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ABSTRACT
We introduce propagation models, a formalism designed to
support general and efficient data structures for the tran-
sient analysis of biochemical reaction networks. We give
two use cases for propagation abstract data types: the uni-
formization method and numerical integration. We also
sketch an implementation of a propagation abstract data
type, which uses abstraction to approximate states.

1. INTRODUCTION
We address the transient analysis for Markov chains that
represent biochemical reaction networks, as formulated by
Gillespie [3]. This problem reduces to solving the chemical
master equation, which is a differential equation that defines
how a probability distribution vector over the states of the
network evolves with time.

A computational problem usually has more than one algo-
rithm that solves it, and each algorithm may have differ-
ent implementations. The implementation of an algorithm
strongly relies on the data structures that it uses. Here we
introduce propagation models (PM), with which we associate
a propagation abstract data type (ADT), a data structure
specifically designed to support the implementation of al-
gorithms for the transient analysis of biochemical reaction
networks.

A data structure consists of a state space together with a
list of operators and their specifications. At any moment a
data structure is in a given state, and by applying one of the
operators, the state is updated according to the specification
of the operator.

In particular, a propagation ADT is defined over a set of
nodes, and its state is a mass vector over this discrete space.
In other words, the state of a propagation ADT assigns a
mass value to each node. The data structure comes with
two operations, the init operator and the next operator.
The first one is used at initialization; the second, to let time

advance by moving mass from all nodes to their respective
neighbors.

We analyze our data structure from two points of view: first,
we look at its usefulness, and second, at its efficiency. We
present two standard numerical algorithms for the transient
analysis of Markov chains which can be implemented using
a propagation ADT: the uniformization method and numer-
ical integration. We then sketch a possible implementation
for the states and operators of a propagation ADT, which
uses abstraction functions to deal with large node sets, such
as threshold abstraction for mass values.

2. CHEMICAL MASTER EQUATION
A continuous-time Markov chain (CTMC) is a stochastic
process X(t)t≥0 on a discrete set S of nodes. The stochastic
process X is determined by a function α: S × S → R≥0

which associates a propensity with each pair of nodes, such
that, for an infinitesimal time interval dt,

Pr(X(t+ dt) = x′ | X(t) = x) = αx→x′ · dt.

The transient solution of the Markov chain consists of a
probability distribution vector p(t) on S, with

p(t)
x = Pr(X(t) = x),

which can be computed as the solution of the differential
equation:

dp
(t)

x′

dt
=
∑
x∈S

αx→x′ · p(t)
x −

∑
x′′∈S

αx′→x′′ · p(t)

x′ . (1)

In the setting of biochemical reaction networks this is known
as the chemical master equation (CME).

The solution of Equation 1 is p(t) = p(0) ·eQ·t, where Q is the
generator matrix of the Markov chain, defined by Qx→x′ =
αx→x′ if x 6= x′, and Qx→x = −

∑
x′ 6=x αx→x′ .

3. DEFINITION
We give formal definitions for both propagation models and
propagation ADTs.

Definition 1 (Propagation Model). A propagation
model is a tuple 〈S,M, ζ, π〉 where

• S is a discrete set of nodes;1

1Each node of a propagation model corresponds to a state



• M is a set of mass values;

• ζ ∈ [S →M] is the initialization vector, which assigns
an initial mass value to each node;

• π: S×S×M→M is the mass propagation function,
which assigns a mass value to each pair of nodes given
a mass value for the first node in the pair. For the
propagation value from node x to node x′, given mass
value µ of x, we use the notation πx→x′(µ).

Example 1 (Predator-prey). Consider a predator prey
example, where two species, predator R and prey Y , interact
according to the following reactions:

∅ → Y ; Y → R; R→ ∅

The propagation model that represents the stochastic behav-
ior of the predator-prey example with initial state y is de-
fined over the set S = N2

≥0 of nodes, where each node x =
(xR, xY ) is defined by the number xR of predators and the
number xY of prey. The mass values M = [0, 1] represent
probabilities. Furthermore, if c1, c2, c3 are the rate constants
of our three reactions:

• ζy = 1 for the initial state y, and ζx = 0 otherwise;

• π(xR,xY )→(xR,xY +1)(p) = p · c1 · xY ;

• π(xR,xY )→(xR+1,xY −1)(p) = p · c2 · xR · xY ;

• π(xR,xY )→(xR−1,xY )(p) = p · c3 · xR.

While the mass values of propagation models usually rep-
resent node probabilities (as in the example above), this is
not always the case; for example, mass may also represent
the expectation of a node variable.

We associate with each propagation model an abstract data
type, called a propagation ADT.

Definition 2 (Propagation Abstract Data Type).
The propagation ADT associated with a given propagation
model 〈S,M, ζ, π〉 is a triple 〈state, init,next〉, where

• the state space state = [S →M] is the set of vectors
that assign to each node in S a mass value in M;

• the initialization operator init ∈ state returns ζ, the
initialization vector of the propagation model;

• the successor operator next: state→ state updates a
state in state by propagating mass from every node in
S to its neighbors. Formally, for each state s ∈ state
and each node x′ ∈ S,

next(s)x′ =
∑
x∈S

πx→x′(sx)−
∑
x∈S

πx′→x′′(sx′).

