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Abstract

In a component-based design context, we propose a relational interface theory for synchronous sys-
tems. A component is abstracted by its interface, which consists of input and output variables, as well as
one or more contracts. A contract is a relation between input and output assignments. In the stateless
case, there is a single contract that holds at every synchronous round. In the general, stateful, case,
the contract may depend on the state, modeled as the history of past observations. Interfaces can be
composed by connection or feedback. Parallel composition is a special case of connection. Feedback
is allowed only for Moore interfaces, where the contract does not depend on the current values of the
input variables that are connected (although it may depend on past values of such variables). The theory
includes explicit notions of environments, pluggability and substitutability. Environments are themselves
interfaces. Pluggability means that the closed-loop system formed by an interface and an environment
is well-formed, that is, a state with unsatisfiable contract is unreachable. Substitutability means that an
interface can replace another interface in any environment. A refinement relation between interfaces is
proposed, that has two main properties: first, it is preserved by composition; second, it is equivalent to
substitutability for well-formed interfaces. Shared refinement and abstraction operators, corresponding
to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete
interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique
output for any legal input, are discussed as special cases, and an interesting duality between the two
classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute
compositions, check refinement, and so on, for finite-state interfaces.

1 Introduction

Compositional methods, that allow to assemble smaller components into larger systems both efficiently and
correctly, are not simply a desirable feature in system design: they are a must for designing large and complex
systems. It is not surprising, then, that a very large body of research has tackled compositionality in the
past. Our work is situated in the context of interface theories [14, 15], which represent one such body of
research. An interface can be seen as an abstraction of a component: on one hand, it captures information
that is essential in order to use the component in a given context; on the other hand, it hides unnecessary
information, making reasoning simpler and more efficient.

The type of information about a component that is exposed in an interface is likely to vary depending on
the application. For instance, if we are interested simply in type checking, we might abstract a component
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(say, a C or Java function) simply by its type signature. If, on the other hand, we are interested in checking
correctness properties, say, that a division component never attempts a division by zero, then simple types
are not enough, and we would like to have a more detailed interface. Therefore, we should not expect a
single, “fits-all”, interface theory, but multiple theories that are more or less suitable for different purposes.
Suitability metrics could include expressiveness, ease of modeling, as well as tractability of the computational
problems involved.

Our work has been motivated by the domains of embedded and cyber-physical systems [24, 30]. In
order to build such systems reliably and efficiently, model-based design has been proposed as a paradigm,
where formal models are heavily used at the design and analysis levels, and then semantics-preserving
implementations are derived from these models as much as possible automatically. The models are often
domain specific, since it is important for designers to reason at levels of abstraction appropriate for their
domain. Tools such as Simulink from The MathWorks1 SCADE from Esterel Technologies2 or Ptolemy from
Berkeley3 and languages such as the synchronous languages [8] are important players in this field [38]. The
semantics of the above models rely on the synchronous model of computation, which directly inspired this
work.

In our theory, a component is captured by its interface, which contains a set of input variables, a set of
output variables, and a set of contracts. A contract is simply a relation between assignments of values to
inputs and output variables. Syntactically, we use a logical formalism such as first-order logic to represent
and manipulate contracts. For example, if x1 and x2 are input variables and y is an output variable, then
x2 6= 0 ∧ y = x1

x2
could be the contract of a component that performs division. A more abstract contract

for the same component, that only specifies the sign of the output based on the inputs, is the following:
x2 6= 0 ∧

(
y < 0 ≡ (x1 < 0 < x2 ∨ x2 < 0 < x1)

)
. An even more abstract contract is x2 6= 0.4

Interfaces govern the operation of a component, which is assumed to evolve in a sequence of synchronous
rounds. Within a round, values are assigned to the input variables of the component by its environment,
and the component assigns values to its output variables. Together the two assignments form a complete
assignment over all variables. This assignment must satisfy the contract. Interfaces can be stateless or
stateful. In the stateless case, there is a single contract that holds at every round. In the general, stateful
case, there is a different contract for every state. A state is modeled as a history of observations, that is, as
a finite sequence of complete assignments. The set of states, as well as the set of contracts, can therefore
be infinite, and our theory can handle that. But it is useful to consider also the special case of finite-state
interfaces, where many different states have the same contract, and the set of contracts is finite. Note that
the domains of variables could still be infinite. Finite-state interfaces are represented as finite automata
whose locations are labeled by contracts (e.g., formulas).

Interfaces can be composed so that a new interface is obtained as the composition of other interfaces.
We provide two composition operators, composition by connection and composition by feedback, studied
in Section 5. Connection essentially corresponds to sequential composition, however, it can also capture
parallel composition as a special case (empty connection). Importantly, composition by connection is not
the same as composition of relations, except in the special case when the interface that provides the outputs is
deterministic. This is because, similarly to other works, we use a demonic interpretation of non-determinism,
corresponding to universal instead of existential quantification. Feedback is allowed only for Moore interfaces,
where the contract does not depend on the current values of the input variables that are back-fed (although
it may depend on past values of such variables).

Composition generates redundant output variables, in the sense that they are equal at every round. We
propose a hiding operator (Section 6) that allows elimination of such output variables. Hiding is always
possible for stateless interfaces and corresponds to existentially quantifying variables in the contract. The
situation is more subtle in the stateful case, where we need to ensure that the “hidden” variables do not

1 See http://www.mathworks.com/products/simulink/.
2 See http://www.esterel-technologies.com/products/scade-suite/.
3 See http://ptolemy.eecs.berkeley.edu/.
4 These contracts implicitly use the fact that variables are numbers, symbols like = for equality, and arithmetic operations

such as division. Our theory does not depend on these, and works with variables of any domain, without assuming any properties
on such domains. In practice, however, as well as for illustration purposes, we often use such properties.
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influence the evolution of the contract from one state to the next. This is necessary to ensure preservation
of refinement by hiding.

Our theory includes explicit notions of environments, pluggability and substitutability (see Section 7). An
environment E for an interface I is simply an interface whose input and output variables “mirror” those of I.
I is pluggable to E (and vice versa) iff the closed-loop system formed by connecting the two is well-formed,
that is, never reaches a state with an unsatisfiable contract. In general, we distinguish between well-formed
and well-formable interfaces (the two notions coincide for stateless interfaces). Well-formable interfaces are
not necessarily well-formed, but can be made well-formed by appropriately restricting their inputs. As
in [15], controller-synthesis type of procedures can be used to check whether a given finite-state interface is
well-formable and, if it is, transform it into a well-formed one. Substitutability means that an interface I ′

can replace another interface I in any environment. That is, for any environment E, if I is pluggable to E
then I ′ is also pluggable to E.

Our theory includes a refinement relation between interfaces, studied in Section 8. Our refinement is
similar in spirit to other refinement relations, such as alternating refinement [4], refinement of A/G inter-
faces [15, 19], subcontracting in Eiffel [37], or function subtyping in type theory [41, 32], which, roughly
speaking, require that I ′ refines I iff I ′ accepts more inputs and produces less outputs than I. This require-
ment is easy to formalize as in → in′ ∧ out′ → out when input assumptions in are separated from output
guarantees out, but needs to be extended in our case, where constraints on inputs and outputs are mixed in
the same contract φ. We do this by requiring in(φ) → (in(φ′) ∧ (φ′ → φ)), where in(φ) is the projection of φ
to the inputs, that is, the assumption part. This definition applies to the stateless case where an interface
has a single contract φ, but can be easily extended to the stateful case.

Refinement is shown to be a partial order with the following main properties: first, it is preserved by
composition and hiding; second, it is equivalent to substitutability for well-formed interfaces (more precisely:
refinement always implies substitutability; the converse holds when the refined interface is well-formed).
Refinement always preserves well-formability. Refinement does not preserve well-formedness in general, but
it does so when the refining interface I ′ has no more legal inputs than the refined interface I.

Our theory supports shared refinement of two interfaces I and I ′ (Section 9). This is important for
component reuse, as argued in [19]. Shared refinement, when defined, is shown to be the greatest lower
bound with respect to refinement, and is therefore denoted I u I ′. I u I ′ is an interface that refines both I
and I ′, therefore, it can replace both in any context. In this paper we also propose a corresponding shared
abstraction operator which is shown to be the least upper bound with respect to refinement, denoted I t I ′.

As a special case, we discuss input-complete interfaces, that impose no restrictions on inputs, and de-
terministic interfaces, where contracts are partial functions instead of relations. These two subclasses of
interfaces are interesting, first, because the theory is greatly simplified in those cases: refinement is implica-
tion of contracts, composition is composition of relations, and so on. Second, there is an interesting duality
between the two subclasses, as shown in Sections 10 and 11.

One of the appealing features of our theory is that it allows a declarative way of specifying contracts, and
a symbolic way of manipulating them, as logical formulas. For this reason, it is relatively straightforward
to develop algorithms that implement the theory for finite-state interfaces. We provide such algorithms
throughout the text, for instance, for composing interfaces, checking refinement, and so on. These algorithms
compute some type of product of the automata that represent the interfaces and syntactically manipulate
their contracts. Checking satisfiability is required for checking refinement, well-formability, and so on.
Decidability of this problem will of course depend on the types of formulas used. Recent advances in SAT
modulo theories and SMT solvers can be leveraged for this task.

2 Related work

Abstracting components in some mathematical framework that offers stepwise refinement and composition-
ality guarantees is an old idea. It goes back to the work of Floyd and Hoare on proving program correctness
using pre- and post-condititions [20, 25] (a pair of pre- and post-conditions can be seen as a contract for a
piece of sequential code) and the work of Dijkstra and Wirth on stepwise refinement as a method for gradu-
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ally developing programs from their specifications [17, 49]. These ideas were used and developed further in
a large number of works, including Abrial’s Z notation [44] and B method [2], Liskov’s work on CLU [31],
Meyer’s design-by-contract paradigm [37], as well as Back’s work on the refinement calculus [5]. The latter
work uses the term contract and its game interpretation, as well as demonic non-determinism, that we also
use in our framework.

Using relations as program specifications is also not new, and goes back to the work of Parnas on DL
relations [40]. A survey of this body of work is provided in [28]. Of relevance is the relational calculus
developed in [21] for sequential programs, where a demonic interpretation of relations is also used.

In a reactive-system setting, Broy considers a relational framework where specifications are sets of stream-
processing functions [10, 11]. This framework is more general than ours, in that it can capture stream-
processing functions that are not necessarily length-preserving (ours are, because of synchrony of inputs and
outputs). On the other hand, Broy uses the more standard definitions of refinement as logical implication
(trace inclusion) and composition as composition of relations.

In Dill’s trace theory, a component is described using a pair of sets of traces, for legal and illegal behaviors,
respectively (successes and failures) [18]. The theory distinguishes between input and output symbols, but
does not impose synchrony of inputs and outputs, since one of its goals is to capture asynchronous circuits.
Dill’s theory includes an explicit notion of environment, as the “mirror” of a trace structure with input and
output symbols reversed. Refinement (called conformation) in that theory induces a lattice.

Like trace structures, the framework of interface automata [14] also has an asynchronous, operational
flavor. It can capture input-output relations, but in a more explicit or enumerative manner. Our framework
is of a more declarative, denotational and symbolic nature. I/O automata [34] are also related, but are by
definition input-complete.

Interface theories are naturally related to work on compositional verification, where the main purpose is
to break down the task of checking correctness of a large model into smaller tasks, that are more amenable
to automation. A very large body of research exists on this topic. Some of this work is based on an
asynchronous, interleaving based concurrency model, e.g., see [39, 45, 27], some on a synchronous model,
e.g., see [22, 36], while others are done within a temporal logic framework, e.g., see [6, 1]. Many of these
works are based on the assume-guarantee paradigm, and they typically use some type of trace inclusion or
simulation as refinement relation, e.g., see [26, 45, 43, 23].

[15] defines relational nets, which are networks of processes that non-deterministically relate input values
to output values. [15] does not provide an interface theory for the complete class of relational nets. Instead
it provides interface theories for subclasses, in particular: rectangular nets which have no input-output
dependencies; total nets which can have input-output dependencies but are input-complete; and total and
rectangular nets which combine both restrictions above. The interfaces provided in [15] for rectangular
nets are called assume/guarantee (A/G) interfaces. A/G interfaces form a strict subclass of the relational
interfaces that we consider in this paper: A/G interfaces separate the assumptions on the inputs from the
guarantees on the outputs, and as such cannot capture input-output relations; on the other hand, every
A/G contract can be trivially captured as a relational contract by taking the conjunction of the assume
and guarantee parts. [15] studies stateless A/G interfaces, while [19] studies also stateful A/G interfaces,
in a synchronous setting similar to the one considered in this paper. [19] also discusses extended interfaces
which are essentially the same as the relational interfaces that we study in this paper. However, difficulties
with synchronous feedback loops (see discussion below) lead [19] to conclude that extended interfaces are
not appropriate.

[13] considers synchronous Moore interfaces, defined by two formulas φi and φo that specify the legal
values of the input and output variables, respectively, at the next round, given the current state. This
formulation does not allow to describe relations between inputs and outputs within the same round, as our
relational theory allows.

Both [15] and [19] can handle very general compositions of interfaces, that can be obtained via parallel
composition and arbitrary connection (similar to the denotational composition framework of [29]). This
allows, in particular, arbitrary feedback loops to be created. In a relational framework, however, synchronous
feedback loops can be problematic, as discussed in Example 13 (see also Section 12).
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3 Preliminaries, notation

We use first-order logic (FOL) notation throughout the paper. For an introduction to FOL, see, for in-
stance, [46]. We use true and false for logical constants true and false, ¬,∧,∨,→,≡ for logical negation, con-
junction, disjunction, implication, and equivalence, and ∃ and ∀ for existential and universal quantification,
respectively. We use := when defining concepts or introducing new notation: for instance, x0 := max{1, 2, 3}
defines x0 to be the maximum of the set {1, 2, 3}.

Let V be a finite set of variables. A property over V is a FOL formula φ such that any free variable of
φ is in V . The set of all properties over V is denoted F(V ). Let φ be a property over V and V ′ be a finite
subset of V , V ′ = {v1, v2, ..., vn}. Then, ∃V ′ : φ is shorthand for ∃v1 : ∃v2 : ... : ∃vn : φ. Similarly, ∀V ′ : φ is
shorthand for ∀v1 : ∀v2 : ... : ∀vn : φ.

We will implicitly assume that all variables are typed, meaning that every variable is associated with a
certain domain. An assignment over a set of variables V is a (total) function mapping every variable in V
to a certain value in the domain of that variable. The set of all assignments over V is denoted A(V ). If
a is an assignment over V1 and b is an assignment over V2, and V1, V2 are disjoint, we use (a, b) to denote
the combined assignment over V1 ∪ V2. A formula φ is satisfiable iff there exists an assignment a over the
free variables of φ such that a satisfies φ, denoted a |= φ. A formula φ is valid iff it is satisfied by every
assignment.

There is a natural mapping from formulas to sets of assignments, that is, from F(V ) to 2A(V ). In
particular, a formula φ ∈ F(V ) can be interpreted as the set of all assignments over V that satisfy φ.
Conversely, we can map a subset of A(V ) to a formula over V , provided this subset is representable in FOL.
Because of this correspondence, we use set-theoretic or logical notation, as is more convenient. For instance,
if φ and φ′ are formulas or sets of assignments, we write φ ∧ φ′ or φ ∩ φ′ interchangeably.

If S is a set, S∗ denotes the set of all finite sequences of elements of S. S∗ includes the empty sequence,
denoted ε. If s, s′ ∈ S∗, then s · s′ is the concatenation of s and s′. |s| denotes the length of s ∈ S∗, with
|ε| = 0 and |s · a| = |s|+ 1, for a ∈ S. If s = a1a2 · · · an, then the i-th element of the sequence, ai, is denoted
si, for i = 1, ..., n. A prefix of s ∈ S∗ is a sequence s′ ∈ S∗ such that there exists s′′ ∈ S∗ such that s = s′ ·s′′.
We write s′ ≤ s if s′ is a prefix of s. s′ < s means s′ ≤ s and s′ 6= s. A subset L ⊆ S∗ is prefix-closed if for
all s ∈ L, for all s′ ≤ s, s′ ∈ L.

4 Relational interfaces

Definition 1 (Relational interface) A relational interface (or simply interface) is a tuple I = (X,Y, f)
where X and Y are two finite and disjoint sets of input and output variables, respectively, and f is a
non-empty, prefix-closed subset of A(X ∪ Y )∗.

We write InVars(I) for X, OutVars(I) for Y and f(I) for f . We allow X or Y to be empty: if X is empty
then I is a source interface; if Y is empty then I is a sink. An element of A(X ∪ Y )∗ is called a state. That
is, we identify states with observation histories. The initial state is the empty sequence ε. The states in f
are also called the reachable states of I. f defines a total function that maps a state to a set of input-output
assignments. We use the same symbol f to refer to this function. For s ∈ A(X ∪ Y )∗, f(s) is defined as
follows:

f(s) := {a ∈ A(X ∪ Y ) | s · a ∈ f}.
We view f(s) as a contract between a component and its environment at that state. The contract changes
dynamically, as the state evolves.

