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Abstract. Given an algebraic hypersurface O in Rd , how many simplices are
necessary for a simplicial complex isotopic to O? We address this problem and
the variant where all vertices of the complex must lie on O . We give asymptoti-
cally tight worst-case bounds for algebraic plane curves of degree n. Our results
gradually improve known bounds in higher dimensions; however, the question
for tight bounds remains unsolved for d ≥ 3.

1 Introduction

A standard technique to process non-linear curves and surfaces in geometric systems
is to approximate them in terms of a piecewise linear object (a simplicial complex). A
main goal is to preserve the topological properties of the input. Furthermore, geometric
properties, such as the position of singular or “extremal” points of the object are often
of interest. For algebraic curves and surfaces as inputs, the former problem is usually
called topology computation, the latter topological-geometric analysis of the object.

We consider the following question: How many simplices are needed to embed a
simplicial complex in Rd that is isotopic to a real algebraic hypersurface1 in Rd of de-
gree n? Our main contribution is to provide sharp bounds for the planar case (d = 2):
for a topologically correct representation, Ω(n2) line segments are needed in the worst
case, and we give an algorithm producing O(n2) line segments for all cases. Although
the idea is simple, it seemingly does not appear in the literature yet. For geometric-
topological representations, we construct a class of curves such that Ω(n3) line seg-
ments are necessary. This proves that the cylindrical algebraic decomposition [5] (“Find
the critical x-coordinates of the curve; compute the fiber at these coordinates and at sep-
arating points in between; connect the fiber points by straight-line segments.” – compare
Fig. 2) is asymptotically optimal. This is surprising because the vertical decomposition
strategy seems to introduce much more line segments than actually necessary.

Our results can be partially generalized in higher dimensions. This allows a grad-
ual improvement of lower and upper bounds that can be derived easily from cylindrical
algebraic decomposition. Nevertheless, our bounds fail to be tight already for algebraic
surfaces: For the topological approximation, we get a lower bound of Ω(n3), and an up-
per bound of O(n5) triangles. For the geometric-topological approximation, the bounds

1 A real algebraic hypersurface O ⊂ Rd is defined as the real vanishing set O = V ( f ) = {x ∈
R

d : f (x) = 0} of a polynomial f ∈ R[x1, . . . ,xd ]. Its degree is given by the degree of f .
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are Ω(n4) and O(n7), respectively. These gaps increase in higher dimensions because
the lower bounds grow single exponentially in the dimension, whereas the upper bounds
grow double exponentially.

Related work: Efficient techniques for topology computation of algebraic curves (e.g,
see [6, 9], and references therein) and surfaces [4, 1] have been presented in case where
the defining polynomial f has integer coefficients. For the planar case, the complexity
of the problem has been upper bounded by O(N12) [8, 10], where N is defined as the
maximum of the degree of f and the bitsize of its coefficients. However, our question
of how many segment/triangles are needed in principal to capture the topology of the
object seems to be untreated in this context.

We remark that similar problems have been extensively studied for 2-manifolds. For
instance, Nakamoto and Ota [12] show that any closed compact 2-manifold of genus
g can be triangulated using Θ(g) vertices. An often discussed concept in this context
is an irreducible triangulation of a 2-manifold, i.e., a triangulation where no edge can
be contracted without changing the topology. It has been shown that only finitely many
irreducible triangulations exist [2], and they have been enumerated explicitly for the
torus [11]. Although these results aim in a somewhat similar direction, algebraic sur-
faces are in general not 2-manifolds and need different techniques to be analyzed.

2 Basic notation and definitions

A homeomorphism between two sets X ,Y ⊂Rd is a bijective, continuous map h : X→Y
whose inverse is continuous as well. X and Y are isotopic if they are “connected by
homeomorphism”, that is, there exists a continuous map ψ : [0,1]×X → Rd such that
ψ(0,x) = x, ψ(1,X) = Y , and ψ(t0,x) is a homeomorphism for any t0 ∈ [0,1]. ψ is
called an isotopy between X and Y . We assume that the reader is familiar with the
definition of a simplicial complex. We assume that the complex is embedded into Rd by
fixing its vertices, and we identify the complex and the induced point set.