Note that a propagation ADT supports the use of value
iteration algorithms [1].

of a Markov chain. We use the term “node” in order to
distinguish it from the state of a propagation ADT, which
is a mass vector.

Algorithm 1 Uniformization

Input: propagation model Nu, error ε, time horizon T ;
Output: mass vector p(T );
Variables: s of type prop tu;
1: s← initu;
2: sum← 0;
3: while sum < 1− ε do
4: p(T ) ← p(T ) + PΛt(k) · s;
5: sum← sum+ PΛt(k);
6: s← nextu(s);
7: end while.

Algorithm 2 Integration

Input: propagation model N i, time horizon T ;
Output: mass vector p(T );
Variables: s of type prop ti;
1: s← initi;
2: t← 0;
3: while t < T do
4: s← nexti(s);
5: t← t+ dt;
6: end while;
7: p(T ) ← s.

4. APPLICATIONS
We present two algorithms that can be implemented us-
ing propagation ADTs, the uniformization method [5] and
Runge-Kutta integration, both of which solve the CME (see
Equation 1). For the Runge-Kutta method we restrict our
presentation to first-order Runge-Kutta in order to keep the
presentation simple; propagation models can be used for
higher-order methods as well [6].

The uniformization method for Markov chains computes the
transient solution p(t) as

∑∞
k=0 r

(k) · PΛt(k), which is then

approximated by the finite sum
∑R

k=0 r
(k) · PΛt(k), for a

sufficiently large truncation point R. The vector r(k) is
recursively defined by r(0) = p(0), and r(k+1) = r(k) · P ,
where P = I + 1

Λ
· Q for a uniformization rate Λ with

Λ ≥ max {−Qs,s}. Furthermore, PΛt(k) is the value of the
Poisson distribution with rate Λ · t, at point k.

Suppose we are given a Markov chain with node set S and
propensity rate function α: S × S → R≥0. Also given are
an initial node y ∈ S and a time horizon T . We want to

compute p(T ), knowing that p
(0)
y = 1. The uniformization

method for solving this problem uses the propagation model
Nu = 〈S, [0, 1], ζ, πu〉, with ζs = 1 if s = y and ζs = 0
otherwise, and πu

s→s′(µ) = Ps→s′ · µ. The corresponding
propagation ADT prop tu associated with Nu is used in
Algorithm 2. The truncation point R is chosen such that R
is the smallest integer for which

∑R
k=1 PΛt(k) > 1 − ε, for

some given error ε > 0.

Next, we present a second algorithm, based on a simple in-
tegration of Equation 1, using the Euler method (first-order
Runge-Kutta) with time step dt. For this we define a sec-
ond propagation model, N i =

〈
S, [0, 1], ζ, πi

〉
, with the mass

propagation function πi
s→s′(µ) = αs→s′ · µ · dt.

Here we illustrated only discrete-time propagation models,
but the CME itself can be viewed as a continuous-time prop-
agation model [6].



Algorithm 3 Successor

Input: state s, propagation model N = 〈S,M, ζ, π〉, mass
threshold δ > 0;

Output: state s, error ε;
1: propagate and add(s, N);
2: collect and remove(s, δ);
3: ε← 1− sum(s.µ);
4: return 〈s.µ, ε〉.

5. IMPLEMENTATION
We briefly describe a possible implementation of a propa-
gation ADT. Since biochemical reaction networks usually
have a very large, even infinite node set, it is often advan-
tageous to implement the states of a propagation ADT ap-
proximately.

We can obtain approximations of the state of a propaga-
tion ADT by applying a threshold abstraction for mass val-
ues [2], which considers only nodes that hold significant
mass, and/or node aggregation [4], which aggregates many
nodes into a single “abstract node” and propagates, in ad-
dition to probabilities, also conditional expectations of the
node variables. Here we present only the threshold abstrac-
tion method.

Algorithm 3 gives the pseudocode for an implementation of
the next operator, which relies on threshold abstraction.
The structure s holds a state of the propagation model,
which is received as input, updated, and returned as out-
put. Each node n ∈ s has three different fields: the field n.x
refers to a node in S (the discrete space of the propagation
model), the field n.µ holds the mass value currently associ-
ated with the node, and the field n.acc is used as a buffer to
temporarily store incoming mass during the successor com-
putation.

The successor computation proceeds in two phases, a prop-
agate and a collect phase. The function propagate and add
performs the propagate phase, during which mass is moved
from each node to its successors. In order to do so, for all
nodes n ∈ S, if αn.x→x′ > 0, we lookup in s for the node
n′ with n′.x = x′, and if no such node is found then it is
created and added to the current state s. Once the node n′

is obtained, we transfer mass from n to n′:

n′.acc ← n′.acc + πn.x→x′(n.µ);

n.acc ← n.acc − πn.x→x′(n.µ).

Note that the nodes in the structure s are created “on-the-
fly”: if a successor n′ does not yet exist in s, it is added dy-
namically when it obtains a positive mass value. The func-
tion collect and remove performs the collect phase, during
which mass is moved from the temporary buffer acc, where
it has accumulated:

n.µ← n.µ+ n.acc.

In addition, all nodes that have an insignificant mass value,
relative to a given threshold δ > 0, are deleted from the
structure s.

The algorithm also returns the accumulated error, computed
as ε = 1−

∑
n∈s n.µ.
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