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Abstract

We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by pre-
serving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid
to enforce a divergence free velocity field, followed by a local density correction of the particles. This avoids typ-
ical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles.
Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as
well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates
convergence towards uniform density and permits a significantly larger time step compared to earlier approaches
while producing similar results. We demonstrate our approach in a variety of scenarios with significant pressure

gradients such as splashing liquids.

Categories and Subject Descriptors (according to ACM CCS):
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation; 1.6.8 [Simulation and Modeling]:
Types of Simulation—Animation.

1. Introduction

One of the challenges in particle based fluid animation is
that of enforcing incompressibility. Incompressibility plays
an important role in creating realistic animations of fluids
such as water, where this property leads to the formation of
important visual effects like splashes and dynamic turbulent
motions. A popular Lagrangian fluid simulation technique is
Smoothed Particle Hydrodynamics (SPH) which was origi-
nally designed to model compressible flow. In order to simu-
late incompressible fluids in SPH, researchers have proposed
various techniques that either enforce a divergence free ve-
locity field or preserve a uniform particle density. The most
commonly used version of SPH (weakly compressible SPH)
attempts to enforce uniform particle density by introducing
a stiff equation of state, which imposes a severe timestep
restriction on the simulation. As a consequence, the anima-
tor is forced to strike a balance between the timestep and
the quality of the simulation. Other techniques that solve for
a divergence free velocity on each particle usually involve
an expensive Poisson solve on an unstructured grid which
makes simulation of a large number of particles intractable.
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We present a new hybrid particle-grid method (Hybrid SPH)
to enforce incompressibility of a SPH fluid. Our method
works with both weakly compressible SPH as well as incom-
pressible PCISPH (where strict upper bounds are imposed
on the density measured at each particle). We begin by sam-
pling particle velocities on a coarse uniform grid and solve
for pressure values that enforce a divergence free velocity

Figure 1: Dam break around an armadillo, 200k particles.
Simulated using our hybrid method together with PCISPH.
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field on this grid. However, unlike Eulerian simulations, we
do not use these pressure values to compute forces on the
grid faces but instead transfer these pressures directly onto
the particles. This preserves the Lagrangian nature of the
simulation and avoids the numerical dissipation associated
with a coarse grid. Next, we compute forces on each par-
ticle using SPH formulations to obtain sub-grid detail. We
finally ensure that each advected particle meets the density
requirement by performing a local per-particle density cor-
rection with SPH pressure forces, like those from PCISPH
or weakly compressible SPH.

Our method preserves high frequency detail while using a
coarse grid, thus avoiding the high cost associated with a
per-particle Poisson solve. We maintain the desired level of
incompressibility by focusing the bulk of computational ef-
fort on only resolving compressions locally within a small
subset of the entire domain. A key benefit of this method is
that it is significantly faster than existing SPH techniques. It
allows the animator to take much larger timesteps for sim-
ulation and relax the stiffness constant of the SPH pressure
update equations without introducing compression artifacts.
Further, the grid resolutions required for high quality simu-
lations remain relatively low. For instance, a 40° grid with
around 300 particles per cell can be used to simulate close to
2 million particles. Our algorithm is easy to implement, does
not introduce any additional CFL restrictions, and can be in-
tegrated with existing versions of SPH simply by adding a
low cost force calculation prior to the pressure force compu-
tation.

Our paper is structured as follows: in Section 2, we dis-
cuss related work and other approaches to incompressible
fluid simulation. In Section 3, we give a brief overview of
the mathematical equations used in SPH. In Section 4 we
describe the details of algorithm, including how it is used
together with either WCSPH or PCISPH. In Section 5, we
compare hybrid SPH with existing methods and demonstrate
that it not only outperforms them in common test cases but
that it remains very similar in terms of the visual quality. We
then discuss our method in Section 6 and give conclusions
and future work in Section 7.

2. Related Work

One of the earliest works in fluid simulation for computer
animation was the Eulerian grid-based method of Foster and
Metaxas [FM96], which was later advanced by the intro-
duction of semi-Lagrangian advection by Jos Stam [Sta99].
The Lagrangian fluid simulation technique of Smoothed Par-
ticle Hydrodynamics (SPH) was developed for use in as-
trophysics by [Luc77, GM77]. SPH was applied to graph-
ics for the first time by Desbrun and Cani [DG96]. Miiller
[MCGO03] demonstrated that SPH could be used to cre-
ate fluid simulations with higher particle counts at inter-
active rates and laid the foundations for particle based ap-
proaches to animate various phenomena such as fluid-fluid

interaction [MSKGO05,SP08], solid-fluid coupling [MST* 04,
KAG™*05,SSP07,BTT09], weakly compressible flow [BT07]
and porous flow [LAD08]. Adams and colleagues introduced
adaptive sampling in SPH simulations [APKGO07]. SPH sim-
ulations have also been run at interactive rates on GPUs
[HCMO06,HKKO07].

