Propagation Models for
Computing Biochemical Reaction Networks:

Thomas A. Henzinger
IST Austria, Austria
tah@ist.ac.at

ABSTRACT

We introduce propagation models, a formalism designed to
support general and efficient data structures for the tran-
sient analysis of biochemical reaction networks. We give
two use cases for propagation abstract data types: the uni-
formization method and numerical integration. We also
sketch an implementation of a propagation abstract data
type, which uses abstraction to approximate states.

1. INTRODUCTION

We address the transient analysis for Markov chains that
represent biochemical reaction networks, as formulated by
Gillespie [3]. This problem reduces to solving the chemical
master equation, which is a differential equation that defines
how a probability distribution vector over the states of the
network evolves with time.

A computational problem usually has more than one algo-
rithm that solves it, and each algorithm may have differ-
ent implementations. The implementation of an algorithm
strongly relies on the data structures that it uses. Here we
introduce propagation models (PM), with which we associate
a propagation abstract data type (ADT), a data structure
specifically designed to support the implementation of al-
gorithms for the transient analysis of biochemical reaction
networks.

A data structure consists of a state space together with a
list of operators and their specifications. At any moment a
data structure is in a given state, and by applying one of the
operators, the state is updated according to the specification
of the operator.

In particular, a propagation ADT is defined over a set of
nodes, and its state is a mass vector over this discrete space.
In other words, the state of a propagation ADT assigns a
mass value to each node. The data structure comes with
two operations, the init operator and the next operator.
The first one is used at initialization; the second, to let time

Maria Mateescu
_EPFL, Switzerland
maria.mateescu@epfl.ch

advance by moving mass from all nodes to their respective
neighbors.

We analyze our data structure from two points of view: first,
we look at its usefulness, and second, at its efficiency. We
present two standard numerical algorithms for the transient
analysis of Markov chains which can be implemented using
a propagation ADT: the uniformization method and numer-
ical integration. We then sketch a possible implementation
for the states and operators of a propagation ADT, which
uses abstraction functions to deal with large node sets, such
as threshold abstraction for mass values.

2. CHEMICAL MASTER EQUATION

A continuous-time Markov chain (CTMC) is a stochastic
process X (t):>0 on a discrete set S of nodes. The stochastic
process X is determined by a function a: S x & = Rxg
which associates a propensity with each pair of nodes, such
that, for an infinitesimal time interval dt,

PrX(t+dt)=2'| X(t) =2) = 0g_e -dt.

The transient solution of the Markov chain consists of a
probability distribution vector p(t) on S, with

P = Pr(X(t) =),

which can be computed as the solution of the differential
equation:

dp'
dt = Zaz—)z’ pgct> - Z Qg 7 pS/) (1)

zeS z''eS

In the setting of biochemical reaction networks this is known
as the chemical master equation (CME).

The solution of Equation 1 is p® = p(® .9t where Q is the
generator matrix of the Markov chain, defined by Q,_..» =
Qe if o # 2, and Quose = — 30,0, Qasar-

3. DEFINITION

We give formal definitions for both propagation models and
propagation ADTs.

DEFINITION 1 (PROPAGATION MODEL). A propagation
model is a tuple (S, M, {,) where

e S is a discrete set of nodes;'

!'Each node of a propagation model corresponds to a state

e M is a set of mass values;

e (€[S — M] is the initialization vector, which assigns
an initial mass value to each node;

e 1: SXS XM — M is the mass propagation function,
which assigns a mass value to each pair of nodes given
a mass value for the first node in the pair. For the
propagation value from node x to node x’, given mass
value p of T, we use the notation wy_ . (1).

EXAMPLE 1
example, where two species, predator R and prey Y, interact
according to the following reactions:

P—=Y; Y —R R—0

The propagation model that represents the stochastic behav-
ior of the predator-prey example with initial state y is de-
fined over the set S = N2, of nodes, where each node x =
(xR, zy) is defined by the number xr of predators and the
number xy of prey. The mass values M = [0,1] represent
probabilities. Furthermore, if c1, ca2, c3 are the rate constants
of our three reactions:

Cy =1 for the initial state y, and (x = 0 otherwise;
® W(mnaxy)ﬁ(ﬂflz,wx/%»l)(p) =Pp-c1-Ty;
® Tapay)s(@ptiay—1)(P) =P-C2 TR Ty;

* W(IR@Y)%(IR*LIY)(I)) =D C3 TR

While the mass values of propagation models usually rep-
resent node probabilities (as in the example above), this is
not always the case; for example, mass may also represent
the expectation of a node variable.

We associate with each propagation model an abstract data
type, called a propagation ADT.

DEFINITION 2
The propagation ADT associated with a given propagation
model (S, M, (,m) is a triple (state, init, next), where

e the state space state = [S — M] is the set of vectors
that assign to each node in S a mass value in M;

e the initialization operator init € state returns (, the
initialization vector of the propagation model;

e the successor operator next: state — state updates a
state in state by propagating mass from every node in
S to its neighbors. Formally, for each state s € state
and each node ' € S,

next(s)m/ = Z WIHI/(SI) - Z ﬂ'm/*,z//(sz/).

zeS zES

Note that a propagation ADT supports the use of value
iteration algorithms [1].

of a Markov chain. We use the term “node” in order to
distinguish it from the state of a propagation ADT, which
is a mass vector.

(PREDATOR-PREY). Consider a predator prey

(PROPAGATION ABSTRACT DATA TYPE).

Algorithm 1 Uniformization

Input: propagation model N*, error €, time horizon T}
Output: mass vector p(T);
Variables: s of type prop_t%;

1: s « init";

2: sum « 0;

3: while sum < 1 — ¢ do

4: pM) — pT) 4 Pyy(k) - s

51 sum < sum + P (k);

6: s < next¥(s);

7: end while.