An algebraic hypersurface O in Rd is the solution set of an equation f = 0 with
f ∈ R[x1, . . . ,xd ]. Hypersurfaces in dimensions 2 and 3 are called algebraic curves and
algebraic surfaces, respectively. The degree of O is defined by the degree of f . An
isolated point p ∈ Rd is a point on O such that an open neighborhood of p in Rd does
not contain any further point of O . An isocomplex of O is a simplicial complex S that
is isotopic to O . A stable isocomplex is an isocomplex that is stable at vertices, that is,
there exists an isotopy ψ between O and S such that for each vertex v of S, ψ(t0,v) =
v for any t ∈ [0,1]. Computing the topology of O means to compute an isocomplex,
computing a geometric-topological analysis means to compute a stable isocomplex.

3 Bounds for algebraic plane curves

For simplicity, we assume throughout this section that any algebraic curve is bounded.
Unbounded curves can be isotopically approximated within a sufficiently large bound-
ing box using the same methodology.
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3.1 Stable isocomplexes

Our main idea for deriving lower bounds is to construct algebraic hypersurfaces with
many isolated points. We can even fix the location of each isolated point to a ball of
arbitrary small radius.

Theorem 1. For d,n ∈ N, set c :=
(bn/2c+d

d

)
− d. Then, for any ε > 0, and any set of

points p1, . . . , pc ∈ Qd , there exists a hypersurface C ⊂ Rd of degree n such that for any
pi, C contains an isolated point p′i ∈ Rd with ‖pi− p′i‖2 < ε .

Proof. W.l.o.g., we assume that n is even. The idea is to construct d polynomials
f1, . . . , fd of degree n/2 that all interpolate the points p1, . . . , pc, and to consider the
curve defined by f := f 2

1 + . . .+ f 2
d . Obviously, deg f ≤ n, and V ( f ) has isolated points

exactly at the intersection points of V ( f1)∩ . . .∩V ( fd). We have to prove that f1, . . . , fd
can be chosen such that they intersect only in a finite number of points.

Firstly, almost all choices of d hypersurfaces of degree n/2 yield a zero-dimensional
common intersection: consider the coefficients of the polynomials as indeterminates,
then the (multivariate) resultant R [7] with respect to any variable, say x1, is a polyno-
mial in x1 that does not vanish completely. Thus, for almost any choice of coefficients,
the concrete set of polynomials will only have finitely many common intersections.

We next fix c points p′1, . . . , p′c in Cd with yet indeterminate coordinates. We force d
hypersurfaces with indeterminate coefficients to pass through them. As a consequence,
each coefficient can be re-expressed in dependency of the coordinates of the p′i, plus
additional degrees of freedom. The same also holds true for the resultant polynomial
R. The statement of the theorem follows if we can prove that the resultant polynomial
does not vanish identically for some choice of p′1, . . . , p′c, because this already implies
that it does not vanish identically for almost all choices of p′1, . . . , p′c.

The degree of R is (n/2)d . Choose d hypersurfaces f1, . . . , fd such that the leading
term of R does not vanish. Then, there exist (n/2)d intersection points in the projective
space P(Cd), and we can w.l.o.g. assume that all these points actually lie in the affine
space Cd . It is a simple proof that (n/2)d ≥ c for all n,d ∈ N (by induction on d). So,
we can pick c of the common intersection points as points p′1, . . . , p′c from above, and
set the other degrees of freedom such that we obtain f1, . . . , fd . With this choice, the
resultant does not vanish, thus, it defines a lower-dimensional variety in Cd . It follows
that the resultant does not vanish for almost any choice of base points p′1, . . . , p′c.