Conversely, if we are given a function f : A(X∪Y )∗ → 2A(X∪Y ), we can define a non-empty, prefix-closed
subset of A(X ∪ Y )∗ as follows:

f := {a1 · · · ak | ∀i = 1, ..., k : ai ∈ f(a1 · · · ai−1)}

Notice that ε ∈ f because the condition above trivially holds for k = 0. Also note that if s 6∈ f then f(s) = ∅.
This is because f is prefix-closed.
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Because of the above 1-1 correspondence, in the sequel, we treat f either as a subset of A(X ∪ Y )∗ or as
a function that maps states to contracts, depending on what is more convenient. We will assume that f(s)
is representable by a FOL formula. Therefore, f(s) can be seen also as an element of F(X ∪ Y ).

Definition 2 (Input assumptions) Given a contract φ ∈ F(X ∪ Y ), the input assumption of φ is the
formula in(φ) := ∃Y : φ. Note that in(φ) is a property over X. Also note that φ → in(φ) is a valid formula
for any φ.

A relational interface I = (X,Y, f) can be seen as specifying a game between a component and its
environment. The game proceeds in a sequence of rounds. At each round, an assignment a ∈ A(X ∪ Y ) is
chosen, and the game moves to the next round. Therefore, the history of the game is the sequence of rounds
played so far, that is, a state s ∈ A(X ∪ Y )∗. Suppose that at the beginning of a round the state is s. The
environment plays first, by choosing aX ∈ A(X). If aX 6∈ in(f(s)) then this is not a legal input and the
environment loses the game. Otherwise, the component plays by choosing aY ∈ A(Y ). If (aX , aY ) 6∈ f(s)
then this is not a legal output for this input, and the component loses the game. Otherwise, the round is
complete, and the game moves to the next round, with new state s · (aX , aY ).

An input-complete interface is one that does not restrict its inputs:

Definition 3 (Input-complete interface) An interface I = (X,Y, f) is input-complete if for all s ∈
A(X ∪ Y )∗, in(f(s)) is valid.

A deterministic interface is one that maps every input assignment to at most one output assignment:

Definition 4 (Determinism) An interface I = (X,Y, f) is deterministic if for all s ∈ f , for all aX ∈
in(f(s)), there is a unique aY ∈ A(Y ) such that (aX , aY ) ∈ f(s).

The specializations of our theory to input-complete and deterministic interfaces are discussed in Sec-
tions 10 and 11, respectively.

A stateless interface is one where the contract is independent from the state:

Definition 5 (Stateless interface) An interface I = (X,Y, f) is stateless if for all s, s′ ∈ A(X ∪ Y )∗,
f(s) = f(s′).

For a stateless interface, we can treat f as a subset of A(X ∪ Y ) instead of a subset of A(X ∪ Y )∗. For
clarity, if I is stateless, we write I = (X,Y, φ), where φ is a property over X ∪ Y .

Example 1 Consider a component which is supposed to take as input a positive number n and return n
or n + 1 as output. We can capture such a component in different ways. One way is to use the following
stateless interface:

I1 := ({x}, {y}, x > 0 ∧ (y = x ∨ y = x+ 1)}).

Here, x is the input variable and y is the output variable. The contract of I1 explicitly forbids zero or negative
values for x. Indeed, we have in(I1) ≡ x > 0.

Another possible stateless interface for this component is:

I2 := ({x}, {y}, x > 0 → (y = x ∨ y = x+ 1)}).

The contract of I2 is different from that of I1: it allows x ≤ 0, but makes no guarantees about the output y
in that case. I2 is input-complete, whereas I1 is not. Both I1 and I2 are non-deterministic.

In general, the state space of an interface is infinite. In some cases, however, only a finite set of states is
needed to specify f . In particular, f may be specified by a finite-state automaton:
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Definition 6 (Finite-state interface) A finite-state interface is specified by a finite-state automaton M =
(X,Y, L, `0, C, T ). X and Y are sets of input and output variables, respectively. L is a finite set of locations
and `0 ∈ L is the initial location. C : L → 2A(X∪Y ) is a labeling function that labels every location with a
set of assignments over X ∪Y , the contract at that location. T ⊆ L× 2A(X∪Y )×L is a set of transitions. A
transition t ∈ T is a tuple t = (`, g, `′) where `, `′ are the source and destination locations, respectively, and
g ⊆ A(X ∪ Y ) is the guard of the transition. We require that, for all ` ∈ L:

C(`) =
⋃

(`,g,`′)∈T

g (1)

∀(`, g1, `1), (`, g2, `2) ∈ T : `1 6= `2 → g1 ∩ g2 = ∅ (2)

These conditions ensure that there is a unique outgoing transition for every assignment that satisfies the
contract of the location. Given a ∈ C(`), the a-successor of ` is the unique location `′ for which there exists
transition (`, g, `′) such that a ∈ g. A location ` is called reachable if, either ` = `0, or there exists a reachable
location `′, a transition (`′, g, `), and an assignment a such that ` is the a-successor of `′.

M defines interface I = (X,Y, f) where f is the set of all sequences a1 · · · ak ∈ A(X ∪ Y )∗, such that for
all i = 1, ..., k, ai ∈ C(`i−1), where `i is the ai-successor of `i−1.

Note that a finite-state interface can still have variables with infinite domains. Also notice that we allow
C(`), the contract at location `, to be empty. This simply means that the interface is not well-formed (see
Definition 7 that follows). Finally, although the guard of an outgoing transition from a certain location must
be a subset of the contract of that location, we will often abuse notation and violate this constraint in the
examples that follow, for the sake of simplicity. Implicitly, all guards should be understood in conjunction
with the contracts of their source locations.

It is also worth noting that although the finite-state automaton defining a finite-state interface is de-
terministic, this does not mean that the interface itself is deterministic. Indeed, in general, it is not, since
contracts that label locations are still non-deterministic input-output relations.

An example of a finite-state interface follows:

Example 2 (Buffer) Figure 1 shows a finite-state automaton defining a finite-state interface for a single-
place buffer. The interface has two input variables, write and read, and two output variables, empty and full.
All variables are boolean. The automaton has two locations, `0 (the initial location) and `1. Each location is
implicitly annotated by the conjunction of a global contract, that holds at all location, and a local contract,
specific to a location. In this example, the global contract specifies that the buffer cannot be both empty and
full (this is a guarantee on the outputs) and that a user of the buffer cannot read and write at the same round
(this is an assumption on the inputs). The global contract also specifies that if the buffer is full then writing
is not allowed, and if the buffer is empty then read is not allowed. Both are relational specifications that link
inputs and outputs. The local contract at `0 states that the buffer is empty and at `1 that it is full.

Definition 7 (Well-formedness) An interface I = (X,Y, f) is well-formed iff for all s ∈ f , f(s) is non-
empty.

Well-formed interfaces can be seen as describing components that never “deadlock”. If I is well-formed
then for all s ∈ f there exists assignment a such that s · a ∈ f . Moreover, f is non-empty and prefix-closed
by definition, therefore, ε ∈ f . This means that there exists at least one state in f which can be extended to
arbitrary length. In a finite-state interface, checking well-formedness amounts to checking that the contract
of every reachable location of the corresponding automaton is satisfiable. If contracts are specified in a
decidable logic, checking well-formedness of finite-state interfaces is thus decidable.

Example 3 Let I be the finite-state interface represented by the left-most automaton shown in Figure 2.
I is assume to have two boolean variables, an input x, and an output y. I is not well-formed, because it
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Figure 1: Interface for a buffer of size 1.

has reachable states with contract false (all states starting with x being false). I can be transformed into a
well-formed interface by strengthening the contract of the initial state from true to x, thus obtaining interface
I ′ shown to the right of the figure.

¬x
I

′
:

x

x

I:

true false

x

Figure 2: A well-formable interface I and its well-formed witness I ′.

Example 3 shows that some interfaces, even though they are not well-formed, can be turned into well-
formed interfaces by appropriately restricting their inputs. This motivates the following definition:

Definition 8 (Well-formability) An interface I = (X,Y, f) is well-formable if there exists a well-formed
interface I ′ = (X,Y, f ′) (called a witness) such that: for all s ∈ f ′, f ′(s) ≡ f(s) ∧ φs, where φs is some
property over X.

Lemma 1 Let I = (X,Y, f) be a well-formable interface and let I ′ = (X,Y, f ′) be a witness to the well-
formability of I. Then f ′ ⊆ f .

Proof: By induction. ε belongs in both f and f ′. Suppose s · a ∈ f ′. Thus s ∈ f ′. By the induction
hypothesis, s ∈ f . From s · a ∈ f ′ we get a ∈ f ′(s). Since f ′(s) = f(s) ∩ φs, we have a ∈ f(s), therefore
s · a ∈ f .

Clearly, every well-formed interface is well-formable, but the opposite is not true in general, as Example 3
shows. For stateless or source interfaces, however, the two notions coincide:

Theorem 1 A stateless or source interface I is well-formed iff it is well-formable.

Proof: Well-formedness implies well-formability for all interfaces. For the converse, let I = (X,Y, f) be a
well-formable interface. Then there exists a witness I ′ = (X,Y, f ′) such that I ′ is well-formed.

First, suppose that I is stateless. Then f(s) = f(ε) for any s. Since I ′ is a witness, f ′(ε) = f(ε) ∧ φε,
for some property φε over X. Since I ′ is well-formed, f ′(ε) is non-empty, thus, f(ε) is also non-empty, thus,
so is f(s) for any s.

Second, suppose that I is a source, that is, X = ∅. Since I ′ is a witness, for any state s, f ′(s) = f(s)∧φs,
where φs is a property over X. Since X is empty, φs can be either true or false. Since f ′(s) is non-empty, φs
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must be true for any s. Therefore, f(s) = f ′(s) for any s, thus, f(s) is non-empty for all s.

For an interface that is finite-state and whose contracts are written in a logic for which satisfiability is
decidable, there is an algorithm to check whether the interface is well-formable, and if this is the case, to
transform it into a well-formed interface. The algorithm essentially attempts to find a winning strategy in
a game, and as such is similar in spirit to algorithms proposed in [14]. The algorithm starts by marking all
locations with unsatisfiable contracts as illegal. Then, a location ` is chosen such that ` is legal, but has an
outgoing transition (`, g, `′), such that `′ is illegal. If no such ` exists, the algorithm stops. Otherwise, the
contract of ` is strengthened to

C(`) := C(`) ∧ (∀Y : C(`) → ¬g) (3)

∀Y : C(`) → ¬g is a property on X. An input assignment aX satisfies this formula iff, for any possible output
assignment aY that the contract C(`) can produce given aX , the complete assignment (aX , aY ) violates g.
This means that there is a way of restricting the inputs at `, so that `′ becomes unreachable from `. Notice
that, in the special case where g is a formula over X, (3) simplifies to C(`) := C(`) ∧ ¬g.

If, during the strengthening process, the contract of a location becomes unsatisfiable, this location is
marked as illegal. The process is repeated until no more strengthening is possible, whereupon the algorithm
stops. Termination is guaranteed because each location has a finite number of successor locations, therefore,
can only be strengthened a finite number of times. If, when the algorithm stops, the initial location `0 has
been marked illegal, then the interface is not well-formed. Otherwise, the modified automaton specifies a
well-formed interface, which is a witness for the original interface.

For the above class of interfaces there is also an algorithm to check equality, i.e., given two interfaces
I1, I2, check whether I1 = I2. Let Mi = (X,Y, Li, `0,i, Ci, Ti) be finite-state automata representing Ii, for
i = 1, 2, respectively. We first build a synchronous product M := (X,Y, L1 × L2 ∪ {`bad}, (`0,1, `0,2), C, T ),
where C(`1, `2) := C1(`1) ∨ C2(`2) for all (`1, `2) ∈ L1 × L2, C(`bad) := false, and:

T := {((`1, `2), (C1(`1) ≡ C2(`2)) ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `
′
i) ∈ Ti, for i = 1, 2}

∪ {((`1, `2), C1(`1) 6≡ C2(`2), `bad)} (4)

It can be checked that I1 = I2 iff location `bad is unreachable.

5 Composition

We define two types of composition: by connection and by feedback.

5.1 Composition by connection

First, we can compose two interfaces I1 and I2 “in sequence”, by connecting some of the output variables
of I1 to some of the input variables of I2. One output can be connected to many inputs, but an input can
be connected to at most one output. Parallel composition is a special case of composition by connection,
where the connection is empty. The connections define a new interface. Thus, the composition process can
be repeated to yield arbitrary (for the moment, acyclic) interface diagrams. Composition by connection is
associative (Theorem 3), so the order in which interfaces are composed does not matter.

Two interfaces I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) are called disjoint if they have disjoint sets of input
and output variables: (X ∪ Y ) ∩ (X ′ ∪ Y ′) = ∅.

Definition 9 (Composition by connection) Let Ii = (Xi, Yi, fi), for i = 1, 2, be two disjoint interfaces.
A connection θ between I1, I2, is a finite set of pairs of variables, θ = {(yi, xi) | i = 1, ...,m}, such that: (1)
∀(y, x) ∈ θ : y ∈ Y1 ∧ x ∈ X2, and (2) there do not exist (y, x), (y′, x) ∈ θ such that y and y′ are distinct.
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Define:

OutVars(θ) := {y | ∃(y, x) ∈ θ} (5)
InVars(θ) := {x | ∃(y, x) ∈ θ} (6)
Xθ(I1,I2) := (X1 ∪X2) \ InVars(θ) (7)
Yθ(I1,I2) := Y1 ∪ Y2 ∪ InVars(θ) (8)

The connection θ defines the composite interface θ(I1, I2) := (Xθ(I1,I2), Yθ(I1,I2), f), where, for every s ∈
A(Xθ(I1,I2) ∪ Yθ(I1,I2))

∗:

f(s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧ ∀Yθ(I1,I2) : Φ
Φ := (f1(s1) ∧ ρθ) → in(f2(s2)) (9)

ρθ :=
∧

(y,x)∈θ

y = x

and, for i = 1, 2, si is defined to be the projection of s to variables in Xi ∪ Yi.

Note that Xθ(I1,I2) ∪ Yθ(I1,I2) = X1 ∪ Y1 ∪X2 ∪ Y2. Also notice that InVars(θ) ⊆ X2. This implies that
X1 ⊆ Xθ(I1,I2), that is, every input variable of I1 is also an input variable of θ(I1, I2).

Definition 9 may seem unnecessarily complex at first sight. In particular, the reader may doubt the
necessity of the term ∀Yθ(I1,I2) : Φ, in the definition of f(s). Informally speaking, this term states that,
no matter which outputs I1 chooses to produce for a given input, all such outputs are legal inputs for I2.
This condition is essential for the validity of our interface theory. Omitting this condition would result
in a fundamental property of the theory, namely, preservation of refinement by composition (Theorem 13)
not being true, as will be explained in Example 18. Because of this condition, composition by connection
does not correspond to composition of relations, except in the special case when I1 is deterministic – see
Theorem 29 of Section 11.

For finite-state interfaces, connection is computable. Let Mi = (Xi, Yi, Li, `0,i, Ci, Ti) be finite-state
automata representing Ii, for i = 1, 2, respectively. The composite interface θ(I1, I2) can be represented
as M := (Xθ(I1,I2), Yθ(I1,I2), L1 × L2, (`0,1, `0,2), C, T ), where C(`1, `2) is defined as f(s) is defined in (9),
replacing fi(`i) by Ci(`i), and T is defined as follows:

T := {((`1, `2), g1 ∧ g2, (`′1, `′2)) | (`i, gi, `
′
i) ∈ Ti, for i = 1, 2} (10)

That is, M is essentially a synchronous product of M1,M2.
A connection θ is allowed to be empty. In that case, ρθ ≡ true, and the composition can be viewed as the

parallel composition of two interfaces. If θ is empty, we write I1‖I2 instead of θ(I1, I2). As may be expected,
the contract of the parallel composition at a given global state is the conjunction of the original contracts
at the corresponding local states, which implies that parallel composition is commutative:

Lemma 2 Consider two disjoint interfaces, Ii = (Xi, Yi, fi), i = 1, 2. Then I1‖I2 = (X1 ∪X2, Y1 ∪ Y2, f),
where f is such that for all s ∈ A(X1 ∪X2 ∪ Y1 ∪ Y2)∗, f(s) ≡ f1(s1) ∧ f2(s2), where, for i = 1, 2, si is the
projection of s to Xi ∪ Yi.