Much of the work mentioned in the last paragraph uses a
compressible formulation of SPH in which a stiff equation
of state is used to map densities to pressures. In order to pre-
vent any violations of the CFL condition, the timestep must
be decreased as the desired extent of incompressibility is in-
creased. This restriction makes it difficult to run high reso-
lution simulations within reasonable time limits. Further, the
stiffness needs to be tuned by hand for each simulation, mak-
ing it unfriendly for use by animators. Our hybrid approach
(presented in Section 4) permits a lower stiffness constant at
a larger timestep while preserving plausible fluid motion.

One way that is used to enforce incompressibility is to cre-
ate a divergence-free vector field by solving a Poisson equa-
tion. For particle-based simulations, a Poisson equation can
be formulated on a per-particle basis, leading to a linear
solve involving an N X N matrix (where N is the num-
ber of particles in the simulation). Some techniques from
computational physics literature take this approach, includ-
ing [CR99, SL0O3, HAO7]. In graphics, Idelsohn and col-
leagues [IODP04] solve for incompressibility on Delaunay
triangulations, and Sin and colleagues [SBH09] use Voronoi
regions. One drawback of this general approach is that the
cost of an N X N linear solve is quite high. Also, such meth-
ods can still result in uneven particle densities, as can be
seen in Figure 5(ii) of [CR99]. While Cummins and Rudman
use a multigrid scheme based on regular grids to accelerate
this Poisson solve on particles to compute a zero divergence
field, we use a simple Poisson solve on a coarse grid to ac-
count for global effects followed by traditional SPH for local
density corrections.

Other approaches towards incompressibility like PCISPH
[SP09] and Incompressible SPH [ESE07] eschew the global
Poisson solve and instead enforce a strict upper bound on the
maximum level of compression. Both of these approaches
are global iterative methods on particles for converging to
rest density. The PCISPH approach allows for a signficantly
larger timestep relative to compressible forms of SPH but
at a higher cost per timestep. The beauty of the PCISPH
method is that the predictor-corrector iterations propagate
density information rapidly, and the final result is a simula-
tion that maintains even particle spacing. For most fluid con-
figurations, the speed of this approach depends on the maxi-
mum pressure inside the liquid, which is typically related to
the depth of the liquid volume. Recent work by Bodin and
colleagues [BLS11] also tackles the particle density problem
by solving a mixed LCP and allows for larger time steps.

There have been numerous papers based on FLIP [ZBO0S5,
HHKO8, LTKFOS8] that use an auxiliary grid to determine
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particle motions. These methods prevent the particles from
directly affecting each other like they do in SPH, and instead
advect the particles after transferring velocities to and from
the background grid. These particles only track sub-grid ve-
locities and do not have a volume associated with them. The
main strength of FLIP is that it is quite fast and still achieves
stable non-dissipative advection. One drawback is that the
particles can clump or have voids, making it difficult to cre-
ate a surface for rendering. Similar to our own work, Losasso
et al. [LTKFO8] use a hybrid particle and grid-based sim-
ulator. Their approach uses particle level sets to represent
dense liquid volumes and SPH for diffuse regions. In con-
trast, our approach is primarily based on SPH and just uses
a low resolution grid to provide good initial values for parti-
cle pressures. We aim towards a uniform density while their
method alters the Poisson solve to allow for multiple density
targets across the domain.Their technique uses a combina-
tion of FLIP and PIC to transfer changes in velocity to the
particles; these changes in velocity can be interpreted as im-
pulses due to the pressure gradient integrated over one time
step. In contrast, our method transfers the actual pressure to
each particle.

The notion of treating hair as a continuum was introduced
by Hadap et al. [HMTO1]. A combination of Eulerian and
Lagrangian approaches has also been used by McAdams et
al. [MSW™09] in hair simulation in order to deal with bulk
volume preservation and self-collisions efficiently.