Thus, for given points p1, . . . , pc ∈ Qd , we find points p′1, . . . , p′c in an ε-ball around
them such that there are hypersurfaces f1, . . . , fd interpolating them and such that the
resultant of f1, . . . , fd does not vanish completely. It remains to argue that p′1, . . . , p′c
can be chosen with real coordinates, but this follows immediately, since otherwise, the
resultant variety would contain an open ball of Rd , and consequently, it would contain
the whole Rd , which is impossible.

For constant d, the theorem says that we can choose Θ(nd) arbitrary rational points
and construct an algebraic hypersurface of degree n with isolated points close to them.

Theorem 2. There exists an algebraic curve O ⊂ R2 of degree n such that any stable
isocomplex for O has Ω(n3) vertices.
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CONFLICT

Fig. 1. Illustration of the construction in the proof of Theorem 2

Proof. We proof the claim by constructing a suitable curve O . Let first be the unit circle
be a component of O . Any isocomplex of O must then contain a sequence of points on
the unit circle which form a cycle in the complex. We cut out c′ :=

(n/4+2
2

)
−2 disjoint

regions of the unit disc by intersecting the disc with c′ different lines. We place a disc
of size ε in each of the regions and force an isolated point of the curve O to lie inside
each disc (Fig. 1 left). By Theorem 1, this is possible if O is of degree at least n/2.

The isotopic cycle for the unit circle component contains a vertex in each of the
regions: If there is no such vertex, the cycle misses the region completely, so the isolated
point is outside the cycle, contradicting the properties of a stable isocomplex (Fig. 1
middle). Hence, at least c′ = Ω(n2) vertices are placed on the unit circle.

Finally, we take a collection of n/4 concentric circles to be part of O (instead of
just the unit circle) such that the lines chosen as above till cut out c′ disjoint regions for
any of the circles (Fig. 1 right). This is clearly possible, if all concentric circles have
radius close enough to 1. The argument from above now works separately for each of
the circles, thus, each one is divided into Ω(n2) line segments under the isotopy.

To summarize, the final curve consists of two components: one curve of degree n/2
that forces the isolated singularities in the regions, and a collection of n/4 circles (of
degree n/2). The union is of degree n, and any stable isocomplex requires Ω(n3) line
segments (and vertices) in total.

The upper bound of O(n3) vertices is well-known and follows immediately from
cylindrical algebraic decomposition (see Figure 2)

Proposition 1. For any curve O ⊂ R2 of degree n, there exists a stable isocomplex with
O(n3) cells.

3.2 General Isocomplexes

We next remove the stability requirement on the isocomplex. The following lower
bound follows directly by considering an arrangement of n lines in generic position.

Proposition 2. For any n ∈N, there exists an algebraic curve O ⊂ R2 of degree n such
that any isocomplex for O has Ω(n2) vertices.

In order to establish the upper bound of O(n2) for isocomplexes of algebraic curves,
we show first that an algebraic curve decomposes into up to O(n2) points and smooth,
x-monotone segments.
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Fig. 2. An algebraic curve O of degree n has up to n(n− 1) x-critical points p, that is, f (p) =
fy(p) = 0. The projections of these points decompose the x-axes into O(n2) delineable sets. This
means that the fiber above each cell in the decomposition consists of finitely many (at most n)
function graphs. Inserting points in between two consecutive projections and lifting each of the
points in one dimension leads to a stable isocomplex of O with at most 2n2(n−1) points.

Definition 1. Let O ⊂ R2 be an algebraic curve without vertical segments. For a point
p ∈ R2, the branch numbers of p are a pair of integers (`p,rp) denoting the number
of paths of the curves entering from the left hand side and from the right hand side,
respectively. A point is called event point if its branch numbers do not equal (1,1).

Lemma 1. For an event point p, we set bp to the sum of its branch numbers. The sum
of the bp’s for all event points is bounded by 2n(n−1).