Proof: Following Definition 9, we have:

I1‖I2 = (X1 ∪X2, Y1 ∪ Y2, f)

where for all s ∈ A(X1 ∪X2 ∪ Y1 ∪ Y2)∗

f(s) = f1(s1) ∧ f2(s2) ∧
(
∀Y1 ∪ Y2 : f1(s1) → in(f2(s2))

)
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Observe that in(f2(s2)) is a formula over X2, that is, does not depend on Y1 ∪ Y2. Therefore,(
∀Y1 ∪ Y2 : f1(s1) → in(f2(s2))

)
≡ ¬(∃Y1 ∪ Y2 : f1(s1) ∧ ¬in(f2(s2))) ≡

¬(¬in(f2(s2)) ∧ ∃Y1 ∪ Y2 : f1(s1)) ≡
(
in(f2(s2)) ∨ ¬∃Y1 ∪ Y2 : f1(s1)

)
Now, observe that φ → in(φ) is a valid formula for any φ. Therefore, f2(s2) → in(f2(s2)) → in(f2(s2)) ∨
¬∃Y1 ∪ Y2 : f1(s1), which gives(

f1(s1) ∧ f2(s2) ∧ ∀Y1 ∪ Y2 : f1(s1) → in(f2(s2))
)
≡ (f1(s1) ∧ f2(s2))

Theorem 2 (Commutativity of parallel composition) Let I1 and I2 be two disjoint interfaces. Then:

I1‖I2 = I2‖I1.

Proof: Follows from Lemma 2.

Theorem 3 (Associativity of connection) Let I1, I2, I3 be pairwise disjoint interfaces. Let θ12 be a con-
nection between I1, I2, θ13 a connection between I1, I3, and θ23 a connection between I2, I3. Then:

(θ12 ∪ θ13) (I1, θ23(I2, I3)) = (θ13 ∪ θ23) (θ12(I1, I2), I3) .

Proof: For simplicity of notation, we conduct the proof assuming the interfaces are stateless. The proof is
almost identical for general interfaces, except that f(s) replaces φ, f ′(s) replaces φ′, and so on.

Suppose the setting is as illustrated in Figure 3. That is, I1 = (X1, Y1 ∪ Y12 ∪ Y13, φ1); I2 = (X2 ∪
X12, Y2 ∪ Y23, φ2); I3 = (X3 ∪X13 ∪X23, Y3, φ3); and θ12 connects X11 and Y12; θ13 connects X13 and Y13;
θ23 connects X23 and Y23.

Our first step is to clearly express what the definitions tell us about I := (θ12 ∪ θ13) (I1, θ23(I2, I3)) and
I ′ := (θ13 ∪ θ23) (θ12(I1, I2), I3).

For simplicity, we will use the notation ρθ to refer to
∧

(y,x)∈θ y = x. We also refer to the outputs of
θ12(I1, I2) as P = Y1 ∪ Y12 ∪ Y13 ∪X12 ∪ Y2 ∪ Y23 and the outputs of θ23(I2, I3) as Q = Y2 ∪ Y23 ∪X23 ∪ Y3

and the overall outputs as O = Y1 ∪ Y2 ∪ Y3 ∪ Y12 ∪ Y13 ∪ Y23 ∪X12 ∪X13 ∪X23.
The definitions are as follows:

θ12(I1, I2) = (X1 ∪X2, P, φ1 ∧ φ2 ∧ ρθ12 ∧ ∀P : φ1 ∧ ρθ12 → in(φ2))
θ23(I2, I3) = (X2 ∪X12 ∪X3 ∪X13, Q, φ2 ∧ φ3 ∧ ρθ23 ∧ ∀Q : φ2 ∧ ρθ23 → in(φ3))

Let φ12 and φ23 be the contracts of θ12(I1, I2) and θ23(I2, I3), respectively. Then:

I = (X1 ∪X2 ∪X3, O, φ12 ∧ φ3 ∧ ρθ13 ∧ ρθ23 ∧ ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))
I ′ = (X1 ∪X2 ∪X3, O, φ1 ∧ φ23 ∧ ρθ12 ∧ ρθ13 ∧ ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

Let φ and φ′ be the contracts of I and I ′, respectively. Simplifying, we get:

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2)) ∧ (∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))
φ′ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀Q : φ2 ∧ ρθ23 → in(φ3)) ∧ (∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

In order to simplify discussion, we will name the subformulae as follows:

C := ∀P : φ1 ∧ ρθ12 → in(φ2)
D := ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3)
E := ∀Q : φ2 ∧ ρθ23 → in(φ3)
F := ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23)
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In order to prove equivalence of I and I ′, we need to prove that the following four formulae are valid:

φ→ E, φ→ F, φ′ → C, and φ′ → D

Proof of φ→ E: Let (x, q, o) be an arbitrary assignment such that (x, q, o) |= φ, where x ∈ X1∪X2∪X3,
q ∈ Q, and o ∈ O \Q. We want to show that (x, q, o) |= E (i.e. (x, o) |= E).

Let q′ be an arbitrary assignment over Q such that (x, q′, o) |= φ2 ∧ ρθ23 . We want to show

(x, q′, o) |= φ1 ∧ φ2 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2)).

Clearly, we have (x, q′, o) |= φ2 ∧ ρθ23 by construction of q′. We also have (x, o) |= φ1 ∧ ρθ13 ∧ ρθ23 ∧ C since
no free variables are in Q are and (x, q, o) |= A. Thus by D, we have (x, q′, o) |= in(φ3). Thus we have
(x, o) |= E. End of proof of φ→ E.

Proof of φ → F : Suppose we are given an assignment (x, q, o) |= φ where x is over X1 ∪X2 ∪X3, q is
over Q, and o is over O \Q. We want to show that (x, q, o) |= F (i.e. x |= F ).

Let (q′, o′) be an arbitrary assignment over O such that (x, q′, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 . We want to now
show that (x, q′, o′) |= in(φ23). To do so, we first expand in(φ23):

in(φ23) ≡ ∃Q(φ2 ∧ φ3 ∧ ρθ23) ∧ ∀Q(φ2 ∧ ρθ23 → in(φ3))

Thus we can reduce the proof to two parts:

(a) (x, o′) |= ∃Q(φ2 ∧ φ3 ∧ ρθ23), and

(b) (x, o′) |= ∀Q(φ2 ∧ ρθ23 → in(φ3))

For part (a), we want to show that for any assignment qa over Q: (x, qa, o′) |= φ2∧ρθ23 ⇒ (x, qa, o′) |= in(φ3).
We start with such an assignment qa. Combining this with the fact that (x, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 , we get
(x, qa, o′) |= φ1 ∧ φ2 ∧ ρθ. Combined with the fact that x |= C, we get (x, qa, o′) |= φ1 ∧ φ2 ∧ ρθ ∧ C. This is
exactly the premise of D. Since x |= D, this gives us (x, qa, o′) |= in(φ3), which is exactly what we wanted
to prove.

For part (b), we want to show that there exists an assignment over Q that models φ2 ∧φ3 ∧ ρθ23 . For our
purposes, we will divide this assignment into qY 2 over Y2 ∪ Y23, qX3 over X23, and qY 3 over Y3. First, since
x |= C and (x, o′) |= φ1 ∧ρθ12 ∧ρθ23 we have that (x, o′) |= in(φ2). Expanding the definition of in, this means
that ∃Y2φ2. Using this as our assignment of qY 2, we have that (x, qY 2, o

′) |= φ2. We can set the values of
X23 to those of Y23 in order to get an assignment of qX3 that satisfies ρθ23 . Combining the definition of o′

with the assignments to qY 2, qX3 with the fact that x |= C, gives us:

(x, qY 2, qX3, o
′) |= (φ1 ∧ ρθ12 ∧ ρθ23) ∧ (φ2 ∧ ρθ23) ∧ C

Since this is exactly the premise of D, we get (x, qY 2, qX3, o
′) |= in(φ3). But this means that ∃Y3φ3. Using

this as our assignment to qY 3, we get (x, qY 2, qX3, qY 3, o
′) |= φ3. Combining the terms that we have satisfied

over the course of our assignment, we get (x, qY 2, qX3, qY 3, o
′) |= φ2 ∧ φ3 ∧ ρθ23 , which is what we wanted to

prove.
Combining our results from part (a) and part (b) we get (x, o′) |= in(φ23). Thus (x, q, o) |= F . End of

proof of φ→ F .
Proof of φ′ → C: Suppose (x, p, o) |= B where x ∈ X1 ∪ X2 ∪ X3, p ∈ P , and o ∈ O \ P . We want to

show that (x, p, o) |= C (i.e. (x, o) |= C).
Let p′ be an assignment over P such that (x, p′, o) |= φ1 ∧ ρθ12 . Now take o′ over O \ P such that

(x, p′, o′) |= φ1 ∧ ρθ12 ∧ ρθ13 . This can be done by setting the variables of Y13 to those of X13. By F , we have
that (x, p′, o′) |= in(φ23), so in particular, (x, p′, o′) |= in(φ2). Since in(φ2) does not contain free variables in
O \ P , this means (x, p′, o) |= in(φ2). Thus we have (x, o) |= C. End of proof of φ′ → C.

Proof of φ′ → D: Suppose (x, o) |= φ′, where x is over X1 ∪X2 ∪X3, and o is over O.
Let o′ be an arbitrary assignment over O with (x, o′) |= φ12∧ρθ13 ∧ρθ23 . Clearly (x, o′) |= φ1∧ρθ12 ∧ρθ13 .

By F , we have (x, o′) |= in(φ23). But this also means that (x, o′) |= in(φ3) Thus we have (x, o) |= D. End of
proof of φ′ → D.
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Figure 3: Setting used in the proof of associativity.

Example 4 Consider the diagram of stateless interfaces shown in Figure 4, where:

Iid := ({x1}, {y1}, y1 = x1)
I+1,2 := ({x2}, {y2}, x2 + 1 ≤ y2 ≤ x2 + 2)
I≤ := ({z1, z2}, {}, z1 ≤ z2)

This diagram can be modeled as any of the two following equivalent compositions:

θ2
(
I+1,2, θ1(Iid, I≤)

)
= (θ1 ∪ θ2)

(
(Iid‖I+1,2), I≤

)
where θ1 := {(y1, z1)} and θ2 := {(y2, z2)}.

We proceed to compute the contract of the interface defined by the diagram. It is easier to consider the
composition (θ1 ∪ θ2)((Iid‖I+1,2), I≤). Define θ3 := θ1 ∪ θ2. From Lemma 2 we get:

Iid‖I+1,2 = ({x1, x2}, {y1, y2}, y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2)

Then, for θ3((Iid‖I+1,2), I≤), Formula (9) gives:

Φ := (y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ y1 = z1 ∧ y2 = z2) → z1 ≤ z2

By quantifier elimination, we get

∀y1, y2, z1, z2 : Φ ≡ x1 ≤ x2 + 1

therefore

θ3((Iid‖I+1), I≤) = ({x1, x2}, {y1, y2, z1, z2},
y1 = x1 ∧ x2 + 1 ≤ y2 ≤ x2 + 2 ∧ z1 ≤ z2 ∧ y1 = z1 ∧ y2 = z2 ∧ x1 ≤ x2 + 1)

Notice that in(θ3((Iid‖I+1), I≤)) ≡ x1 ≤ x2 + 1. That is, because of the connection θ, new assumptions have
been generated for the external inputs x1, x2. These assumptions are stronger than those generated by simple
composition of relations, which are x1 ≤ x2 + 2 in this case.

A composite interface is not guaranteed to be well-formed, neither well-formable, even if all its components
are well-formed:

Example 5 Consider the composite interface θ3((Iid‖I+1,2), I≤) from Example 4, and suppose we connect
its open inputs x1, x2 to outputs v1, v2, respectively, of some other interface that guarantees v1 > v2 + 1.
Clearly, the result is false, since the constraint x1 > x2 + 1 ∧ x1 ≤ x2 + 1 is unsatisfiable.
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Figure 4: The interface diagram of Example 4.

Contrary to other works [14, 15, 19], we do not impose an a-priori compatibility condition on connections.
We could easily impose well-formedness or well-formability as a compatibility condition. But we prefer not
to do so, because this allows us to state more general results. In particular, Theorem 13 holds independently
of whether the connection yields a well-formed interface or not. And together with Theorems 11 and 12, it
guarantees that if the refined composite interface is well-formed/formable, then so is the refining one. Having
said that, compatibility is a useful concept (see discussion in Section 10), therefore we define it explicitly.

Definition 10 (Compatibility) Let I1, I2 be two disjoint interfaces and θ a connection between them.
I1, I2 are said to be compatible with respect to θ iff θ(I1, I2) is well-formable.

Checking compatibility of two finite-state interfaces can be effectively done by first computing an au-
tomaton representing the composite interface θ(I1, I2) and then checking well-formability of the latter, using
the algorithms described earlier.

5.2 Composition by feedback

Our second type of composition is feedback composition, where an output variable of an interface I is con-
nected to one of its input variables x. For feedback, I is required to be Moore with respect to x. The term
“Moore interfaces” has been introduced in [13]. Our definition is similar in spirit, but less restrictive than
the one in [13]. Both definitions are inspired by Moore machines, where the outputs are determined by the
current state alone and do not depend directly on the input. In our version, an interface is Moore with
respect to a given input variable x, meaning that the contract may depend on the current state as well as
on input variables other than x. This allows to connect an output to x to form a feedback loop without
creating causality cycles.

Definition 11 (Moore interfaces) An interface I = (X,Y, f) is called Moore with respect to x ∈ X iff
for all s ∈ f , f(s) is a property over (X ∪ Y ) \ {x}. I is called simply Moore when it is Moore with respect
to every x ∈ X.

Example 6 (Unit delay) A unit delay is a basic building block in many modeling languages (including
Simulink and SCADE). Its specification is roughly: “output at time k the value of the input at time k− 1; at
time k = 0 (initial time), output some initial value v0”. We can capture this specification as an interface:

Iud := ({x}, {y}, fud),

where fud is defined as follows:

fud(ε) := (y = v0)
fud(s · a) := (y = a(x))

That is, initially the contract guarantees y = v0. Then, when the state is some sequence s · a, the contract
guarantees y = a(x), where a(x) is the last value assigned to input x. Iud is Moore (with respect to its unique
input variable) since all its contracts are properties over y only.
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Definition 12 (Composition by feedback) Let I = (X,Y, f) be a Moore interface with respect to some
input variable x ∈ X. A feedback connection κ on I is a pair (y, x) such that y ∈ Y . Define ρκ := (x = y).
The feedback connection κ defines the interface:

κ(I) := (X \ {x}, Y ∪ {x}, fκ) (11)
fκ(s) := f(s) ∧ ρκ, for all s ∈ A(X ∪ Y )∗ (12)

For finite-state interfaces, feedback is computable. Let M = (X,Y, L, `0, C, T ) be a finite-state automaton
representing I. First, to check whether M represents a Moore interface w.r.t. a given input variable x ∈ X,
it suffices to make sure that for every location ` ∈ L, C(`) does not refer to x. Then, if κ = (y, x), the
interface κ(I) can be represented as M ′ := (X \ {x}, Y ∪ {x}, L, `0, C ′, T ), where C ′(`) := C(`) ∧ x = y, for
all ` ∈ L.

Theorem 4 (Commutativity of feedback) Let I = (X,Y, f) be Moore with respect to both x1, x2 ∈ X,
where x1 6= x2. Let κ1 = (y1, x1) and κ2 = (y2, x2) be feedback connections. Then

κ1(κ2(I)) = κ2(κ1(I)).

Proof: Following Definition 12, we derive

κ1(κ2(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, f1)
κ2(κ1(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, f2)

where for all s ∈ A(X ∪ Y )∗

f1(s) ≡ (f(s) ∧ y1 = x1 ∧ y2 = x2) ≡ f2(s)

Let K be a set of feedback connections, K = {κ1, ..., κn}, such that κi = (yi, xi), and all xi are pairwise
distinct, for i = 1, ..., n. Let I be an interface that is Moore with respect to all x1, ..., xn. We denote by
K(I) the interface κ1(κ2(· · ·κn(I) · · · )). By commutativity of feedback composition, the resulting interface
is independent from the order of application of feedback connections. We will use the notation InVars(K) :=
{xi | (yi, xi) ∈ K}, for the set of input variables connected in K.

Theorem 5 (Commutativity between connection and feedback) Let I1, I2 be disjoint interfaces and
let θ be a connection between I1, I2. Let κ1, κ2 be feedback connections on I1, I2, respectively, such that
InVars(κ2) ∩ InVars(θ) = ∅. Then:

κ1(θ(I1, I2) = θ(κ1(I1), I2) and κ2(θ(I1, I2) = θ(I1, κ2(I2)).

Proof: Let Ii = (Xi, Yi, fi), for i = 1, 2. Let κi = (yi, xi), for i = 1, 2. Then, since κi are valid feedback
connections, Ii must be Moore w.r.t. xi, for i = 1, 2.