Although the work of Lentine et al. [LZF10] is purely Eule-
rian, their work is related to ours in that they also make use
of a coarse pressure solve to accelerate their simulator. They
then refine this initial pressure field to gain back details at
high resolutions.

3. Background

Smoothed Particle Hydrodynamics is an interpolation tech-
nique for particle systems that was first introduced in
[Luc77, GM77] for simulating astrophysical problems. To
apply this interpolation to a fluid, SPH divides the fluid into
a set of small mass elements. The density at a point is then
defined as follows:

pi=mY W(rij) )
J

where, W is a symmetric monotonic decreasing kernel that
has a support (or smoothing radius) of & (which is usually
around two times the default particle spacing) and r;; is the
distance between particle i and particle j.

SPH can be used to simulate weakly compressible fluids
(WCSPH) by using a stiff equation of state:
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where P; is the pressure at particle i, pg is a reference density
and v is a constant that is either set to 1 (gas equation) or 7
(Tait’s equation). Typically, implementations choose a value
for the constant & that results in a mean compression of 1 to
3 percent for a fixed simulation timestep (determined by the
CFL condition).

The pressure force (in its symmetric form) on each particle
can then be computed as follows:

PP
Fpressure = _mzz(ﬁ + ﬁ)VW(rij) 3
j J

l

Weakly compressible implementations usually require hand-
tuning of various parameters (such as the stiffness, the coef-
ficient of viscosity, and the timestep) to obtain a well be-
haved fluid that does not appear to be bouncy. In contrast, if
the stiff equation of state is replaced by a pressure solve that
guarantees incompressibility, many of the described prob-
lems can be avoided, albeit at a higher computational cost
per timestep. This typically involves either computing pres-
sures for each particle such that the divergence of the result-
ing velocity is zero or using a method that ensures that the
particles preserve uniform density.

In PCISPH [SP09], pressures are determined through a
predictor-corrector approach so that the maximum density
does not exceed a defined threshold. First, particle positions
and velocities are saved at the start of each timestep. Then, at
each iteration, those particles that have a density greater than
the rest density have their pressures increased by performing
following update:

Po —pPi

P—P+ 4
B, YWy X, VW, — X, (VW vwy))
p—2(A )2 ©)

Po

These pressures are then used to compute pressure forces
and predict the new positions and velocities of the particles.
The iterations continue until each particle has achieved the
desired density. An outline of this density correction for a
single particle is illustrated in Procedure 1.

4. Hybrid SPH

In this section, we present the intuition behind our hybrid ap-
proach and give the details of its integration with two pop-
ular SPH simulation techniques. The well known pressure
projection equation from fluid dynamics is an elliptic PDE,
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Figure 2: A water bunny splashing into a pool, 350k particles. Simulated using our hybrid method together with PCISPH.

Procedure 1 performDensityCorrection(i)

1: if p; > restDensity then

2: restore velocity v() and position x(¢) of particle i
3: pi+ = correction (from Equation 4)

4: compute Fpressure

5: integrate Fj,;,; to obtain $(z +1),£(t + 1)

6: predict new density p; at particle i

7: end if

which implies that any change in boundary conditions must
affect the entire domain instantaneously. A common prop-
erty of both weakly compressible SPH and incompressible
SPH is that a certain degree of incompressibility is enforced
by updating pressure values and moving particles based on
the force due to these assigned pressures. However, since
each particle only affects a limited neighbourhood of other
particles within a timestep, sharp changes in pressure do not
get passed onto the entire volume immediately and instead
create acoustic waves (wWhere bands of particles get com-
pressed in successive iterations or timesteps). The most no-
ticeable artifact of this phenomenon is the rise and fall in the
level of a standing pool of water (where the only external
force on the system is due to gravity). In order to resolve this
discrepancy, SPH simulations for graphical purposes usually
increase the stiffness constant and lower the timestep until
such waves are no longer apparent to the human eye. In the
case of PCISPH, the iterative approach allows for a larger
timestep than the weakly compressible version but it suffers
from the same problem when a sufficiently large timestep is
used (since the iterative pressure update is neither uncondi-
tionally stable nor is it guaranteed to converge).

