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Abstract We study spaces of modelled distributions with singular behaviour near
the boundary of a domain that, in the context of the theory of regularity structures,
allow one to give robust solution theories for singular stochastic PDEs with boundary
conditions. The calculus of modelled distributions established in Hairer (Invent Math
198(2):269–504, 2014. https://doi.org/10.1007/s00222-014-0505-4) is extended to
this setting. We formulate and solve fixed point problems in these spaces with a class
of kernels that is sufficiently large to cover in particular theDirichlet andNeumann heat
kernels. These results are then used to provide solution theories for the KPZ equation
with Dirichlet andNeumann boundary conditions and for the 2D generalised parabolic
Anderson model with Dirichlet boundary conditions. In the case of the KPZ equation
withNeumann boundary conditions, we show that, depending on the class ofmollifiers
one considers, a “boundary renormalisation” takes place. In other words, there are
situations in which a certain boundary condition is applied to an approximation to the
KPZ equation, but the limiting process is the Hopf–Cole solution to the KPZ equation
with a different boundary condition.
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1 Introduction

The theory of regularity structures, recently developed in [10], was in large part moti-
vated by, and very successful in dealing with, singular stochastic partial differential
equations (SPDEs). These SPDEs are typically semilinear perturbations of the stochas-
tic heat equation, with their formal right-hand side including expressions that are not
well-defined even for functions that are as regular as the solution of the linear part.
One well-known example is the KPZ equation

∂t u = Δu + (∂xu)2 + ξ,

where ξ is the 1+ 1-dimensional space–time white noise. From the linear theory we
know that u is not expected to have better (parabolic) regularity than 1/2, so its spa-
tial derivative is a distribution, which, in general, one cannot take the square of. The
theory developed in [10] provided a robust concept of solution to equations like KPZ
[9], Φ4

3 , the parabolic Anderson model in both two [10] and three [12] dimensions,
the dynamical Sine-Gordon model [14] on the torus, or such equations on the whole
Euclidean space [11]. As neither the torus nor the whole space has boundaries, the
spatial behaviour in these examples are ‘uniform’, and the only blow-up of the gener-
alised abstract Taylor expansions—also referred to as ‘modelled distributions’—that
describe the solutions occur at the {t = 0} hyperplane of the initial time.

The aim of the present article is to provide a framework within the context of this
theory, with which one can provide solution theories for initial-boundary problems
for singular SPDEs. The appropriate spaces of modelled distributions introduced here
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Singular SPDEs in domains with boundaries

are flexible enough to account for singular behaviour at the spatial boundary. These
are similar to the singularities at the initial time treated in [10] and indeed a similar
calculus can be built on them. One could hope that, provided such a generalisation
of the abstract calculus is obtained, coupling it with rest of the theory automatically
gives solution theories of the same equations that were previously considered without
or with periodic boundary conditions, now with for instance Dirichlet or Neumann
boundary conditions. However, a subtle-looking but notable difference is that the codi-
mension 2 of the initial time hyperplane is replaced by the codimension 1 of the spatial
boundary, and therefore dual elements of spaces of test functions supported away from
the boundary which are uniformly ‘locally in Cα’ for α < −1 have no canonical exten-
sions as bona fide distributions—a simple example for such situation is the function
1/|x |, considered as an element ofD′(R\{0}). As elements with (local) regularity less
than −1 are quite common in applications (unlike elements with regularity less than
−2), for each such object one has to make sense of their extensions, in a consistent
way so that the sufficient continuity properties are preserved. Although, unlike the
rest of the theory, the treatment of this issue is not performed in a systematic way,
the methods used to treat the examples discussed in the next section are likely to be
relevant to different situations.

1.1 Applications

We now give a few examples of singular SPDEs to which the framework developed
in this article can be applied. The proofs of the results stated here are postponed to
Sect. 6.

Our first example is the Dirichlet problem for the two-dimensional generalised
parabolic Anderson model given by

∂t u = Δu + fi j (u)∂i u∂ j u + g(u)ξ on R+ × D,

u = 0, on R+ × ∂D,

u = u0. on {0} × D (1.1)

Here ξ denotes two-dimensional spatial white noise, g and fi j , i, j = 1, 2 are smooth
functions, D is the square (−1, 1)2, and u0 belongs to Cδ(D̄) for some δ > 0 and
vanishes on ∂D.

Take a smooth compactly supported function ρ on R
2 integrating to 1, define

ρε(x) = ε−2ρ(ε−1x) and set ξε = ρε ∗ ξ . Consider then the renormalised approxi-
mating initial/boundary value problem

∂t u
ε = Δuε + fi j (u

ε)(∂i u
ε∂ j u

ε − δi jCεg
2(uε))

+ g(uε)(ξε − 2Cεg
′(uε)) on R+ × D,

uε = 0, on R+ × ∂D,

uε = u0, on {0} × D, (1.2)
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for some constants Cε. One can solve (1.2) in the classical sense, and in the ε → 0
limit this provides a concept of local solution to (1.1) in the following sense.

Theorem 1.1 There exists a choice of diverging constants Cε and a random time
T > 0 such that the sequence uε1[0,T ] converge in probability to a continuous function
u. Furthermore, provided that the constants Cε are suitably chosen, the limit does not
depend on the choice of the mollifier ρ.

Remark 1.2 We believe that the choice D = (−1, 1)2 is not essential, the restriction
to the square case is mostly for the sake of convenience: it is easier to verify our
conditions when the explicit form of the Greens function is known.

Remark 1.3 One could easily deal with inhomogeneous Dirichlet data of the type
uε = g on ∂D by considering the equation for uε − ĝ, where ĝ is the harmonic
extension of g to all of D.

Our next example is the KPZ equation with 0 Dirichlet boundary condition. Write
this time ξ for space–time white noise and choose u0 ∈ Cδ([−1, 1]) for some δ > 0
with u0(±1) = 0. Taking a smooth, compactly supported function ρ integrating to 1,
define ρε(t, x) = ε−3ρ(ε−2t, ε−1x) and set ξε = ρε∗ξ . The approximating equations
then read as

∂t u
ε = 1

2∂
2
x u

ε + (∂xuε)2 − Cε + ξε on R+ × [−1, 1],
uε = 0, on R+ × {±1},
uε = u0 on {0} × [−1, 1]. (1.3)

Remark 1.4 Wehave chosen to include the arbitrary constant 12 in front of the term ∂2x u
so that the corresponding semigroup at time t is given by the Gaussian with variance
t .

We then have the following analogous result on local solvability.

Theorem 1.5 If ρ satisfies the condition ρ(x, t) = ρ(−x, t), then the statement of
Theorem 1.1 also holds for uε defined in (1.3).

Remark 1.6 If the additional symmetry on ρ fails, then an analogous result holds, but
an additional drift term appears in general, see for example [13].

A more interesting situation arises when trying to define solutions to the KPZ
equation with Neumann boundary conditions. First, in this case, it is much less clear
a priori what such a boundary condition even means since solutions are nowhere dif-
ferentiable. It is however possible to define a notion of “KPZ equation with Neumann
boundary conditions” via the Hopf–Cole transform. Indeed, it suffices to realise that,
at least formally, if u solves

∂t u = 1
2∂

2
x u + (∂xu)2 + ξ, ∂xu(t,±1) = c±, (1.4)
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then the process Z = exp(2u) solves

∂t Z = 1
2∂

2
x Z + 2Z ξ, ∂x Z(t,±1) = 2c±Z(t,±1). (1.5)

The latter equation is well-posed as an Itô stochastic PDE in mild form [5] (with the
boundary condition encoded in the choice of heat semigroup for themild formulation),
so that we can define the “Hopf–Cole solution” to (1.4) by u = 1

2 log Z with Z solving
(1.5). This is the point of view that was taken in [4] where the authors showed that the
height function associated to a large but finite discrete system of particles performing
a weakly asymmetric simple exclusion process converges to the solutions to (1.4)
with boundary conditions c± that are related to the boundary behaviour of the discrete
system in a straightforward way. In particular, if the ‘net flow’ of particles at each
boundary is 0, then c± = 0.

One of the main results of the present article is to show that the values of c± are
very “soft” in the sense that they in general depend in a rather non-trivial way on the
fine details of the particular approximation one considers for (1.4). This is not too
surprising: after all, the solution itself is not differentiable, so it is not so clear what
we mean when we impose the value of its derivative at the boundary. To formulate
this more precisely, consider ξε = ρε ∗ ξ and û0 ∈ Cδ([−1, 1]) as before (except that
we do not impose that û0 vanishes at the boundaries) and let ûε be the solution to

∂t û
ε = 1

2∂
2
x û

ε + (∂x ûε)2 + ξε on R+ × [−1, 1],
∂x û

ε = b̂±, on R+ × {±1},
ûε = û0 on {0} × [−1, 1]. (1.6)

We then have the following result.

Theorem 1.7 There exist constants Cε with limε→0 Cε = ∞, as well as constants
a, c ∈ R such that, setting

uε(t, x) = ûε(t, x)− Cεt − cx, (1.7)

the sequence uε converges, locally uniformly and in probability, to a limit u solving
the KPZ equation (1.4) in the Hopf–Cole sense with boundary data b± = b̂± − c± a
and with initial condition u0(x) = û0(x)− cx. In the particular case where ρ(x, t) =
ρ(−x, t), one has c = 0.

Remark 1.8 Even in the symmetric case, one can have a �= 0, so that one can end up
with non-zero boundary conditions in the limit, although one imposes zero boundary
conditions for the approximation.

Remark 1.9 The effect of subtracting cx in (1.7) is the same as that of adding a drift
term 2c∂xuε to the right hand side of (1.6) and changing the boundary condition ĉ±
into ĉ± − c, which is the reason for the form of the constants c±.

Remark 1.10 At first sight, this may appear to contradict the results of [1] where the
authors consider the three-dimensional parabolic Anderson model in a rather general
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setting which covers that of domains with boundary. Since this scales in exactly the
same way as the KPZ equation (after applying the Hopf–Cole transform), one would
expect to observe a similar “boundary renormalisation” in this case. The reason why
there is no contradiction with our results is that there is no statement on the behaviour
of the renormalisation term λε in [1, Thm 1] as a function of position. What our result
suggests is that, at least in the flat case, one should be able to take λε of the form
λε = Cε + μ, where Cε is a constant and μ is some measure concentrated on the
boundary of the domain.

Remark 1.11 The recent result [8] is consistent with our result in the sense that it
shows that the “natural” notion of solution to (1.4) with homogeneous Neumann
boundary condition (i.e. c± = 0) does not coincide with the Hopf–Cole solution
with homogeneous boundary data. In this particular case, one possible interpretation
is that, for any fixed time, the solution to the KPZ equation is a forward/backwards
semimartingale (in its own filtration) near the right/left boundary point. It is then
natural to define the “space derivative” at the boundary to be the derivative of its
bounded variation component. When performing the Hopf–Cole transform, one then
picks up an Itô correction term, which is precisely what one sees in [8]. Note however
that it is not clear at all whether the homogeneous Neumann solution of [8] can be
obtained by considering (1.6) with b̂± = 0 for some mollifier ρ. This is because, with
our conventions for units, this corresponds to the Hopf–Cole solution with b± = ±1,
while in our case one has |a| ≤ 1

2 as a consequence of the explicit formula (1.8) for
typical choices of the mollifier, i.e. those with ρ ≥ 0.

One has explicit expressions for c and a in terms of ρ: with the notation ρ̄(s, y) =
ρ(−s,−y) and Erf standing for the error function, one has the identities

a =
∫
R2

(ρ̄ ∗ ρ)(s, y)
(1
2
− 1

2
Erf

( |y|√
2|s|

)
− 2|y|N (y, s)

)
ds dy, (1.8)

c = 2
∫
R2

(ρ̄ ∗ ρ)(s, y) yN (y, s) ds dy, (1.9)

where N denotes the heat kernel, see Sect. 6.3 below. Note that in both cases the
function integrated against ρ̄ ∗ ρ vanishes at s = 0 for any fixed value of y, so that
a = c = 0 if we consider the KPZ equation driven by purely spatial regularisations
of white noise. To the best of our knowledge, this is the first observed instance of
“boundary renormalisation” for stochastic PDEs. On the other hand, it is somewhat
similar to the effects one observes in the analysis of (deterministic) singularly perturbed
problems in the presence of boundary layers, see for example [15,16].

The remainder of the article is structured as follows. After recalling some elements
of the theory of regularity structures in Sect. 2,mostly to fix our notations, we introduce
in Sect. 3 the spaces of modelled distributions that are relevant for solving singular
stochastic PDEs on domains. Section 4 is then devoted to a rederivation of the calculus
developed in [10], adapted to these spaces, with an emphasis on those aspects that
actually differ in the present context. In Sect. 5, we then “package” these results into
a rather general fixed point theorem, which is finally applied to the above examples in
Sect. 6.
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2 Elements of the theory of regularity structures

First let us summarise the relevant definitions, constructions, and results from the
theory of regularity structures that we will need in the sequel.

2.1 Main definitions

Definition 2.1 A regularity structure T = (A, T,G) consists of the following ele-
ments.

• An index set A ⊂ R which is locally finite and bounded from below.
• A graded vector space T =⊕

α∈A Tα with each Tα a finite-dimensional normed
vector space.

• A group G of linear operators Γ : T → T , such that, for all Γ ∈ G, α ∈ A,
a ∈ Tα , one has Γ a − a =⊕

β<α Tβ .

We will furthermore always consider situations where T0 contains a distinguished
element 1 of unit norm which is fixed by the action of G.

Definition 2.2 Given a regularity structure and α ≤ 0, a sector V of regularity α

is a G-invariant subspace of T of the form V = ⊕
β∈A Vβ such that Vβ ⊂ Tβ and

Vβ = {0} for β < α.

With V as above, we will always use the notations V+α =
⊕

γ≥α Vγ and V−α =⊕
γ<α Vγ , with the convention that the empty direct sum is {0}. Some further notations

will be useful. For a ∈ T , its component in Tα will be denoted either by Qαa or by
(a)α and the norm of (a)α in Tα is ‖a‖α . The projection onto T−α is denoted by Q−α .
The coefficient of 1 in a is denoted by 〈1, a〉.

We henceforth fix a scaling s on R
d , which is just an element of Nd . We use the

notations |s| = ∑d
i=1 si , and, for any d-dimensional multiindex k, we write |k|s =∑d

i=1 si ki . A scaling also induces a metric on R
d by ds(x, y) =∑d

i=1 |xi − yi |1/si ,
and this quantity will also sometimes be denoted by ‖x − y‖s. This is homogeneous
under the mappings Sδ

s defined by

Sδ
s(x1, . . . , xd) = (δ−s1x1, . . . , δ−sd xd)

in the sense that ‖Sδ
sx‖s = δ−1‖x‖s. The ball with center x and radius r , in the above

sense, is denoted by B(x, r). We also define the mapping Sδ
s,x , acting on L1(R

d) by

(Sδ
s,xϕ)(y) = δ−|s|ϕ(Sδ

s(y − x)).

We will also sometimes use the shortcut ϕδ
x = Sδ

s,xϕ.
One important regularity structure is that of the polynomials in d commuting vari-

ables, which we denote by X1, . . . , Xd . For any nonzero multiindex k, we denote

Xk = Xk1
1 · · · Xkd

d ,
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and also use the notation X0 = 1. We define the index set Ā = N, for any n ∈ N, the
subspaces

T̄n = span{Xk : |k|s = n},

and for any h ∈ R
d , the linear operator Γ̄h by

(Γ̄h P)(X) = P(X + h).

It is straightforward to verify that this defines a regularity structure T̄ , with structure
group Ḡ = {Γ̄h : h ∈ R

d} ≈ R
d .

In most of the following we consider d, T , and s to be fixed. We will always
assume that our regularity structures contain T̄ in the sense of [10, Sec. 2.1]. A
concise definition of the Hölder spaces of all (non-integer) exponents that are used in
the sequel is the following.

Definition 2.3 Adistribution ξ ∈ D′(Rd) is said to be of class Cα , if for every compact
set K ⊂ R

d it holds that
|ξ(ϕδ

x )| � δα (2.1)

uniformly over δ ≤ 1, x ∈ K, and over test functions ϕ supported on B(0, 1) that
furthermore have all their derivatives up to order (�−α� + 1) ∨ 0 bounded by 1 and
satisfy

∫
ϕ(x)xk dx = 0 for every multiindex |k| < α. The best proportionality

constant in (2.1) is denoted by ‖ξ‖α;K.
We shall also use the notation Br for smooth functions ϕ supported on B(0, 1) and

having derivatives up to order r bounded by 1.

Definition 2.4 A model for a regularity structure T on R
d with a scaling s consists

of the following elements.

• A map Γ : Rd × R
d → G such that ΓxyΓyz = Γxz for all x , y, z ∈ R

d .
• Acollection of continuous linearmapsΠx : T → S ′(Rd) such thatΠx = Πy◦Γxy

for all x , y ∈ R
d .

Furthermore, for every γ > 0 and compact K ⊂ R
d , the bounds

|(Πxa)(Sδ
s,xϕ)| � ‖a‖lδl , ‖Γxya‖m � ‖a‖l‖x − y‖l−ms (2.2)

hold uniformly in x, y ∈ K, δ ∈ (0, 1], ϕ ∈ Br , l < γ , m < l, and a ∈ Tl . Here, r is
the smallest integer such that l > −r for all l ∈ A.

The best proportionality constants in (2.2) are denoted by ‖Π‖γ,K and ‖Γ ‖γ,K,
respectively.

We shall always assume that all models under consideration are compatible with the
polynomials in the sense that (Πx Xk)(y) = (y − x)k for any multiindex k. A central
notion of the theory is that of a modelled distribution, spaces of which are defined as
follows.
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Definition 2.5 Let V be a sector and (Π, Γ ) be a model. Then, for γ ∈ R, the space
Dγ (V ;Γ ) consists of all functions f : Rd → V−γ such that, for every compact set K,

||| f |||γ,K = sup
x,y∈K
‖x−y‖s≤1

sup
l<γ

‖ f (x)− Γxy f (y)‖l
‖x − y‖γ−ls

<∞, (2.3)

where the supremum in l runs over elements of A.

Although the spaces Dγ depend on Γ , in many situation, where there can be no
confusion about the model, this dependence will be omitted in the notation. The name
‘modelled distribution’ is justified by the following result.

Theorem 2.6 Let V be a sector of regularity α and let r = �−α + 1�. Then for any
γ > 0 there exists a continuous linear map R : Dγ (V ) → Cα such that for every
C > 0, the bound

|(R f −Πy f (y))(ψ
λ
x )| � λγ ||| f |||γ,suppψλ

x
, (2.4)

holds locally uniformly over x ∈ R
d and uniformly over ψ ∈ Br , over λ ∈ (0, 1],

over y ∈ suppψλ
x , and over models satisfying ‖Π‖γ,B(x,2) ≤ C. Furthermore, (2.4)

specifies R f uniquely.

It is clear from (2.4) that the reconstruction operatorR is local, so in particular one
can ‘reconstruct’ modelled distributions that only locally lie in Dγ .

Remark 2.7 While in [10] in the bound (2.4), y = x is assumed, this version is
essentially equivalent: for all y ∈ suppψλ

x , one can simply rewrite ψλ
x as ψ̄2λ

y with
some ψ̄ ∈ Br .