Claim 1: κ1(θ(I1, I2)) = θ(κ1(I1), I2)
Since θ only changes input variables of I2 to outputs, and κ1 only changes an input port of I1 to an output,

the composition of these two connections in either order is well formed, and will result in an interface with
the same input and output variables. Thus, it remains to prove that the resulting contract is also the same.
Let us call the contract of the left hand side fkt and of the right hand side ftk. For simplicity in the notation
below, we will also name κ1 as (y, x).

ftk(s) = (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y ∪ {x} : ((f1(s) ∧ x = y ∧ ρθ) → in(f2(s)))
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y ∪ {x} : (¬f1(s) ∨ x 6= y ∨ ¬ρθ ∨ in(f2(s)))
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y : (¬f1(s) ∨ ¬ρθ ∨ in(f2(s)) ∨ ∀x : x 6= y)
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y : (¬f1(s) ∨ ¬ρθ ∨ in(f2(s)) ∨ false)
= f1(s) ∧ f2(s) ∧ ∀Y : ((f1(s) ∧ ρθ) → in(f2(s))) ∧ x = y

= fkt(s)
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Claim 2: κ2(θ(I1, I2)) = θ(I1, κ2(I2))
Here we need to rely on the assumption InVars(κ2) ∩ InVars(θ) = ∅ to prove that the composition by κ2

and θ in either order is well formed, and that the input and output variables of the resulting interface are
the same. As before, we will name the left hand side contract fkt, the right hand side contract ftk, and κ2

as (y, x).

ftk(s) = f1(s) ∧ (f2(s) ∧ x = y) ∧ ∀Y ∪ {x} : ((f1(s) ∧ ρθ) → in(f2(s) ∧ x = y))
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y : ((f1(s) ∧ ρθ) → ∃Y2 ∪ {x} : (f2(s) ∧ x = y))
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y : ((f1(s) ∧ ρθ) → ∃Y2 : (f2(s) ∧ ∃x : x = y))
= (f1(s) ∧ x = y) ∧ f2(s) ∧ ∀Y : ((f1(s) ∧ ρθ) → ∃Y2 : (f2(s) ∧ true))
= f1(s) ∧ f2(s) ∧ ∀Y : ((f1(s) ∧ ρθ) → in(f2(s))) ∧ x = y

= fkt(s)

Theorem 6 (Preservation of Mooreness by connection) Let I1, I2 be disjoint interfaces such that Ii =
(Xi, Yi, fi), for i = 1, 2. Let θ be a connection between I1, I2.

1. If I1 is Moore w.r.t. x1 ∈ X1 then θ(I1, I2) is Moore w.r.t. x1.

2. If I1 is Moore and InVars(θ) = X2 then θ(I1, I2) is Moore.

3. If I2 is Moore w.r.t. x2 ∈ X2 and x2 6∈ InVars(θ), then θ(I1, I2) is Moore w.r.t. x2.

Proof:

1. The contract f of θ(I1, I2) is defined as f(s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧ ∀Yθ(I1,I2) : Φ, where Φ :=
(f1(s1) ∧ ρθ) → in(f2(s2)). Because I1 is Moore w.r.t. x1, f1(s1) does not refer to x1. Because I2 is
disjoint from I1, f2(s2) does not refer to x1 either. ρθ refers to outputs of I1 and inputs of I2, thus
does not refer to x1. Because none of f1(s1), f2(s2) or ρθ refer to x1, Φ does not refer to x1 either.
Therefore, f(s) does not refer to x1, thus θ(I1, I2) is Moore w.r.t. x1.

2. By definition, the set of input variables of the composite interface θ(I1, I2) is Xθ(I1,I2) = (X1 ∪X2) \
InVars(θ) = X1. By hypothesis, I1 is Moore w.r.t. all x1 ∈ X1. By part 1, θ(I1, I2) is also Moore w.r.t.
all x1 ∈ X1, thus θ(I1, I2) is Moore.

3. Since x2 6∈ InVars(θ), x2 is an input variable of θ(I1, I2) and ρθ does not refer to x2. The result follows
by a reasoning similar to that of part 1.

An interesting question is to what extent and how to transform a given diagram of interfaces, such as the
one shown in Figure 5, to a valid expression of interface compositions. This cannot be done for arbitrary
diagrams, due to restrictions on feedback, but it can be done for diagrams that satisfy the following condition:
every dependency cycle in the diagram, formed by block connections, must visit at least one input variable
x of some interface I, such that I is Moore w.r.t. x. If this condition holds, then we say that the diagram
is causal. For example, the diagram in Figure 5 is causal iff I1 is Moore w.r.t. x2 or I2 is Moore w.r.t. x4.

We can systematically transform causal interface diagrams into expressions of interface compositions as
follows. First, we remove from the diagram any Moore connections. A connection from output variable y
to input variable x is a Moore connection if the interface I where x belongs to is Moore w.r.t. x. Because
the original diagram is by hypothesis causal, the diagram obtained after removing Moore connections is
guaranteed to have no dependency cycles. This acyclic diagram can be easily transformed into an expression
involving only interface compositions by connection. By associativity of connection (Theorem 3), the order
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Figure 5: An interface diagram with feedback.

in which these connections are applied does not matter. Call the resulting interface Ic. Then, the removed
Moore connections can be turned into feedback compositions, and applied to Ic. Because Mooreness is
preserved by connection (Theorem 6), Ic is guaranteed to be Moore w.r.t. any input variable x that is the
destination of a Moore connection. Therefore, the above feedback compositions are valid for Ic. Moreover,
because of commutativity of feedback (Theorem 4), the resulting interface is again uniquely defined.

Example 7 Consider the diagram of interfaces shown in Figure 5. Suppose that I1 is Moore with respect
to x2. Then, the diagram can be expressed as any of the two compositions

κ
(
θ1

(
I1, (I2‖I3)

))
= θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
where θ1 := {(y1, x4), (y2, x3)}, θ2 := {(y1, x4)}, θ3 := {(y2, x3)}, and κ := (y4, x2). The two expres-
sions are equivalent, since, by Theorem 5, θ3

(
κ
(
θ2(I1, I2)

)
, I3

)
= κ

(
θ3

(
θ2(I1, I2), I3

))
, and by Theorem 3,

θ3
(
θ2(I1, I2), I3

)
= θ1

(
I1, (I2‖I3)

)
.

Lemma 3 Let I be a Moore interface with respect to some of its input variables, and let κ be a feedback
connection on I. Let f := f(I) and fκ := f(κ(I)). Then:

1. fκ ⊆ f .

2. For any s ∈ fκ, in(fκ(s)) ≡ in(f(s)).

Proof: Let I = (X,Y, f) be Moore w.r.t. x ∈ X. Let κ = (y, x).

1. Proof is by induction on the length of states. Basis: the result holds for the empty state ε, because
ε ∈ f for any contract f . Induction step: let s ·a ∈ fκ. Then a |= f(s)∧x = y, thus a |= f(s). s ·a ∈ fκ

implies s ∈ fκ, thus, by the induction hypothesis, s ∈ f . This and a |= f(s) imply s · a ∈ f .

2. Let κ(I) = (X \ {x}, Y ∪ {y}, fκ). Let s ∈ fκ. Note that in(fκ(s)) ≡ in(f(s)) is a formula over X:
in(fκ(s)) is a formula over X \ {x} and in(f(s)) is a formula over X.

To show that in(fκ(s)) → in(f(s)) is valid, we need to show that every assignment over X that satisfies
in(fκ(s)) also satisfies in(f(s)). Consider such an assignment (a, p), where a is an assignment over
X \ {x} and p is an assignment over {x}. (a, p) |= in(fκ(s)) means (a, p) |= ∃Y ∪ {x} : f(s) ∧ x = y.
Therefore, there exists assignment b over Y ∪ {x} such that (a, b) |= f(s) ∧ x = y. Let b′ be the
restriction of b to Y . We claim that (a, p, b′) |= f(s). Indeed, since I is Moore w.r.t. x, f(s) does
not depend on x, therefore, we can assign any value to x, in particular, the value assigned by p.
(a, p, b′) |= f(s) implies (a, p) |= ∃Y : f(s) ≡ in(f(s)).

To show that in(f(s)) → in(fκ(s)) is valid, we need to show that every assignment over X that satisfies
in(f(s)) also satisfies in(fκ(s)). Consider such an assignment (a, p), where a is an assignment over
X \ {x} and p is an assignment over {x}. (a, p) |= in(f(s)) means (a, p) |= ∃Y : f(s). Therefore,
there exists assignment b over Y such that (a, p, b) |= f(s). Let p′ be the assignment over {x} such
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that p′(x) := b(y). Since I is Moore w.r.t. x, f(s) does not depend on x, therefore, (a, p′, b) |= f(s).
Moreover, (a, p′, b) |= x = y, therefore (a, p′, b) |= f(s) ∧ x = y ≡ fκ(s). This implies a |= ∃X \ {x} :
fκ(s) ≡ in(fκ(s)). Therefore (a, p) |= in(fκ(s)).

Theorem 7 (Feedback preserves well-formedness) Let I be a Moore interface with respect to some of
its input variables, and let κ be a feedback connection on I. If I is well-formed then κ(I) is well-formed.

Proof: Let I = (X,Y, f) and κ = (y, x). Let s ∈ f(κ(I)). We must show that f(s) ∧ x = y is satisfiable.
By part 1 of Lemma 3, s ∈ f . Since I is well-formed, f(s) is satisfiable. Let a be an assignment such
that a |= f(s). Consider the assignment a′ which is identical to a, except that a′(x) := a(y). Since I is
Moore w.r.t. x, the satisfaction of f(s) does not depend on the value x. Therefore, a′ |= f(s). Moreover, by
definition, a′ |= x = y, and the proof is complete.

Feedback does not preserve well-formability:

Example 8 Consider a finite-state interface If with two states, s0 (the initial state) and s1, one input
variable x and one output variable y. If remains at state s0 when x 6= 0 and moves from s0 to s1 when
x = 0. Let φ0 := y = 0 be the contract at state s0 and let φ1 := false be the contract at state s1. If is not
well-formed because φ1 is unsatisfiable while state s1 is reachable. If is well-formable, however: it suffices
to restrict φ0 to φ′0 := y = 0 ∧ x 6= 0. Denote the resulting (well-formed) interface by I ′f . Note that If is
Moore with respect to x, whereas I ′f is not. Let κ be the feedback connection (y, x). Because If is Moore,
κ(If ) is defined, and is such that its contract at state s0 is y = 0 ∧ x = y, and its contract at state s1 is
false ∧ x = y ≡ false. κ(If ) is not well-formable: indeed, y = 0 ∧ x = y implies x = 0, therefore, state s1
cannot be avoided.

6 Hiding

As can be seen in Example 4, composition often creates redundant output variables, in the sense that some
of these variables are equal to each other. This happens because input variables that get connected become
output variables. To remove redundant output variables, we propose a hiding operator. Hiding may also
be used to remove other output variables that may not be redundant, provided they do not influence the
evolution of contracts, as we shall see below.

For a stateless interface I = (X,Y, φ), the (stateless) interface resulting from hiding an output variable
y ∈ Y can simply be defined as:

hide(y, I) := (X,Y \ {y},∃y : φ)

This definition does not directly extend to the general case of stateful interfaces, however. The reason is
that the contract of a stateful interface I may depend on the history of y. Then, hiding y is problematic
because it results in the environment not being able to uniquely determine the contract based on the history
of observations. This results in particular in refinement not being preserved by hiding, as we show later in
Example 14. To avoid these problems, we allow hiding only for those outputs which do not influence the
evolution of the contract.

Given s, s′ ∈ A(X ∪ Y )∗ such that |s| = |s′| (i.e., s, s′ have same length), and given Z ⊆ X ∪ Y , we say
that s and s′ agree on Z, denoted s =Z s′, when for all i ∈ {1, ..., |s|}, and all z ∈ Z, si(z) = s′i(z). Given
interface I = (X,Y, f), we say that f is independent from z if for every s, s′ ∈ f , s =(X∪Y )\{z} s

′ implies
f(s) = f(s′). That is, the evolution of z does not affect the evolution of f .

Notice that f being independent from z does not imply that f cannot refer to variables in z. Indeed,
all stateless interfaces trivially satisfy the independence condition: their contracts are invariant in time, i.e.,
they do not depend on the evolution of variables. Clearly, the contract of a stateless interface can refer to
any of its variables. Conversely, f not referring to z does not imply that f is independent from z. Consider,
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for example, f(ε) ≡ true, while f(z = 0) 6≡ f(z = 1), where f(z = 0) denotes a state where z = 0, and
similarly for f(z = 1).

The above notion of independence is weaker than redundancy in variables, as we show next. First, we
formalize redundancy in variables. Given z ∈ X∪Y , we say that z is redundant in f if there exists z′ ∈ X∪Y
such that z′ 6= z, and for all s ∈ f , for all i ∈ {1, ..., |s|}, si(z) = si(z′). It should be clear that all outputs in
InVars(θ) in an interface obtained by connection θ are redundant (see Definition 9). Similarly, in an interface
obtained by feedback κ = (y, x), newly introduced output variable x is redundant (see Definition 12).

Lemma 4 If z is redundant in f then f is independent from z.

Proof: Since z is redundant in f there exists z′ 6= z such that ∀s ∈ f : ∀i ∈ {1, ..., |s|} : si(z) = si(z′). Let
s, s′ ∈ f such that s =(X∪Y )\{z} s

′. This means that for any v ∈ X ∪Y if v 6= z then ∀i ∈ {1, ..., |s|} : si(v) =
s′i(v). But z′ is such a v, therefore, ∀i ∈ {1, ..., |s|} : si(z′) = s′i(z

′). Since si(z′) = si(z) and s′i(z
′) = s′i(z)

for all i, we get that ∀i ∈ {1, ..., |s|} : si(z) = s′i(z). Therefore, s = s′, which trivially implies f(s) = f(s′).

When f is independent from z, f can be viewed as a function from A((X∪Y )\{z})∗ to F(X∪Y ) instead
of a function from A(X ∪ Y )∗ to F(X ∪ Y ). We use this when we write f(s) for s ∈ A((X ∪ Y ) \ {z})∗ in
the definition the follows:

Definition 13 (Hiding) Let I = (X,Y, f) be an interface and let y ∈ Y , such that f is independent from
y. Then hide(y, I) is defined to be the interface

hide(y, I) := (X,Y \ {y}, f ′) (13)

such that for any s ∈ A(X ∪ Y \ {y})∗, f ′(s) := ∃y : f(s).

For finite-state interfaces, hiding is computable. Let M = (X,Y, L, `0, C, T ) be a finite-state automaton
representing I. We first need to ensure that the contract of I is independent from y. A simple way to do
this is to check that no guard of M refers to y. This condition is sufficient, but not necessary. Consider,
for example, two complementary guards y < 1 and y ≥ 1 whose transitions lead to locations with identical
contracts. Then the two locations may be merged to a single one, and the two transitions to a single transition
with guard true. Another situation where the above condition may be too strict is when a guard refers to y
but y is redundant. In that case, all occurrences of y in guards of M can be replaced by its equal variable
y′. Once independence from y is ensured, hide(y, I) can be represented as M ′ := (X,Y \ {y}, L, `0, C ′, T ),
where C ′(`) := ∃y : C(`), for all ` ∈ L.

7 Environments, pluggability and substitutability

We wish to formalize the notion of interface contexts and substitutability, and we introduce environments
for that purpose. Environments are interfaces. An interface I can be connected to an environment E to
form a closed-loop system, as illustrated in Figure 6. E acts both as a controller and an observer for I. It
is a controller in the sense that it “steers” I by providing inputs to it, depending on the outputs it receives.
At the same time, E acts as an observer, that monitors the inputs consumed and outputs produced by I,
and checks whether a given property is satisfied. These notions are formalized in Definition 14 that follows.

Before giving the definition, however, a remark is in order. Interfaces and environments are to be
connected in a closed-loop, as illustrated in Figure 6. In order to do this in our setting, every dependency
cycle must be “broken” by a Moore connection, as prescribed by the transformation of interface diagrams
to composition expressions, given in Section 5.2. It can be seen that, in the case of two interfaces connected
in closed-loop, the above requirement implies that one of the two interfaces is Moore. For instance, consider
Figure 6. If I is not Moore w.r.t. x2, then E must be Moore w.r.t. to both ŷ1 and ŷ2, so that both feedback
connections can be formed. Similarly, if E is not Moore w.r.t. ŷ2, say, then I must be Moore w.r.t. both
x1, x2. This remark justifies the definition below:
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Figure 6: Illustration of pluggability.

Definition 14 (Environments and pluggability) Consider interfaces I = (X,Y, f) and E = (Ŷ , X̂, fe).
E is said to be an environment for I if there exist bijections between X and X̂, and between Y and Ŷ . X̂ are
called the mirror variables of X, and similarly for Ŷ and Y . For x ∈ X, we denote by x̂ the corresponding
(by the bijection) variable in X̂, and similarly with y and ŷ. I is said to be pluggable to E, denoted I � E,
iff the following conditions hold:

• I is Moore or E is Moore.

• If E is Moore then the interface K(θ(E, I)) is well-formed, where θ := {(x̂, x) | x ∈ X} and K :=
{(y, ŷ) | y ∈ Y }. Notice that, because E is Moore and InVars(θ) = X, part 2 of Theorem 6 applies, and
guarantees that θ(E, I) is Moore. Therefore, K(θ(E, I)) is well-defined.