Our hybrid approach removes this problem by transferring
information to all particles instantaneously using a coarse
grid. We solve for pressures that result in a divergence free
velocity field on a low resolution grid (the sparse linear sys-
tem can be solved quickly using conjugate gradient). This
captures the effect of large scale forces acting on the simula-
tion (for instance, gravity) and provides a good initial guess
for each particle’s position. Naturally, this coarse global

solve is not aware of density fluctuations that have occurred
inside a grid cell, but we can now use existing techniques
mentioned in the previous paragraph to efficiently deal with
local compressions. It is important to note that our hybrid
simulations still contain sub-grid details in terms of particle
velocities. After the solve, we only transfer pressures onto
particles and compute the pressure force exerted by each par-
ticle on its neighbors by using the standard SPH formulation.

One can think of our hybrid step as a kind of preconditioner
for the pressure solve. Technically, this would be a true pre-
conditioner for SPH if the particles were first moved by the
forces produced by the hybrid step and if the densities and
neighbourhoods were computed at the new positions. How-
ever, this adds an additional cost to each step, which in our
experience did not produce visually different results. So we
avoid the additional density computation and simply add on
the hybrid pressure force to the other forces computed using
the density at the beginning of the timestep. Our hybrid step
can be summarized as follows:

1. Interpolate particle velocities onto grid faces.

. Classify cells as solid, fluid or air.

2
3. Construct linear system and solve Poisson equation.
4. Interpolate pressure values back onto particles.

5

. Compute the hybrid pressure force between each pair of
particles using SPH kernels.

4.1. Construction of the grid

The construction of our grid is similar to other particle-grid
methods like FLIP. We use a coarse uniform staggered grid
with a typical cell edge length that is 4 times the smoothing
radius. This works out to around 512 particles per cell in 3D.
Pressure values are stored at cell centers while components
of velocity are stored on cell faces. We transfer velocities
from particles onto grid faces by first finding the dual cell
that the particle lies in and then assign tri-linearly weighted
coefficients to each of the 8 corners of the cell based on the
generalized barycentric coordinates of the particle within the
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dual cell. Note that since there are three components of ve-
locity in 3D, each of these dual grids will be staggered from
the original grid (for pressure) by half a cell edge. We add the
contribution of gravity to the velocities prior to the Poisson
solve.

We use a slightly modified version of the technique pre-
sented in [BBBO7] to solve the Poisson equation because
it elegantly deals with partially filled cells. In order to con-
struct the matrix for the Poisson solve, we need to classify
cells as fluid, solid or air. However, unlike purely Eulerian
methods or even FLIP, we can use the density information
of particles to label cells more accurately and avoid artifacts
during topological changes. We label a cell as fluid if it con-
tains a minimum number of fluid particles above a threshold
density, so as to avoid cells that largely consist of spray or
diffused water particles. We set these parameters conserva-
tively to 50% of the number of particles in a fully filled cell
and 80% of the rest density, respectively for all our simu-
lations. A cell is labelled as solid if its centre lies inside a
solid. The remaining cells are classified as air.

4.2. Pressure projection and transfer

After classification, we populate the matrix with each row
corresponding to a fluid cell or a solid cell that borders a
fluid. The right hand side of the equation has the divergence
of the cell which is computed by using a centered finite
difference of the cell face velocities of that cell. We apply
boundary conditions as necessary when the fluid shares a
cell face with a solid or air cell. We use the ghost fluid tech-
nique [ENGFO3] to obtain a second order accurate pressure
value at the fluid-air interface. The constructed matrix is a
sparse, symmetric positive definite system and can be solved
quickly using conjugate gradient. Since this solve is meant
to provide a good guess for pressure values, it is sufficient
to terminate the iterative solve even when the residual has
fairly high divergence (0.01) unlike conventional Eulerian
methods. At this point, we have the pressure values at the
centers of the cells in our grid.

‘We now interpolate pressures directly back onto the particles
using tri-linear interpolation. This avoids the numerical vis-
cosity associated with Eulerian methods in which velocities
are computed on the grid and interpolated onto the particles.
We compute a pressure force between each pair of particles
using the standard SPH kernels(Equation 3). This retains the
Lagrangian nature of our simulation and takes into account
the density and the number of neighbours for each parti-
cle. Note that this is different from FLIP which interpolates
the velocity difference from the grid, and is oblivious of the
topology inside a grid cell

We require particles inside solids to acquire a pressure value
if there is a fluid particle within their neighborhood. This
helps to prevent fluid particles from getting pushed towards
solid boundaries. We can easily compute the pressures for
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Figure 3: Water pouring into a bowl, 160k particles. Simu-
lated using our hybrid method together with WCSPH.