Let us also note that in the literature the use of the notation ||| · ||| is slightly incon-
sistent: sometimes it is defined as in (2.3), in some other instances it includes the term
supx∈K supl<γ ‖ f (x)‖l .Wewill also be guilty of this:while for now, in the unweighted
setting, (2.3) is convenient since that is what appears in the bounds for reconstructions
like (2.4) above and (2.11) below, the weighted versions of ||| · ||| introduced in Sect.
3 do include controls over ‖ f (z)‖.
Definition 2.8 A continuous bilinear map � : T × T → T is called a product if, for
a ∈ Tα and b ∈ Tβ , one has a � b ∈ Tα+β , and 1 � a = a � 1 for all a ∈ T . The
products arising in this article will always be associative and commutative, at least on
some sufficiently large subspace.

A pair of sectors (V,W ) is said to be γ -regular with respect to the product � if
(Γ a) � (Γ b) = Γ (a � b) for all Γ ∈ G and a ∈ Vα , b ∈ Wβ , satisfying α+β < γ . A
sector is called γ -regular, if the pair (V, V ) is γ -regular. Given two T -valued functions
f and f̄ , we also denote by f �γ f̄ the function x → Q−γ ( f (x) � f̄ (x)).

For γ > 0, a sector V of regularity 0, a product � such that V � V ⊂ V , and a
smooth function F : Rn → R one can then define a function F̂γ : V n → V by setting

F̂γ (a) = Q−γ
∑
k

Dk F(ā)

k! ã�k, (2.5)
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where the sum runs over all possible n-dimensional multiindices, with the conventions
ā = 〈1, a〉, ã = a− ā, k! = k1! · · · kn !, ã�k = ã�k1

1 � · · · � ã�kn
n for k �= 0, and ã�0 = 1.

The abstract version of differentiation is quite straightforward.

Definition 2.9 Given a sector V , a family of operatorsDi : V → V with i = 1, . . . , d
is called an abstract gradient if for every i , every α and every a ∈ Vα , one has
Di a ∈ Tα−si and ΓDi a = DiΓ a for all Γ ∈ G.

A model (Π, Γ ) is called compatible with D , if for all a ∈ V , x ∈ R
d , and for all

i , it holds that

DiΠxa = ΠxDi a,

where Di is the usual distributional differentiation in the i th unit direction.

The final important operation on modelled distribution is the integration against
singular kernels, the aim of which is to ‘lift’ convolutions with Green functions to the
abstract setting. The first ingredient is the abstract integral operator.

Definition 2.10 Given a sector V , a linear map I : V → T is an abstract integration
map of order β > 0 if:

• I(Vα) ⊂ Tα+β for all α ∈ A.
• Ia = 0 for all a ∈ V ∩ T̄ .
• IΓ a − Γ Ia ∈ T̄ for all a ∈ V and Γ ∈ G.

In our applications β will always be 2, but for most of the analysis the one important
property required of β is that for each α ∈ A, α+ β ∈ Z implies α ∈ Z. In particular,
under this assumption, I does not produce any components in integer homogeneities.
The class of kernels we will want to lift is characterised as follows.

Definition 2.11 For β > 0 the class Kβ of functions R
d × R

d\{x = y} → R

consists of elements K that can be decomposed as K (x, y) =∑
n≥0 Kn(x, y), where

the functions Kn have the following properties:

• For all n ≥ 0, Kn is supported on {(x, y) : ‖x − y‖s ≤ 2−n}.
• For any two multiindices k and l, |Dk

1D
l
2Kn(x, y)| � 2n(|s|+|k+l|s−β), where the

proportionality constant only depends on k and l, but not on n, x , y.
• For any two multiindices k and l, y ∈ R

d , i = 1, 2, it holds, for all n ≥ 0,

∣∣∣
∫
Rd

(x − y)l Dk
i Kn(x, y)dx

∣∣∣ � 2−βn

where the proportionality constant only depends on k and l.
• For a given r > 0,

∫
Rd Kn(x, y)P(y)dy = 0, for all n ≥ 0, x ∈ R

d , and every
polynomial P of (scaled) degree at most r .

To introduce the appropriate ‘remainder’ terms, we set J (x)a, for a ∈ Tα as

J (x)a =
∑
n≥0

J (n)(x)a =
∑
n≥0

∑
|k|s<α+β

Xk

k! (Πxa)(Dk
1Kn(x, ·)). (2.6)
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Singular SPDEs in domains with boundaries

Definition 2.12 Given a sector V and an abstract integration map I acting on V we
say that a model (Π, Γ ) realises K for I if, for every α ∈ A, every a ∈ Vα , every
x ∈ R

d one has the identity

ΠxIa =
∫
Rd

K (·, z)(Πxa)(dz)−ΠxJ (x)a.

Note that both sides are distributions, so the equality should be understood in the
distributional sense. For γ > 0 we also define an operator Nγ which maps any
f ∈ Dγ into a T̄ -valued function by

(Nγ f )(x) =
∑
n≥0

(N (n)
γ f )(x) =

∑
n≥0

∑
|k|s<γ+β

Xk

k! (R f −Πx f (x))(D
k
1Kn(x, ·)).

(2.7)
The key result on a Schauder-type estimate for integration on Dγ then reads as

follows.

Theorem 2.13 Let K ∈ Kβ for some β > 0, let I be an abstract integration map
acting on V , and let (Π, Γ ) be a model realising K for I. Then, for γ > 0, the
operator Kγ defined by

(Kγ f )(x) = I f (x)+ J (x) f (x)+ (Nγ f )(x), (2.8)

maps Dγ (V ) into Dγ+β and the identity

RKγ f = K ∗R f (2.9)

holds for every f ∈ Dγ .

2.2 Preliminaries

For negative values of γ , a statement similar toTheorem2.6 still holds, but the “unique-
ness” part is lost. It will be useful for our purposes to have a family of “reconstruction
operators” defined similarly to [10, Eq. 3.38], but depending additionally on some
small cut-off scale. We define the sets Λn

s =
{∑d

j=1 2−ns j k j e j : k j ∈ Z
}
, where e j

is the j th unit vector of Rd , j = 1, . . . , d, and we use the notation

ηn,s
x = 2−n|s|/2η2−nx

for locally integrable functions η. Then, as shown in [6], for any integer r > 0, there
exist a compactly supported Cr function ϕ and a finite family of compactly supported
Cr functions Ψ with the following properties.

• For each m, the set {ϕm,s
x : x ∈ Λm

s } ∪ {ψn,s
x : n ≥ m, x ∈ Λn

s, ψ ∈ Ψ } forms an
orthonormal basis of L2(Rd).
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• For everyψ ∈ Ψ and polynomial P of degree at most r , one has
∫

ψ(x)P(x)dx =
0.

In factmuchmore is known about these functions, but thiswill suffice for our purposes.
We then set

Rm f =
∑
n≥m

∑
x∈Λn

s

∑
ψ∈Ψ

(Πx f (x))(ψ
n,s
x )ψn,s

x +
∑
x∈Λm

s

(Πx f (x))(ϕ
m,s
x )ϕm,s

s . (2.10)

With this notation, we have the following result which is a strengthening of the γ < 0
part of [10, Thm 3.10].

Lemma 2.14 Let γ < 0, m ≥ 0 be an integer, f ∈ Dγ (V ) with a sector V of
regularity α ≤ 0. Then Rm f ∈ Cα and for every r > |α| there exists c such that,
uniformly over η ∈ Br and λ ∈ (0, 1] and locally uniformly over x, one has the bound

|(Rm f −Πx f (x))(η
λ
x )| � λγ−α(λ ∧ 2−m)α||| f |||γ,B(x,cλ+2−m ). (2.11)

Proof The fact thatRm f ∈ Cα is immediate, since the above construction only differs
by a Cr function from the reconstruction operator given in [10, Eq. 3.38]. To show
(2.11), we assume without loss of generality that ||| f |||γ,B(x,λ+2−m ) ≤ 1. Note first
that

|(ψn,s
y , ηλ

x )| � 2n|s|/2
(
2nλ ∨ 1

)−|s|−r
,

and that (ψn,s
y , ηλ

x ) = 0 for ‖x − y‖s ≥ λ+ c2−n for some fixed constant c. We also
have, for n ≥ m, and for ‖x − y‖s ≤ λ+ 2−n ,

|(Rm f −Πx f (x))(ψ
n,s
y )| = |(Πy f (y)−Πx f (x))(ψ

n,s
y )|

= |(Πy( f (y)− Γyx f (x))(ψ
n,s
y )|

�
∑
l<γ

‖x − y‖γ−ls 2−n|s|/2−nl . (2.12)

Denoting the first (triple) sum in (2.10) by Rm
0 , and the projection of Πx f (x) to

span{ψn,s
y : y ∈ Λn

s, n ≥ m} by (Πx f (x))0, we can write

|(Rm
0 f − (Πx f (x))0)(η

λ
x )| =

∑
n≥m

∑
y∈Λn

s

∑
ψ∈Ψ
|(Rm f −Πx f (x))(ψ

n,s
y )(ψn,s

y , ηλ
x )|

=:
∑
n≥m

In .

We consider the cases 2−m ≷ λ separately. If λ < 2−m , then considering that for
2−n ≤ λ, the number of nonzero terms in the sum over y ∈ Λn

s is of order λ|s|2n|s|,
by estimating each of them using the bounds above, we have
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∑
2−n≤λ

In �
∑

2−n≤λ

λ|s|2n|s|2−n|s|/2−nrλ−|s|−r
∑
l<γ

(λ+ 2−n)γ−l2−n|s|/2−nl � λγ ,

(2.13)
due to r + l > 0. On the other hand, for λ < 2−n , the number of nonzero terms in the
sum over y is of order 1, so we can write

∑
λ<2−n≤2−m

In �
∑

λ<2−n≤2−m
2n|s|/2

∑
l<γ

(λ+ 2−n)γ−l2−n|s|/2−nl � λγ , (2.14)

where we used the negativity of γ , and this bound is of the required order.
In the case 2−m ≤ λ, then similarly to before

∑
n≥m

In �
∑
n≥m

λ|s|2n|s|2−n|s|/2−nrλ−|s|−r
∑
l<γ

(λ+ 2−n)γ−l2−n|s|/2−nl

�
∑
l<γ

2−m(r+l)λγ−l−r ≤
∑
l<γ

2−mlλγ−l , (2.15)

and since l ≥ α, this gives the required bound.
For the second sum in (2.10), denoted for the moment byRm

1 and the projection of
Πx f (x) to span{ϕm,s

y : y ∈ Λm
s }, denoted by (Πx f (x))1, we proceed similarly. This

time, one has

|(ϕm,s
y , ηλ

x )| � 2m|s|/2
(
2mλ ∨ 1

)−|s|
,

and (ϕ
m,s
y , ηλ

x ) = 0 for ‖x − y‖s ≥ λ + c2−m , that is, for all but of order 2m|s|λ|s|
instances of y ∈ Λm

s in the case 2−m ≤ λ, and for all but of order 1 instances of
y ∈ Λm

s in the case λ < 2−m . The quantity (Rm f − Πx f (x))(ϕ
m,s
y ) can then be

bounded exactly as in (2.12). Combining these bounds, we arrive at

|(Rm
1 f − (Πx f (x))1)(η

λ
x )| =

∑
y∈Λm

s

|(Rm f −Πy f (y))(ϕ
m,s
y )(ϕm,s

y , ηλ
x )|

� 2m|s|/2
∑
l<γ

(λ+ 2−m)γ−l2−m|s|/2−ml

� λγ−α2−mα ∨ 2−mγ � λγ−α2−mα ∨ λγ , (2.16)

as required. Here, the last inequality comes from the fact that γ < 0 and that the
second term dominates when 2−m ≥ λ, so that 2−mγ ≤ λγ . ��

Next we recall some results on extending dual elements of a space of smooth
functions that are supported away from a submanifold, to distributions, at least locally.
This is essentially the content of [10, Prop. 6.9], but we slightly reformulate the
statements in order to fit the needs of Sect. 4.3 below better.

Whenever here and in the sequel we refer to a ‘boundary’ P , wemean the following.
Assume that Rd is decomposed as Rd = R

d1 × · · · × R
dm , such that s1 = · · · = sd1 ,

sd1+1 = · · · = sd2 , etc. We then assume P to be of the form
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P = M1 × · · · × Mm

where each Mi is either Rdi or is a piecewise C1 boundary of a domain, satisfying the
strong cone condition. Denoting the codimension of Mi by mi , the codimension of P
is then defined to be

∑m
i=1 misdi−1+1, with the convention d0 = 0. We will need the

following version of a well-known “folklore” fact:

Proposition 2.15 Let P be a boundary of codimension m, D ⊂ R
d be a bounded

domain and let ξ be an element of the dual of smooth functions compactly supported
in D\P. Suppose furthermore that 0 ≥ α > −m and for an integer r > |α| one has

|ξ(ψλ
x )| � λα (2.17)

uniformly over x ∈ D\P, over ψ ∈ Br , and over λ ∈ (0, 1] satisfying furthermore
2λ ≤ ds(x, P) and suppψλ

x ⊂ D. Then there exists a unique element ξ ′ in the dual
of smooth functions compactly supported in D that agrees with ξ on test functions
supported away from P and for which the bound (2.17) holds with ξ ′ in place of ξ ,
uniformly in x, in ψ ∈ Br , and in λ ∈ (0, 1] satisfying suppψλ

x ⊂ D.

Proof By considering a suitable partition of unity, thanks to the strong cone condition,
we see that for any compact set K ⊂ D with diameter λ, and any n with 2−n ≤ λ,
we can find smooth functions Φn : K → [0, 1] such that Φn(y) = 1 if ds(y, P) ∈
[21−n, 22−n], Φn(y) = 0 if ds(y, P) /∈ [2−n, 23−n], and satisfying the following
property. For every n ≥ 1, one can find sequences {xk}Nk=1 with N ≤ Cλ|s|−m2(|s|−m)n

and functions φk, φ̃k ∈ Br such that, setting μ = 2−n , one has

Φn = μ|s|
N∑

k=1
φ

μ
k,xk

, Φn −Φn+1 = μ|s|
N∑

k=1
φ̃

μ
k,xk

. (2.18)

Fix now a test function of the type ψλ
x with support K ⊂ D, then the sequence

ξ(ψλ
x (1−Φn)) is Cauchy since

|ξ(ψλ
x (Φn+1 −Φn))| ≤

N∑
k=1

μ|s|ξ(ψ̃λ
x φ

μ
k,xk

) � λ−|s|Nμα+|s|

≤ Cλ−|s|λ|s|−m2(|s|−m)nμα+|s|

= Cλ−m2−(m+α)n , (2.19)

where in the second inequalitywemade use of the bound (2.17). Thanks to the assump-
tion α+m > 0, the right-hand side of (2.19) which converges to 0 exponentially fast,
as claimed. The same bound also shows that the limit is bounded by some constant
times λ−α as required. The uniqueness of ξ ′ follows in a similar way by comparing
ξ ′(ψ(1−Φn)) to ξ ′(ψ) and using the first identity of (2.18). ��
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Singular SPDEs in domains with boundaries

3 Definition of Dγ,w
P and basic properties

Our main tool for dealing with domains is to introduce spaces analogous to the spaces
Dγ,η used in [10] to deal with initial conditions, but allowing for blow-ups at the
boundary of the domain as well. One subtlety arises in the handling of the “double
singularity” arising on the boundary at time 0. Let P0 and P1 be two fixed boundaries
with respective codimensionsm0,m1 and such that P∩ = P0 ∩ P1 is itself a boundary
of codimension m = m0 + m1. We also write P = P0 ∪ P1 and we assume that P
satisfies the (uniform) cone condition, which forces the two boundaries to intersect in
a transverse manner. For i = 1, 2, denote

|x |Pi = 1 ∧ ds(x, Pi ), |x, y|Pi = |x |Pi ∧ |y|Pi ,

and for any compact set K,

KP = {(x, y) ∈ (K\P)2 : x �= y and 2‖x − y‖s ≤ |x, y|P0 ∧ |x, y|P1}.

To slightly ease notation, in the following w will always stand for an element in R
3,

with coordinates w = (η, σ, μ), corresponding to exponents for the ‘weights’ at P0,
P1, and their intersection, respectively.

Remark 3.1 It might be at first sight surprising to have not two, but three different
orders of singularity. While in the subsequent calculus the use of exponent μ will
become clear, it is worth mentioning a simple example when the singularities at the
different boundaries do not in any way determine the one at the intersection: Consider
the solution of ∂t u = Δu, u0 ≡ 1, with 0 Dirichlet boundary conditions on some
domain D. Then, while away from the “corner” {(0, x) : x ∈ ∂D}, all derivatives of u
are continuous up to both the temporal and the spatial boundaries, the kth derivative
exhibits a blow-up of order |k|s at the corner.
Definition 3.2 Let V be a sector, γ > 0 and w = (η, σ, μ) ∈ R

3. Then the space
Dγ,w

P (V ) consists of all functions f : Rd\P → V−γ such that for every compact set

K ⊂ R
d one has

||| f |||γ,w;K := sup
(x,y)∈KP

sup
l<γ

‖ f (x)− Γxy f (y)‖l
‖x − y‖γ−ls |x, y|η−γ

P0
|x, y|σ−γ

P1
(|x, y|P0 ∨ |x, y|P1)μ−η−σ+γ

+ sup
x∈K: 0<|x |P0≤|x |P1

sup
l<γ

‖ f (x)‖l
|x |μ−lP1

( |x |P0|x |P1
)(η−l)∧0

+ sup
x∈K: 0<|x |P1≤|x |P0

sup
l<γ

‖ f (x)‖l
|x |μ−lP0

( |x |P1|x |P0
)(σ−l)∧0 <∞. (3.1)

The sum of the second and third term above will also be denoted by ‖ f ‖γ,w;K.
Similarly to before, these spaces do depend on the model, but if no confusion can
arise, this dependence will not be denoted. For two models (Π, Γ ) and (Π̄, Γ̄ ), and
for f ∈ Dγ,w

P (V ;Γ ) and f̄ ∈ Dγ,w

P (V ; Γ̄ ), we also set
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||| f ; f̄ |||γ,w;K = sup
(x,y)∈KP

sup
l<γ

‖ f (x)− f̄ (x)− Γxy f (y)+ Γ̄xy f̄ (y)‖l
‖x − y‖γ−ls |x, y|η−γ

P0
|x, y|σ−γ

P1
(|x, y|P0 ∨ |x, y|P1)μ−η−σ+γ

+ ‖ f − f̄ ‖γ,w;K.

This notation is slightly ambiguous since the knowledge of P does of course not
imply the knowledge of P0 and P1. One should therefore really interpret the instance
of P appearing in Dγ,w

P as meaning P = {P0, P1} rather than P = P0 ∪ P1, which
is used whenever we view P as a subset of Rd . It will also sometimes be useful to
consider functions in Dγ,w

P that are slightly better behaved when approaching one of
the two boundaries. This is the purpose of the following definition.