• If I is Moore then the interface K(θ(I, E)) is well-formed, where θ := {(y, ŷ) | y ∈ Y } and K :=
{(x̂, x) | x ∈ X}.

Note that, by definition, I is pluggable to E iff E is pluggable to I.

x̂ ≥ 0

E1:

x̂ > 0 false

E2:

falsex̂ ≥ 0

ŷ ≤ 0

ŷ > 0 ŷ > 0

ŷ ≤ 0
E3:

Figure 7: Three environments.

Example 9 Consider interfaces I1 and I2 from Example 1 and environments E1, E2, E3 of Figure 7 (im-
plicitly, transitions without guards are assumed to have guard true). It can be checked that both I1 and I2
are pluggable to E1. I1 is not pluggable to neither E2 nor E3: indeed, the output guarantee x̂ ≥ 0 of these
two environments is not strong enough to meet the input assumption x > 0 of I1. I2 is not pluggable to
E2: although the input assumption of I2 is true, I2 guarantees y > 0 only when x > 0. Therefore the guard
ŷ ≤ 0 of E2 is enabled in some cases, leading to location with contract false, which means that the closed-loop
interface is not well-formed. On the other hand, I2 is pluggable to E3.

Theorem 8 (Pluggability and well-formability)

• If an interface I is well-formable then there exists an environment E for I such that I � E.

• If there exists an environment E for interface I such that I � E and I is not Moore then I is
well-formable.

Proof:

20



• Let I = (X,Y, f) be a well-formable interface. Then there exists I ′ = (X,Y, f ′) such that I ′ is well-
formed, and for all s ∈ f ′, f ′(s) ≡ f(s) ∧ φs, where φs is some property over X. Slightly abusing
notation, we define environment E with contract function fe(s) := in(f ′(s)) ≡ in(f(s)) ∧ φs, for any
state s. In this definition we implicitly use the mapping between variables of I and mirror variables
of E. We claim that I � E. Indeed, E is Moore and well-formed, therefore, by Theorem 20, it is
input-complete. Also, fe(s) → in(f(s)), therefore, any output of E is a legal input for I. Finally, the
behavior of the closed-loop system of E and I is equivalent to I ′, therefore, it is well-formed.

• Conversely, suppose there exists environment E such that I � E. We prove that I is well-formable.
Let fe be the contract function of E. Since I is not Moore, E must be Moore. Therefore, fe(s) is
a essentially a property over X for any s. We define I ′ = (X,Y, f ′) such that f ′(s) := f(s) ∧ fe(s).
I ′ must be well-formed, because the closed-loop composition of I and E is well-formed. Thus, I ′ is a
witness for I, which is well-formable.

Example 10 Consider interfaces I and E shown in Figure 8. Observe that I is Moore and I � E. However,
I is not well-formable.

x 6≡ y
I: E:

x̂ ≡ ŷtrue false

x ≡ y

Figure 8: A Moore interface I and a non-Moore environment E.

Example 10 shows that the non-Mooreness assumption on I is indeed necessary in part 2 of Theorem 8.
This example also illustrates an aspect of our definition of well-formability, which may appear inappropriate
for Moore interfaces: indeed, interface I of Figure 8 is non-well-formable, yet there is clearly an environment
that can be plugged to I so that false location is avoided. An alternative definition of well-formability for
an interface I would have been existence of an environment that can be plugged to I. This would make
Theorem 8 a tautology. Nevertheless, we opt for Definition 8, which allows to transform interfaces into a
“canonical form” where all contracts are satisfiable.

Definition 15 (Substitutability) We say that interface I ′ may replace interface I (or I ′ may be substi-
tuted for I), denoted I →e I

′, iff for any environment E, if I is pluggable to E then I ′ is pluggable to E.
We write I ≡e I

′ iff both I →e I
′ and I ′ →e I hold.

Theorem 9 Let I, I ′ be well-formed interfaces. Then I ≡e I
′ iff I = I ′.

Proof: By Theorem 16 of Section 8, I ≡e I
′ implies I ′ v I and I v I ′. The result follows by antisymmetry

of refinement (Theorem 10).

8 Refinement

Definition 16 (Refinement) Consider two interfaces I = (X,Y, f) and I ′ = (X ′, Y ′, f ′). We say that I ′

refines I, written I ′ v I, iff X ′ = X, Y ′ = Y , and for any s ∈ f ∩ f ′, the following formula is valid:

in(f(s)) →
(
in(f ′(s)) ∧

(
f ′(s) → f(s)

))
(14)
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Condition 14 can be rewritten equivalently as the conjunction of the following two conditions:

in(f(s)) → in(f ′(s)) (15)(
in(f(s)) ∧ f ′(s)

)
→ f(s) (16)

Condition 15 states that every input assignment that is legal in I is also legal in I ′. This guarantees that,
for any possible input assignment that can be provided to I by a context C, if this assignment is accepted
by I then it is also accepted by I ′. Condition 16 states that, for every input assignment that is legal in I, all
output assignments that can be possibly produced by I ′ from that input, can also be produced by I. This
guarantees that if C accepts the assignments produced by I then it also accepts those produced by I ′.

The reader may wonder why Condition (16) could not be replaced with the simpler condition:

f ′(s′) → f(s) (17)

Indeed, as will be shown in Section 10, for input-complete interfaces, Condition (14) reduces to Condition (17)
– see Theorem 26. In general, however, the two definitions are different in a profound way, as Example 16,
at the end of this section, demonstrates.

A remark is in order regarding the constraint X ′ = X and Y ′ = Y imposed during refinement. This
constraint may appear as too strict, but we argue that it is not. To begin, recall that I ′ v I should imply
that I ′ can replace I in any context. In our setting, contexts are formalized as environments. Consider such
an environment with controller C. C provides values to the input variables of I, and requires values from
the output variables of I. Suppose I ′ has an input variable x that I does not have, that is, there exists
x ∈ X ′ \X. In general, C may not provide x. In that case, I ′ cannot replace I, because by doing so, input
x would remain free. Therefore, X ′ ⊆ X must hold. Similarly, suppose that there exists y ∈ Y \ Y ′. In
general, C may require y, that is, y may be a free input for C. In that case, I ′ cannot replace I, because by
doing so, y would remain free. Therefore, Y ⊆ Y ′ must hold.

Now, suppose that X ′ is a strict subset of X or Y ′ is a strict superset of Y (or both). Then, we can
easily modify I and I ′ as follows: we add to X ′ all the input variables missing from I ′, so that X ′ = X, and
we add to Y all the output variables missing from I, so that Y = Y ′. While doing so, we do not change
the contracts of either I or I ′: the contracts simply ignore the additional variables, that is, do not impose
any constraints on their values. It can be seen that this transformation preserves the validity of refinement
Condition 14. Indeed, in(φ) → (in(φ′) ∧ (φ′ → φ)) holds when φ is over X ∪ Y and φ′ is over X ′ ∪ Y ′ iff it
holds when both φ and φ′ are taken to be over X ∪ Y ′, provided X ′ ⊆ X and Y ′ ⊇ Y . Therefore, without
loss of generality, we require X = X ′ and Y = Y ′.

Example 11 (Buffer that may fail) This example builds on Example 2. Figure 9 depicts the interface
of a single-place buffer that may fail to complete a read or write operation. This interface has one more
boolean output variable, namely, ack, in addition to those of Example 2, and two more locations, after read
and after write. Its global contract is identical to that of Example 2. So are local contracts at locations `0
and `1. After a write operation, the interface moves to location after write, where it non-deterministically
chooses to set ack to true or false: setting it to true means the write was successful, false means the write
failed. The meaning is symmetric for read. This particular interface does not allow read or write operations
in the two intermediate locations.

It is natural to expect that a buffer that never fails can replace a buffer that may fail. We would like to
have a formal guarantee of this, in terms of refinement of their corresponding interfaces. That is, we would
like the interface of Figure 1 to refine the one of Figure 9. This does not immediately hold, since ack is not
a variable of the former. We can easily add it however, obtaining the interface shown in Figure 10. This
buffer never fails, therefore, ack is always true. With this modification, the interface of Figure 10 refines the
one of Figure 9. On the other hand, the converse is not true: the interface of Figure 9 does not refine the
one of Figure 10, because in the latter output ack is always true, whereas in the former in can also be false.

For finite-state interfaces, refinement can be checked as follows. Let Mi = (X,Y, Li, `0,i, Ci, Ti) be finite-
state automata representing Ii, for i = 1, 2, respectively. We first build a synchronous product M :=
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Figure 9: Interface for a buffer of size 1 that may fail to do a read or write.

(X,Y, L1 × L2 ∪ {`good, `bad}, (`0,1, `0,2), C, T ), where C(`1, `2) := in(C1(`1)) for all (`1, `2) ∈ L1 × L2,
C(`good) := true, C(`bad) := false, and:

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `
′
i) ∈ Ti, for i = 1, 2}

∪ {((`1, `2), gbad, `bad), ((`1, `2), ggood, `good), (`good, true, `good)} (18)
gboth := C1(`1) ∧ C2(`2) (19)
ggood := in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C2(`2) (20)
gbad := in(C1(`1)) ∧

(
¬in(C2(`2)) ∨ C2(`2) ∧ ¬C1(`1)

)
(21)

Notice that guard gbad encodes the negation of the refinement Condition (14). Also note that gboth, ggood, gbad

are pairwise disjoint, and such that gboth ∨ ggood ∨ gbad ≡ in(C1(`1)), for all (`1, `2) ∈ L1 × L2. This ensures
determinism of M . It can be checked that I2 v I1 iff location `bad is unreachable.

Figure 10: Buffer interface of Figure 1 with additional output variable ack.

We proceed to state the main properties of refinement. First, observe that, perhaps surprisingly, interfaces
with false contracts (i.e., f = {ε}) are “top” elements with respect to the v order, that is, they are refined by
any interface that has the same input and output variables. This is in accordance with Theorem 16 below.
The false interface is not pluggable to any environment.

Lemma 5 Let I = (X,Y, f), I ′ = (X,Y, f ′), I ′′ = (X,Y, f ′′) be interfaces such that I ′′ v I ′ and I ′ v I.
Then f ∩ f ′′ ⊆ f ′.
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Proof: By induction on the length of states. Basis: ε ∈ f ′. Induction step: suppose s · a ∈ f ∩ f ′′. Then
s ∈ f ∩ f ′′. From the induction hypothesis, s ∈ f ′. s · a ∈ f ∩ f ′′ implies a |= f(s) ∧ f ′′(s). a |= f(s) implies
a |= in(f(s)). The latter and I ′ v I imply a |= in(f ′(s)). The latter, together with I ′′ v I ′ and a |= f ′′(s),
imply a |= f ′(s). This and s ∈ f ′ imply s · a ∈ f ′.

Theorem 10 (Partial order) v is a partial order, that is, a reflexive, antisymmetric and transitive rela-
tion.

Proof: v is reflexive because Condition 14 clearly holds when f = f ′. To show that v is transitive, let
I = (X,Y, f), I ′ = (X ′, Y ′, f ′), I ′′ = (X ′′, Y ′′, f ′′), and suppose I ′′ v I ′ and I ′ v I. We must prove I ′′ v I.
Suppose s ∈ f ∩ f ′′. By Lemma 5, s ∈ f ∩ f ′ and s ∈ f ′ ∩ f ′′. These facts together with I ′′ v I ′ and I ′ v I
imply in(f(s)) → in(f ′(s)), in(f(s)) ∧ f ′(s) → f(s), in(f ′(s)) → in(f ′′(s)), and in(f ′(s)) ∧ f ′′(s) → f ′(s).
These imply in(f(s)) → in(f ′′(s)) and in(f(s)) ∧ f ′′(s) → f(s). To show that v is antisymmetric suppose
I ′ v I and I v I ′. We must prove I = I ′. By Lemma 5 and setting I ′′ := I we get f ⊆ f ′. By the same
lemma and reversing the roles of I and I ′ we get f ′ ⊆ f .

Theorem 11 (Refinement preserves well-formedness for stateless interfaces) Let I, I ′ be stateless
interfaces such that I ′ v I. If I is well-formed then I ′ is well-formed.

Proof: Let I = (X,Y, φ) and I ′ = (X ′, Y ′, φ′). I is well-formed, thus φ is satisfiable. Let a be an as-
signment satisfying φ and let aX and aY be the restrictions of a to X and Y , respectively. By definition
of in(φ), aX |= in(φ). By Condition (15), aX |= in(φ′) ≡ ∃Y ′ : φ′. Therefore, there exists a′Y ′ such that
(aX , a

′
Y ′) |= φ′. Thus, φ′ is satisfiable. Thus, I ′ is well-formed.

Theorem 11 does not generally hold for stateful interfaces: the reason is that, because I ′ may accept
more inputs than I, there may be states that are reachable in I ′ but not in I, and the contract of I ′ in these
states may be unsatisfiable. When this situation does not occur, refinement preserves well-formedness also
in the stateful case. Moreover, refinement always preserves well-formability:

Theorem 12 (Refinement and well-formedness/-formability) Let I, I ′ be interfaces such that I ′ v I.

1. If I is well-formed and f ′ ⊆ f then I ′ is well-formed.

2. If I, I ′ are sources and I is well-formed, then I ′ is also well-formed.

3. If I is well-formable then I ′ is well-formable.

Proof: Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′).

1. Suppose I is well-formed and f ′ ⊆ f . We need to show that for any s ∈ f ′, f ′(s) is non-empty. By
hypothesis, s ∈ f and I is well-formed, therefore, f(s) is non-empty. Reasoning as in the proof of
Theorem 11, we can show that f ′(s) is also non-empty.

2. This is a special case of part 1 of the theorem: I is source and well-formed, therefore, it is input-complete
as will be shown in Theorem 20. For input-complete interfaces, I ′ v I implies f ′ ⊆ f (Theorem 26),
therefore, part 1 applies.

3. Suppose I is well-formable. Then there exists I1 = (X,Y, f1) such that I1 is well-formed, and for
all s ∈ f1, f1(s) ≡ f(s) ∧ φs, for some property φs over X. Since f1 strengthens f , f1 ⊆ f . Since
f(s) ∧ φs ≡ f(s) ∧ in(f(s)) ∧ φs, we can assume without loss of generality that φs → in(f(s)). We
define I2 := (X,Y, f2) such that f2(s) := f ′(s) ∧ φs, if s ∈ f1, and f2(s) := f ′(s), if s 6∈ f1.
Claim 1: f2 ⊆ f1. By induction on the length of a state s. The result holds for s = ε. Suppose
s · a ∈ f2. Then s ∈ f2 and from the induction hypothesis, s ∈ f1. Also, a |= f2(s) ≡ f ′(s) ∧ φs
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Figure 11: Setting used in Theorem 13.

(because s ∈ f1). Since φs → in(f(s)), a |= in(f(s)) ∧ f ′(s). This and I ′ v I imply a |= f(s), thus,
a |= f(s) ∧ φs ≡ f1(s). Thus, s · a ∈ f1.
Claim 2: f2 ⊆ f ′. Because f2 is a strengthening of f ′.

Claim 3: I2 v I1. Suppose s ∈ f1 ∩ f2. By Claim 2 and the fact f1 ⊆ f , we have s ∈ f ∩ f ′.
Then: in(f1(s)) ≡ in(f(s)) ∧ φs. Since I ′ v I and s ∈ f ∩ f ′, in(f(s)) → in(f ′(s)). Therefore
in(f(s)) ∧ φs → in(f ′(s)) ∧ φs. The latter formula is equivalent to in(f2(s)) because s ∈ f1. Also,
in(f1(s)) ∧ f2(s) ≡ in(f(s)) ∧ f ′(s) ∧ φs → f(s) ∧ φs ≡ f1(s). This completes Claim 3.

Claim 4: for all s ∈ f2, f2(s) ≡ f ′(s) ∧ φs. Follows by definition of f2 and Claim 1.

Claim 1 and Claim 3, together with the fact that I1 is well-formed, and by the part 1 of this theorem,
imply that I2 is well-formed. Claim 4 implies that I2 is a witness for I ′, thus, I ′ is well-formable.

Lemma 6 Consider two disjoint interfaces I1 and I2, and a connection θ between I1, I2. Let f1 and f2 be
the projections of f(θ(I1, I2)) to states over the variables of I1 and I2, respectively. Then f1 ⊆ f(I1) and
f2 ⊆ f(I2).

Proof: Let f := f(θ(I1, I2)). Proof is by induction on the length of states. Basis: the result holds for ε.
Induction step: Let s1 ·a1 ∈ f1. This means that there exists state s ·a ∈ f such that s1 ·a1 is the projection
of s · a to the variables of I1. From s · a ∈ f , we get a |= f(s) i.e. a |= f1(s1) ∧ f2(s2) ∧ · · · . Therefore,
a |= f1(s1), which means a1 |= f1(s1). By the induction hypothesis, s1 ∈ f(I1). These two facts imply
s1 · a ∈ f(I1). This proves f1 ⊆ f(I1). The proof of f2 ⊆ f(I2) is similar.