Algorithm 2 Weakly Compressible SPH

1: for allido

2 compute nearest neighbours within kernel radius.

3 compute density.

4 compute Fviscasity7 Fgmvity: Fexternal-

5 compute hybrid pressure force Fj,y;,q

6 compute Fpressure Using equation of state

7 Integrate forces to obtain new velocity and posi-
tion.

8: end for

solid cells that share a face with a fluid cell using the bound-
ary conditions of the Poisson solve. However, corner cells
do not acquire a pressure value and this can cause an un-
natural pressure drop-off due to tri-linear interpolation. We
found that setting pressures of corner cells to the maximum
of pressure values of their adjacent solid cells fixes this prob-
lem. This hybrid solve produces a smooth pressure profile
that is typically associated with incompressible SPH and the
resulting hybrid pressure forces can now be used as exter-
nal forces in existing SPH implementations. We will now
describe how these forces can be integrated with either the
WCSPH or the PCISPH simulation method.

4.3. Weakly compressible SPH

Weakly compressible SPH implementations usually use ei-
ther the gas equation or Tait’s equation to restrict density
fluctuations. Our method is compatible with both of these
equations of state. Algorithm 2 describes our modified ver-
sion of weakly compressible SPH. The hybrid step returns a
force which we then integrate along with all the other typ-
ical forces in an SPH simulation. This simple addition al-
lows for a significantly larger timestep and a smaller stiffness
parameter. Further, we discovered that the hybrid approach
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allows us to use the more compressible and computation-
ally cheaper gas equation (does not require exponentiation)
and yet achieve a plausible look for the animation. Note that
the kernels for hybrid pressure forces and the standard SPH
pressure force are identical and hence only need to be eval-
uated once per particle.

4.4. Incompressible SPH

We present further evidence regarding the efficacy of our hy-
brid method by applying it to the predictive-corrective SPH
method introduced in [SP09]. We make two modifications to
the PCISPH algorithm. First, we lower the minimum number
of global iterations (from three to one) because the hybrid
force has already accounted for the global density variation.
The second change is that after performing these global it-
erations, we switch to a more local density correction where
only a fraction of the total particles are affected. This can be
viewed as a domain decomposition strategy for the pressure
solve that identifies regions of particles that require further

Algorithm 3 Hybrid ISPH

1: for allido

2: save current velocity v(¢) and position x(r)
3 compute neighbors

4 compute density

5: compute Fyiscosity, Fgravity Fexternal -

6 compute hybrid pressure force Fj,y.iq

7 integrate to obtain #(z + 1),£(z + 1)

8 compute new density

9

: end for
10: for j = 1to minGloballterations do
11: for all i do
12: performDensityCorrection(i)
13: end for
14: end for
15: for all i do
16: if p; > P flagging then
17: flag particle and its neighbours
18: end if
19: end for
20: while pyuax > maxDensityVariation do
21: for all flagged particles i do
22: performDensityCorrection(i)
23: if p; > maxDensityVariation then
24: flag particle and its neighbors
25: end if
26: end for

27: end while
28: for all i do

29: setv(t+1)=70(+1)
30: setx(r+1)=x(r+1)
31: end for

Figure 4: Dropping a cube of water, 100k particles. Top ver-

sion simulated using WCSPH, bottom version simulated us-
ing our hybrid method with WCSPH.

Figure 5: A PCISPH simulation of water being squirted into
a pool. After one global step, only the particles in red are
flagged for further local iterations.

iterations to achieve convergence. The benefit is that com-
putational power can be used efficiently (even in a serial
implementation) to resolve the most compressed regions in-
stead of iterating needlessly over the entire domain. In our
implementation, we select particles based on a density cut-
off (P f1agging)> Which is set to half the maximum allowed
density variation. We found that this value was sufficient to
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prevent excessive communication between the flagged and
unflagged regions for most scenarios. After the initial divi-
sion of the domain, we iterate on only the flagged particles
but allow for the possibility that the compression cannot be
contained in the flagged region and instead propagates to the
boundary. In such an event, we flag the particle that violates
the density constraint as well as its neighbors and continue
to perform density corrections until every flagged particle
obeys the density limit (see red particles in Figure 5). We
outline our modified algorithm in Algorithm 3.