Definition 3.3 We denote byDγ,w

P,{0} the set of those elements f ∈ Dγ,w

P for which the

map x �→ Q−η f (x) extends continuously to R
d\P1 in such a way that Q−η f (x) = 0

for all x ∈ P0\P1. The space Dγ,w

P,{1} is defined analogously. Finally, writing K0 =
{x ∈ K : 0 < |x |P0 ≤ |x |P1} and similarly for K1, we set

[] f []γ,w,{0};K = sup
x∈K0

sup
l<γ

‖ f (x)‖l
|x |μ−lP1

( |x |P0|x |P1
)η−l + sup

x∈K1

sup
l<γ

‖ f (x)‖l
|x |μ−lP0

( |x |P1|x |P0
)(σ−l)∧0 ,

and also define [] f []γ,w,{1};K in the same way, but with the exponents η − l and
(σ − l) ∧ 0 replaced by (η − l) ∧ 0 and σ − l respectively.

We shall assume throughout the article that these exponents satisfy η∨σ ∨μ ≤ γ .

Remark 3.4 Denoting the regularity of the sector V byα, the definition is set up so that,
when μ ≤ α and there exists an x with |x |P0 ∼ |x |P1 ∼ 1 and supl<γ ‖ f (x)‖l ∼ 1,
then the first term in (3.1) bounds the second and third. Forμ > α, one would actually
need to add |x |(μ−l)∧0P1

to the denominator in the second term and |x |(μ−l)∧0P0
in the third.

As this would make the calculations significantly longer, we omit this modification
and deal with the slight difficulties arising from this restriction later.

Proposition 3.5 Let V be a sector of regularity α, and f ∈ Dγ,w

P,{1}(V ). Suppose
furthermore that K is a compact set such that for each x ∈ K the line connecting x
and the closest point to x on P1 is contained in K. Then it holds that

[] f []γ,w,{1};K � ||| f |||γ,w;K. (3.2)

If (Π̄, Γ̄ ) is another model for T and f̄ ∈ Dγ,w

P,{1}(V ; Γ̄ ), then one has

[] f − f̄ []γ,w,{1};K � ||| f ; f̄ |||γ,w;K+‖Γ − Γ̄ ‖γ ;K(||| f |||γ,w;K+ ||| f̄ |||γ,w;K), (3.3)

and, for any κ ∈ [0, 1],

||| f ; f̄ |||γ̄ ,w̄;K � [] f − f̄ []κγ̄ ,w,{1};K(||| f |||γ,w;K + ||| f̄ |||γ,w;K)1−κ , (3.4)

where γ̄ = (1− κ)γ + κα and w̄ = (η̄, σ, μ) with η̄ = η + κ((α − η) ∧ 0).
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Proof We prove separately for Ki = K ∩ {|x |Pi ≤ |x |P1−i }.
For K1, further introducing Kn

1 = K1 ∩ {2−n ≤ |x |P0 ≤ 2−n+1}, the bounds for
Kn
1 in place of K follow immediately from Lemmas 6.5 and 6.6, [10], uniformly in n.

Since there is no dependence on n in the bounds, and for any pair (x, y) ∈ (K1)P , the
indices nx and ny for which x ∈ K

nx
1 , y ∈ K

ny
1 , differ by at most 1, the estimates carry

through for K1.
For K0, the bounds (3.2) and (3.3) are trivial. As for (3.4), we have

‖ f (x)− f (x)− Γxy f (y)+ Γ̄xy f (y)‖l ≤ (||| f |||γ,w;K0

+||| f̄ |||γ,w;K0
)‖x − y‖γ−ls |x, y|η−γ

P0
|x, y|μ−η

P1

as well as

‖ f (x)− f (x)− Γxy f (y)+ Γ̄xy f (y)‖l
� [] f − f̄ []γ,w,{1};K0

|x, y|μ−lP1

( |x, y|P0
|x, y|P1

)(η−l)∧0
.

Therefore, we can bound the quantity ‖ f (x)− f (x)− Γxy f (y)+ Γ̄xy f (y)‖l by the
right-hand side of (3.4) times

‖x − y‖(1−κ)(γ−l)
s |x, y|(1−κ)(μ−η)+κ(μ−l)−κ((η−l)∧0)

P1
|x, y|(1−κ)(η−γ )+κ((η−l)∧0)

P0
,

� ‖x − y‖γ̄−ls ‖x − y‖κ(l−α)
s |x, y|μ−η−κ(l−η+(η−l)∧0)

P1
|x, y|η−γ̄+κ(α−η+(η−l)∧0)

P0
.

Considering that ‖x − y‖s ≤ |x, y|P0 and that the minimum value of al := (l − η +
(η − l) ∧ 0) is aα = (α − η) ∧ 0, we can estimate the right-hand side above by

‖x − y‖γ̄−ls |x, y|μ−η̄
P1
|x, y|κ(aα−al )

P1
|x, y|η̄−γ̄

P0
|x, y|κ(al−aα)

P0
,

and since we are in the situation |x, y|P0 ≤ |x, y|P1 , this gives the required bound.
The estimate for ‖ f (x)− f̄ (x)‖l , x ∈ K0 is straightforward, since one has the bound

‖ f (x)− f̄ (x)‖l
|x |μ−lP1

( |x |P0|x |P1
)(η−l)∧0 � [] f − f̄ []γ,w,{1};K ∧ (||| f |||γ,w,K + ||| f̄ |||γ,w;K),

thus concluding the proof. ��
Proposition 3.6 If f ∈ Dγ,w

P,{1} then, for any δ > 0 and compact K ⊂ {|x |P1 ∨ δ ≤
|x |P0 ≤ 2δ}, it holds that

||| f̂ |||σ ;K � δμ−σ ||| f |||γ,w;K, (3.5)

with f̂ = Q−σ f . In particular, away from P0, f̂ locally belongs to Dσ .
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Proof Weassumewithout loss of generality ||| f |||γ,w;K ≤ 1. For 2‖x−y‖s ≤ |x, y|P1 ,
simply by the definition of the spaces Dγ,w

P we get

‖ f̂ (x)− Γxy f̂ (y)‖l
‖x − y‖σ−ls

� ‖x − y‖γ−σ
s |x, y|σ−γ

P1
|x, y|μ−σ

P0
≤ δμ−σ . (3.6)

since σ ≤ γ . In the case |x, y|P1 ≤ 2‖x − y‖s, then noting that |x |P1 ∨ |y|P1 ≤
3‖x − y‖s we can write, using the estimate (3.2) again

‖ f̂ (x)− Γxy f̂ (y)‖l ≤ ‖ f̂ (x)‖l +
∑

l≤m<σ

‖x − y‖m−ls ‖ f̂ (y)‖m

≤ δμ−σ |x |σ−lP1
+

∑
l≤m<σ

‖x − y‖m−ls δμ−σ |y|σ−mP1

� δμ−σ‖x − y‖σ−l ,

as required.
The fact that f̂ is locally in Dσ then follows, since on {δ ≤ |x |P0 ≤ |x |P1},

f actually belongs to Dγ , so its projection f̂ belongs to Dσ , and δ > 0 was
arbitrary. ��
Remark 3.7 One simplification that we will often use is based on the fact that for pairs
(x, y) ∈ KP , we have

|x |Pi ∼ |y|Pi ∼ |x, y|Pi
for i = 0, 1. As a consequence, in the proofs of Sect. 4 below we will repeatedly
interchange the above quantities without much explanation. Also, for such pairs, even
though |x |P0 ≤ |x |P1 does not imply |y|P0 ≤ |y|P1 or |x, y|P0 ≤ |x, y|P1 , it holds that

‖ f (y)‖l � ‖ f ‖γ,w,K|y|μ−lP1

( |y|P0
|y|P1

)(η−l)∧0
,

and

‖ f (x)− Γxy f (y)‖l � ||| f |||γ,w,K‖x − y‖γ−ls |x, y|η−γ

P0
|x, y|μ−η

P1
.

This, and the corresponding symmetric implications (swapping the roles of P0 and
P1), will also often be used.

4 Calculus of the spaces Dγ,w
P

In order to reformulate our stochastic PDEs as fixed point problems in Dγ,w

P , one
first needs to know how the standard operations like multiplication, differentiation, or
convolution with singular kernels, act on these spaces. The aim of this section is to
recover the calculus of [10] in the present context.
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Singular SPDEs in domains with boundaries

Remark 4.1 This of course means that repetition of arguments to a certain degree is
inevitable. We shall try to minimise the overlap and concentrate on the aspects that
are different due to the additional weights and don’t just follow trivially from [10].
This in particular applies to the continuity statements: since the space of models is
not linear, boundedness of the operations do not imply their continuity. However, in
practice they usually follow from the same principles, with an added level of nota-
tional inconvenience. We therefore only give the complete proof of continuity for the
multiplication, after which the reader is hopefully convinced that obtaining the other
similar continuity results is a lengthy but straightforward combination of the corre-
sponding arguments in [10] and the treatment of the additional weights as described
in the ‘boundedness’ part of the corresponding statements. Alternatively, the continu-
ity statements can also be obtained by using the trick introduced in the proof of [12,
Prop. 3.11], which allows to some extent to “linearise” the space of models.

Remark 4.2 Let us mention an important point on how integration against singular
kernels will be handled. While Green’s functions of boundary value problems are not
translation invariant, they typically can be decomposed into a translation invariant
part and a smooth one, which however is singular at the boundary. The most simple
example of this is the 1+ 1-dimensional Neumann heat kernel on (R+)2:

G((t, x), (s, y)) = 1√
4π(t − s)

(
e−

(x−y)2
4(t−s) + e−

(x+y)2
4(t−s)

)
,

for a more general discussion see Example 4.15 below. The advantage of such a
decomposition is that only the former part plays a role in constructing the regularity
structure itself and the corresponding admissible models, for which one can use the
general machinery of [2,3,10]. Integration against the latter part simply produces
functions described by polynomial symbols, albeit with blow-ups at the boundaries
which need to be sufficiently controlled.

4.1 Multiplication

Lemma 4.3 For i = 1, 2, let fi ∈ Dγi ,wi
P (Vi ) with γi > 0, where Vi is a sector of

regularity αi ≤ 0. Suppose furthermore that the pair (V1, V2) is γ := (γ1 + α2) ∧
(γ2+ α1)-regular with respect to the product �. Then f := f1 �γ f2 belongs toDγ,w

P ,
where w = (η, σ, μ) with μ = μ1 + μ2 and

η = (η1 + α2) ∧ (η2 + α1) ∧ (η1 + η2),

σ = (σ1 + α2) ∧ (σ2 + α1) ∧ (σ1 + σ2).

Moreover, if (Π̄, Γ̄ ) is another model for T , and gi ∈ Dγi ,wi
P (Vi ; Γ̄ ) for i = 1, 2,

then, for g = g1 �γ g2 and any C > 0

||| f ; g|||γ,w;K � ||| f1; g1|||γ1,w1;K + ||| f2; g2|||γ2,w2;K + ‖Γ − Γ̄ ‖γ1+γ2;K, (4.1)
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holds uniformly in fi and gi with ||| fi |||γi ,wi ;K + |||gi |||γi ,wi ;K ≤ C and models with
‖Γ ‖γ1+γ2;K + ‖Γ̄ ‖γ1+γ2;K ≤ C.

Proof We fix a compact K and assume, without loss of generality, that both f1 and f2
are of norm 1 on K. Then, for |x |P0 ≤ |x |P1 and l < γ ,

‖ f (x)‖l ≤
∑

l1+l2=l
‖ f1(x)‖l1‖ f2(x)‖l2

≤
∑

l1+l2=l
|x |μ1+μ2−l1−l2

P1

( |x |P0
|x |P1

)(η1−l1)∧0+(η2−l2)∧0

≤ |x |μ−lP1

∑
l1+l2=l

( |x |P0
|x |P1

)−l+η1∧l1+η2∧l2
.

It remains to notice that, since for i = 0, 1, li ≥ αi , we have η1 ∧ l1+ η2 ∧ l2 ≥ η∧ l,
by construction, and hence

‖ f (x)‖l � |x |μ−lP1

( |x |P0
|x |P1

)(η−l)∧0
.

Next we bound f (x) − Γxy f (y). As usual, we assume |x, y|P0 ≤ |x, y|P1 . For
l < γ , the triangle inequality yields

‖ f (x)− Γxy f (y)‖l ≤ ‖Γxy f (y)− (Γxy f1(y)) � (Γxy f2(y))‖l
+ ‖(Γxy f1(y)− f1(x)) � (Γxy f2(y)− f2(x)‖l
+ ‖(Γxy f1(y)− f1(x)) � f2(x)‖l
+ ‖ f1(x) �

(
Γxy f2(y)− f2(x)

)‖l . (4.2)

Thanks to the γ -regularity of (V1, V2), the first term in this expression can be bounded
by

A := ‖Γxy f (y)− (Γxy f1(y)) � (Γxy f2(y))‖l
≤

∥∥∥ ∑
m+n≥γ

(ΓxyQm f1(y)) � (ΓxyQn f2(y))
∥∥∥
l

≤
∑

m+n≥γ

∑
β1+β2=l

‖ΓxyQm f1(y)‖β1‖ΓxyQn f2(y)‖β2

≤
∑

m+n≥γ

∑
β1+β2=l

‖Γ ‖2γ1+γ2
‖ f1(y)‖m‖ f2(y)‖n‖x − y‖m+n−β1−β2

s . (4.3)

The factor ‖Γ ‖2γ1+γ2
can course be incorporated into the proportionality constant, but

it will be useful in the sequel to view the dependence on it as above. We can continue
by writing
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A �
∑

m+n≥γ

‖x − y‖m+n−ls ‖ f1(y)‖m‖ f2(y)‖n

≤ ‖x − y‖γ−ls

∑
m+n≥γ

‖x − y‖m+n−γ
s |y|μ1+μ2−m−n

P1

( |y|P0
|y|P1

)(η1−m)∧0+(η2−n)∧0

≤ ‖x − y‖γ−ls |y|μP1 |y|
−γ

P0

∑
m+n≥γ

|y|m+nP0
|y|−m−nP1

( |y|P0
|y|P1

)(η1−m)∧0+(η2−n)∧0

= ‖x − y‖γ−ls |y|μP1 |y|
−γ

P0

∑
m+n≥γ

( |y|P0
|y|P1

)η1∧m+η2∧n
, (4.4)

whereweused‖x−y‖ ≤ |y|P0 to get the third line.As before,wehaveη1∧m+η2∧n ≥
η ∧ γ = η, and recalling that |y|Pi ∼ |x, y|Pi we see that this is indeed the bound we
need in (3.1). The second term on the right-hand side of (4.2) is bounded by a constant
times

∑
m+n=l

‖Γxy f1(y)− f1(x)‖m‖Γxy f2(y)− f2(x)‖n

≤
∑

m+n=l
‖x − y‖γ1+γ2−m−n

s |x |μ1+μ2−η1−η2
P1

|x |η1+η2−γ1−γ2
P0

� ‖x − y‖γ−ls |x |μ−η1−η2
P1

|x |η−η1−η2
P0

|x |η−γ1−γ2
P0

‖x − y‖γ1+γ2−γ
s .

Since γ1+γ2 ≥ γ , η1+η2 ≥ η, and ‖x− y‖s ≤ |x |P0 ≤ |x |P1 , this gives the required
bound. The third term on the right-hand side of (4.2) is bounded by a constant times

∑
m+n=l

‖Γxy f1(y)− f1(x)‖m‖ f2(x)‖n

�
∑

m+n=l
‖x − y‖γ1−ms |x |μ1−η1

P1
|x |η1−γ1

P0
|x |μ2−n

P1

( |x |P0
|x |P1

)(η2−n)∧0

≤ ‖x − y‖γ−l
∑

m+n=l
‖x − y‖γ1+n−γ

s |x |μ−η1−η2∧n
P1

|x |η1−γ1+η2∧n−n
P0

� ‖x − y‖γ−ls |x |μ−η
P1

∑
m+n=l

‖x − y‖γ1+n−γ
s |x |η−η1−η2∧n

P1
|x |η1−γ1+η2∧n−n

P0
. (4.5)

Inside the sum, the exponent of ‖x − y‖s is nonnegative, due to the relation γ ≤
γ1 + α2, while the exponent of |x |P1 is nonpositive, due to η ≤ η1 + η2 ∧ α2. Using
‖x − y‖s ≤ |x |P0 ≤ |x |P1 as before, we get the required bound. Finally, the fourth
term on the right-hand side of (4.2) is bounded similarly, reversing the roles played
by f1 and f2.

To prove the continuity estimate (4.1), we of course need only consider the first
part of the definition of |||·; ·|||, the bound on the second already follows from above
by linearity. We then write

123



M. Gerencsér, M. Hairer

f (x)− g(x)− Γxy f (y)+ Γ̄xyg(y)

= −Γxy f (y)+ Γxyg(y)+ Γxy f1(y) � Γxy f2(y)− Γ̄xyg1(y) � Γ̄xyg(y)

+ ( f1(x)− g1(x)− Γxy f1(y)+ Γ̄xyg1(y)) � f2(x)

+ Γxy f1(y) � ( f2(x)− g2(x)− Γxy f2(y)+ Γ̄xyg2(y))

+ Γ̄xy(g1(y)− f1(y)) � (Γ̄xyg2(y)− g2(x))

+ (Γ̄xy f1(y)− Γxy f1(y)) � (Γ̄xyg2(y)− g2(y))

+ (g1(y)− Γ̄xyg1(y)) � ( f2(x)− g2(x)).

=: T0 + T1 + T2 + T3 + T4 + T5 (4.6)

For T0, repeating the argument in (4.3), we need to estimate, for m + n ≥ γ , terms of
the form

ΓxyQm f1(y) � ΓxyQn f2(y)− Γ̄xyQmg1(y) � Γ̄xyQng2(y)

= ΓxyQm f1(y) � (Γxy(Qn f2(y)−Qng2(y))

+ ΓxyQm f1(y) � (ΓxyQng2(y)− Γ̄xyQng2(y))

+ Γxy(Qm f1(y)−Qmg1(y)) � Γ̄xyQng2(y)

+ (ΓxyQmg1(y)− Γ̄xyQmg1(y)) � Γ̄xyQng2(y).

Continuing as in (4.3), we get

‖T0‖l �
∑

m+n≥γ

‖x − y‖m+n−ls

[
‖ f1(y)‖m‖ f2(y)− g2(y)‖n

+ ‖ f1(y)‖m‖Γ − Γ̄ ‖γ1+γ2‖g2(y)‖n
+ ‖ f1(y)− g1(y)‖m‖g2(y)‖n + ‖Γ − Γ̄ ‖γ1+γ2‖g1(y)‖m‖g2(y)‖n

]
.