Theorems 13 and 14 state a major property of our theory, namely, that refinement is preserved by
composition.

Theorem 13 (Connection preserves refinement) Consider two disjoint interfaces I1 and I2, and a
connection θ between I1, I2. Let I ′1, I

′
2 be interfaces such that I ′1 v I1 and I ′2 v I2. Then, θ(I ′1, I

′
2) v θ(I1, I2).

Proof: Let I1 = (X,Y ∪ V, f1) and I2 = (Z ∪W,U, f2), so that Y ∩ V = Z ∩W = ∅, Y = OutVars(θ) and
Z = InVars(θ). In other words, Y represents the set of output variables of I1 that are connected to input
variables of I2. V is the set of the rest of the output variables of I1. Z represents those input variables of
I2 that are connected to outputs of I1 and W those that are not connected. Any of the sets X,Y, V, Z,W,U
may be empty. Let I ′1 = (X,Y ∪ V, f ′1) and I ′2 = (Z ∪W,U, f ′2). The composition setting is illustrated in
Figure 11.

Given the above, and Definition 9, we have, for s ∈ A(X ∪W ∪ Y ∪ V ∪ Z ∪ U)∗, s1 the projection of s
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to X ∪ Y ∪ V , and s2 the projection of s to W ∪ Z ∪ U :

θ(I1, I2) := (X ∪W,Y ∪ V ∪ Z ∪ U, f) (22)
f(s) := f1(s1) ∧ f2(s2) ∧ ρθ ∧Ψ (23)

Ψ := ∀Y ∪ V ∪ Z ∪ U : (f1(s1) ∧ ρθ) → in(f2(s2)) (24)
θ(I ′1, I

′
2) := (X ∪W,Y ∪ V ∪ Z ∪ U, f ′) (25)

f ′(s) := f ′1(s1) ∧ f ′2(s2) ∧ ρθ ∧Ψ′ (26)
Ψ′ := ∀Y ∪ V ∪ Z ∪ U : (f ′1(s1) ∧ ρθ) → in(f ′2(s2)) (27)

Let s ∈ f ∩ f ′. To prove θ(I ′1, I
′
2) v θ(I1, I2) we need to prove that: (A) in(f(s)) → in(f ′(s)) is valid; and

(B) (in(f(s)) ∧ f ′(s)) → f(s) is valid. Note that, by Lemma 6, s1 ∈ f1 ∩ f ′1 and s2 ∈ f2 ∩ f ′2. We use these
two facts without mention in the rest of the proof. We proceed in proving claims (A) and (B).

(A): in(f(s)) → in(f ′(s)) is valid: Suppose the result does not hold. This means that in(f(s))∧¬in(f ′(s))
is satisfiable, i.e.,

ψ1 := (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ ∧Ψ) ∧ (∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ ∨ ¬Ψ′)

is satisfiable. Note that ψ1, Ψ and Ψ′ are all formulae over X ∪W , therefore, ψ1 is equivalent to:

ψ2 := Ψ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ) ∧
(
¬Ψ′ ∨ (∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ)

)
Let a be an assignment over X ∪W satisfying ψ2. We claim that a |= ¬Ψ′. Suppose not, i.e., a |= Ψ′.

Then, from a |= ψ2, we derive a |= ∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ. Also, a |= in(f1(s1)). Since
I ′1 v I1, a |= in(f ′1(s1)). This means that there exists an assignment c over Y ∪ V such that (a, c) |= f ′1(s1).
Let d be an assignment over Z such that (c, d) |= ρθ: that is, we set an input variable z of I2 to the value
c(y) of the output variable y of I1 that z is connected to. Combining, we have (a, c, d) |= f ′1(s1) ∧ ρθ.
This and a |= Ψ′ imply that (a, c, d) |= in(f ′2(s2)). Therefore, there exists an assignment e over U such
that (a, c, d, e) |= f ′2(s2). Combining, we have (a, c, d, e) |= f ′1(s1) ∧ f ′2(s2) ∧ ρθ, which contradicts a |=
∀Y ∪ V ∪ Z ∪ U : ¬f ′1(s1) ∨ ¬f ′2(s2) ∨ ¬ρθ. Thus, the claim a |= ¬Ψ′ is proven and we have that a satisfies:

ψ3 := Ψ ∧ ¬Ψ′ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ)

Since a does not satisfy Ψ′, there exists an assignment b over Y ∪ V ∪Z ∪U , such that (a, b) |= f ′1(s1) ∧
ρθ ∧ ¬in(f ′2(s2)). Since I ′2 v I2, in(f2(s2)) → in(f ′2(s2)), or ¬in(f ′2(s2)) → ¬in(f2(s2)). Therefore, (a, b) |=
¬in(f2(s2)). Now, from a |= ψ3, we get (a, b) |= in(f1(s1)). From I ′1 v I1 we have in(f1(s1)) ∧ f ′1(s1) →
f1(s1). Therefore, (a, b) |= f1(s1). This, together with a |= Ψ and (a, b) |= ρθ, imply (a, b) |= in(f2(s2)).
Contradiction. This completes the proof of Part (A).

(B): (in(f(s)) ∧ f ′(s)) → f(s) is valid: Suppose the result does not hold. This means that in(f(s)) ∧
f ′(s) ∧ ¬f(s) is satisfiable, i.e.,

ψ4 := (∃Y ∪V ∪Z ∪U : f1(s1)∧f2(s2)∧ρθ ∧Ψ)∧ (f ′1(s1)∧f ′2(s2)∧ρθ ∧Ψ′)∧ (¬f1(s1)∨¬f2(s2)∨¬ρθ ∨¬Ψ)

is satisfiable. Because Ψ and Ψ′ are formulae over X ∪W , ψ4 simplifies to:

ψ5 := Ψ ∧Ψ′ ∧ (∃Y ∪ V ∪ Z ∪ U : f1(s1) ∧ f2(s2) ∧ ρθ) ∧ (f ′1(s1) ∧ f ′2(s2) ∧ ρθ) ∧ (¬f1(s1) ∨ ¬f2(s2))

Let a be an assignment over X∪W such that a |= ψ5. Then a |= in(f1(s1))∧ in(f2(s2))∧f ′1(s1)∧f ′2(s2). From
the hypotheses I ′1 v I1 and I ′2 v I2, we get in(f1(s1)) ∧ f ′1(s1) → f1(s1) and in(f2(s1)) ∧ f ′2(s2) → f2(s2).
Therefore a |= f1(s1) ∧ f2(s2), which contradicts a |= ψ5. This completes the proof of Part (B) and of the
theorem.

Theorem 14 (Feedback preserves refinement) Let I, I ′ be interfaces such that I ′ v I. Suppose both
I and I ′ are Moore interfaces with respect to one of their input variables, x. Let κ = (y, x) be a feedback
connection. Then κ(I ′) v κ(I).
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Proof: Let I = (X,Y, f). Because I ′ v I, I ′ = (X,Y, f ′) for some f ′. Then: κ(I) = (X \ {x}, Y ∪ {x}, fκ)
and κ(I ′) = (X \ {x}, Y ∪ {x}, f ′κ), where fκ(s) := f(s) ∧ x = y and f ′κ(s) := f ′(s) ∧ x = y, for all
s ∈ A(X ∪Y )∗. To show that κ(I ′) v κ(I), we need to prove that for any s ∈ fκ∩f ′κ, the following formulae
are valid:

in(fκ(s)) → in(f ′κ(s))(
in(fκ(s)) ∧ f ′κ(s)

)
→ fκ(s)

By part 1 of Lemma 3, s ∈ fκ ∩ f ′κ implies s ∈ f ∩ f ′. By part 2 of Lemma 3, in(fκ(s)) ≡ in(f(s)) and
in(f ′(s)) ≡ in(f ′κ(s)). This and in(f(s)) → in(f ′(s)) imply in(fκ(s)) → in(f ′κ(s)). Moreover:(

in(fκ(s)) ∧ f ′κ(s)
)
≡

(
in(f(s)) ∧ f ′(s) ∧ x = y

)
→ (f(s) ∧ x = y) ≡ fκ(s)

Note that the assumption that I ′ be Moore w.r.t. x in Theorem 14 is essential. Indeed, Mooreness is not
generally preserved by refinement:

Example 12 Consider the stateless interfaces Ieven := ({x}, {y}, y ÷ 2 = 0), where ÷ denotes the modulo
operator, and I×2 := ({x}, {y}, y = 2x). Ieven is Moore. I×2 is not Moore. Yet I×2 v Ieven.

It is instructive at this point to justify our restrictions regarding feedback composition, by illustrating
some of the problems that would arise if we allowed arbitrary feedback:

Example 13 This example is borrowed from [19]. Suppose Itrue is an interface on input x and output y,
with trivial contract true, making no assumptions on the inputs and no guarantees on the outputs. Suppose
Iy 6=x is another interface on x and y, with contract y 6= x, meaning that it guarantees that the value of the
output will be different from the value of the input. As expected, Iy 6=x refines Itrue: because Iy 6=x is “more
deterministic” than Itrue, that is, the output guarantees of Iy 6=x are stronger. Now, consider the feedback
connection x = y. This could be considered an allowed connection for Itrue, since it does not contradict
its contract: the resulting interface would be Ix=y with contract x = y. But the same feedback connection
contradicts the contract of Iy 6=x: the resulting interface would be Ifalse with contract false. Although Iy 6=x

refines Itrue, Ifalse does not refine Ix=y, therefore, allowing arbitrary feedback would violate preservation of
refinement by feedback. Notice that both Itrue and Iy 6=x are input-complete, which means that this problem is
present also in that special case.

Theorem 15 (Hiding preserves refinement) Let I1 = (X,Y, f1), I2 = (X,Y, f2) be two interfaces such
that I2 v I1. Let y ∈ Y be such that both f1 and f2 are independent from y. Then hide(y, I2) v hide(y, I1).

Proof: Recall that hide(y, Ii) = (X,Y \ {y}, f ′i), such that for any s ∈ A(X ∪ Y \ {y})∗, f ′i(s) ≡ ∃y : fi(s).
To show hide(y, I2) v hide(y, I1) we need to show that for any s ∈ f ′1 ∩ f ′2, we have in(f ′1(s)) → in(f ′2(s)) and
in(f ′1(s))∧f ′2(s) → f ′1(s). The first proof obligation becomes (∃Y \{y} : ∃y : f1(s)) → (∃Y \{y} : ∃y : f2(s)),
or equivalently, in(f1(s)) → in(f2(s)), which holds by hypothesis I2 v I1. Note that although s is a state in
A(X ∪ Y \ {y})∗, we can write f1(s) and f2(s), because both f1 and f2 are independent from y.

The second proof obligation becomes (∃Y \ {y} : ∃y : f1(s))∧ (∃y : f2(s)) → (∃y : f1(s)), or equivalently,
in(f1(s)) ∧ (∃y : f2(s)) → (∃y : f1(s)). Let (aX , aY \{y}) ∈ A(X ∪ Y \ {y}) be such that aX ∈ in(f1(s))
and (aX , aY \{y}) ∈ (∃y : f2(s)). Then there exists aY ∈ A(Y ) such that (aX , aY ) ∈ f2(s) and aY \{y} is
the projection of aY to Y \ {y}. From hypothesis I2 v I1, it must be that (aX , aY ) ∈ f1(s). Therefore
(aX , aY \{y}) ∈ (∃y : f1(s)).

It is worth noting that the above theorem would not hold if we were to define hiding without requiring
independence of contracts from hidden variables. The example that follows illustrates this:

27



Example 14 Consider the interfaces shown in Figure 12. I1 and I2 have a single input variable x and a
single output y. It can be verified that I2 v I1. I2 is independent from y, whereas I1 is not. Therefore,
hide(y, I2) is defined (and shown in the figure), whereas hide(y, I1) is not defined. Suppose we were to define
the latter as interface I ′1 shown in the figure, which corresponds to existentially quantifying away y from all
contracts, as is usually done. Then hiding would not preserve refinement. Indeed, hide(y, I2) 6v I ′1, because
x · ¬x is a legal input sequence in I ′1 but not in hide(y, I2).

hide(y, I2)

x

y

¬y ¬x ∧ ¬y

x ∧ y

I1

x
¬x

x

I ′

1

x ∧ y

I2

x

Figure 12: Example illustrating the need for independence from hidden variables.

Theorem 16 (Refinement and substitutability) Let I, I ′ be two interfaces.

1. If I ′ v I then I ′ can replace I.

2. If I ′ 6v I and I is well-formed, then I ′ cannot replace I.

Proof:

1. Suppose I ′ v I and let E be an environment such that I � E. We prove that I ′ � E. Clearly, E
is an environment for I ′, since the input and output variables of I ′ are the same as those of I. We
distinguish cases:

• E is Moore. Then we must prove that K(θ(E, I ′)) is well-formed, assuming that K(θ(E, I)) is
well-formed. By Theorems 13 and 14, K(θ(E, I ′)) v K(θ(E, I)). BothK(θ(E, I)) andK(θ(E, I ′))
are source interfaces, therefore, by part 2 of Theorem 12, K(θ(E, I ′)) is well-formed.

• E is not Moore, therefore I is Moore. Then we must prove that K(θ(I ′, E)) is well-formed,
assuming that K(θ(I, E)) is well-formed. The argument is similar to the previous case.

2. Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) and suppose I ′ 6v I. If X 6= X ′ or Y 6= Y ′ then we can
find, by Theorem 8, environment E for I such that I � E, and E is not an environment for I ′, thus
I ′ 6� E. We concentrate on the case X = X ′ and Y = Y ′. Then I ′ 6v I means there exists s ∈ f ∩ f ′
such that Condition (14) does not hold. Define environment E for I with contract function fe where
fe(r) := in(f(r)) for all states r. (Again we are slightly abusing notation: in(f(r)) is a property over
X, but fe(r) is a property over X̂, the output variables of E.) By definition, E is Moore. Because I
is well-formed, I � E. We claim that I ′ 6� E. We distinguish cases:

• in(f(s)) 6→ in(f ′(s)): Observe that, in the contract of the connection of E and I ′, the term Φ of (9)
evaluates to false at state s: this is because fe(s) 6→ in(f ′(s)). Therefore, the entire contract of
the connection is also false at s, which means that the connection of I ′ and E is not well-formed.

• in(f(s)) → in(f ′(s)) but in(f(s)) ∧ f ′(s) 6→ f(s): At state s, there exists input aX ∈ in(f(s)) =
fe(s), for which I ′ can produce output aY such that a := (aX , aY ) ∈ f ′(s) \ f(s). Since a 6∈ f(s),
f(s ·a) is empty, thus fe(s ·a) ≡ false, thus, again, the composition of I ′ with E is not well-formed.
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The requirement that I be well-formed in part 2 of Theorem 16 is necessary, as the following example
shows.

Example 15 Consider the finite-state interfaces I and I ′ defined by the automata shown in Figure 2. Both
have a single boolean input variable x. I ′ is well-formed but I is not (I is well-formable, however, and I ′ is
a witness). I ′ 6v I, because at the initial state the input x = false is legal for I but not for I ′. But there is
no environment E such that I |= E but I ′ 6|= E.

We end this section with an additional remark on the definition of refinement. As mentioned above,
replacing Condition (16) with the simpler Condition (17) changes the meaning of refinement in a profound
way. In particular, part 2 of Theorem 16 no longer holds, as the following example demonstrates:

Example 16 Consider interface I1 from Example 1 and interface Iid := ({x}, {y}, x = y). It can be checked
that Iid v I1. If we used Condition (17) instead of Condition (16) in the definition of refinement, then Iid
would not refine I1: this is because x = y 6→ x > 0. Yet there is no environment E such that I1 |= E but
Iid 6|= E: this follows from Theorem 16.

9 Shared refinement and shared abstraction

A shared refinement operator u is introduced in [19] for A/G interfaces, as a mechanism to combine two
such interfaces I and I ′ into a single interface I u I ′ that refines both I and I ′: I u I ′ is able to accept inputs
that are legal in either I or I ′, and provide outputs that are legal in both I and I ′. Because of this, I u I ′
can replace both I and I ′, which, as argued in [19], is important for component reuse. A similar mechanism
called fusion has also been proposed in [7].

[19] also discusses shared refinement for extended (i.e., relational) interfaces and conjectures that it
represents the greatest lower bound with respect to refinement. We show that this holds only if a certain
condition is imposed. We call this condition shared refinability. It states that for every inputs that is legal in
both I and I ′, the corresponding sets of outputs of I and I ′ must have a non-empty intersection. Otherwise,
it is impossible to provide an output that is legal in both I and I ′.