4.5. Implementation Details

To create our animations, we use the cubic SPH weighting
kernels from [Mon92] for all computations (density, pres-
sure, viscosity).The support for the kernel is set to twice
the particle distance so that each particle has around 27 to
30 neighbors in 3D. At the beginning of every timestep, we
compute all neighbors that lie within the support of the ker-
nel centred at each particle using a uniform grid to accel-
erate the neighborhood search. We treat boundaries by uni-
formly populating them with solid particles, and these par-
ticles also participate in the density correction process by
exerting a pressure force on the fluid particles. We also deal
with momentum transfer during collisions in a manner sim-
ilar to [BTTO09] instead of using repulsion forces, thereby
avoiding additional CFL conditions. To improve the look of
streams and splashes, we implemented the surface tension
model described in [BT07] with the surface tension coeffi-
cient ranging between 0.1 and 0.5 in various examples. We
use the surface reconstruction technique described in [YT10]
to obtain meshes from our particle data. Our simulation uses
adaptive timestepping to handle situations where pressure
forces induce velocities that violate the CFL condition. In
such cases, we drop the timestep by half and rollback to
an earlier snapshot (two timesteps in the past). We used a
dual core Intel i5 processor running at 2.52 GHz with hy-
perthreading enabled for the results presented in this paper.
For a 100k particle simulation using our hybrid method with
WCSPH, it took on average 12 seconds per frame, while
a 200k particle simulation using our hybrid method with
PCISPH took around 42 seconds per frame with 1% com-
pression.

5. Results

We demonstrate our hybrid method for several different 3D
fluid animations. Figure 1 shows a dam break in which the
water flows around a solid armadillo. Figure 2 drops a bunny
made of water into a still pool. These first two examples were
created using our hybrid method together with PCISPH. Fig-
ure 3 shows water being poured into a bowl, and then a lig-
uid armadillo being dropped into the same bowl. Figure 4 is
an animation of a cube of water being dropped into a pool.
These cube drop and bowl examples were simulated with
WCSPH and with our hybrid method together with WCSPH.

(© The Eurographics Association 2011.

Note that there is little difference between the visual results
of these methods, while our method was typically three or
more times faster. Figure 6 shows fluid bunnies splashing
against the letters SCA, and then the letters turn into liquid.
This animation was using our hybrid version of WCSPH.
Please see the accompanying video for the animations of all
of these scenes.

In each of our examples, we are consistently able to take a
much larger timestep due to the stability afforded by the hy-
brid solve. Table 1 shows the speedup of our method and the
timestep used for each simulation. The pressures obtained
from the Poisson solve on the coarse grid capture the large
scale motion of the liquid and propagate this information to
all particles.

In our accompanying video, we show the case of a 2D stand-
ing pool of water. In this example, our interpolated pressure
values closely match the analytic solution and hence only
local iterations are required to counter numerical errors. In
contrast, both WCSPH and PCISPH are almost immediately
unstable at the same timestep due to the large uncompen-
sated compressions created due to gravity.

Our video also includes a 2D example of water splashing
around a circular obstacle. This sequence demonstrates that
our method gracefully handles non grid-aligned obstacles,
despite the fact that this leads to cells that are partially filled.

6. Discussion

The serial implementation of our algorithm adds only 18%
to the cost of a weakly compressible step and around 10%
to the average PCISPH step (with 3 global iterations). Be-
cause we can take significantly larger timesteps than these
two methods, the net effect is a large speedup. Moreover, all
of the components of the hybrid step except for the Poisson
solve are embarrassingly parallel. The latter can either be
solved on the CPU without much computational effort be-
cause it is a small sparse symmetric positive definite matrix
or could be run on the GPU if necessary [BFGS03]. We par-
allelized each of the algorithms using Intel’s Thread Build-
ing Blocks. On average, the parallelized hybrid step adds
around 23% to the cost of a weakly compressible step and
around 15% to a PCISPH step. The unparallelized Poisson
solve on the coarse grid took less than 7% of the compu-
tation time per time step (see Table 2). We observed near
linear speedups while increasing the number of cores, which
suggest that our hybrid approach is largely parallel. Higher
grid resolutions could benefit from a preconditioner and par-
allelization of matrix-vector products.

It is worth noting the differences between our hybrid ap-
proach and other particle-grid techniques such as FLIP.
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Figure 6: Water bunnies splashing into the letters SCA, followed by the letters turning into liquid. This example was simulated
using our hybrid version of WCSPH.