From here we get the desired bound (4.1) by repeating the calculation in (4.4).
For the further terms, we shall make use of the fact that for any γ̄ , w̄, h ∈ Dγ̄ ,w̄

P ,
and for pairs (x, y) under consideration, Γxyh(y) satisfies analogous bounds to h(x):

‖Γxyh(y)‖l ≤
∑
m≥l
‖x − y‖m−ls ‖h(y)‖m �

∑
m≥l
‖x − y‖m−ls |y|μ̄−mP1

( |y|P0
|y|P1

)(η̄−m)∧0

� |x |μ̄−lP1

( |x |P0
|x |P1

)(η̄−l)∧0
. (4.7)

For T1, we write

‖T1‖l � ||| f1; g1|||γ1,w1

∑
m+n=l

‖x − y‖γ1−m |x |μ1−η1
P1

|x |η1−γ1
P0

|x |μ2−n
P1

( |x |P0
|x |P1

)(η2−n)∧0
,

123



Singular SPDEs in domains with boundaries

and as we recognise the sum from (4.5), the required bound follows.
For T2, we use (4.7) with h = f1, and then proceed just like for T1, with the role

of the indices reversed.
To bound T3, we use (4.7), this time with h = g1 − f1, to get

‖T3‖l ≤ ‖ f1 − g1‖γ1,w1

∑
m+n=l

|y|μ1−m
P1

( |y|P0
|y|P1

)(η1−m)∧0
‖x − y‖γ2−ns |x |μ2−η2

P1
|x |η2−γ2

P0
,

and the sum is again of the same form.
The bound for the term T5 goes similarly to T3, with the indices reversed, and so does

T4, with the only difference that the prefactor of the sum is ‖Γ − Γ̄ ‖γ1+γ2 ||| f1|||γ1,w1
.
��

4.2 Composition with smooth functions

Lemma 4.4 Let V be a sector of regularity 0 with V0 = 〈1〉 that is γ -regular with
respect to the product � and furthermore V � V ⊂ V .

Let f1, . . . , fn ∈ Dγ,w

P (V ) with w = (η, σ, μ) such that η, σ, μ ≥ 0. Let fur-
thermore F : Rn → R be a smooth function. Then F̂γ ( f ) belongs to Dγ,w

P (V ).

Furthermore, F̂γ : Dγ,w

P → Dγ,w

P is locally Lipschitz continuous in any of the semi-
norms ‖ · ‖γ,w;K and ||| · |||γ,w;K.

Remark 4.5 If two modelled distributions f , f̄ are such that f − f̄ ∈ Dγ,w

P,{1}, then
clearly F̂γ ( f )− F̂γ ( f̄ ) also has 0 limit at P1\P0. In this case the analogous Lipschitz
bound for F̂ in the seminorms [] · []γ,w;K also holds.

Remark 4.6 One can use the same construction as in [12, Prop. 3.11] to obtain local
Lipschitz continuity when comparing two modelled distributions modelled on two
different models.

Proof We only give a sketch of the proof, as the majority of the argument is exactly
the same as that of the proof of Theorem 4.16 and Proposition 6.12 in [10]. We prove
the main estimates which are somewhat different due to the additional weights and
refer the reader to [10] to confirm that these indeed imply the theorem.

As usual, we consider the situation 2‖x − y‖s ≤ |x, y|P0 ≤ |x, y|P1 . We denote
L = �γ /ζ�, where ζ is either the lowest nonzero homogeneity such that Vζ �= {0}, or
if that index is larger than γ , then we set ζ = γ . The essential quantities to bound are

R1 :=
∑

l:∑ li≥γ

ΓxyQl1 f̃ (y) � · · · � ΓxyQln f̃ (y),

R f := Γyx f (x)− f (y),

R2 :=
∑
|k|≤L

(Γyx f̃ (x))
�k − (Γyx f̃ (x)+ R f )

�k,
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R3 :=
∑
|k|≤L

| f̄ (x)− f̄ (y)|γ /ζ−|k|( f̃ (y)− ( f̄ (y)− f̄ (x))1)�k,

each of which has to be estimated in the following way, for all β < γ :

‖Ri‖β � ‖x − y‖γ−β
s |x, y|μ−η

P1
|x, y|η−γ

P0
. (4.8)

Note that there is a slight abuse of notation here in that R f is vector-valued. By (4.8) we
then understand that such an estimate holds for each coordinate, and this convention
is applied in the other analogous situations below whenever vector-valued functions
are considered.

We further invoke two elementary inequalities from the proof of [10, Prop 6.12]:
for η ≥ 0, n ∈ N, l1, . . . , ln ∈ N, we have

n∑
i=1

(η − li ) ∧ 0 ≥
(
η −

n∑
i=1

li
)
∧ 0, (4.9)

and for any multiindex k with |k| ≤ L , integer 0 ≤ m ≤ |k|, real numbers 0 < ζ ≤ γ ,
0 ≤ β, η ≤ γ , and integers l1, . . . , lm satisfying

∑
li = β and li ≥ ζ , it holds

N + M :=
[
(|k|ζ − γ − |k|η + (γ η/ζ )) ∧ 0

]

+
[
β − ζm + (|k| − m)((η − ζ ) ∧ 0)+

m∑
i=1

(η − li ) ∧ 0
]
≥ η − γ.

(4.10)

The term R1 looks very similar to what we encountered in (4.3), and indeed by the
same argument we can write

‖R1‖β �
∑

∑
li≥γ

‖x − y‖
∑

li−β
s

∏
i

‖ f̃ (y)‖li

� ‖x − y‖γ−β
s

∑
∑

li≥γ

‖x − y‖
∑

li−γ
s

∏
i

|y|μ−liP1

( |y|P0
|y|P1

)(η−li )∧0

� ‖x − y‖γ−β
s

∑
∑

li≥γ

|y|−γ

P0
|y|nμ

P1

( |y|P0
|y|P1

)∑
(η−li )∧0+∑

li
.

By (4.9), the exponent of the fraction above is bounded from below by η ∧∑
li = η,

and since nμ ≥ μ due to μ being nonnegative, this yields the required bound.
The bound for R f follows from the definition. For R2, notice that
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‖Γyx f̃ (x)‖l �
∑
l ′≥l
‖x − y‖l ′−ls ‖ f̃ (x)‖l ′

�
∑
l ′≥l
‖x − y‖l ′−ls |x |μ−l ′P1

( |y|P0
|y|P1

)(η−l ′)∧0
� ‖x − y‖−ls .

Therefore, for any nonzero multiindex m and any multiindex m′,

‖R�m
f � (Γyx f̃ (x))

�m′ ‖β �
∑

l1+...+lm
+l ′1+...+l ′

m′=β

|m|∏
i=1
‖x − y‖γ−lis |x |μ−η

P1
|x |η−γ

P0

|m′|∏
i ′=1
‖x − y‖−l ′i ′

� ‖x − y‖γ−β
s |x |μ−η

P1
|x |η−γ

P0

(
‖x − y‖γs |x |μ−η

P1
|x |η−γ

P0

)|m|−1
,

and since the quantity in the parentheses is of order one due to γ, η, μ ≥ 0 and
‖x − y‖s ≤ |x, y|P0 ≤ |x, y|P1 , the bound (4.8) for R2 follows.

For R3, fix k and first write

| f̄ (x)− f̄ (y)| ≤ ‖Γxy f̃ (y)‖0 + ‖ f (x)− Γxy f (y)‖0
�

∑
ζ≤l≤γ

‖x − y‖ls|x |μ−lP1

( |x |P0
|x |P1

)(η−l)∧0
, (4.11)

where l runs over indices in A∪{γ } in the specified range. If the exponent of ‖x− y‖s
were l − ζ instead of l, we would be in the exact same situation as in (4.7). Taking
this extra ‖x − y‖ζs out of the sum, we therefore get the bound

| f̄ (x)− f̄ (y)| � ‖x − y‖ζ |x |μ−ζ
P1

( |x |P0
|x |P1

)(η−ζ )∧0
, (4.12)

and, recalling the notation N from (4.10),

| f̄ (x)− f̄ (y)|γ /ζ−|k| � ‖x − y‖γ−|k|ζs |x |(γ /ζ−|k|)(μ−ζ )

P1

( |x |P0
|x |P1

)N

. (4.13)

Moving to the other constituent of R3, by (4.12) and the bounds on f̃ (y) from the
definition of the spaces Dγ,w

P , the we can write

‖( f̃ (y)− ( f̄ (y)− f̄ (x))1)�k‖β
�

∑
0≤m≤|k|

∑
∑m

i=1 li=β
li≥ζ

‖x − y‖ζ(|k|−m)
s |x |(μ−ζ )(|k|−m)

P1

( |x |P0
|x |P1

)((η−ζ )∧0)(|k|−m)

×
m∏
i=1
|x |μ−liP1

( |x |P0
|x |P1

)(η−li )∧0
.
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As the sum has finitely many terms, it suffices to treat them separately, and therefore
we fix m and li as above. Then, since β =∑

li ≥∑
ζ = mζ , we can get a bound

‖x − y‖ζ |k|−β
s |x |β−mζ

P0
|x ||k|μ−ζ |k|

P1
|x |mζ−β

P1

( |x |P0
|x |P1

)((η−ζ )∧0)(|k|−m)+∑
(η−li )∧0

Moving the second and fourth factor into the fifth one, we get that the exponent of the
fraction above becomes M , as defined in (4.10). Combining this with (4.13), we get

‖R3‖β � ‖x − y‖γ−β |x |(γ /ζ )μ−γ

P1

( |x |P0
|x |P1

)N+M
,

and by (4.10) and the fact (γ /ζ )μ ≥ μ, we arrive at (4.8) for R3. ��

4.3 Reconstruction

Recall that, since reconstruction is a local operation, there exists an element R̃ f in the
dual of smooth functions supported away from P such that the bound (2.4) is satisfied
if λ  |x |P0 ∧ |x |P1 . A natural guess for the target space of the extension of the
reconstruction operator acting on Dγ,w

P (V ) would be Cη∧σ∧μ∧α . While this certainly
does hold, we need some finer control over the behaviour at the different boundaries.
To this end, we introduce weighted versions of Hölder spaces as follows.

Definition 4.7 Let a = (a0, a1, a∩) ∈ R
3−, write a∧ = a0 ∧ a1 ∧ a∩, and let

P = (P0, P1) as above. Then, we define CaP as the set of distributions u ∈ Ca∧
that furthermore satisfy the following two properties.

(a) For any x ∈ {|x |P0 ≤ 2|x |P1}, λ ∈ (0, 1] satisfying 2λ ≤ |x |P1 , and everyψ ∈ Br ,
where r = �−a0 + 1�,

|u(ψλ
x )| � |x |a∩−a0P1

λa0 . (4.14)

(b) For any x ∈ {|x |P1 ≤ 2|x |P0}, λ ∈ (0, 1] satisfying 2λ ≤ |x |P0 , and everyψ ∈ Br ,
where r = �−a1 + 1�,

|u(ψλ
x )| � |x |a∩−a1P0

λa1 . (4.15)

For a compact K, the maximum of the best proportionality constants in (4.14) and
(4.15) over x ∈ K is denoted by ‖u‖a;K.
Proposition 4.8 Let u ∈ D′(Rd\(P0∩ P1)) be such that the bounds (4.14) and (4.15)
are satisfied. Then, provided a∧ > −m, there exists a unique distribution u′ ∈ CaP that
agrees with u on test functions supported away from P0 ∩ P1.

Proof Such a u′ clearly satisfies (a)–(b) of Definition 4.7, so it only needs to be shown
that there exists a unique extension of u in Ca∧ . By Proposition 2.15, it suffices to
obtain the bound

|u(ψλ
x )| � λa∧, (4.16)

uniformly over ψ ∈ Br (for some fixed large enough r ) and λ ∈ (0, 1], for cλ ≤
ds(x, P0 ∩ P1) with some fixed c > 1. For sufficiently large c (depending only on
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the dimension), one can find smooth functions φ
(λ)
i with i = 0, 1 with the following

properties:

(i) The φ
(λ)
i are supported on {x : |x |Pi ≥ 4λ, 2|x |Pi ≥ |x |P1−i }.

(ii) If x ∈ R
d is such that ds(x, P0 ∩ P1) ≥ (c − 1)λ, then φ

(λ)
0 (x)+ φ

(λ)
1 (x) = 1.

(iii) For any multiindex k, the bound |Dkφ
(λ)
i (x)| � λ−|k|s is satisfied for all x ∈ R

d .

The functions ψλ
x φ

(λ)
i then satisfy the bounds

sup
y∈Rd
|Dk(ψλ

x φ
(λ)
i )(y)| � λ−|s|−|k|s

and have support with diameter less than 2λ|s|. One can therefore find points zi with
2|zi |Pi ≥ |zi |P1−i ∨ 8λ, as well as functions ξ (i,λ) ∈ Br such that ψλ

x φ
(λ)
i = ξ

(i,λ),2λ
zi .

Applying the estimates (4.14) and (4.15) to ξ (1,λ) and ξ (0,λ), respectively, we get

|u(ψλ
x )| ≤ |u(ξ (0,λ),2λ

z0 )| + |u(ξ (1,λ),2λ
z1 )| � λ(a∩−a1)∧0+a1 + λ(a∩−a0)∧0+a0 ,

and since the minimum of the two exponents on the right-hand side is a∧, (4.16) holds
indeed. ��
Theorem 4.9 Let f ∈ Dγ,w

P (V ), where V is a sector of regularity α and suppose that

η ∧ α > −m0, σ ∧ α > −m1, μ > −m. (4.17)

Then, setting a = (η ∧ α, σ ∧ α,μ), there exists a unique distribution

R f ∈ CaP

such that (R f )(ψ) = (R̃ f )(ψ) for smooth test functions that are compactly sup-
ported away from P. In particular, R f ∈ Ca∧ .

Moreover, if (Π̄, Γ̄ ) is another model for T and f ∈ Dγ,w

P (V, Γ ), f̄ ∈
Dγ,w

P (V, Γ̄ ), then one has the bounds, for any C > 0 and K compact

‖R f −R f̄ ‖a;K � ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ,K̄ + ‖Γ − Γ̄ ‖γ,K̄, (4.18)

uniformly in f, f̄ , and the two models being bounded by C, where K̄ denotes the
1-fattening of K.

Proof By virtue of Proposition 4.8, it suffices to extend R̃ f to an element of
D′(Rd\(P0∩P1)) in such away that (4.14) and (4.15) holdwith the desired exponents.

By (2.4), it holds, uniformly in x ∈ {|x |P0 ≤ 2|x |P1} over compacts, uniformly in
ψ ∈ Br , and uniformly in λ ∈ (0, 1] such that 4λ ≤ |x |P0 , that

|(R̃ f −Πx f (x))(ψ
λ
x )| � λγ |x |η−γ

P0
|x |μ−η

P1
� λη|x |μ−η

P1
. (4.19)
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Also, in the same situation, we have

|(Πx f (x))(ψ
λ
x )| �

∑
l

λl |x |μ−lP1

( |x |P0
|x |P1

)(η−l)∧0
. (4.20)

Since λ � |x |P0 ∧ |x |P1 , this sum is of the same form that we encountered before, for
example in (4.11). By the same argument we get

|(Πx f (x))(ψ
λ
x )| � λα|x |μ−α

P1

( |x |P0
|x |P1

)(η−α)∧0
� λη∧α|x |μ−(η∧α)

P1
. (4.21)

Combining this with (4.19), by Proposition 2.15 we can extend R̃ f to an element
R̃0 f ∈ D′(Rd\P1) such that the bound

|(R̃0 f )(ψ
λ
x )| � λη∧α|x |μ−(η∧α)

P1
(4.22)

holds uniformly in x ∈ {|x |P0 ≤ 2|x |P1} over compacts, uniformly in ψ ∈ Br , and
uniformly in λ ∈ (0, 1] such that 2λ ≤ |x |P1 .

One can similarly construct R̃1 f ∈ D′(Rd\P0) such that |(R̃1 f )(ψλ
x )| �

λσ∧α|x |μ−(σ∧α)
P1

holds in the symmetric situation. Since R̃0 f and R̃1 f agree on the
intersection of their domains, they can be pieced together to get the claimed extension
of R̃ f . The proof of continuity is again analogous and is omitted here. ��

Keeping in mind that our goal will be to apply this calculus for singular SPDEs with
boundary conditions on some domain D, P1 will typically stand for R × ∂D. With
a parabolic scaling we have m1 = 1 and so condition (4.17), in particular requiring
σ∧α > −1 is rather strict andwill often be violated. In these situations, a C(η∧α,σ∧α,μ)

P

extension R̃ f is not unique and hence sometimes it will be more suggestive to write
R̂ f for particular choices of such extensions. On some occasions this choice will be
made ‘by hand’, but there is also another generic situation when a canonical choice
can be made, as follows.

Theorem 4.10 Let f ∈ Dγ,w

P,{1}, where V is a sector of regularity α and let γ > 0 and
w be such that

0 > σ > −m1 ≥ α, η ∧ α > −m0, μ > −m. (4.23)

Then there exists a unique distribution R̂ f ∈ C(η∧α,α,μ)
P such that for smooth functions

ψ compactly supported away from P, R̂ f (ψ) = R̃ f (ψ) and that furthermore,

|R̂ f (ψλ
x )| � λσ |x |μ−σ

P0
(4.24)

holds uniformly in x over relatively compact subsets of P1\P0, in ψ ∈ Br , and in
λ ∈ (0, 1] such that 2λ ≤ |x |P0 .
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Moreover, if (Π̄, Γ̄ ) is another model for T and f ∈ Dγ,w

P,{1}(V, Γ ), f̄ ∈
Dγ,w

P,{1}(V, Γ̄ ), then one has the bound, for all C > 0 and compact K

‖R̂ f − ˆ̄R f̄ ‖η∧α,α,μ;K � ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ,K̄ + ‖Γ − Γ̄ ‖γ,K̄. (4.25)

uniformly in f, f̄ , and the two models being bounded by C, where K̄ denotes the
1-fattening of K.

Finally, if for all a ∈ V , Πxa is a continuous function, then

R̂ f (ψ) =
∫
Rd\P

(Πx f (x))(x) ψ(x) dx . (4.26)

Proof First notice that such a R̂ f has to be unique: any two extensions of R̃ f differ
by a distribution concentrated on P , which, due to the conditions on the exponents
and the constraint (4.24), has to vanish.

An extension R̃0 f with the ‘right behaviour’ on Rd\P1 is constructed in the proof
of Theorem 4.9. Concerning the behaviour outside P0 we claim that, with f̂ = Q−σ f ,
it suffices to construct an extension R̂1 f ∈ D′(Rd\P0) of R̃ f that satisfies the bound

|(R̂1 f −Πx f̂ (x))(ψ
λ
x )| � λσ |x |μ−σ

P0
(4.27)

uniformly in x ∈ {|x |P1 ≤ 2|x |P0} over compacts, uniformly inψ ∈ Br , and uniformly
in λ ∈ (0, 1] such that 2λ ≤ |x |P0 . Indeed, (4.24) then follows from the fact that
f̂ (x) = 0 for x ∈ P1\P0 by the definition ofDγ,w

P,{1}. Furthermore, by Propositions 3.6
and 3.5, we have

|Πx f̂ (x)(ψ
λ
x )| �

∑
α≤l<σ

|x |μ−σ
P0
|x |σ−lP1

λl � |x |μ−α
P0

λα,

where the last bound follows from the facts that |x |P1 ≤ |x |P0 , α ≤ l, and λ ≤
|x |P0 . Therefore, by (4.27), the same bound holds for R̂1 f , and so piecing R̃0 f and
R̂1 f together, the resulting element of D′(Rd\(P0 ∩ P1)) satisfies the conditions of
Proposition 4.8with a0 = η∧α, a1 = α, and a∩ = μ. Applying the proposition,we get
the claimed R̂ f . Further notice, that in fact it is enough to show (4.27) for eachm ∈ N

in the case where x is further restricted to run over Am := {|x |P0 ∈ [2−m−2, 2−m]}.
Indeed, all functions ψλ

x that are considered in (4.27) have support that intersects at
most two Am’s, and therefore a straightforward partition of unity argument, like for
instance the one in the proof of Proposition 4.8 completes the proof.