Algorithm 2 Integration

Input: propagation model N?, time horizon T}
Output: mass vector p(T);
Variables: s of type prop_t?;
s < init%;
t < 0;
while t < T do
s + next’(s);
t < t+dt;
end while;
: p(M) s

NPT wh

4. APPLICATIONS

We present two algorithms that can be implemented us-
ing propagation ADTSs, the uniformization method [5] and
Runge-Kutta integration, both of which solve the CME (see
Equation 1). For the Runge-Kutta method we restrict our
presentation to first-order Runge-Kutta in order to keep the
presentation simple; propagation models can be used for
higher-order methods as well [6].

The uniformization method for Markov chains computes the
transient solution p(t) as > oo, P Pas(k), which is then
approximated by the finite sum Zf’zo r®) . Pay(k), for a
sufficiently large truncation point R. The vector r® is
recursively defined by r® = p(O), and rFtD =) . p
where P = I + % - @ for a uniformization rate A with
A > max {—Qs,s}. Furthermore, Pa¢(k) is the value of the
Poisson distribution with rate A - ¢, at point k.

Suppose we are given a Markov chain with node set S and
propensity rate function a: S x & — Rx>¢. Also given are
an initial node y € S and a time horizon T. We want to
compute p(T)7 knowing that pé()) = 1. The uniformization
method for solving this problem uses the propagation model
N* = (S,[0,1],¢(,7%), with {(c = 1if s = y and {;c = 0
otherwise, and n¢ ., () = Ps_s - u. The corresponding
propagation ADT prop_t* associated with N* is used in
Algorithm 2. The truncation point R is chosen such that R
is the smallest integer for which ZkR‘:l Par(k) > 1 — €, for
some given error € > 0.

Next, we present a second algorithm, based on a simple in-
tegration of Equation 1, using the Euler method (first-order
Runge-Kutta) with time step dt. For this we define a sec-
ond propagation model, N* = <S, [0,1],¢, 7ri>, with the mass
propagation function 7, (1) = aese - 1 - dt.

Here we illustrated only discrete-time propagation models,
but the CME itself can be viewed as a continuous-time prop-
agation model [6].

Algorithm 3 Successor

Input: state s, propagation model N = (S, M,(,7), mass
threshold § > 0;

Output: state s, error ¢;

1: propagate_and_add(s, N);

2: collect_and_remove(s, d);

31 €<+ 1 — sum(s.p);

4: return (s.u,e).

5. IMPLEMENTATION

We briefly describe a possible implementation of a propa-
gation ADT. Since biochemical reaction networks usually
have a very large, even infinite node set, it is often advan-
tageous to implement the states of a propagation ADT ap-
proximately.

We can obtain approximations of the state of a propaga-
tion ADT by applying a threshold abstraction for mass val-
ues [2], which considers only nodes that hold significant
mass, and/or node aggregation [4], which aggregates many
nodes into a single “abstract node” and propagates, in ad-
dition to probabilities, also conditional expectations of the
node variables. Here we present only the threshold abstrac-
tion method.

Algorithm 3 gives the pseudocode for an implementation of
the next operator, which relies on threshold abstraction.
The structure s holds a state of the propagation model,
which is received as input, updated, and returned as out-
put. Each node n € s has three different fields: the field n.x
refers to a node in S (the discrete space of the propagation
model), the field n.y holds the mass value currently associ-
ated with the node, and the field n.acc is used as a buffer to
temporarily store incoming mass during the successor com-
putation.

The successor computation proceeds in two phases, a prop-
agate and a collect phase. The function propagate_and_add
performs the propagate phase, during which mass is moved
from each node to its successors. In order to do so, for all
nodes n € S, if ay.z—er > 0, we lookup in s for the node
n’ with n’.z = 2’, and if no such node is found then it is
created and added to the current state s. Once the node n’
is obtained, we transfer mass from n to n':

! !
n'.acc < n'.acc+ Ty oo (N);

N.ACC 4— MN.GCC — Ty g sqr (N.44).

Note that the nodes in the structure s are created “on-the-
fly”: if a successor n’ does not yet exist in s, it is added dy-
namically when it obtains a positive mass value. The func-
tion collect_and_remove performs the collect phase, during
which mass is moved from the temporary buffer acc, where
it has accumulated:

n.u < n.u+ n.acc.

In addition, all nodes that have an insignificant mass value,
relative to a given threshold § > 0, are deleted from the
structure s.

The algorithm also returns the accumulated error, computed
ase=1—> . n.pu

6. REFERENCES

[1] K. Chatterjee and T. A. Henzinger. Value iteration. In
O. Grumberg and H. Veith, editors, 25 Years of Model
Checking, volume 5000 of Lecture Notes in Computer
Science, pages 107-138. Springer, 2008.

[2] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf.
Fast adaptive uniformization of the chemical master
equation. In Proceedings of the 2009 International
Workshop on High Performance Computational
Systems Biology, HIBI ’09, pages 118-127, Washington,
DC, USA, 2009. IEEE Computer Society.

[3] D. T. Gillespie. A rigorous derivation of the chemical
master equation. Physica A, 188:404-425, 1992.

[4] T. A. Henzinger and M. Mateescu. Tail approximation
the chemical master equation. 8th International
Workshop on Computational Systems Biology, 2011.

[5] A. Jensen. Markoff chains as an aid in the study of
Markoff processes. Skandinavisk Aktuarietidskrift,
36:87-91, 1953.

[6] M. Mateescu. Propagation Models for Biochemical
Reaction Networks. Phd thesis, EPFL, Switzerland,
2011.

