it follows that for perfection information
systems, the weight bounding problem can be solved
in EXPTIME.

2) From PINS to perfect information systems. The result
of Reif [14] shows how with subset construction
a partial information game can be reduced to an
equivalent exponential size perfect information games.
The standard subset construction is easily adapted
to construct an equivalent exponential size perfect
information system from a PINS.

Combining the above two subset construction we obtain a
2EEXPTIME upper bound for the QIF synthesis problem.
Thus we have a 2EXPTIME upper bound and EXPTIME
lower bound, and a matching upper and lower bound for
the problem remains open.

Theorem 4: The QIF synthesis problem is EXPTIME-hard
and can be solved in 2EXPTIME.

VI. CONCLUSION

Brief summary: In this work we studied the compu-
tational complexity of verification and synthesis problems
for quantitative information flow. We establish optimal com-
plexity for verification and memoryless synthesis problems
showing they are PSPACE complete, while the general
synthesis problem is EXPTIME-hard and can be solved in
2EXPTIME.

Future work: There are many directions for future
research. An open question is to find a matching upper
and lower bound for the QIF general synthesis problem.
If one identifies domains where the quantitative relaxations
of noninterference are useful (such as analysis of browser
plugins or Java midlets), there is a question of whether
the algorithms developed in this paper can be useful. Our
results show that both verification and synthesis problems
have high computational complexity. Therefore, from a more
practical point of view, there is a question about how
to develop suitable abstraction-based (semi)-algorithms for
these problems.
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