To get R̂1 f on Am , first considerRm f̂ defined as in (2.10), which is a meaningful
expression thanks to Proposition 3.6. Furthermore, by (2.11) and using Proposition 3.6,
one has the bound

|(Rm f̂ −Πx f̂ (x))(ψ
λ
x )| � λσ−α(λ ∧ |x |P0)α|x |μ−σ

P0
� λσ |x |μ−σ

P0
, (4.28)
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uniformly in x ∈ {|x |P1 ≤ 2|x |P0} ∩ Am over compacts, uniformly over ψ ∈ Br , and
uniformly over λ ∈ (0, 1] such that 4λ ≤ |x |P1 . One also has, by (2.4) and the basic
properties of the model,

|(R̃ f −Πx f̂ (x))(ψ
λ
x )| ≤ |(R̃ f −Πx f (x))(ψ

λ
x )| + |(Πx f (x)−Πx f̂ (x))(ψ

λ
x )|

� λγ |x |σ−γ

P1
|x |μ−σ

P0
+

∑
l>σ

λl |x |μ−σ
P0
|x |σ−lP1

� λσ |x |μ−σ
P0

(4.29)

with the same uniformity. Thus the same bound holds for the difference R̃ f −Rm f̂ ,
which therefore, by Proposition 2.15, has a unique extension ΔmR f ∈ D′({|x |P1 ≤
2|x |P0} ∩ Am) for which the same bound holds even when λ is only restricted by
2λ ≤ |x |P0 . Hence Rm f + ΔmR f satisfies the required bound (4.27) (on Am), and
it trivially agrees with R̃ f on functions supported away from P .

As for the last statement of the theorem, one simply has to check that the right-hand
side of (4.26) satisfies the claimed properties. It trivially coincides with R̃ f away from
P , and the bound (4.24) follows from the fact that, thanks to Proposition 3.5

|(Πx f (x))(x)| � |x |μ−σ
P0
|x |σP1

if |x |P1 ≤ |x |P0 , where in this particular case the proportionality constant also depends
on the local supremum bounds of the continuous functions Πxa. Since this additional
dependency doesn’t affect the uniqueness part of the statement, the proof is complete.

��

4.4 Differentiation

Lemma 4.11 LetD be an abstract gradient and let f ∈ Dγ,w

P (V ), where γ > si and

w = (η, σ, μ) ∈ R
3. Then Di f ∈ Dγ−si ,(η−si ,σ−si ,μ−si )

P .

This lemma is a direct consequence of the definition of abstract gradients, and since
the proof is a trivial modification of that of [10, Prop 5.28], it is omitted here.

4.5 Integration against singular kernels

As seen above, in certain situations the distribution R f is not uniquely defined as
there might be many distributions ζ with the appropriate regularity that extend R̃ f .
For any such ζ , let us denote by N ζ

γ f and Kζ
γ f the modelled distributions defined

analogously to Nγ f and Kγ f , but with R f replaced by ζ .
Before stating the result on the integration operator in the weighted spaces, let us

recall the following identities from [10], which hold for any multiindex k, with the
usual convention that empty sums vanish
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(ΓxyN ζ,(n)
γ f (y))k = 1

k!
∑

|k+l|s<γ+β

(x − y)l

l! (ζ −Πx f (x))(D
k+l
1 Kn(y, ·)),

(ΓxyJ (n)(y) f (y))k = (J (n)(x)Γxy f (y))k

= 1

k!
∑

δ>|k|s−β

(ΠxQδΓxy f (y))(D
k
1Kn(x, ·)). (4.30)

In particular, choosing x = y, these identities also cover the formulas for the coefficient
of Xk in N ζ,(n)

γ f (x) and J (n)(x) f (x), respectively.
Another nontrivial rearrangement of terms gives

k!(ΓxyN ζ,(n)
γ f (y)+ ΓxyJ (n)(y) f (y)−N ζ,(n)

γ f (x)− J (n)(x) f (x))k

= (Πy f (y)− ζ )(Kk,γ
n;xy)

−
∑

δ≤|k|s−β

(ΠxQδ(Γxy f (y)− f (x)))(Dk
1Kn(x, ·)), (4.31)

where we define, for α ∈ R,

Kk,α
n;xy(z) = Dk

1Kn(y, z)−
∑

|k+l|s<α+β

(y − x)l

l! Dk+l
1 Kn(x, z).

We will also make use of the fact that following Taylor remainder formula holds:

Kk,α
n;xy(z) =

∑
l∈∂Aα

∫
Rd

Dk+l
1 Kn(ȳ, z)Q

l(x − y, d ȳ), (4.32)

where all we need from the yet undefined objects is that ∂Aα is a finite set of mul-
tiindices l which all satisfy |l|s ≥ α + β − |k|s and that Ql(x − y, ·) is a measure
supported on the set {ȳ : ‖x− ȳ‖s ≤ ‖x− y‖s}, with total mass bounded by a constant
times ‖x − y‖|l|ss . For a proof of this, see for example [10, Appendix A].

Lemma 4.12 Fix γ > 0, w = (η, σ, μ), let V be a sector of regularity α, and set
a = (η ∧ α, σ ∧ α,μ).

(i) Let f ∈ Dγ,w

P (V ) and let K be as in Theorem 2.13 for some β > 0 and abstract
integration map I. Let ζ ∈ Ca such that ζ(ψ) = (R̃ f )(ψ) for all ψ ∈ C∞0 (Rd\P)

and set

γ̄ = γ+β, η̄ = (η∧α)+β, σ̄ = (σ∧α)+β, μ̄ ≤ (a∧+β)∧0, ᾱ = (α+β)∧0.
(4.33)

Suppose furthermore that none of γ̄ , η̄, σ̄ , or μ̄ are integers and that these exponents
satisfy the condition (4.17). Then Kζ

γ f ∈ Dγ̄ ,w̄

P , where w̄ = (η̄, σ̄ , μ̄).
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Furthermore, if (Π̄, Γ̄ ) is a second model realising K for I and f̄ ∈ Dγ,w

P (V, Γ̄ ),
ζ̄ ∈ Ca are as above, then for any C > 0 the bound

|||Kζ
γ f ; K̄ζ̄

γ f̄ |||
γ̄ ,w̄;K � ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ ;K̄ + ‖Γ − Γ̄ ‖γ̄ ;K̄ + ‖ζ − ζ̄‖a,K̄

holds uniformly in models and modelled distributions both satisfying ||| f |||γ,w;K̄ +
‖Π‖γ ;K̄ + ‖Γ ‖γ̄ ;K̄ + ‖ζ‖a,K̄ ≤ C, where K̄ denotes the 1-fattening of K.

Finally, the identity
RKζ

γ f = K ∗ ζ (4.34)

holds.
(ii) If f ∈ Dγ,w

P,{1} and the coordinates of w satisfy (4.23), then choosing R̂ f in the
above in place of ζ , the same conclusions hold, but with the definition of σ̄ in (4.33)
replaced by σ̄ = σ + β.

Proof The argument showing thatN ζ
γ f (and thereforeKζ

γ f ) is actually well-defined
is exactly the same as in [10]. Also, the fact that the required bounds trivially hold
for components of (Kζ

γ f )(x) and (Kζ
γ f )(x)− Γyx (Kζ

γ f )(y), whose homogeneity is
non-integer, does not change in our setting.

For integers homogeneities, we shall make use of the decomposition of K and use
different arguments on different scales. We start by bounding the second term in (3.1).
First consider the case 2−n+2 ≤ |x |P0 ≤ |x |P1 . We then have, for any multiindex l,
due to (2.4)

|(R̃ f −Πx f (x))(D
l
1Kn(x, ·))| � 2n(|l|s−β−γ )|x |η−γ

P0
|x |μ−η

P1
. (4.35)

After summation over the relevant values of n, we get a bound of order

|x |η+β−|l|s
P0

|x |μ−η
P1
≤ |x |μ+β−|l|s

P1

( |x |P0
|x |P1

)η+β−|l|s
,

as required, since μ̄ ≤ μ+ β. As for J (n)(x) f (x), for any integer l we have

‖J (n)(x) f (x)‖l �
∑

δ>l−β

2n(l−β−δ)|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0
.

Summing over n, we get

∑
2−n+2≤|x |P0

‖J (n)(x) f (x)‖l �
∑

δ>l−β

|x |δ+β−l
P0

|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0

=
∑

δ>l−β

|x |β−lP0
|x |μP1

( |x |P0
|x |P1

)η∧δ

� |x |μ+β−l
P1

( |x |P0
|x |P1

)η∧α+β−l
,

where we made use of δ ≥ α in the last step.
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Next, consider the case |x |P0 ≤ 2−n+2 ≤ |x |P1 . Since then ds(supp Dl
1Kn(x, ·),

P1) ∼ |x |P1 , we can invoke part (a) of Definition 4.7. For any multiindex l, we get

|(ζ −Πx f (x))(D
l
1Kn(x, ·))+ (J (n)(x) f (x))l |

≤ |ζ(Dl
1Kn(x, ·))| +

∑
δ≤|l|s−β

|(ΠxQδ f (x))(D
l
1Kn(x, ·)|

� 2n(|l|s−β−η∧α)|x |μ−η∧α
P1

+
∑

δ≤l−β

2n(|l|s−β−δ)|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0
.

Notice that here in fact we only use estimates of ζ tested against functions centred on
the boundary, this observation useful in particular in the proof of part (ii) of the lemma.
Let us denote the two terms above by An and Bn . Summing An over the relevant values
of n, we have two cases, depending on the sign of |l|s − β − (η ∧ α) = |l|s − η̄. If
this exponent is positive, we get, after summation

|x |(η∧α)+β−|l|s
P0

|x |μ−(η∧α)
P1

≤ |x |μ+β−|l|s
P1

( |x |P0
|x |P1

)η̄−|l|s
,

which gives the required bound. If, on the other hand, |l|s − η̄ < 0 (equality cannot
occur, by assumption), then the sumof the An’s over the relevant values of n is bounded
by a constant times

|x |(η∧α)+β−|l|s+μ−η
P1

,

which is also of the required order. The treatment of Bn is momentarily postponed.
In the final case, |x |P0 ≤ |x |P1 ≤ 2−n+2. Similarly as above, recalling that ζ ∈ Ca∧ ,

we get

|(ζ −Πx f (x))(D
l
1Kn(x, ·))+ (J (n)(x) f (x))l |

≤ |ζ(Dl
1Kn(x, ·))| +

∑
δ≤|l|s−β

|(ΠxQδ f (x))(D
l
1Kn(x, ·)|

� 2n(|l|s−β−a∧) +
∑

δ≤l−β

2n(|l|−β−δ)|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0
. (4.36)

Recognising the second term as Bn , we consider its sum over the values of n in both
this and in the second case. Notice that the exponent of 2n is strictly positive: indeed,
δ + β ∈ N implies δ ∈ N, but since Kn and its derivatives annihilate polynomials,
such terms have no contribution to the sum. The resulting quantity is bounded by a
constant times
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∑
δ≤l−β

|x |β+δ−|l|s
P0

|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0
≤

∑
δ≤l−β

|x |μ+β−|l|s
P1

( |x |P0
|x |P1

)(η∧δ)+β−|l|s

� |x |μ+β−|l|s
P1

( |x |P0
|x |P1

)(η∧α)+β−|l|s

as required. Moving on to the first term on the right-hand side of (4.36), recall that
μ̄ ≤ a∧ + β, and hence

∑
n

2n(|l|s−β−a∧) ≤
∑
n

2n(|l|s−μ̄) � |x |μ̄−|l|sP1
, (4.37)

where the sum runs over the relevant values of n, and we also made use of the fact
that μ̄ ≤ 0 holds, and in fact, by assumption, with strict inequality. This concludes the
estimation of the second, and by symmetry, third term in (3.1).

Turning to bounding ‖Kζ
γ f (x) − ΓxyKζ

γ f (y)‖, recall that we need only consider
pairs (x, y) where 2‖x − y‖s ≤ |x, y|P0 ≤ |x, y|P1 . As before, this implies |x |Pi ∼
|y|Pi ∼ |x, y|Pi .

We separate into different scales again, starting by 2−n+2 ≤ 2‖x−y‖s ≤ |x, y|P0 ≤
|x, y|P1 . As in (4.35), we have

|(N ζ,(n)
γ f (x))l | � 2n(|l|s−β−γ )|x |η−γ

P0
|x |μ−η

P1
.

Summing over the relevant values of n, we get a bound of order

‖x − y‖γ+β−|l|s
s |x |η−γ

P0
|x |μ−η

P1
,

as required. Similarly,

|(ΓxyN ζ,(n)
γ f (x))l | �

∑
|k+l|s<γ+β

‖x − y‖|k|ss 2n(|k+l|s−β−γ )|x |η−γ

P0
|x |μ−η

P1
,

which, after summation, yields an estimate of order

∑
|k+l|s<γ+β

‖x − y‖|k|ss ‖x − y‖γ+β−|k+l|s
s |x |η−γ

P0
|x |μ−η

P1
,

which is again of the required order. Next, using (4.30), we have

|(J (n)(x) f (x)− ΓxyJ (n)(y) f (y))l | ≤
∑

δ>|l|s−β

(ΠxQδ( f (x)− Γxy f (y))(D
l
1Kn(x, ·))

�
∑

δ>|l|s−β

‖x − y‖γ−δ
s |x |η−γ

P0
|x |μ−η

P1
2n(|l|s−β−δ).
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Summing over the relevant values n, we get the bound

∑
δ>|l|s−β

‖x − y‖γ−δ
s |x |η−γ

P0
|x |μ−η

P1
‖x − y‖δ+β−|l|s ,

as required.
Moving on to larger scales, we will then use the identity (4.31). Starting with the

second term,

|
∑

δ≤|l|s−β

(ΠxQδ(Γxy f (y)− f (x)))(Dl
1Kn(x, ·))|

�
∑

δ≤|l|s−β

‖x − y‖γ−δ|x |η−γ

P0
|x |μ−η

P1
2n(|l|s−β−δ).

This can be treated for all the remaining scales at once: summing over n such that
‖x − y‖s ≤ 2−n+2 (the strict positivity of the exponent of 2n can be argued exactly
as in the previous similar situation), we get a bound of order

∑
δ≤|l|s−β

‖x − y‖γ−δ|x |η−γ

P0
|x |μ−η

P1
‖x − y‖δ+β−|l|s ,

which is of required order.
We are left to estimate

|(Πy f (y)− ζ )(Kk,γ
n;xy)|.

Rewriting the above quantity as in the formula (4.32), andmaking use of the properties
mentioned following it, we have

|(Πy f (y)− ζ )(Kl,γ
n;xy)|

≤
∑

|k|s≥γ+β−|l|s
‖x − y‖|k|ss sup

‖x−ȳ‖s≤‖x−y‖s
|(Πy f (y)− ζ )(Dk+l

1 Kn(ȳ, ·))|

≤ ‖x − y‖γ+β−|l|s
s

∑
|k|s≥γ+β−|l|s

‖x − y‖|k+l|s−γ−β
s sup

‖x−ȳ‖s≤‖x−y‖s
|(Πy f (y)− ζ )

(Dk+l
1 Kn(ȳ, ·))|.

Therefore it remains to show that, for any k multiindex satisfying |k|s ≥ γ + β − |l|s
and any ȳ satisfying ‖x − ȳ‖s ≤ ‖x − y‖s, the following bound holds.

‖x − y‖|k+l|s−γ−β
s |(Πy f (y)− ζ )(Dk+l

1 Kn(ȳ, ·))| � |x |η̄−γ̄

P0
|x |μ̄−η̄

P1
. (4.38)

Notice that in particular, as before, |x |Pi ∼ |ȳ|Pi ∼ |x, ȳ|Pi . To show (4.38) we again
treat the remaining different scales separately. First, take n such that ‖x − y‖s ≤
2−n+2 ≤ |x, y|P0 ≤ |x, y|P1 . We write
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|(Πy f (y)− ζ )(Dk+l
1 Kn(ȳ, ·))| ≤ |(Πȳ f (ȳ)− ζ )(Dk+l

1 Kn(ȳ, ·)|
+ |(Πȳ(Γȳ y f (y)− f (ȳ))(Dk+l

1 Kn(ȳ, ·))|.
(4.39)

Summing the first term over the relevant values of n, we get a bound of order

∑
n

2n(|k+l|s−β−γ )|x |η−γ

P0
|x |μ−η

P1
� ‖x − y‖−|k+l|s+γ+β

s |x |η−γ

P0
|x |μ−η

P1
,

so the prefactor in (4.38) cancels and we get the required bound. Similarly to before,
we used that while we only required |k|s ≥ γ +β−|l|s, in fact equality can not occur
due to the assumptions of the theorem, so the exponent of 2n is strictly positive. The
second term in (4.39) is estimated by

∑
δ≤γ

‖x − y‖γ−δ
s |x |η−γ

P0
|x |μ−η

P1
2n(|k+l|s−β−δ).

After summation over n, we get the bound

∑
δ≤γ

‖x − y‖γ−δ
s |x |η−γ

P0
|x |μ−η

P1
‖x − y‖−|k+l|s+β+δ

s ,

which, just as before, is of required order.
Turning to the scale ‖x − y‖s ≤ |x, y|P0 ≤ 2−n+2, we estimate the the actions of

the two distributions acting on the left-hand side of (4.38) separately. First,

|(Πy f (y))(D
k+l
1 Kn(ȳ, ·))| �

∑
α≤δ≤γ

|x |μ−δ
P1

( |x |P0
|x |P1

)(η−δ)∧0
2n(|k+l|s−β−δ).

As before, the exponent of 2n is strictly positive. Therefore

∑
|x,y|P0≤2−n+2

‖x − y‖|k+l|s−γ−β
s (Πy f (y))(D

k+l
1 Kn(ȳ, ·))

�
∑

α≤δ≤γ

|x ||k+l|s−γ−β

P0
|x |μ−δ

P1

( |x |P0
|x |P1

)(η−δ)∧0
|x |−|k+l|s+β+δ

P0

�
∑

α≤δ≤γ

|x |μ−δ−(η−δ)∧0
P1

|x |η∧δ−γ

P0
� |x |μ−η

P1
|x |η∧α−γ

P0
,

as required.
To treat the other distribution in (4.38), we further divide the scales, and consider

first ‖x − y‖s ≤ |x, y|P0 ≤ 2−n+2 ≤ |x, y|P1 . In this case the support of Kn(ȳ, ·) is
separated away from P1, so we have

|ζ(Dk+l
1 Kn(ȳ, ·))| � 2n(|k+l|s−β−(η∧α))|x |μ−(η∧α)

P1
.
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After summation on n and multiplying by the prefactor in (4.38), using ‖x − y‖s ≤
|x |P0 , we obtain a bound of order

|x ||k+l|−γ−β

P0
|x |(η∧α)+β−|k+l|s

P0
|x |μ−(η∧α)

P1
,

which is again of required order.
Finally, when ‖x − y‖s ≤ |x, y|P0 ≤ |x, y|P1 ≤ 2−n+2, we can write

|ζ(Dk+l
1 Kn(ȳ, ·))| � 2n(|k+l|s−β−a∧) ≤ 2n(|k+l|s−μ̄).