Proof. For a point p = (x0,y0) on an algebraic plane curve O = V ( f ), we consider the
Taylor expansion

f (x,y) =
n

∑
i=0

(ai0(x− x0)i +ai1(x− x0)i−1(y− y0)+ . . .+aii(y− y0)i)

of f at p. The smallest i such that at least one of the coefficients ai j, 0≤ j ≤ i, does not
vanish is denoted the multiplicity mO(p) of O at p. From this definition, it follows that
O ′ := V ( ∂ f

∂y ) has multiplicity mO ′(p) ≥ mO(p)− 1 at p. Furthermore, the intersection
multiplicity i(O1,O2, p) of two algebraic curves O1 = V ( f ) and O2 = V (g) at a point
p ∈ C2 is defined as the dimension of the vector space C[x,y]p/( f ,g) where C[x,y]p
is the localization of the polynomial ring C[x,y] at p [3]. It holds that mO1(p) ·mO2 ≤
i(O1,O2, p) with equality occurring iff f and g have no tangent line in common at p.
Furthermore, due to Bézout’s Theorem, the sum ∑p∈O1∩O2

i(O1,O2, p) of all intersec-
tion multiplicities is bounded by deg( f ) ·deg(g).

If p = (x0,y0) is no common intersection point of O :=V ( f ) and O ′ :=V ( ∂ f
∂y ), then

p is adjacent to exactly two arcs of O which are orthogonal to the gradient ∇ f (p) =(
∂ f
∂x (p), ∂ f

∂y (p)
)

at p. Thus, the branch numbers for p are (1,1). An event point p =

(x0,y0) is a common intersection point of O and O ′ := V ( ∂ f
∂y ) and, hence, i(O,O ′, p)≥

1 for each event point. The arithmetic mean (`p + rp)/2 of the two branch numbers
`p and rp at p constitutes a lower bound on the multiplicity of O at p; this follows
from the fact that, for arbitrary small ε , there exists lines Lx = V (x− x0 + εx) and Ly =
V (y− y0 + εy), |εx|, |εy| < ε , that both intersect O in at least (`p + rp)/2 points. This
shows that the first

⌈
(`p + rp)/2

⌉
−order terms of the Taylor expansion of f at p vanish.
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Fig. 3. Starting with the stable isocomplex of size O(n3) we straighten edges which connect two
non critical points. Finally adjacent straight line connections are removed. The size of so obtained
isocomplex reduces to the number of arcs of O connecting two critical points, that is, O(n2).

It follows that

∑
p event point

(`p + rp) ≤ 2 · ∑
p event point

mO(p)≤ 2 · ∑
p event point

mO(p) ·mO ′(p)

≤ 2 · ∑
p∈O

i(O,O ′, p)≤ 2n(n−1)

Theorem 3. For any algebraic curve O ⊂ R2 of degree n, there exists an isocomplex
with O(n2) simplices.

Proof. We consider the isocomplex returned by a cylindrical algebraic decomposition
algorithm. It returns O(n2) many fibers of the curves (with respect to some projection
direction) and connects the fiber points by straight-line segments. Since any fiber has
at most n points, the complexity is O(n3). We can assume that no segment is vertical
and consider the complex as a directed graph from left to right, with the fiber points
as vertices. In particular, it makes sense to talk about the in-degree of a vertex as the
number of edges that enter from the left hand side. We re-embed the graph into the
plane with the following rules. (1) Each vertex remains the same x-coordinate, and the
vertical ordering of the vertices at the same x-coordinate remains unchanged. (2) Each
edge from a vertex of in-degree 1 to another vertex of in-degree 1 must be horizontal.

Properties (1) ensures that the result is isotopic to the original complex. A complex
with properties (1) and (2) can be computed by a simple plane sweep algorithm (Fig. 3)
Vertices adjacent to exactly two horizontal edges are removed afterwards, and the edges
are merged. Let Ch denote this new complex. By construction, any maximal smooth x-
monotone segment of the curve is represented by a polyline in Ch with two bends,
running horizontally between the two bends. The number of edges is thus at most three
times the number of segments of the curve that leave a critical point. Their number can
be bounded by O(n2), thus the complexity of Ch is also O(n2).