Timestep Simulation time (minutes)
Simulation Particles Grid Res. Hybrid SPH | PCISPH | WCSPH | Hybrid SPH | PCISPH | WCSPH | Speedup
Bunny Splash 480k 20 x 28 x 20 0.0024 0.0006 - 326 1336 - 4.09
Armadillo 200k 17x21 x 17 0.0018 0.0006 - 281 952 - 3.39
Cube Splash 100k 12x14x 12 0.0023 - 0.0005 46 - 140 3.04
Bowl 180k 20 x 21 x 20 0.0015 - 0.0004 154 - 417 2.71
SCA 200k 32 x20x 25 0.0018 - - 146 - - -

Table 1: Performance figures for our simulations.

While FLIP uses particles to remove the numerical dissipa-
tion associated with a grid, the particles in our simulation ac-
tually represent Lagrangian fluid volumes and have a mass
associated with them. Further, we can provide a guarantee
on particle density and operate with extremely low resolu-
tion grids (with hundreds of particles per grid cell). In con-
trast, FLIP operates with 8 particles per grid cell in 3D and
does not gain additional detail without increasing the grid
resolution. Another advantage of using our method is that
topological changes are handled accurately without any ex-
tra effort since our fundamental representation (SPH parti-
cles) is meshless. See Figure 7 for a comparison between our
method and FLIP for a falling drop of water. In the FLIP im-
age, the number of particles per grid cell has been increased
to highlight the difference in the handling of the topology
change. Typical FLIP implementations use 4 particles per
grid cell for 2D simulations.

Step 2D (6k particles) 3D (100k particles)
Nearest neighbors 3491 43.13
Rasterize particles 6.97 6.85

Matrix construction 4.65 0.09
Poisson solve 4.06 6.85
Interpolate pressure 2.90 0.97
Integrate forces 46.51 42.11

Table 2: Breakdown of a hybrid WCSPH timestep (numbers
denote percentage of a timestep)

In terms of computational performance, FLIP is faster than
our method because it does not need to perform a nearest
neighbor lookup or calculate forces between pairs of parti-
cles, and instead spends the bulk of its effort on a higher
resolution Poisson solve. In order to compare both methods,
we used serial implementations of each. We ran a 2D simula-
tion of a splashing water drop with 3300 particles. We chose
a grid resolution of 64 x 64 for FLIP with around 4 par-
ticles per grid cell and picked the largest timestep (0.004s)
that did not create obvious visual artifacts. Our serial hybrid
SPH version could use a maximum timestep of 0.0025s. The
FLIP version took 0.0068s on average for one frame while
our method took 0.0225s on average (3.3 times slower than
FLIP). When compared to our unoptimized implementation,
FLIP can have 3x more particles for the same computation
time. However, our method clearly enforces incompressibil-
ity, while FLIP exhibits artifacts when particles bunch to-
gether and spread too far apart. We believe that a parallelized
version of our method would likely bridge the performance
gap. Please see the accompanying video for equal particle
count and equal computational cost comparisons between
FLIP and our hybrid method.

There are a few limitations of our approach. Our hybrid
method is most beneficial when the average depth of the
fluid is at least a couple of grid cells. Since we use a larger
timestep compared to a typical SPH simulation, high veloc-
ity collisions necessitate the use of adaptive timestepping
for stable simulation. It might be also be helpful to exclude
cells with high variance in particles velocities from the Pois-
son solve in such situations. Further, there may be occasions
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where the topology seen by the coarse grid does not agree
with that of the particles and this could lead to incorrect pres-
sure values from the Poisson solve and possibly large forces
leading to a drop in timestep. One may consider the use of
octrees or finer grid resolutions to overcome this problem. In
practice, these occur rarely and do not affect overall simula-
tion time significantly.

7. Conclusion and Future Work

We have presented a new, fast method for achieving incom-
pressible flow in an SPH fluid simulation. Our method uses
a coarse Poisson solve on a grid to generate pressure forces
that are then passed along to a standard SPH solver. We then
handle the fine density corrections with either WCSPH or
PCISPH.

There are several directions in which this work could be ex-
tended. First, we think that our hybrid solve could augment
SPH solvers other than WCSPH and PCISPH. Another pos-
sibility is to try using our approach for a GPU-based imple-
mentation of SPH. Since solving Poisson equations on GPUs
has been demonstrated by a number of researchers, we think
this should be a straightforward task.
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