Summing over n and multiplying by the prefactor in (4.38), we arrive at the bound

|x ||k+l|−γ−β

P0
|x |μ̄−|k+l|sP1

= |x |η̄−γ̄

P0
|x ||k+l|s−η̄

P0
|x |μ̄−|k+l|sP1

, (4.40)

and since |k + l|s − η̄ ≥ 0, the middle term can be estimated by |x ||k+l|s−η̄
P1

, and the
proof is finished.

The proof of continuity again goes in an analogous way and is omitted here.
As for the identity (4.34), inspecting the proof of [10, Thm 5.12], one can notice

that this boils down to obtaining the estimate

∣∣∣∑
n≥0

∫
(Πx f (x)− R̃ f )(K0,γ

n,yx )ψ
λ
x (y) dy

∣∣∣ � λγ+β

for λ  |x |P0 ∧ |x |P1 . This however is a local statement and therefore the argument
in [10] carries through for our case virtually unchanged.

(ii) In the f ∈ Dγ,w

P,{1} case, when repeating the above arguments, one should
only pay attention in order to get the improved exponent σ̄ = σ + β in place of
(σ ∧ α)+ β = α + β. This improvement is the consequence of the improved bound
on ‖ f (x)‖l near P1, thanks to Proposition 3.5, and of the improved regularity of R̂ f
when tested against functions centred on P1, thanks to (4.24). ��
Remark 4.13 The “slight difficulty” foreshadowed in Remark 3.4 is the constraint
μ̄ ≤ 0 in the above lemma. Indeed, in all three of the concrete examples mentioned in
the introduction, it turns out one needs to choose μ̄ > 0. Note that the only two places
in the proof where the condition μ̄ ≤ 0 was used are (4.37) with l = 0 and (4.40). In
the latter case one, actually only needs μ̄ ≤ γ̄ , which holds as soon as we choose γ

sufficiently large so that μ ≤ γ . Therefore, provided that ζ is such that the bound

∑
2−n+2≥|x |P1

|ζ(Dl
1Kn(x, ·))| � |x |μ̄−|l|sP1

,

holds for |x |P0 ≤ |x |P1 , and the corresponding symmetric bound holds for |x |P1 ≤
|x |P0 , for all |l|s ≤ μ̄, and μ̄ ≤ a∧ + β, then the conclusions of Lemma 4.12 still
hold. This appears to be a very strong condition, but in the standard case where K
is a non-anticipative kernel and ζ is supported on positive times, it is actually quite
reasonable, see Proposition 5.1 below.
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4.6 Integration against smooth remainders with singularities at the boundary

From this point on we move to a more concrete setting, and in particular P0 and P1
will play different roles. We shall view R

d as R×R
d−1, denoting its points by either

z or by (t, x), where t ∈ R, x ∈ R
d−1. Furthermore we assume that P0 is given by

{(0, x) : x ∈ R
d−1}

Definition 4.14 Denote by Zβ,P the set of functions Z : (Rd\P)2 → R that can
be written in the form Z(z, z′) = ∑

n≥0 Zn(z, z′) where, for each n, Zn satisfies the
following

• Zn is supported on {(z, z′) = ((t, x), (t ′, x ′)) : |z|P1+|z′|P1+|t−t ′|1/s0 ≤ C2−n},
where C is a fixed constant depending only on the domain D.

• For any (d-dimensional) multiindices k and l,

|Dk
1D

l
2Zn(z, z

′)| � 2n(|s|+|k+l|s−β),

where the proportionality constant may depend on k and l, but not on n, z, z′.

The relevance of this definition is illustrated by the following example, which shows
that if we consider a heat kernel on a domain obtained by the reflection principle, then
it can always be decomposed into an element of Kβ and an element of Zβ,P .

Example 4.15 Our main example will be of the following form. Suppose that G0 is a
function on R

d × R
d\{(z, z′) : z = z′} with the following properties:

• We have a decompositionG0 = K 0+ R0, where K 0 ∈ Kβ , while R0 is a globally
smooth function.

• For any two multiindices k and l and any number a, there exists a constant Ck,l,a

such that it holds that |Dk
1D

l
2R

0(z, z′)| ≤ Ck,l,a(|x − x ′| ∨ 1)a .

As it is shown in [10], the heat kernel in any dimension satisfies these conditions with
β = 2. Suppose then that we have a discrete group G of isometries of Rd−1 with a
bounded fundamental domain D, and with the property that the following implication
holds

g ∈ G\{id}, x, y ∈ D, ‖x − g(y)‖s ≤ 2−n ⇒ ds(x, ∂D) ∨ ds(y, ∂D) ≤ 2−n .

Let a : G → {−1, 1} be a group morphism and write

G((t, x), (s, y)) =
∑
g∈G

agG
0((t, x), (s, g(y))). (4.41)

A concrete example to have in mind is when D = [−1, 1] and G is generated by the
maps y �→ −2 − y and y �→ 2 − y. Then, the trivial morphism ag ≡ 1 yields the
Neumann heat kernel on D, while the morphism with kernel given by the orientation-
preserving g’s yields the Dirichlet heat kernel. Obvious higher dimensional analogues
include the Neumann and Dirichlet heat kernels on (d − 1)-dimensional cubes.
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For functions f and g on (Rd)2, write f ∼ g if f (z) = g(z) for z ∈ ([0, 1]× D)2.
We claim that, setting P1 = R × ∂D, there exist K ∈ Kβ , Z ∈ Zβ,P , such
that G ∼ K + Z . First, due to the decay properties of R0, the sum R̃ =∑

g ag R
0((t, x), (s, g(y))) converges and defines a globally smooth function which

we can truncate in a smooth way outside of ([0, 1] × D)2, so that it belongs toZβ,P .
For K 0, we divide the sum

∑
g∈G

agK
0((t, x), (s, g(y)))

into three parts. For g = id, we simply set K = K 0 which belongs toKβ by assump-
tion. The terms with g such that y ∈ D implies ds(g(y), D) > 1 may safely be
discarded since they are supported outside of ([0, 1]× D)2. For the remaining finitely
many terms, say g1, g2, . . . , gm , we use our assumption on G, by which we can write

K 0
n ((t, x), (s, gm(y))) ∼ ϕn(x, y)K

0
n ((t, x), (s, gm(y))).

where ϕn is 1 on {(x, y) : ds(x, ∂D) ∨ ds(y, ∂D) ≤ 2−n}, is supported on {(x, y) :
ds(x, ∂D)∨ds(y, ∂D) ≤ 2−n+1}, and for all multiindices k and l, Dk

1D
l
2ϕ is bounded

by 2n(|k+l|s), up to a universal constant. Let furthermore ϕ be a smooth compactly
supported function that equals 1 on D × D. We can then set

Z0((t, x), (s, y)) =
m∑
i=1

ϕ(x, y)K 0
0 ((t, x), (s, gi (y)))+ ϕ(x, y)R̃,

and for n > 0

Zn((t, x), (s, y)) =
m∑
i=1

ϕn(x, y)K
0
n ((t, x), (s, gi (y))),

which does indeed yield an element of Zβ,P .

Lemma 4.16 Let a ∈ R
3− and a∧ be as in Definition 4.7, u ∈ CaP and Z ∈ Zβ,P .

Then the function
v : z �→

∑
n≥0
〈u, Zn(z, ·)〉 (4.42)

is a smooth function onRd\P, and its lift to T̄ via its Taylor expansion, which we also
denote by v, belongs to Dγ,w

P (T̄ ), where σ = a1 + β, γ ≥ σ ∨ 0, and η and μ satisfy

η ≤ γ, μ ≤ (a∧ + β) ∧ 0, (4.43)

provided neither of σ nor μ are integers.
If u furthermore satisfies 〈u, ψλ

z 〉 � λā1 |z|a∩−ā1P0
for z ∈ P1\P0 and 2λ ≤ |z|P0

with some ā1 ≥ a1, then the conclusions hold with the definition of σ replaced by
σ = ā1 + β.
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Proof Notice that in (4.42) only the terms where 2−n ≥ |z|P1 give nonzero contri-
butions. In particular, since the sum is finite, any differentiation on v can be carried
inside. If |z|P0 ≤ 2|z|P1 , then we simply use the fact that u ∈ Ca∧ , to get, for any
multiindex l

|Dlv(z)| �
∑

2−n≥|z|P1
2n(|l|s−β−a∧) ≤

∑
2−n≥|z|P1

2n(|l|s−μ) ≤ |z|μ−|l|sP1
, (4.44)

where we used μ ≤ a∧ + β as well as μ < 0. If 2|z|P1 ≤ |z|P0 , then we distinguish
two cases. First, if 2|z|P1 ≤ 2−n ≤ |z|P0 , then the support of Zn(z, ·) is away from
P0, and so we make use of part (b) of the definition of CaP :

|〈u, Dl
1Zn(z, ·)〉| ≤ 2n(|l|s−β−a1)|z|a∩−a1P0

. (4.45)

If σ = a1 + β < |l|s, then the summing up yields

∑
2|z|P1≤2−n≤|z|P0

|〈u, Dl
1Zn(z, ·)〉| � |z|σ−|l|sP1

|z|a∩−a1P0
= |z|a∩−a1+σ−|l|s

P0

( |z|P1
|z|P0

)σ−|l|s
,

which is as required, since −a1 + σ = β. If, on the other hand, σ > |l|s, then
∑

2|z|P1≤2−n≤|z|P0
|〈u, Dl

1Zn(z, ·)〉| � |z|a∩+β−|l|s
P0

.

On the scale, 2|z|P1 ≤ |z|P0 ≤ 2−n , when we simply use the fact u ∈ Ca∧ again in the
same way as before, to get

∑
|z|P0≤2−n

|〈u, Dl
1Zn(z, ·)〉| �

∑
|z|P0≤2−n

2n(|l|s−β−a∧) ≤ |z|μ−|l|sP0
. (4.46)

Putting the above estimates together, we conclude that

‖v(z)‖|l|s =
1

k! |D
lv(z)| � |z|μ−|l|sP1

( |z|P0
|z|P1

)(η−|l|s)∧0
(4.47)

if |z|P0 ≤ |z|P1 , and the corresponding symmetric estimate holds when |z|P1 ≤ |z|P0 .
In particular, the second and third terms in (3.1) are finite for any finite γ . To bound
the first term, it remains to recall that since v is the lift of a smooth function, for any
positive integer γ and (z, z′) ∈ KP

‖v(z)− Γzz′v(z′)‖l ≤ ‖z − z′‖γ−ls sup
z̄∈K:|z|Pi∼|z̄|Pi∼|z,z′|Pi

|Dγ v(z̄)|.
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Applying (4.47) (and its symmetric counterpart) with l = γ, we get

|Dγ v(z̄)| � |z|η−γ

P0
|z|σ−γ

P1
(|z|P0 ∨ |z|P1)μ−η−σ+γ ,

as required. For γ non-integer, it suffices to apply the above with γ replaced by
γ̄ = �γ � and to note that, for every γ ∈ (γ̄ − 1, γ̄ ), one has Dγ̄ ,w

P ⊂ Dγ,w

P . (To see

this, write f = f �γ 1 and apply Lemma 4.3, noting that 1 ∈ Dγ,w̄

P with η̄ = η ∨ 0,
σ̄ = σ ∨ 0 and μ̄ = 0.) For the last statement of the lemma, one can simply notice
that in (4.45) u is tested against functions centred on P1\P0, and use the additional
assumption on u. ��
Remark 4.17 The mapping u → Q−γ+βv, where v is as in (4.42), will also be denoted
by Zγ . As allmodels thatwe consider act the sameon polynomials, the usual continuity
estimates are in this case direct consequences of the above result.

Remark 4.18 It is again worth pointing out that the μ < 0 condition, used in (4.44)
and (4.46), can be omitted if one can derive

∑
2−n+2≥|z|P1∨|z|P0

|〈u, Dl
1Zn(z, ·)〉| � (|z|P1 ∨ |z|P0)μ−|l|s

for |l|s ≤ μ by some other means.

One can easily verify that the action of Kγ and Zγ are compatible in the following
sense: take f ∈ Dγ,w

P and an extension ζ of R̃ f as in Lemma 4.12 (i). Then Zγ+βζ ∈
Dγ+β,w̄

P , where w̄ is as in Lemma 4.12 (i).

5 Solving the abstract equation

In addition to the setting of Sect. 4.6 we now assume that, for a bounded domain
D ⊂ R

d−1 with a Lipschitz boundary ∂D satisfying the cone condition, P1 is given
by P1 = R× ∂D. We shall denote by D̄ the 1-fattening of the closure of D, and we
introduce the T -valued function

RD+ (t, x) =
{

1, if t > 0, x ∈ D,

0, otherwise.

It is straightforward to see thatRD+ ∈ D∞,(∞,∞,0)
P , and in particular that multiplication

by RD+ maps any Dγ,w

P space into itself.

5.1 Non-anticipative kernels

In a typical situation of an application of the theory to SPDEs, one important property
of the kernel K that we have, further to the quite general setting in Definition 2.11, is
that it is non-anticipative in the sense that
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t < s ⇒ K ((t, x), (s, y)) = 0. (5.1)

We shall use the notations O = [−1, 2] × D̄ and Oτ = (−∞, τ ] × D̄ as well
as the shorthand ||| f |||γ,w;τ for ||| f |||γ,w;Oτ

and similarly for other norms involving
dependence on compact sets.

First of all, this allows us to improve our conditions on μ.

Proposition 5.1 (i) In the setting of Lemma 4.12 (i), suppose that K is non-
anticipative, that f is of the form RD+g for some g ∈ Dγ,w

P , and that ζ annihilates
test functions supported on negative times. Let furthermore ε > 0 such that
m0 − β + ε > 0 and assume a∧ + m0 ≥ 0. Then, modifying the condition
on μ̄ from (4.33) to

μ̄ ≤ a∧ + β − ε,

the conclusions of Lemma 4.12 (i) still hold.
(ii) The analogous statement holds for Lemma 4.12 (ii), where the modified condition

on μ̄ reads as

μ̄ ≤ η ∧ μ ∧ α + β − ε.

(iii) In the setting of Lemma 4.16, suppose that Z is non-anticipative and that u anni-
hilates test functions supported on negative times and let ε > 0 be as above. Then,
modifying the condition on μ from (4.43) to

μ ≤ a∧ + β − ε,

the conclusion of Lemma 4.16 still hold.

Proof (i) By Remark 4.13, we only need to obtain the bound

∑
2−n+2≥|z|P1∨|z|P0

|ζ(Dl
1Kn(z, ·))| � (|z|P1 ∨ |z|P0)μ̄−|l|s (5.2)

for |l|s ≤ μ̄. For all m ∈ N, define the grid

Λm =
⎧⎨
⎩(s, y) : s = 2−mm0 , y =

d−1∑
j=1

2−ms j k j e j , k j ∈ Z

⎫⎬
⎭ ,

where e j is the j th unit vector of Rd−1, j = 1, . . . , d − 1. Let furthermore ϕ be a
function that satisfies

∑
y∈Λ0

ϕ(t, x − y) = 1 ∀t ∈ [−1, 2], x ∈ R
d−1,
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and define ϕ
m,s
y = 2−m|s|ϕ2−m

y .
To show (5.2), we first write, with setting 2−m ≤ |z|P0 ≤ 2−m+1,

ζ(Dl
1Kn(z, ·)) =

∑
y∈Λm

ζ(ϕm,s
y (·)Dl

1Kn(z, ·)).

Indeed, the function Dl
1Kn(z, ·) −∑

y∈Λm
ϕ
m,s
y Dl

1Kn(z, ·) is supported on strictly
negative times, and therefore vanishes under the action of ζ . Each of the functions
ϕ
m,s
y Dl

1Kn(z, ·) has support of size of order 2−m|s| and its kth derivative is bounded
by 2n(|s|+|l|s−β)2m|k|s . Recalling that ζ ∈ Ca∧ , this yields

|ζ(ϕm,s
y (·)Dl

1Kn(z, ·))| � 2−ma∧2−m|s|2n(|s|+|l|s−β).

Combining this with the fact that the number of points y ∈ Λm for which the support of
ϕ
m,s
y actually intersects the support of Dl

1Kn(z, ·), is of order 2−n(|s|−m0)2m(|s|−m0),
we get

|ζ(Dl
1Kn(z, ·))| � 2−m(a∧+m0)2n(m0+|l|s−β).

Bymultiplying with 2nε, we only increase the right-hand side, and by our assumptions
this guarantees that the exponent of 2n becomes positive. Therefore, recalling that
2−m ∼ |z|P0 , we obtain

∑
2−n+2≥|z|P1∨|z|P0

|ζ(Dl
1Kn(z, ·))| � |z|a∧+m0

P0
(|z|P1 ∨ |z|P0)β+ε−m0−|l|s ,

which, using a∧ +m0 ≥ 0, gives the required bound.
The proof of (ii) goes in the same way, and, in light of Remark 4.18, so does that

of (iii). ��
The other important consequence of the non-anticipativity of our kernel is the

following short-time control.

Lemma 5.2 In the setting of Proposition 5.1 (i), suppose that K is non-anticipative.
Set, for a κ > 0, w′ = (η′, σ ′, μ′) := (η̄− κ, σ̄ , μ̄− κ). Then it holds, for any C > 0

|||Kζ
γ RD+g|||γ̄ ,w′;τ � τκ/s0(|||g|||γ,w;τ + ‖ζ‖a;τ ),

|||Kζ
γ RD+g; K̄ζ̄

γ RD+ ḡ|||γ̄ ,w′;τ � τκ/s0(|||g; ḡ|||γ,w;τ + ‖Π − Π̄‖γ,O + ‖Γ − Γ̄ ‖γ,O

+ ‖ζ − ζ̄‖a;τ ) (5.3)

uniformly in τ ∈ (0, 1] and in models bounded by C. For the second bound, g and ḡ
are also assumed to be bounded by C.

If we are instead in the situation of Proposition 5.1 (ii), then the analogous statement
holds, with ζ replaced by R̂ f , and hence the last term on the right-hand side of (5.3)
can be omitted.
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Proof First, by the fact that K is non-anticipative, using (2.4) we can improve
Lemma 4.12 to

|||Kζ
γ RD+g|||γ̄ ,w̄;τ � |||g|||γ,w;τ + ‖ζ‖a;τ .

This already takes care of bounding the first and third term in (3.1), since, using the
shorthand F = Kζ

γ RD+g, for (z, z′) ∈ (Oτ )P

‖F(z)− Γzz′F(z′)‖l
‖z − z′‖γ̄−ls |z, z′|η′−γ̄

P0
|z, z′|σ̄−γ̄

P1
(|z, z′|P0 ∨ |z, z′|P1)μ′−η′−σ̄+γ̄

� |z, z′|η̄−η′
P0
|||F |||γ̄ ,w̄;τ ,

where we used that μ′ − η′ = μ̄− η̄. Similarly, for z ∈ Oτ ∩ {|z|P1 ≤ |z|P0},
‖F(z)‖l

|z|μ′−lP0

( |z|P1|z|P0
)(σ̄−l)∧0 � |z|μ′−μ̄

P0
|||F |||γ̄ ,w̄;τ .

