
Propagation Models for
Computing Biochemical Reaction Networks∗

Thomas A. Henzinger
IST Austria, Austria

tah@ist.ac.at

Maria Mateescu
EPFL, Switzerland

maria.mateescu@epfl.ch

ABSTRACT
We introduce propagation models, a formalism designed to
support general and efficient data structures for the tran-
sient analysis of biochemical reaction networks. We give
two use cases for propagation abstract data types: the uni-
formization method and numerical integration. We also
sketch an implementation of a propagation abstract data
type, which uses abstraction to approximate states.

1. INTRODUCTION
We address the transient analysis for Markov chains that
represent biochemical reaction networks, as formulated by
Gillespie [3]. This problem reduces to solving the chemical
master equation, which is a differential equation that defines
how a probability distribution vector over the states of the
network evolves with time.

A computational problem usually has more than one algo-
rithm that solves it, and each algorithm may have differ-
ent implementations. The implementation of an algorithm
strongly relies on the data structures that it uses. Here we
introduce propagation models (PM), with which we associate
a propagation abstract data type (ADT), a data structure
specifically designed to support the implementation of al-
gorithms for the transient analysis of biochemical reaction
networks.

A data structure consists of a state space together with a
list of operators and their specifications. At any moment a
data structure is in a given state, and by applying one of the
operators, the state is updated according to the specification
of the operator.

In particular, a propagation ADT is defined over a set of
nodes, and its state is a mass vector over this discrete space.
In other words, the state of a propagation ADT assigns a
mass value to each node. The data structure comes with
two operations, the init operator and the next operator.
The first one is used at initialization; the second, to let time

advance by moving mass from all nodes to their respective
neighbors.

We analyze our data structure from two points of view: first,
we look at its usefulness, and second, at its efficiency. We
present two standard numerical algorithms for the transient
analysis of Markov chains which can be implemented using
a propagation ADT: the uniformization method and numer-
ical integration. We then sketch a possible implementation
for the states and operators of a propagation ADT, which
uses abstraction functions to deal with large node sets, such
as threshold abstraction for mass values.

2. CHEMICAL MASTER EQUATION
A continuous-time Markov chain (CTMC) is a stochastic
process X(t)t≥0 on a discrete set S of nodes. The stochastic
process X is determined by a function α: S × S → R≥0

which associates a propensity with each pair of nodes, such
that, for an infinitesimal time interval dt,

Pr(X(t+ dt) = x′ | X(t) = x) = αx→x′ · dt.

The transient solution of the Markov chain consists of a
probability distribution vector p(t) on S, with

p(t)
x = Pr(X(t) = x),

which can be computed as the solution of the differential
equation:

dp
(t)

x′

dt
=
∑
x∈S

αx→x′ · p(t)
x −

∑
x′′∈S

αx′→x′′ · p(t)

x′ . (1)

In the setting of biochemical reaction networks this is known
as the chemical master equation (CME).

The solution of Equation 1 is p(t) = p(0) ·eQ·t, where Q is the
generator matrix of the Markov chain, defined by Qx→x′ =
αx→x′ if x 6= x′, and Qx→x = −

∑
x′ 6=x αx→x′ .

3. DEFINITION
We give formal definitions for both propagation models and
propagation ADTs.

Definition 1 (Propagation Model). A propagation
model is a tuple 〈S,M, ζ, π〉 where

• S is a discrete set of nodes;1

1Each node of a propagation model corresponds to a state



• M is a set of mass values;

• ζ ∈ [S →M] is the initialization vector, which assigns
an initial mass value to each node;

• π: S×S×M→M is the mass propagation function,
which assigns a mass value to each pair of nodes given
a mass value for the first node in the pair. For the
propagation value from node x to node x′, given mass
value µ of x, we use the notation πx→x′(µ).