Definition 17 (Shared refinement) Two interfaces I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) are shared-refinable
if X = X ′, Y = Y ′ and the following formula is true for all s ∈ f ∩ f ′:

∀X :
(
in(f(s)) ∧ in(f ′(s))

)
→ ∃Y : (f(s) ∧ f ′(s)) (28)

In that case, the shared refinement of I and I ′, denoted I u I ′, is the interface defined as follows:

I u I ′ := (X,Y, fu)
fu(s) :=

(
in(f(s)) ∨ in(f ′(s))

)
∧

(
in(f(s)) → f(s)

)
∧

(
in(f ′(s)) → f ′(s)

)
(29)

Example 17 Consider interfaces I00 := ({x}, {y}, x = 0 → y = 0) and I01 := ({x}, {y}, x = 0 → y = 1).
I00 and I01 are not shared-refinable because there is no way to satisfy y = 0 ∧ y = 1 when x = 0.

For finite-state interfaces, shared refinement is computable. Let Mi = (X,Y, Li, `0,i, Ci, Ti) be finite-state
automata representing Ii, for i = 1, 2, respectively. Suppose I1, I2 are shared-refinable. Then, I1 u I2 can be
represented as the automaton M := (X,Y, L1 × L2 ∪ L1 ∪ L2, (`0,1, `0,2), C, T ), where C and T are defined
as follows (guard gboth is defined as in (19)):

C(`) :=


(
in(C1(`1)) ∨ in(C2(`2))

)
∧

(
in(C1(`1)) → C1(`1)

)
∧

(
in(C2(`2)) → C2(`2)

)
, if ` = (`1, `2) ∈ L1 × L2

C1(`), if ` ∈ L1

C2(`), if ` ∈ L2

(30)

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `
′
i) ∈ Ti, for i = 1, 2}

∪ {((`1, `2),¬C2(`2) ∧ g1, `′1) | (`1, g1, `′1) ∈ T1} ∪ T1 (31)
∪ {((`1, `2),¬C1(`1) ∧ g2, `′2) | (`2, g2, `′2) ∈ T2} ∪ T2
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As long as the contracts of both M1 and M2 are satisfied, M behaves as a synchronous product. If the
contract of one automaton is violated, then M continues with the other.

Lemma 7 If I and I ′ are shared-refinable interfaces then

f(I) ∩ f(I ′) ⊆ f(I u I ′) ⊆ f(I) ∪ f(I ′)

Proof: Let I = (X,Y, f) and I ′ = (X ′, Y ′, f ′).
f ∩ f ′ ⊆ f(I u I ′): By induction on the length of states. It holds for the state of length zero, i.e., the

empty state ε, because ε is reachable in any interface. Suppose s · a ∈ f ∩ f ′. Then s ∈ f ∩ f ′, and from
the induction hypothesis, s ∈ f(I u I ′). Since s · a ∈ f , a |= f(s). Since s · a ∈ f ′, a |= f ′(s). Thus
a |= f(s) ∧ f ′(s). Thus a |= (in(f(s)) ∨ in(f ′(s))) ∧ (in(f(s)) → f(s)) ∧ (in(f ′(s)) → f ′(s)) ≡ fu(s).

f(I u I ′) ⊆ f ∪ f ′: By induction on the length of states. Basis: It holds for the empty state ε. Induction
step: Suppose s · a ∈ f(I u I ′). Then a |= fu(s). Also, s ∈ f(I u I ′), and from the induction hypothesis,
s ∈ f ∪ f ′. Suppose s ∈ f (the other case is symmetric). There are two sub-cases:

Case 1: s ∈ f ′: Then fu(s) ≡ (in(f(s)) ∨ in(f ′(s))) ∧ (in(f(s)) → f(s)) ∧ (in(f ′(s)) → f ′(s)). Since
a |= fu(s), a |= (in(f(s)) ∨ in(f ′(s))). Suppose a |= in(f(s)) (the other case is symmetric). Then, since
a |= in(f(s)) → f(s), we have a |= f(s), thus, s · a ∈ f .

Case 2: s 6∈ f ′: Then fu(s) ≡ f(s), therefore, a |= f(s), thus, s · a ∈ f .

Lemma 8 Let I and I ′ be shared-refinable interfaces such that I = (X,Y, f), I ′ = (X,Y, f ′) and I u I ′ =
(X,Y, fu). Then:

in(fu(s)) ≡ in(f(s)) ∨ in(f ′(s))

Proof: Using the fact that in(f(s)) and in(f ′(s)) are properties over X, and the fact that the existential
quantifier distributes over disjunctions, we can show the following equivalences:

in(fu(s)) ≡ ∃Y :
(
in(f(s)) ∨ in(f ′(s))

)
∧

(
in(f(s)) → f(s)

)
∧

(
in(f ′(s)) → f ′(s)

)
≡(

in(f(s)) ∨ in(f ′(s))
)
∧ ∃Y :

(
¬in(f(s)) ∨ f(s)

)
∧

(
¬in(f ′(s)) ∨ f ′(s)

)
≡(

in(f(s)) ∨ in(f ′(s))
)
∧ ∃Y :

(
¬in(f(s)) ∧ ¬in(f ′(s)) ∨ ¬in(f(s)) ∧ f ′(s) ∨ f(s) ∧ ¬in(f ′(s)) ∨ f(s) ∧ f ′(s)

)
≡(

in(f(s)) ∨ in(f ′(s))
)
∧

(
¬in(f(s)) ∧ in(f ′(s)) ∨ in(f(s)) ∧ ¬in(f ′(s)) ∨

(
∃Y : f(s) ∧ f ′(s)

))
Clearly, the last formula implies in(f(s)) ∨ in(f ′(s)). The converse also holds, thanks to shared-refinability
Condition (28).

Theorem 17 (Greatest lower bound) If I and I ′ are shared-refinable interfaces then (I u I ′) v I, (I u
I ′) v I ′, and for any interface I ′′ such that I ′′ v I and I ′′ v I ′, we have I ′′ v (I u I ′).

Proof: Since I and I ′ are shared-refinable, they have the same sets of input and output variables. Let
I = (X,Y, f) and I ′ = (X,Y, f ′). Let I u I ′ = (X,Y, fu). To prove (I u I ′) v I, we need to show

in(f(s)) → in(fu(s))(
in(f(s)) ∧ fu(s)

)
→ f(s)

The first condition follows from Lemma 8 and the second by definition of fu. The proof for (I u I ′) v I ′ is
symmetric. Thus, I u I ′ is a lower bound of I and I ′.

To show that I u I ′ is the greatest lower bound, let I ′′ = (X,Y, f ′′). To prove I ′′ v (I u I ′) we must prove
in(fu(s)) → in(f ′′(s)) and in(fu(s))∧ f ′′(s) → fu(s). By Lemma 8 and the definition of fu, these conditions
become: (

in(f(s)) ∨ in(f ′(s))
)
→ in(f ′′(s))((

in(f(s)) ∨ in(f ′(s))
)
∧ f ′′(s)

)
→

((
in(f(s)) ∨ in(f ′(s))

)
∧

(
in(f(s)) → f(s)

)
∧

(
in(f ′(s)) → f ′(s)

))
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From hypotheses I ′′ v I and I ′′ v I ′ we get in(f(s)) → in(f ′′(s)) and in(f ′(s)) → in(f ′′(s)), from which the
first condition follows. We also get in(f(s)) ∧ f ′′(s) → f(s) and in(f ′(s)) ∧ f ′′(s) → f ′(s), therefore,(

in(f(s)) ∨ in(f ′(s))
)
∧ f ′′(s) →

(
f(s) ∧ f ′(s)

)
,

from which the second condition follows.

Theorem 18 (Shared-refinement preserves well-formedness) If I and I ′ are shared-refinable inter-
faces and both are well-formed, then I u I ′ is well-formed.

Proof: Let I = (X,Y, f), I ′ = (X,Y, f ′) and I u I ′ = (X,Y, fu). Let s ∈ fu. By Lemma 7, s ∈ f ∪ f ′.
Suppose s ∈ f . By hypothesis, f(s) 6= ∅. Let a ∈ f(s) and a = (aX , aY ) where aX ∈ A(X) and
aY ∈ A(Y ). Clearly, aX ∈ in(f(s)). If aX 6∈ in(f ′(s)) then a clearly satisfies Formula (29), thus a ∈ fu(s).
If aX ∈ in(f ′(s)) then aX ∈ in(f(s)) ∩ in(f ′(s)), therefore, by shared-refinability Condition (28), there must
exist a′Y ∈ A(Y ) such that (aX , a

′
Y ) ∈ f(s) ∩ f ′(s). Then (aX , a

′
Y ) clearly satisfies Formula (29), thus

(aX , a
′
Y ) ∈ fu(s). The case s ∈ f ′ is symmetric.

It is useful to consider the dual operator to u, that we call shared abstraction and denote t. Contrary to
u, t is always defined, provided the interfaces have the same input and output variables:

Definition 18 (Shared abstraction) Two interfaces I = (X,Y, f) and I ′ = (X ′, Y ′, f ′) are shared-
abstractable if X = X ′ and Y = Y ′. In that case, the shared abstraction of I and I ′, denoted I t I ′,
is the interface:

I t I ′ := (X,Y, ft)

ft(s) :=

 in(f(s)) ∧ in(f ′(s)) ∧
(
f(s) ∨ f ′(s)

)
if s ∈ f ∩ f ′

f(s) if s ∈ f \ f ′
f ′(s) if s ∈ f ′ \ f

(32)

Notice that it suffices to define ft(s) for s ∈ f ∪ f ′. Indeed, the above definition inductively implies
ft ⊆ f ∪ f ′:

Lemma 9 If I and I ′ are shared-abstractable interfaces then

f(I) ∩ f(I ′) ⊆ f(I t I ′) ⊆ f(I) ∪ f(I ′)

Proof: Let I = (X,Y, f), I ′ = (X,Y, f ′) and I t I ′ = (X,Y, ft). We prove ft ⊆ f ∪ f ′ by induction on
the length of states. Basis: it holds for ε. Step: let s · a ∈ ft. Then a ∈ ft(s). Thus s ∈ ft and from the
induction hypothesis, s ∈ f ∪ f ′. There are three cases:

• s ∈ f ∩ f ′: Then a |= in(f(s)) ∧ in(f ′(s)) ∧
(
f(s) ∨ f ′(s)

)
, thus, a ∈ f(s) ∪ f ′(s). Thus s · a ∈ f ∪ f ′.

• s ∈ f \ f ′: Then a |= f(s), thus s · a ∈ f .

• s ∈ f ′ \ f : Then a |= f ′(s), thus s · a ∈ f ′.

The proof f ∩ f ′ ⊆ ft is also by induction. Let s · a ∈ f ∩ f ′. Then a ∈ f(s) ∩ f ′(s), so s ∈ f ∩ f ′. Clearly
then, a |= ft(s), thus s · a ∈ ft.

For finite-state interfaces, shared abstraction is computable. Let Mi = (X,Y, Li, `0,i, Ci, Ti) be finite-
state automata representing Ii, for i = 1, 2, respectively. Suppose I1, I2 are shared-abstractable. Then,
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I1 t I2 can be represented as the automaton M := (X,Y, L1 × L2 ∪ L1 ∪ L2, (`0,1, `0,2), C, T ), where C and
T are defined as follows (guard gboth is defined as in (19)):

C(`) :=

 in(C1(`1)) ∧ in(C2(`2)) ∧
(
L1(`1) ∨ C2(`2)

)
, if ` = (`1, `2) ∈ L1 × L2

C1(`), if ` ∈ L1

C2(`), if ` ∈ L2

(33)

T := {((`1, `2), gboth ∧ g1 ∧ g2, (`′1, `′2)) | (`i, gi, `
′
i) ∈ Ti, for i = 1, 2}

∪ {((`1, `2), in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C2(`2) ∧ g1, `′1) | (`1, g1, `′1) ∈ T1} ∪ T1 (34)
∪ {((`1, `2), in(C1(`1)) ∧ in(C2(`2)) ∧ ¬C1(`1) ∧ g2, `′2) | (`2, g2, `′2) ∈ T2} ∪ T2

Like the automaton for IuI ′, M behaves as the synchronous product of M1 and M2, as long as the contracts
of both are satisfied. When the contract of one is violated, then M continues with the other.

Theorem 19 (Least upper bound) If I and I ′ are shared-abstractable interfaces then I v (I t I ′), I ′ v
(I t I ′), and for any interface I ′′ such that I v I ′′ and I ′ v I ′′, we have (I t I ′) v I ′′.

Proof: Let I = (X,Y, f), I ′ = (X,Y, f ′) and I t I ′ = (X,Y, ft). Consider s ∈ f ∩ ft. There are two cases:

• s ∈ f ′: Then

in(ft(s)) ≡ in
(
in(f(s)) ∧ in(f ′(s)) ∧ (f(s) ∨ f ′(s))

)
≡ in(f(s)) ∧ in(f ′(s)) ∧ in(f(s) ∨ f ′(s)) ≡

in(f(s)) ∧ in(f ′(s)) ∧
(
in(f(s)) ∨ in(f ′(s))

)
≡ in(f(s)) ∧ in(f ′(s))

and the refinement conditions for I v (I t I ′) become(
in(f(s)) ∧ in(f ′(s))

)
→ in(f(s))(

in(f(s)) ∧ in(f ′(s)) ∧ f(s)
)

→
(
in(f(s)) ∧ in(f ′(s)) ∧

(
f(s) ∨ f ′(s)

))
which clearly hold.

• s 6∈ f ′: Then in(ft(s)) ≡ in(f(s)), and the refinement conditions for I v (I t I ′) become in(f(s)) →
in(f(s)) and in(f(s)) ∧ f(s) → f(s), which clearly hold.

This proves I v (I t I ′). Similarly we show I ′ v (I t I ′).
Now, let I ′′ = (X,Y, f ′′) and consider s ∈ ft∩f ′′. By Lemma 9, s ∈ (f ∪f ′)∩f ′′. To show (I t I ′) v I ′′,

we need to show in(f ′′(s)) → in(ft(s)) and in(f ′′(s)) ∧ ft(s) → f ′′(s). We reason by cases:

• s ∈ f ∩ f ′ ∩ f ′′: then the proof obligations above become: in(f ′′(s)) → in(f(s)) ∧ in(f ′(s)) and
in(f ′′(s))∧ in(f(s))∧ in(f ′(s))∧

(
f(s)∨f ′(s)

)
→ f ′′(s). From hypotheses s ∈ f ∩f ′, I v I ′′ and I ′ v I ′′

we get in(f ′′(s)) → in(f(s)) and in(f ′′(s)) → in(f ′(s)), from which the first condition follows. We also
get in(f ′′(s))∧f(s) → f ′′(s) and in(f ′′(s))∧f ′(s) → f ′′(s), therefore, in(f ′′(s))∧

(
f(s)∨f ′(s)

)
→ f ′′(s),

from which the second condition follows.

• s ∈ (f \f ′)∩f ′′: then the proof obligations become: in(f ′′(s)) → in(f(s)) and in(f ′′(s))∧f(s) → f ′′(s),
which hold from hypotheses s ∈ f ∩ f ′′ and I v I ′′.

• s ∈ (f ′ \ f) ∩ f ′′: similar to the previous case.

Notice that, even when I, I ′ are both well-formed, I t I ′ may be non-well-formed, or even non-well-
formable. This occurs, for instance, when I and I ′ are stateless with contracts φ and φ′ such that in(φ)∧in(φ′)
is false. This does not contradict Theorem 19 since false is refined by any contract, as observed earlier.
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10 The input-complete case

Input-complete interfaces do not restrict the set of input values, although they may provide no guarantees
when the input values are illegal. Although input-complete interfaces are a special case of general interfaces,
it is instructive to study them separately for two reasons: first, input-completeness makes things much
simpler, thus easier to understand and implement; second, some interesting properties hold for input-complete
interfaces but not in general.

Theorem 20 Every well-formed source interface is input-complete. So is every well-formed Moore interface.

Proof: Let I be a well-formed interface with contract f . If I is a source interface then it has no input
variables. In that case, in(f(s)) is a formula with no free variables, therefore, it is equivalent to either true or
false. I is well-formed, so in(f(s)) must be true for all s. If I is Moore then f(s) refers to no input variables,
therefore, again in(f(s)) has no free variables.

Theorem 21 Every input-complete interface is well-formed.

Proof: Let I = (X,Y, f) be an input-complete interface. Then in(f(s)) is valid for all s ∈ A(X ∪ Y )∗, i.e.,
∃Y : f(s) ≡ true for any assignment over X. Let aX be an assignment over X (note that aX is defined even
when X is empty). Then there exists an assignment aY on Y such that the combined assignment (aX , aY )
on X ∪ Y satisfies f(s). Thus, f(s) is satisfiable, which means I is well-formed.

Every interface I can be turned into an input-complete interface IC(I) that refines I:

Definition 19 (Input-completion) Consider an interface I = (X,Y, f). The input-completion of I, de-
noted IC(I), is the interface IC(I) := (X,Y, fic), where fic(s) := f(s) ∨ ¬in(f(s)), for all s ∈ A(X ∪ Y )∗.