Keeping in mind that |z|P0 ≤ t1/s0 , by the definition of the exponents w′, these are
indeed the required bounds. Similarly, we have for z ∈ Oτ ∩ {|z|P0 ≤ |z|P1}

‖F(z)‖l
|z|μ′−lP1

( |z|P0|z|P1
)(η′−l)∧0 ≤

‖F(z)‖l
|z|μ′−η′

P1
|z|η′−lP0

� |z|η′−η̄
P0
[]F[]γ̄ ,w̄,{0};τ ,

and hence, by virtue of Proposition 3.5, the proof is complete if we can show that
F = Kζ

γ RD+g ∈ Dγ̄ ,w̄

P,{0}. This, on the other hand, follows from the proof of [10,
Thm 7.1], given that away from P1, ζ belongs to Cη∧α , which is exactly the situa-
tion considered therein. The bound on the difference again follows in an analogous
way. ��

The corresponding results hold for the singular remainder as well.

Lemma 5.3 Let Z ∈ Zβ,P , f , ζ , γ , γ̄ , w, and w′ be as in Lemma 5.2. Then it holds,
for any C > 0

|||Zγ ζ |||
γ̄ ,w′;τ � τκ/s0‖ζ‖a;τ ,

uniformly in τ ∈ (0, 1].
Proof The proof goes precisely as in the previous lemma, with the only difference
that we cannot refer to [10] to argue that F := Z γ̄ ζ ∈ Dγ,w̄

P,{0}. We therefore need to
show that (F)k has limit 0 at points of P0\P1 whenever |k|s ≤ η ∧ α + β. This is
simply due to the fact that, for such k, the function

z→ ζ(Z(z, ·))

is continuous away from P1, and is 0 for negative times. ��

123



Singular SPDEs in domains with boundaries

5.2 On initial conditions

The class of admissible initial conditions depends on the particular choice of the kernel
in that in addition to the regularity, some boundary behaviour may be required. In the
setting of Example 4.15, which is general enough to cover all of our examples, this
can be formalised as follows.

Lemma 5.4 Let G and G be as in Example 4.15 and let u0 be a function on D such
that the function ū0 defined by

ū0(x) = agū0(g
−1x)

for the g ∈ G such that g−1x ∈ D, has a continuous extension that belongs to
Cα(Rd−1). Then the function

v(t, x) =
∫
D
G((t, x), (0, y))u0(y)dy

is smooth on (0,∞) × D and extending it by 0 to R
d\(0,∞) × D, for any mul-

tiindex l, the pointwise lift of its lth derivative via its Taylor expansion belongs to
Dγ,(α−|l|s,σ,(α−|l|s)∧0)

P for any 0 ≤ σ ≤ γ .

Proof We can write

v(t, x) =
∫
Rd

G0((t, x), (0, y))ū0(y)dy.

By assumption, the conditions of [10, Lem 7.5] are satisfied, and hence v satisfies the
bounds

|Dlv(t, x)| � |z|(α−|l|s)∧0P0
.

This already gives the right bounds for ‖Dlv(z)‖k , k = 0, 1, . . .. From this one can
deduce the bound for the quantity ‖Dlv(z)− Γzz′Dlv(z′)‖k precisely as in the proof
of Lemma 4.16. ��

5.3 The fixed point problem

At this point everything is in place to solve the abstract equations thatwill arise as ‘lifts’
of equations similar to the ones in Sect. 1.1. As the notation is already quite involved,
we refrain from the full generality concerning the kernel K + Z and the scaling s and
only state the result in a form that is sufficient to treat nonlinear perturbations of the
stochastic heat equation with some boundary conditions. Ourmain goal is to formulate
a fixed point argument that is just general enough to cover the examples mentioned in
the introduction, as well as some related problems.

123



M. Gerencsér, M. Hairer

Our setup will involve families of Banach spaces depending on some parameter
τ > 0 (which will represent the time over which we solve our equation). We will
henceforth talk of a “time-indexed space V” for a family V = {Vτ }τ>0 of Banach
spaces as well as contractions πτ ′←τ : Vτ → Vτ ′ for all τ ′ < τ with the property that
πτ ′′←τ ′ ◦ πτ ′←τ = πτ ′′←τ . We consider V itself as a Fréchet space whose elements
are collections {vτ }τ>0 satisfying the consistency condition vτ ′ = πτ ′←τ vτ and with
the topology given by the collections of seminorms ‖ · ‖τ inherited by the spaces Vτ .
We will write πτ : V → Vτ for the natural projection.

Given a bounded and piecewise C1 domain D ⊂ R
d−1, a typical example of a

time-indexed space is given by the space V = Dγ,w

P with πτ given by the restriction to
[0, τ ] × D and norms ‖ · ‖τ given by ||| · |||γ,w;Dτ

, where Dτ = [0, τ ] × D. Similarly,
we write again Cw

P for the time-indexed space consisting of distributions on Rd which
vanish outside of R+ × D, endowed with the norms of Definition 4.7, but restricted
to test functions ψ , points x and constants λ such that the support of ψλ

x lies in
(−∞, τ ] × R

d−1.
Given two time-indexed spaces V and V̄ , we call a map A : V → V̄ ‘adapted’

if there are maps Aτ : Vτ → V̄τ such that πτ A = Aτ πτ . If A is linear, we will
furthermore assume that the norms of Aτ are uniformly bounded over bounded subsets
of R+. Similarly, we call A “locally Lipschitz” if each of the Aτ is locally Lipschitz
continuous and, for every K > 0 and τ > 0, the Lipschitz constant of Aτ ′ over the
centred ball of radius K in Aτ ′ is bounded, uniformly over τ ′ ∈ (0, τ ].

With these preliminaries in place, our setup is the following.

• Fix d ≥ 2, β = 2, the scaling s = (2, 1, . . . , 1) on R
d = {(t, x) : t ∈ R, x ∈

R
d−1}, and a regularity structure T .

• Let γ , γ0 be two positive numbers satisfying γ < γ0 + 2 and let V be a sector of
regularity α ≤ 0 and such that T̄ ⊂ V .

• Set P0 = {(0, x) : x ∈ R
d−1} and P1 = {(t, x) : t ∈ R, x ∈ ∂D}, where D is a

domain in Rd−1 with a piecewise C1 boundary, satisfying the cone condition.
• We assume that we have an abstract integration map I of order 2 as well as non-
anticipative kernels K ∈ K2 and Z ∈ Z2,P . We then construct the operator Zγ

and, for every admissible model (Π, Γ ), the operator Kγ as in Sects. 4.5 and 4.6.
• We fix a family ((Πε, Γ ε))ε∈(0,1] of admissible models converging to (Π0, Γ 0)

as ε→ 0.
• We fix a collection of time-indexed spaces Vε with ε ∈ [0, 1] endowed with
adapted linear maps R̂ε : Vε → ⊕n

i=0 Cwi
P and ιε : Vε → ⊕n

i=0 Dγ0,wi
P (Vi , Γ ε),

where Vi are sectors of regularity αi , satisfying I(Vi ) ⊂ V and wi ∈ R
3. Finally,

we assume that for every ε ∈ [0, 1] and every v ∈ Vε, one has

(R̃RD+ ιεv
)
(ψ) = (R̂εv

)
(ψ) (5.4)

for any ψ ∈ C∞0 (Rd\P). Denote C̃ =⊕n
i=0 Cwi

P and D̃ =⊕n
i=0 Dγ0,wi

P (Vi , Γ ε),
which are themselves time-indexed spaces equipped with the natural norms.
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• We fix a collection of time-indexed spacesWε of modelled distributions such that
the linear maps

P(ε)
γ v =

n∑
i=0

(K(R̂εv)i
γ (RD+ ιεv)i + Zγ (R̂εv)i

)
,

are bounded from Vε into Wε with a bound of order τ θ for some θ > 0 for its
restriction to time τ ∈ (0, 1], uniformly over ε ∈ [0, 1].

• For ε ∈ [0, 1], we fix a collection of adapted locally Lipschitz continuous maps
Fε : Dγ,w

P (V, Γ ε)→ Vε.
• There are ‘distances’ |||·; ·|||W;τ (possibly also dependingon ε) definedonWε×W0
that are compatible with the maps Fε and Pγ in the sense that, for u ∈ Vε, v ∈ V0,
and τ ∈ (0, 1], one has

τ−θ |||P(ε)
γ u;P(0)

γ v|||W;τ � |||ιεu; ι0v|||D̃;Dτ
+ ‖R̂εu − R̂0v‖C̃;Dτ

+ o(1),

as ε → 0. Similarly, uniformly over modelled distributions f ∈ Wε, g ∈ W0
bounded by an arbitrary constant C and uniformly over τ ∈ (0, 1], one has

|||ιεFε( f ); ι0F0(g)|||D̃;Dτ
+ ‖R̂εFε( f )− R̂0F0(g)‖C̃;Dτ

� ||| f ; g|||W;τ + o(1),

(5.5)

as ε→ 0.

Remark 5.5 The reader may wonder what the point of this rather complicated setup is.
By choosing for Vε a direct sum of spaces of the type defined in Sect. 3, it allows us to
decompose the right hand side of our equation into a sum of termswith well-controlled
behaviour at the boundary. This gives us the flexibility to exploit different features of
each term to control the corresponding “reconstruction operator” R̂ε

i . For example, in

the case of 2D gPAM, the term f̂i j (u) � Di (u) � D j (u) can be reconstructed because
the corresponding weight exponents are sufficiently large, the term (ĝ(u)−g(0)1)�Ξ

can be reconstructed because it vanishes on the boundary, and the term g(0)Ξ can be
reconstructed because it corresponds to (a constant times) white noise, multiplied by
an indicator function.

We then have the following result.

Theorem 5.6 In the above setting, there exists τ > 0 such that, for every ε ∈ [0, 1]
and every v ∈Wε, the equation

u = P(ε)
γ0

Fε(u)+ v, (5.6)

admits a unique solution uε ∈ Wε on (0, τ ). The solution map Sτ : (v, ε) �→ uε is
furthermore jointly continuous at (v, 0).
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Proof By assumption P(ε)
γ0 is an adapted linear map from Vε toWε with control on its

norm that is uniform over ε ∈ [0, 1]. It has the additional property that, when restricted
to time τ , its operator norm is bounded byO(τ θ ) for some exponent θ > 0, uniformly
in ε. Combining this with the uniform local Lipschitz continuity of the maps Fε, it is
immediate that, for every C > 2‖v‖W;1, there exists τ ∈ (0, 1] such that the right
hand side of (5.6) is a contraction and therefore admits a unique fixed point in the
centred ball of radius C inWε.

To show that this is the unique fixed point in all of Wε is also standard: assume
by contradiction that there exists a second fixed point ū (which necessarily has norm
strictly greater thanC). Then, for every τ ′ < τ , the restrictions of both u and ū are fixed
points inWε. However, since the norm of Aε is bounded byO(τ̄ θ ), one has uniqueness
of the fixed point in a ball of radius C̄(τ ′) ofWε with limτ ′→0 C̄(τ ′) = ∞, so that one
reaches a contradiction by choosing τ ′ small enough. The continuity of the solution
map at (v, 0) then follows immediately from (5.5). ��

6 Singular SPDEs with boundary conditions

The next three subsections are devoted to the proofs of Theorems 1.1, 1.5, and 1.7,
respectively. We do rely on the results of the corresponding statements without bound-
ary conditions from [9,10], in particular the specific regularity structures, models, and
their convergence do not change in our setting. Therefore we only specify details about
these objects to the extent that is sufficient to cover the new aspects of our setting.

6.1 2D gPAM with Dirichlet boundary condition

The regularity structure for the equation (1.1) is built as in [10, Sec 8], and the models
(Πε, Γ ε)ε∈[0,1] as in [10, Sec 10], and we will use the notations from there without
further ado. We use the periodic model with sufficiently large period: if the truncated
heat kernel K 0 is chosen to have support of diameter 1, then the periodic model on
[−2, 2]2 suffices, since convolution with K 0 and with its periodic symmetrisation
agrees on [−1, 1]2. The homogeneity of the symbol Ξ is denoted by −1− κ , where
κ ∈ (0, (1/3) ∧ δ)\Q, with δ being the regularity of the initial condition.

Our setup to apply Theorem 5.6 is the following. The sectors we are working with
are

V = I(T )+ T̄ , V0 = T+0 � D(V ) � D(V ), V1 = T+0 � Ξ, V2 = 〈Ξ 〉

and we set the exponents γ = 1+ 2κ , γ0 = κ ,

α = 0, η = κ σ = 1/2+ κ μ = −κ;
α0 = −2κ, η0 = 2κ − 2, σ0 = 2κ − 1, μ0 = 2κ − 2;
α1 = −1− κ, η1 = −1, σ1 = −1/2, μ1 = −1− κ;
α2 = −1− κ, η2 = −1− κ, σ2 = −1− κ, μ2 = −1− κ.
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Singular SPDEs in domains with boundaries

We then set

Vε = Dγ0,w0
P (V0, Γ

ε)⊕Dγ0,w1
P,{1} (V1, Γ

ε)⊕Dγ0,w2
P (V2, Γ

ε), (6.1)

and we let ιε be the identity. As for R̂ε, it is chosen to act coordinate-wise, and in the
first two coordinates there is no choice to be made, one simply applies Theorems 4.9
and 4.10. The definition of the action of R̂ε on the third coordinate is momentarily
postponed.

We take G to be the Dirichlet heat kernel of the domain D = (−1, 1)2 continued to
all of R2 as in Example 4.15. We also consider the decomposition G ∼ K + Z given
there and construct Kγ0 and Zγ0 accordingly. Furthermore, by Schauder’s estimate, it
follows that, for all f ∈ Cα with α > −2, the function

(t, x) �→
∫
[0,t]×D

G((t, x), (s, y)) f (s, y) ds dy

is continuous and vanishes on R+ × ∂D. In particular, for any v ∈ Vε, the modelled
distribution

h = (K(ε)
γ0
+ Zγ0R̂ε)v

satisfies 〈1, h(t, x)〉 = 0 for all t > 0 and x ∈ ∂D. Since the only basis element in V
with homogeneity lower than σ is 1, we conclude that one has h ∈ Dγ,w

P,{1}. We exploit
this by setting the time-indexed space Wε to be

Wε =
{
u ∈ Dγ,(η,σ,0)

P,{1} : Di u ∈ Dγ−1,(η−1,σ−1,κ−1)
P , i = 1, 2

}
.

The reason for only imposing a slightly weaker condition on u itself (i.e. we use 0
instead of κ as the third singularity index) is to be able to deal with initial conditions.
Indeed, let v be the lift of the solution of the linear equation

∂tv = Δv, v|∂D = 0, v|{0}×D = u0. (6.2)

Combining our assumption that u0 ∈ Cδ with Lemma 5.4 and the definition of the
various exponents, we then note that indeed v ∈ Wε as required, but this would not
be the case had we simply replaced Wε by Dγ,(η,σ,κ)

P,{1} . Due to the above choice of

exponents, the required estimate of order T θ of the short time norm of P(ε)
γ from Vε

toWε follows from Lemmas 5.2 and 5.3, with the choice

||| f ; g|||W;τ := ||| f ; g|||γ,(η,σ,0);τ + |||D f ;Dg|||γ−1,(η−1,σ−1,κ−1);τ .

We now define the functions Fε. They are given as local operations with formal
expression that do not depend on ε, and we define its three components according to
the decomposition (6.1) separately. We first set

F (0)(u) = f̂i j (u) � Di (u) � D j (u).
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Here f̂i j are the lifts of the functions fi j in (1.1). By Lemmas 4.4, 4.3, and 4.11, F (0)

is indeed a mapping fromWε toDγ0,w0
P (V0). At this stage we note that the fact that the

derivatives of elements ofWε have better corner singularity thanμ−1 is crucial, since
otherwise we would have had to choose μ0 ≤ −2 which would violate the condition
μ0 + 2 > (μ ∨ 0) appearing in the conditions of Theorem 5.6.

Next, set

F (1)(u) = (ĝ(u)− g(0)1) � Ξ

Again, using Lemmas 4.4 and 4.3, it is easy to see that F (1) maps from Wε to
Dγ1,w1

P (V1). To see that it in fact maps to Dγ0,w1
P,{1} (V1), we need only check the coef-

ficient of Ξ , since Ξ is the only basis element in V1 with homogeneity less than σ1.
Since 〈1, u(z)〉 has 0 limit at P1\P0, so does 〈1, (ĝ(u))(z)− g(0)1〉, and therefore so
does the coefficient of Ξ in F1(u, v).

Finally, the third coordinate is the constant modelled distribution

F (2)(u) = g(0)Ξ.

It remains to define R̂ε onDγ0,w2
P (〈Ξ 〉). To this end, let us recall that for the model

constructed for this equation in [10, Sec. 10.4] (which coincides with the canonical
BPHZmodel definedmore generally in [2,3])Π0

xΞ is the spatialwhite noise ξ for all x ,
whileΠε

xΞ is the smoothed noise ξε for all x . Also notice that any f ∈ Dγ0,w2
P (〈Ξ 〉) is

necessarily constant onR+×D, and therefore in fact it suffices to define R̂ε(RD+Ξ) in a

way that the continuity property (5.5) holds. Defining R̂0(RD+Ξ) as 1[0,∞)×Dξ (which

is of course a meaningful expression) and R̂ε(RD+Ξ) as 1[0,∞)×Dξε we therefore only
need to show that the convergence

‖1[0,∞)×Dξ − 1[0,∞)×Dξε‖−1−κ;[0,1]×D
ε→0−−→ 0

holds in probability for (5.5) to hold. This however follows in a more or less standard
way from a Kolmogorov continuity type argument, see for example [10, Prop. 9.5] for
a very similar statement.

Therefore we can apply Theorem 5.6 to get that the equation

u = (K(ε)
γ0
+ Zγ0R̂ε)

(
(F (0), F (1), F (2))(u)

)+ v

has a unique local solution uε ∈ Dγ,w

P,{1}(V, Γ ) for each of the models (Πε, Γ ε),
for ε ∈ [0, 1]. The fact that these correspond to the approximating equations in the
sense that Ruε is the classical solution of (1.2), for ε > 0, follows exactly as in
[10]: indeed, this is a property of the models and the compatibility of the abstract
integration operators with the corresponding convolutions, neither of which changed
in our setting. One also has, by Theorem 5.6, that uε converges to u0 in probability,
with respect to the ‘distance’ |||·; ·|||γ,w,T . Therefore, Ruε also converge to Ru0 in
probability, which proves Theorem 1.1.
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Remark 6.1 If we replace u0 in (6.2) by (Ru0)(s, ·), s < τ , where τ is the solution
time from Theorem 5.6, then v still belongs toWε, in fact, one even has

v ∈ Dγ,(1−κ,1−κ,0)
P , Div ∈ Dγ−1,(−κ,−κ,−κ)

P , i = 1, 2.

Therefore the solution can be restarted from time s and these solutions can be
patched together by the arguments in [10, Sec. 7.3]. One then sees that the only
way that the solution may fail to be global is if ‖R̂0F(u0)‖−1−κ;s , and consequently,
‖(Ru0)(s, ·)‖1−κ,D̄ blows up in finite time.

6.2 KPZ equation with Dirichlet boundary condition

The construction of the regularity structure and models (as before, with a sufficiently
large period) for the KPZ equation can be for example found in [7, Sec. 15]. The
homogeneity of the symbol Ξ is now denoted by −3/2 − κ , where κ ∈ (0, (1/8) ∧
δ)\Q, with δ being the regularity of the initial condition.