Example 1 (Predator-prey). Consider a predator prey
example, where two species, predator R and prey Y , interact
according to the following reactions:

∅ → Y ; Y → R; R→ ∅

The propagation model that represents the stochastic behav-
ior of the predator-prey example with initial state y is de-
fined over the set S = N2

≥0 of nodes, where each node x =
(xR, xY ) is defined by the number xR of predators and the
number xY of prey. The mass values M = [0, 1] represent
probabilities. Furthermore, if c1, c2, c3 are the rate constants
of our three reactions:

• ζy = 1 for the initial state y, and ζx = 0 otherwise;

• π(xR,xY )→(xR,xY +1)(p) = p · c1 · xY ;

• π(xR,xY )→(xR+1,xY −1)(p) = p · c2 · xR · xY ;

• π(xR,xY )→(xR−1,xY )(p) = p · c3 · xR.

While the mass values of propagation models usually rep-
resent node probabilities (as in the example above), this is
not always the case; for example, mass may also represent
the expectation of a node variable.

We associate with each propagation model an abstract data
type, called a propagation ADT.

Definition 2 (Propagation Abstract Data Type).
The propagation ADT associated with a given propagation
model 〈S,M, ζ, π〉 is a triple 〈state, init,next〉, where

• the state space state = [S →M] is the set of vectors
that assign to each node in S a mass value in M;

• the initialization operator init ∈ state returns ζ, the
initialization vector of the propagation model;

• the successor operator next: state→ state updates a
state in state by propagating mass from every node in
S to its neighbors. Formally, for each state s ∈ state
and each node x′ ∈ S,

next(s)x′ =
∑
x∈S

πx→x′(sx)−
∑
x∈S

πx′→x′′(sx′).

Note that a propagation ADT supports the use of value
iteration algorithms [1].

of a Markov chain. We use the term “node” in order to
distinguish it from the state of a propagation ADT, which
is a mass vector.

Algorithm 1 Uniformization

Input: propagation model Nu, error ε, time horizon T ;
Output: mass vector p(T );
Variables: s of type prop tu;
1: s← initu;
2: sum← 0;
3: while sum < 1− ε do
4: p(T ) ← p(T ) + PΛt(k) · s;
5: sum← sum+ PΛt(k);
6: s← nextu(s);
7: end while.

Algorithm 2 Integration

Input: propagation model N i, time horizon T ;
Output: mass vector p(T );
Variables: s of type prop ti;
1: s← initi;
2: t← 0;
3: while t < T do
4: s← nexti(s);
5: t← t+ dt;
6: end while;
7: p(T ) ← s.

4. APPLICATIONS
We present two algorithms that can be implemented us-
ing propagation ADTs, the uniformization method [5] and
Runge-Kutta integration, both of which solve the CME (see
Equation 1). For the Runge-Kutta method we restrict our
presentation to first-order Runge-Kutta in order to keep the
presentation simple; propagation models can be used for
higher-order methods as well [6].

The uniformization method for Markov chains computes the
transient solution p(t) as

∑∞
k=0 r

(k) · PΛt(k), which is then

approximated by the finite sum
∑R

k=0 r
(k) · PΛt(k), for a

sufficiently large truncation point R. The vector r(k) is
recursively defined by r(0) = p(0), and r(k+1) = r(k) · P ,
where P = I + 1

Λ
· Q for a uniformization rate Λ with

Λ ≥ max {−Qs,s}. Furthermore, PΛt(k) is the value of the
Poisson distribution with rate Λ · t, at point k.

Suppose we are given a Markov chain with node set S and
propensity rate function α: S × S → R≥0. Also given are
an initial node y ∈ S and a time horizon T . We want to

compute p(T ), knowing that p
(0)
y = 1. The uniformization

method for solving this problem uses the propagation model
Nu = 〈S, [0, 1], ζ, πu〉, with ζs = 1 if s = y and ζs = 0
otherwise, and πu

s→s′(µ) = Ps→s′ · µ. The corresponding
propagation ADT prop tu associated with Nu is used in
Algorithm 2. The truncation point R is chosen such that R
is the smallest integer for which

∑R
k=1 PΛt(k) > 1 − ε, for

some given error ε > 0.