4 Higher dimensions

We show to what extend our results for curves can be generalized into higher dimen-
sions. Throughout this section, we consider d ≥ 2 to be a fixed constant – this yields
bounds of the form Ω /O(nh(d)) for some function h in d. However, one should keep
in mind that the constants hidden in the O-notation depend on d. Furthermore, we still
assume for simplicity that the considered hypersurface is bounded in each coordinate.
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Fig. 4. Illustration of Proposition 4 for a torus: OR is a plane curve consisting of 2 circles (in
black). Its stable isocomplex is drawn in blue, and the completion in red color. Each triangle of
the completion is lifted to R3; they form an isotopic triangulation of the torus.

Stable isocomplexes: The construction of Theorem 2 can be immediately transfered
into arbitrary dimensions by choosing O(nd) isolated points close to O(n) concentric
d-spheres. This yields.

Proposition 3. For any n∈N and d≥ 2, there exists an algebraic hypersurface O ⊂Rd

of degree n such that any stable isocomplex for O has Ω(nd+1) vertices.

This implies a lower bound of Ω(nd+1) for the total number of simplices, since a
complex with v vertices can only have p to 2dv many simplices.

Also the upper bound construction can be generalized; however, the exponent in-
creases exponentially with d.

Proposition 4. For a hypersurface O ⊂Rd of degree n, there exists a stable isocomplex
with O(n2d−1) simplices.

Proof. This result follows from the general theory on cylindrical algebraic decomposi-
tion. We only sketch the proof here. Let f ∈ Q[x1, . . . ,xd ] be the equation for O , then

R := resxd ( f ,
∂ f
∂xd

) ∈ Q[x1, . . . ,xd−1]

defines a hypersurface OR in Rd−1. The algorithmic idea is to recursively build a sim-
plicial complex for OR, and “completing” it to a simplicial complex that triangulates
Rd−1 (or more precisely, the projection of O on the first d−1 variables; see Fig. 4). The
lifts of the cells of this completed simplicial complex form an isocomplex of O (this
follows from the fact that O is delineable with respect to OR [3, 5]).

The bound is proven by induction on d. The base case follows with Proposition 1.
Assume that the claim is proven for d− 1. Since OR is of degree at most n2, there is
an isocomplex with O(n2d−2) simplices. Note that the simplices of this isocomplex are
cylindrically arranged with respect to xd−1. Thus, in order to complete the isocomplex,
we only have to traingulate each cylinder, which can be done with a constant number
of simplices per cylinder. Each cylinder can be assigned to the simplex of Od below it.
Therefore, the completed isocomplex has the same size as the isocomplex of OR. Since
each of its simplices is lifted at most n times, the bound follows.
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General isocomplexes: Again, the simple lower bound from Proposition 2 transfers
directly into higher dimensions by considering n hyperplanes in generic position:

Proposition 5. For any n∈N and d≥ 2, there exists an algebraic hypersurface O ⊂Rd

of degree n such that any isocomplex for O has Ω(nd) vertices.

The upper bound below follows using recursive projection as in Proposition 4 –
the only difference is that the base case (the triangulation for d = 2) is replaced by the
algorithm described in Theorem 3. Note that it is possible to complete this triangula-
tion without increasing the complexity by constructing a trapezoidal decomposition and
barycentrically subdividing the faces. We obtain:

Proposition 6. For a hypersurface O ⊂Rd of degree n, there exists a stable isocomplex
with O(n3/4·2d−1) cells.

Not surprisingly, the improved base case lessens the growth of the isocomplex in
higher dimensions, but due to the projection strategy used in the construction, the bound
remains double exponential in d. We believe that these upper bounds are not tight – it
might be possible to improve them by a triangulation method not based on projection.
However, already for algebraic surfaces, it seems difficult to come up with a simplifi-
cation algorithm which provably reduces the complexity and preserves the topology at
the same time.
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