Theorem 22 (Input-completion refines original) If I is an interface then:

1. IC(I) is an input-complete interface.

2. IC(I) v I.

Proof: Let I = (X,Y, f) and IC(I) = (X,Y, fic). Let s ∈ A(X ∪ Y )∗.

1. in(fic(s)) ≡ ∃Y : (f(s)∨¬in(f(s))) ≡ (∃Y : f(s))∨¬in(f(s)) ≡ in(f(s))∨¬in(f(s)) ≡ true, thus, IC(I)
is input-complete.

2. Obviously, in(f(s)) → in(fic(s)). We need to show that (in(f(s)) ∧ (f(s) ∨ ¬in(f(s)))) → f(s). The
premise can be rewritten as (in(f(s)) ∧ f(s)) ∨ (in(f(s)) ∧ ¬in(f(s))) ≡ in(f(s)) ∧ f(s), which clearly
implies f(s).

Theorems 22 and 16 imply that for any environment E, if I |= E then IC(I) |= E. The converse does not
hold in general (see Examples 1 and 9, and observe that I2 is the input-complete version of I1).

Composition by connection reduces to conjunction of contracts for input-complete interfaces, and pre-
serves input-completeness:

Theorem 23 (Connection preserves input-completeness) Let Ii = (Xi, Yi, fi), i = 1, 2, be disjoint
input-complete interfaces, and let θ be a connection between I1, I2. Then the contract f of the composite
interface θ(I1, I2) is such that for all s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))

∗

f(s) ≡ f1(s) ∧ f2(s) ∧ ρθ

Moreover, θ(I1, I2) is input-complete.
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Proof: In f , the term Φ defined in Formula (9) is equivalent to true because in(f2(s2)) ≡ true. To see
that θ(I1, I2) is input-complete, consider a state s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))

∗ and let a be an assignment
over Xθ(I1,I2). Since in(f1(s1)) ≡ true, and X1 ⊆ Xθ(I1,I2), there exists an assignment b over Y1 such that
(a, b) |= f1(s1). Let c be an assignment over InVars(θ) such that (b, c) |= ρθ: such an assignment can always
be found by setting c(x) to the value that b assigns to y, where (y, x) ∈ θ. Since in(f2(s2)) ≡ true,
there exists an assignment d over Y2 such that (a, c, d) |= f2(s2). Combining the assignments we get
(a, b, c, d) |= f1(s1) ∧ f2(s2) ∧ ρθ ≡ f(s), therefore, θ(I1, I2) is input-complete.

It is important to note that the “demonic” interpretation of non-determinism used in our definition of
connection is necessary in order for connection to preserve refinement (Theorem 13). In particular, adopting
the “angelic” interpretation of non-determinism would result in the standard definition of connection as
composition of relations: f1(s) ∧ f2(s) ∧ ρθ. This works for input-complete interfaces, as shown above, but
not for general interfaces, as illustrated in the following example.

Example 18 Let

I10 :=
(
{x}, {y}, x = 0 ∧ (y = 0 ∨ y = 1)

)
I12 := ({z}, {w}, z = 0 ∧ w = 0)

Let θ := {(y, z)}. The conjunction of the contracts of I10 and I12, together with the equality y = z imposed
by the connection θ, gives the contract x = 0 ∧ (y = 0 ∨ y = 1) ∧ z = 0 ∧ w = 0 ∧ y = z, which is equivalent
to x = y = z = w = 0, which is clearly satisfiable. Therefore, we could interpret the composite interface
θ(I10, I12) as the interface

({x}, {y, z, w}, x = y = z = w = 0)

Now, consider the interface:

I11 := ({x}, {y}, x = 0 ∧ y = 1)

It can be checked that I11 v I10. But if we connect I11 to I12, we find that the conjunction of their contracts
(with the connection y = z) is unsatisfiable. Therefore, if we used conjunction for composition by connec-
tion, then the composite interface θ(I11, I12) would not refine θ(I10, I12), even though I11 refines I10, i.e.,
Theorem 13 would not hold.

Input-complete interfaces alone do not help in avoiding problems with arbitrary feedback compositions:
indeed, in the example given in the introduction both interfaces Itrue and Iy 6=x are input-complete.5 This
means that in order to add a feedback connection (y, x) in an input-complete interface, we must still ensure
that this interface is Moore w.r.t. input x. In that case, feedback preserves input-completeness.

Theorem 24 (Feedback preserves input-completeness) Let I = (X,Y, f) be an input-complete inter-
face which is also Moore with respect to some x ∈ X. Let κ = (y, x) be a feedback connection on I. Then
κ(I) is input-complete.

Proof: By definition, κ(I) = (X \ {x}, Y ∪ {x}, fκ), where fκ(s) ≡ f(s) ∧ (x = y), for all s ∈ A(X ∪ Y )∗.
Let s ∈ A(X ∪ Y )∗. We must show that in(fκ(s)) ≡ ∃Y ∪ {x} : f(s) ∧ (x = y) is valid. Because f(s) does
not refer to x, we have ∃Y ∪ {x} : f(s) ∧ (x = y) ≡ ∃Y : ∃x : f(s) ∧ (x = y) ≡ ∃Y : (f(s) ∧ (∃x : x = y)) ≡
∃Y : f(s) ≡ in(f(s)) ≡ true.

Theorem 25 (Hiding preserves input-completeness) Let I = (X,Y, f) be an input-complete interface
and let y ∈ Y , such that f is independent from y. Then, hide(y, I) is input-complete.

5 It is not surprising that input-complete interfaces alone cannot solve the problems with arbitrary feedback compositions,
since these are general problems of causality, not particular to interfaces.
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Proof: I is input-complete means in(f(s)) is valid for all s ∈ A(X ∪ Y )∗. We must show that ∃Y \ {y} :
(∃y : f(s)) is valid: the latter formula is equivalent to ∃Y : f(s), i.e., in(f(s)).

Theorem 26 (Refinement for input-complete interfaces) Let I and I ′ be input-complete interfaces.
Then I ′ v I iff f(I ′) ⊆ f(I).

Proof: Follows directly from Definitions 16 and 3.

For input-complete interfaces, the shared-refinability condition, i.e., Condition (28), simplifies to

∀X : ∃Y : f(s) ∧ f ′(s)

Clearly, this condition does not always hold. Indeed, the interfaces of Example 17 are not shared-refinable,
even though they are input-complete. For shared-refinable input-complete interfaces, shared refinement
reduces to intersection. Dually, for shared-abstractable input-complete interfaces, shared abstraction reduces
to union.

Theorem 27 (Shared refinement and abstraction for input-complete interfaces) Let I and I ′ be
input-complete interfaces.

1. If I and I ′ are shared-refinable then f(I u I ′) = f(I) ∩ f(I ′).

2. If I and I ′ are shared-abstractable then f(I t I ′) = f(I) ∪ f(I ′).

Proof: Follows directly from Definitions 17, 18 and 3.

As the above presentation shows, input-complete interfaces are much simpler than general interfaces:
refinement is implication of contracts, composition is conjunction, and so on. Then, a legitimate question is,
why consider non-input-complete interfaces at all? There are mainly two reasons.

First, non-input-complete interfaces can be used to model situations that cannot be modeled by input-
complete interfaces. For example, consider modeling a component implementing some procedure that re-
quires certain conditions on its inputs to be satisfied, otherwise it may not terminate. We can capture the
specification of this component as an interface, by imposing these conditions in the contract of the interface.
But we cannot capture the same specification as an input-complete interface: for what would the output be
when the input conditions are violated? We cannot simply add an extra output taking values in {T,NT},
for “terminates” and “does not terminate”, since non-termination is not an observable property.

Second, even in the case where we could use input-complete interfaces to capture a specification, we
may decide not to do so, in order to allow for local compatibility checks. In particular, when connecting two
interfaces I and I ′, we may want to check that their composition is well-formed before proceeding to form
an entire interface diagram. Input-complete interfaces are always well-formed and so are their compositions
(Theorems 21, 23 and 24), therefore, local compatibility checks provide useful information only in the non-
input-complete case.

11 The deterministic case

In this section we state some properties of the theory in the case of deterministic interfaces. First, sink
interfaces are by definition deterministic:

Theorem 28 All sink interfaces are deterministic.

Composition by connection reduces to composition of relations when the source interface is deterministic:
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Theorem 29 Consider two disjoint interfaces, Ii = (Xi, Yi, fi), i = 1, 2, and a connection θ between I1, I2.
Let θ(I1, I2) = (X,Y, f). If I1 is deterministic, then f(s) ≡ f1(s1) ∧ f2(s2) ∧ ρθ for all states s.

Proof: Following Definition 9, it suffices to prove that the formula

(f1(s1) ∧ f2(s2) ∧ ρθ) →
(
∀Yθ(I1,I2) : (f1(s1) ∧ ρθ) → in(f2(s2))

)
is valid for any s1, s2. Let a ∈ A(X1 ∪ Y1 ∪X2 ∪ Y2) such that a |= f1(s1) ∧ f2(s2) ∧ ρθ. We need to prove
that a |= ∀Yθ(I1,I2) : (f1(s1)∧ρθ) → in(f2(s2)). Let b ∈ A(Yθ(I1,I2)) such that (a|b) |= f1(s1)∧ρθ. Here, (a|b)
denotes the assignment obtained by replacing in a the values of all variables of b (i.e., variables in Yθ(I1,I2))
by the values assigned to them by b. We need to prove that (a|b) |= in(f2(s2)). Observe that, because
X1 ∩ Yθ(I1,I2) = ∅, for all x1 ∈ X1, we have a(x1) = (a|b)(x1). This and the fact that I1 is deterministic
imply that for all y1 ∈ Y1, we have a(y1) = (a|b)(y1). This and the facts a |= ρθ and (a|b) |= ρθ imply that for
all x2 ∈ InVars(θ), we have a(x2) = (a|b)(x2). Finally observe that, because (X2 \ InVars(θ)) ∩ Yθ(I1,I2) = ∅,
for all x′2 ∈ X2 \ InVars(θ), we have a(x′2) = (a|b)(x′2). Collecting the last two results, we get that for all
x2 ∈ X2, we have a(x2) = (a|b)(x2). This and a |= f2(s2) imply (a|b) |= in(f2(s2)).

Theorem 30 (Hiding preserves determinism) Let I = (X,Y, f) be a deterministic interface and let
y ∈ Y , such that f is independent from y. Then, hide(y, I) is deterministic.

Proof: Recall that hide(y, I) = (X,Y \ {y}, f ′), such that for any s ∈ A(X ∪ Y \ {y})∗, f ′(s) ≡ ∃y : f(s).
If Y = {y} then hide(y, I) is a sink, therefore, deterministic by Theorem 28. Otherwise, let s ∈ f ′ and let
aX ∈ in(f ′(s)) ≡ ∃Y \ {y} : ∃y : f(s) ≡ in(f(s)). Since I is deterministic, there is a unique aY ∈ A(Y ) such
that (aX , aY ) ∈ f(s). Therefore, there is a unique aY \{y} ∈ A(Y \ {y}), where aY \{y} is the projection of
aY to Y \ {y}, such that (aX , aY \{y}) ∈ f ′(s), which proves determinism of hide(y, I).

Theorem 31 (Refinement for deterministic interfaces) Let I and I ′ be deterministic interfaces. Then
I ′ v I iff f(I ′) ⊇ f(I).

Proof: Let I = (X,Y, f) and I ′ = (X,Y, f ′).
First, suppose I ′ v I. To prove f ⊆ f ′, it suffices to show that for all s ∈ f , f(s) → f ′(s) is valid. Let

a ∈ A(X ∪Y ) such that a ∈ f(s). Let a = (aX , aY ) where aX ∈ A(X) and aY ∈ A(Y ). Then aX ∈ in(f(s)),
and by Definition 16, aX ∈ in(f ′(s)). Therefore there exists a′Y ∈ A(Y ) such that (aX , a

′
Y ) ∈ f ′(s). By

Definition 16, (aX , a
′
Y ) ∈ f(s). Since I is deterministic, a′Y = aY . Thus, a = (aX , aY ) ∈ f ′(s).

Conversely, suppose f ⊆ f ′. To prove I ′ v I, it suffices to show that for all s ∈ f , the formulas
in(f(s)) → in(f ′(s)) and in(f(s)) ∧ f ′(s) → f(s) are valid. Let aX ∈ in(f(s)). Then there exists aY ∈ A(Y )
such that a := (aX , aY ) ∈ f(s). Thus, s·a ∈ f , and by hypothesis, s·a ∈ f ′, therefore, a ∈ f ′(s). This implies
aX ∈ in(f ′(s)). This proves in(f(s)) → in(f ′(s)). Now consider (aX , a

′
Y ) ∈ f ′(s) such that aX ∈ in(f(s)).

The latter fact and determinism of I imply that (aX , a
′
Y ) ∈ f(s), which proves in(f(s)) ∧ f ′(s) → f(s).

A corollary of Theorems 26 and 31 is that refinement for input-complete and deterministic interfaces is
equality.

For deterministic interfaces, the shared-refinability condition, i.e., Condition (28), simplifies to

∀X,Y :
(
in(f(s)) ∧ in(f ′(s))

)
→

(
f(s) ∧ f ′(s)

)
Again, this condition does not always hold. For shared-refinable deterministic interfaces, shared refinement
reduces to union. Dually, for shared-abstractable deterministic interfaces, shared abstraction reduces to
intersection.

Theorem 32 (Shared refinement and abstraction for deterministic interfaces) Let I and I ′ be de-
terministic interfaces.
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1. If I and I ′ are shared-refinable then f(I u I ′) = f(I) ∪ f(I ′).

2. If I and I ′ are shared-abstractable then f(I t I ′) = f(I) ∩ f(I ′).

Proof: Let f := f(I), f ′ := f(I ′), fu := f(I u I ′) and ft := f(I t I ′).

1. The containment fu ⊆ f ∪f ′ follows from Lemma 7. The converse is proven by induction on the length
of states. Basis: ε ∈ fu. Induction step: Suppose s · a ∈ f ∪ f ′. WLOG, assume s · a ∈ f . Then
a ∈ f(s). Let a = (aX , aY ) with aX ∈ in(f(s)). If aX 6∈ in(f ′(s)), then clearly a ∈ fu(s). Otherwise,
there exists a′Y such that (aX , a

′
Y ) ∈ f ′(s). Since I ′ is deterministic, and by the shared-refinability

hypothesis, aY = a′Y . Therefore a ∈ f(s) ∩ f ′(s), or s · a ∈ f ∩ f ′, thus, by Lemma 7, s · a ∈ fu.

2. The containment f ∩f ′ ⊆ ft follows from Lemma 9. The converse is proven by induction on the length
of states. Basis: ε ∈ f ∩ f ′. Induction step: Suppose s · a ∈ ft, thus, a ∈ ft(s). By the induction
hypothesis, s ∈ ft implies s ∈ f ∩ f ′. Thus, a |= in(f(s))∧ in(f ′(s))∧

(
f(s)∨ f ′(s)

)
. Because I and I ′

are deterministic, this implies a |= f(s) ∧ f ′(s), therefore, s · a ∈ f ∩ f ′.

Notice that Theorems 31 and 32 are duals of Theorems 26 and 27.

12 Conclusion and perspectives

We have proposed a compositional theory that allows to reason formally about components in a synchronous
setting, and offers guarantees of substitutability. The theory is directly applicable to the class of applications
captured in synchronous embedded software environments like Simulink, SCADE or Ptolemy, mentioned in
the introduction (e.g., see [42] for an example of possible applications). But our framework should be also
applicable to more general-purpose software. For example, stateless interfaces can be used as extended types,
that are able to express constraints on the outputs based on information about the inputs of a given function.
Synchronous hardware is another important application domain for our work. We are currently building an
implementation of our theory on Ptolemy and experimenting with different kinds of applications. Reports
on such experiments will be provided as part of future work.

Another avenue for future work is to examine the current limitations on feedback compositions. Requiring
feedback loops to contain Moore interfaces that “break” potential causality cycles is arguably a reasonable
restriction in practice. After all, arbitrary feedback loops in synchronous models generally result in ambiguous
semantics [35, 9]. In many languages and tools these problems are avoided by making restrictions similar
to (and often stricter than) ours. For example, Simulink and SCADE generally require a unit-delay to be
present in every feedback loop. Similar restrictions are used in the synchronous language Lustre [12].

Still, it would be interesting to study to what extent the current restrictions can be weakened. One
possibility could be to refine the definition of Moore interfaces to include dependencies between specific
pairs of input and output variables. This would allow to express, for example, the fact that in the parallel
composition of ({x1}, {y1}, x1 = y1) and ({x2}, {y2}, x2 = y2), y1 does not depend on x2 and y2 does not
depend on x1 (and therefore one of the feedbacks (y1, x2) or (y2, x1) can be allowed). Such an extension could
perhaps be achieved by combining our relational interfaces with the causality interfaces of [50], input-output
dependency information such as that used in reactive modules [3], or the coarser profiles of [33]. A more
general solution could involve studying fixpoints in a relational context, as is done, for instance, in [16].
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