Next, we present a second algorithm, based on a simple in-
tegration of Equation 1, using the Euler method (first-order
Runge-Kutta) with time step dt. For this we define a sec-
ond propagation model, N i =

〈
S, [0, 1], ζ, πi

〉
, with the mass

propagation function πi
s→s′(µ) = αs→s′ · µ · dt.

Here we illustrated only discrete-time propagation models,
but the CME itself can be viewed as a continuous-time prop-
agation model [6].



Algorithm 3 Successor

Input: state s, propagation model N = 〈S,M, ζ, π〉, mass
threshold δ > 0;

Output: state s, error ε;
1: propagate and add(s, N);
2: collect and remove(s, δ);
3: ε← 1− sum(s.µ);
4: return 〈s.µ, ε〉.

5. IMPLEMENTATION
We briefly describe a possible implementation of a propa-
gation ADT. Since biochemical reaction networks usually
have a very large, even infinite node set, it is often advan-
tageous to implement the states of a propagation ADT ap-
proximately.

We can obtain approximations of the state of a propaga-
tion ADT by applying a threshold abstraction for mass val-
ues [2], which considers only nodes that hold significant
mass, and/or node aggregation [4], which aggregates many
nodes into a single “abstract node” and propagates, in ad-
dition to probabilities, also conditional expectations of the
node variables. Here we present only the threshold abstrac-
tion method.

Algorithm 3 gives the pseudocode for an implementation of
the next operator, which relies on threshold abstraction.
The structure s holds a state of the propagation model,
which is received as input, updated, and returned as out-
put. Each node n ∈ s has three different fields: the field n.x
refers to a node in S (the discrete space of the propagation
model), the field n.µ holds the mass value currently associ-
ated with the node, and the field n.acc is used as a buffer to
temporarily store incoming mass during the successor com-
putation.

The successor computation proceeds in two phases, a prop-
agate and a collect phase. The function propagate and add
performs the propagate phase, during which mass is moved
from each node to its successors. In order to do so, for all
nodes n ∈ S, if αn.x→x′ > 0, we lookup in s for the node
n′ with n′.x = x′, and if no such node is found then it is
created and added to the current state s. Once the node n′

is obtained, we transfer mass from n to n′:

n′.acc ← n′.acc + πn.x→x′(n.µ);

n.acc ← n.acc − πn.x→x′(n.µ).

Note that the nodes in the structure s are created “on-the-
fly”: if a successor n′ does not yet exist in s, it is added dy-
namically when it obtains a positive mass value. The func-
tion collect and remove performs the collect phase, during
which mass is moved from the temporary buffer acc, where
it has accumulated:

n.µ← n.µ+ n.acc.

In addition, all nodes that have an insignificant mass value,
relative to a given threshold δ > 0, are deleted from the
structure s.

The algorithm also returns the accumulated error, computed
as ε = 1−

∑
n∈s n.µ.

6. REFERENCES
[1] K. Chatterjee and T. A. Henzinger. Value iteration. In

O. Grumberg and H. Veith, editors, 25 Years of Model
Checking, volume 5000 of Lecture Notes in Computer
Science, pages 107–138. Springer, 2008.

[2] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf.
Fast adaptive uniformization of the chemical master
equation. In Proceedings of the 2009 International
Workshop on High Performance Computational
Systems Biology, HIBI ’09, pages 118–127, Washington,
DC, USA, 2009. IEEE Computer Society.

[3] D. T. Gillespie. A rigorous derivation of the chemical
master equation. Physica A, 188:404–425, 1992.

[4] T. A. Henzinger and M. Mateescu. Tail approximation
the chemical master equation. 8th International
Workshop on Computational Systems Biology, 2011.

[5] A. Jensen. Markoff chains as an aid in the study of
Markoff processes. Skandinavisk Aktuarietidskrift,
36:87–91, 1953.

[6] M. Mateescu. Propagation Models for Biochemical
Reaction Networks. Phd thesis, EPFL, Switzerland,
2011.