Similarly to the previous subsection, we let v be the lift of the solution to the linear
problemwith initial condition u0 (and Dirichlet boundary conditions). We also choose
K ∈ K2 and Z ∈ Z2,P , as obtained from G, the Dirichlet heat kernel on the domain
D = (−1, 1) as in Example 4.15. We also set γ = 3/2+ κ , γ0 = κ , and define

Ψ = Ψ ε = (K(ε)
γ0
+ Zγ0R̂ε)(RD+Ξ), (6.3)

where we define the distributions R̂εRD+Ξ as in the previous subsection, with the
obvious modification that ξ now stands for the 1+1-dimensional space–time white
noise.

We then write the abstract fixed point problem for the remainder of a one step
expansion

u = (Kγ0 + Zγ0R̂)((F (0), F (1), F (2))(u))+ v, (6.4)

with

F (0)(u) = (Du)�2, F (1)(u) = 2(DΨ ) � (Du), F (2)(u) ≡ (DΨ )�2.

We further set

V = I(T+−1−2κ)+ T̄ , V0 = (DV )�2, V1 = (DV ) � T+−1/2−κ , V2 = T+−1−2κ ,

which obviously implies α = 0, α0 = −4κ , α1 = −1/2 − 3κ , and α2 = −1 − 2κ .
As for the weight exponents, let

η = κ, σ = 1/2+ 2κ, μ = −κ,

η0 = 2κ − 2, σ0 = 2κ − 1, μ0 = 2κ − 2,

η1 = −3/2, σ1 = κ − 1, μ1 = −3/2,
η2 = −1− 2κ, σ2 = −1− 2κ, μ2 = −1− 2κ.
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We then set similarly to above

Wε =
{
u ∈ Dγ,(η,σ,0)

P : Di u ∈ Dγ−1,(η−1,σ−1,κ−1)
P , i = 1, 2

}
,

as well as

Vε = Dγ0,w0
P (V0, Γ

ε)⊕Dγ0,w1
P (V1, Γ

ε)⊕ 〈RD+ (DΨ ε)�2〉,

and ιε to be the identity. As before, it is straightforward to check that that the conditions
on Vε andWε satisfied, and also that regarding the first two coordinates of R̂ε one has
a canonical choice given by Theorem 4.9.

It remains to define R̂εRD+ (DΨ )�2.Recall that R̃ stands for the local reconstruction
operator and that the issue with the singularity of low order is that R̃RD+ (D(Gγ Ξ))�2

does not have a canonical extension as a distribution in C−1−2κ . Of course, for the
approximating models this is just a bounded function, so it could even be extended as
an element of C0, but these extensions may not converge in the ε→ 0 limit. Therefore
some modification of these natural extensions are required at the boundary.

Remark 6.2 This process is very similar to the situationwhenone takes the sequence of
distributions 1/(|x |+ε). This sequence of course does not converge to any distribution
as ε→ 0, but 1/(|x | + ε)+ 2 log(ε)δ0 does, in C−1−ρ for any ρ > 0. Moreover, the
limiting distribution agrees with 1/|x | on test functions supported away from 0.

First, for the models (Πε, Γ ε), ε > 0, we denote by RRD+ (DΨ )�2 the natural exten-
sion of R̃RD+ (DΨ )�2 which, as just mentioned, is a bounded function and can be
written in the form

(RRD+ (DΨ )�2)(z) = Aε
2(z)+ Aε

0(z),

where Aε
i (z) are random variables belonging to the i th homogeneousWiener chaos for

i = 0, 2. To write them more explicitly, introduce the notations f̄ (s, y) = f (−s,−y)
for any function f , set

K̃Q,ε(z, z
′) = (ρ̄ε ∗ (D1K (z, ·)1Q(·)))(z′),

Z̃Q,ε(z, z
′) = (ρ̄ε ∗ (D1Z(z, ·)1Q(·)))(z′),

and define G̃Q,ε = K̃Q,ε + Z̃Q,ε for any Q ⊂ R
d , and with the convention that for

ε = 0 we substitute the convolution ρ̄ε∗ with the identity. We can then write

Aε
2(z) =

∫
(G̃[0,∞)×D,ε)(z, z

′)(G̃[0,∞)×D,ε)(z, z
′′) ξ(dz′) ξ(dz′′), (6.5)

Aε
0(z) =

∫
(G̃[0,∞)×D,ε(z, z

′))2 − K̃ 2
Rd ,ε

(z, z′) dz′. (6.6)
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Note that the reason for the subtraction in (6.6) is the renormalisation already built in
the model (Πε, Γ ε). Similarly, for the limiting model (Π0, Γ 0),

R̃RD+ (DΨ )�2 = A2 + A0,

where A2 and A0 are given by setting ε = 0 with the above mentioned convention in
(6.5) and (6.6), respectively.

The convergence of Aε
2 to A2 in the ε→ 0 limit in C−1−κ follows from essentially

the same power counting argument as in the case without boundary conditions. The
term Aε

0(z) however is more delicate. While it is not difficult to show that it converges
pointwise to the smooth function A0(z) on (0,∞)× D, the convergence in C−1−κ is
not a priori clear. In fact, without using the specific form of G, one cannot even rule
out that the limit exhibits a non-integrable singularity at the spatial boundary. To see
how this can be ‘countered’, first define

Bε
0(z) =

∫
(G̃(−∞,0)×D,ε)(G̃R×D,ε + G̃[0,∞)×D,ε)(z, z

′)dz′,

Cε
0(z) =

∫
(K̃R×D,ε + Z̃R×D,ε)

2(z, z′)− K̃ 2
Rd ,ε

(z, z′)dz′

=
∫

2K̃R×D,ε Z̃R×D,ε(z, z
′)+ Z̃2

R×D,ε(z, z
′)− K̃ 2

R×Dc,ε(z, z
′)

− 2K̃R×Dc,ε K̃R×D,ε(z, z
′) dz′, (6.7)

for z ∈ (0,∞)× D, and extending them by 0 otherwise, we have Aε
0 = −Bε

0 + Cε
0 .

We can similarly write A0 = −B0 + C0, where B0 and C0 are defined by formally
setting ε = 0 in the above definitions, that is, replacing the convolution with ρε with
the identity.

First we claim that for z ∈ (0,∞)× D

|Bε
0(z)| � 1/(|z|P0 + ε) = 1/(t1/2 + ε). (6.8)

It is easy to see that one has the decomposition

(G̃(−∞,0)×D,ε)(z, ·) =
∑
n≥0

G̃(n)(·), (6.9)

where, for each n, the function G̃(n) is supported on {z′ : |z′|P0 ≤ ε, ‖z − z′‖s ≤
2−n + ε}, and is bounded by 2−n(ε ∨ 2−n)−3. Furthermore, the function (G̃R×D,ε +
G̃[0,∞)×D,ε)(z, ·) is also bounded by 2−n(ε ∨ 2−n)−3 on the support of G̃(n). Hence
in the case |z|P0 ≥ 3ε, noting that the only nonzero terms in the sum (6.9) are those
where 2−n ≥ (|z|P0/3), we can bound

Bε
0(z) �

∫ ∑
(|z|P0/3)≤2−n

2−3n22n22n � 1/|z|P0
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as required. On the other hand, in the case |z|P0 ≤ 3ε, we have

Bε
0(z) �

∑
2−n>ε

2−3n22n22n +
∑
2−n≤ε

ε32−nε32−nε3 � 1/ε,

as required. The estimate |B0(z)| � 1/t1/2 can be obtained analogously. Since Bε
0

(extended by 0 outside of (0,∞)×D) converges to B0 locally uniformly on (0,∞)×D
and since by the above estimates (Bε

0 )ε∈(0,1] and B0 are uniformly bounded in C−1−κ/2,
the convergence also holds in C−1−κ .

Moving on to Cε
0 , first notice that it only depends on the variable x . Furthermore,

by similar calculations as above, one obtains a bound analogous to (6.8), namely

|Cε
0(z)| � 1/(|z|P1 + ε) = 1/

(
(x + 1) ∧ (1− x)+ ε

)
(6.10)

for z ∈ (0,∞)× D. We then define the distribution Ĉε
0 by

(Ĉε
0, ϕ) :=

∫
Cε
0(z)[ϕ(z)− χ(x + 1)ϕ(t,−1)− χ(x − 1)ϕ(t, 1)]dz, (6.11)

where χ is a smooth symmetric cutoff function in the x variable which is 1 on {x ′ :
|x ′| ≤ 1/8}, and is supported on {x ′ : |x ′| ≤ 1/4}. The estimate (6.10), together with
the local uniform convergence of Cε

0 , then implies that Ĉε
0 converges in C−1−κ to a

limit, which we denote by Ĉ∗0 . Moreover, since Ĉε
0 agrees with Cε

0 on test functions
supported away from P , Ĉ∗0 also agrees with C0 on the same class of test functions.
In other words, defining

R̂εRD+ (DΨ )�2 = Aε
2 − Bε

0 + Ĉε
0, (6.12)

as well as
R̂0RD+ (DΨ )�2 = A2 − B0 + Ĉ∗0 , (6.13)

the desired properties (5.4) and (5.5) of (R̂ε)ε∈[0,1] hold
Therefore by Theorem 5.6 we can conclude (6.4) has a unique local solution uε ∈

Dγ,w

P (V, Γ ε) for each ε ∈ [0, 1], and R(uε + Ψ ε) converges to R(u0 + Ψ 0). To
conclude the proof of Theorem 1.5, it remains to confirm that for ε > 0,R(uε +Ψ ε)

solves (1.3). This would again follow in exactly the same manner as in [9] if we used
the ‘natural’ reconstructions everywhere, which we only steered away from in the
previous construction. However, since R̂ε and R only differ by some (finite) Dirac
mass on the boundary, and sinceG, theDirichlet heat kernel, vanishes on the boundary,
we have

R(K(ε)
γ0
+ Zγ0R̂ε)RD+ (DΨ ε)�2 = G ∗ R̂ε(RD+ (DΨ ε)�2)

= G ∗R(RD+ (DΨ ε)�2). (6.14)

The previous modification is therefore not visible after the application of the recon-
struction operator, and this concludes the proof of Theorem 1.5.
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6.3 KPZ equation with Neumann boundary condition

Most of the arguments of the previous subsection carry through if the Dirichlet heat
kernel is replaced by the Neumann heat kernel, with the sole exception of (6.14).
Instead, we have

R(K(ε)
γ0
+ Zγ0R̂ε)RD+ (DΨ ε)�2 = G ∗ R̂ε(RD+ (DΨ ε)�2)

= G ∗ (R(RD+ (DΨ ε)�2)− c−ε δ−1 − c+ε δ1), (6.15)

where δ±1 is the Dirac distribution at x = ±1, and

c−ε =
∫
[−1,−3/4]

Cε
0(x)χ(x + 1) dx, c+ε =

∫
[3/4,1]

Cε
0(x)χ(x − 1) dx .

(We henceforth view Cε
0 and C0 as functions of the spatial variable x only, since we

already noted that these functions, as defined in (6.7), do not depend on the time
variable.) Since these Dirac masses now do not cancel, one needs more concrete
information about c−ε and c+ε , and we begin with the former. First, it will be convenient
to shift the equation to the right, so that the left boundary is at x = 0. Furthermore,
we note that we can add a globally smooth component to K and Z in the definitions
of Cε

0 and C0 without changing the conclusion that Ĉε
0 as defined by (6.11) converges

to a limit Ĉ∗0 . In particular, setting

N (x, σ ) = 1σ>0√
2πσ

exp
(
− x2

2σ

)
, (6.16)

we can assume that for x ∈ [0, 1/4], one has

K ((0, x), (−s, y)) = N (x − y, s), Z((0, x), (−s, y)) = N (x + y, s).

With the notations

f (1)
x (s, y) = 1y>0

x − y

s
N (x − y, s), f (2)

x (s, y) = 1y>0
x + y

s
N (x + y, s),

as well as f (3)
x (s, y) = f (1)

x (s, y)+ f (2)
x (s,−y), and after a trivial change of variables

in s, we can then write, recalling the notation f̄ (s, y) = f (−s,−y) for any function
f of time and space,

Cε
0(x) =

∫
R2

(ρ̄ε ∗ ( f (1)
x + f (2)

x ))2(s, y)− (ρ̄ε ∗ f (3)
x )2(s, y) ds dy,

C0(x) =
∫
R2

( f (1)
x + f (2)

x )2(s, y)− ( f (3)
x )2(s, y) ds dy. (6.17)

Note that our modifications of K and Z are only valid for x ∈ [0, 1/4], and so (6.17)
also holds for these values of x . But since other values do not play a role in computing

123



M. Gerencsér, M. Hairer

c−ε , for the duration of this computation we can simply define Cε
0(x) as the right-hand

side of (6.17) for other values of x . We can then write the decomposition

c−ε = c̄−ε − ĉ−ε :=
∫ ∞
0

Cε
0(x) dx −

∫ ∞
0

(1− χ(x))Cε
0(x) dx,

We first show that the second term in this decomposition doesn’t matter.

Proposition 6.3 With the above notations, one has C0(x) = 0 for every x �= 0.
Furthermore, for every κ ∈ (0, 1), there exists a constant C such that, for |x | ≥ Cε,
one has the bound |Cε

0(x)| ≤ Cε1−κ |x |κ−2.

Proof The first statement follows from the second one since Cε
0 → C0 locally uni-

formly, so it remains to show that the claimed bound on Cε
0(x) holds. We will assume

without the loss of generality that x > Cε for some sufficiently large C (C = 6 will
do) and we write z = (0, x) and z′ = (s, y). Since f (3)

x = f (1)
x + f (3)

x 1y<0 almost
everywhere, one has

Cε
0(x) =

∫
R2

2(ρ̄ε ∗ f (1)
x )(ρ̄ε ∗ f (2)

x ) dz′ +
∫
R2

(ρ̄ε ∗ f (2)
x )2 − (ρ̄ε ∗ ( f (3)

x 1y<0))
2 dz′

−
∫
R2

2(ρ̄ε ∗ ( f (3)
x 1y<0))(ρ̄ε ∗ ( f (3)

x 1y>0)) dz
′

=: 2J1 + J2 − 2J3.

With the usual convention ρ̄0∗ standing for the identity, we can furthermore write

J1 =
∫

f (1)
x f (2)

x dz′ + 2
∫

(ρ̄ε ∗ f (1)
x )((ρ̄ε − ρ̄0) ∗ f (2)

x ) dz′

+ 2
∫

((ρ̄ε − ρ̄0) ∗ f (1)
x ) f (2)

x dz′

=: I1 + I2 + I3.

The expression I1 actually vanishes, since

I1 =
∫
s>0

x2 − y2

s2
N (x, s)N (y, s) dz′ =

∫
s>0

x2 − s

s2
N (x, s) ds

=
∫
r>0

r2 − 1

|x | N (r, 1) dr = 0.

To estimate I2, we first note that it follows immediately from the scaling properties of
f (2)
x and the fact that it only has a discontinuity at y = 0, that one can write

(ρ̄ε − ρ̄0) ∗ f (2)
x = f (2,1)

x,ε + f (2,2)
x,ε ,
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where f (2,2)
x,ε is supported onR×[−2ε, 2ε] and, for any κ ∈ [0, 1], one has the bounds

| f (2,1)
x,ε (z′)| � ε1−κ

‖z′ + z‖3−κ
, | f (2,2)

x,ε (z′)| � 1

‖z′ + z‖2 � 1

s + x2
. (6.18)

It follows immediately from standard properties of convolutions (see for example [10,
Lem. 10.14]) that

∣∣∣
∫

(ρ̄ε ∗ f (1)
x ) f (2,1)

x,ε dz′
∣∣∣ � ε1−κ |x |κ−2,

as required. Regarding the term involving f (2,2)
x,ε , it follows from the support properties

of that function that

∣∣∣
∫

(ρ̄ε ∗ f (1)
x ) f (2,2)

x,ε dz′
∣∣∣ � ε

∫ ∞
0

ds

(s + x2)2
� ε|x |−2 ≤ ε1−κ |x |κ−2. (6.19)

The term I3 can be bounded in exactly the same way.
To bound J2, we use the notation ρ̃ε(t, x) = ρ̄ε(t,−x). Since ( f (3)

x 1y<0)(s, y) =
f (2)
x (s,−y), we can then rewrite J2 as

J2 =
∫
R2

((ρ̄ε − ρ̃ε) ∗ f (2)
x )((ρ̄ε + ρ̃ε) ∗ f (2)

x ) dz′.

Exactly as above, we can decompose the first factor as

(ρ̄ε − ρ̃ε) ∗ f (2)
x = f (2,1)

x,ε + f (2,2)
x,ε ,

so that the bounds (6.18) hold and f (2,2)
x,ε (z′) = 0 for y /∈ [−2ε, 2ε]. This time, we

exploit the fact that the second factor itself satisfies the bound

|((ρ̄ε + ρ̃ε) ∗ f (2)
x )(z′)| � ‖z + z′‖−2,

uniformly in ε, and that the support of both factors is included in the set ‖z + z′‖ ≥
|x |/2. As a consequence, the term involving f (2,1)

x,ε is bounded by

∫
‖z′‖≥|x |/2

ε

‖z′‖5 dz
′ � ε|x |−2,

while the other term is bounded exactly as in (6.19).
Finally, regarding J3, the product is supported on R × [−ε, ε] and each factor is

bounded by (s + x2)−1 there, so that the corresponding integral is again bounded as
in (6.19), thus concluding the proof. ��
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Let us now return to the computation of the constant c̄−ε . Using the identity ( f ∗
g, h) = (g, f̄ ∗ h)L2(R2) and the commutativity of the convolution, we can rewrite it
as

c̄−ε = (ρ̄ε ∗ ρε, F)L2(R2), (6.20)

where

F = F1 + F2 :=
∫
R

f̄ (1)
x ∗ f (2)

x dx + 1

2

∫
R

( f̄ (1)
x ∗ f (1)

x

+ f̄ (2)
x ∗ f (2)

x − f̄ (3)
x ∗ f (3)

x ) dx .

We will use again the notation (6.16) and we will make use of the identities

N (x, σ )N (y, η) = N (x ± y, σ + η)N
(ηx ∓ σ y

σ + η
,

ση

σ + η

)
,

∂xN (x, σ ) = −(x/σ)N (x, σ ).

The first identity can be obtained by considering a jointly Gaussian centred random
variable (X,Y )with Var(Y ) = σ , E(X | Y ) = Y , Var(X | Y ) = η and noting that one
then has Var(X) = σ + η, E(Y | X) = σ X

σ+η
, and Var(Y | X) = ση

σ+η
. Exploiting this

identity, we can rewrite F1 as

F1 =
∫

1y′>y∨0
x − y′ + y

s′ − s

x + y′

s′
N (x − y′ + y, s′ − s)N (x + y′, s′) dz′ dx

= 1

4

∫
1y′>y∨0

(2x + y)2 − (2y′ − y)2

s′(s′ − s)
N (2y′ − y, 2s′ − s)

×N
(
x + y

2
− s(2y′ − y)

2(2s′ − s)
,
s′(s′ − s)

2s′ − s

)
dz′ dx .

We now perform the change of variables 2y′ − y �→ y′ and 2s′ − s �→ s′ which in
particular maps dz′ to 1

4dz
′ and s′(s′ − s) to ((s′)2 − s2)/4 so that

F1 = 1

4

∫
1y′>|y|

(2x + y)2 − (y′)2

(s′ + s)(s′ − s)
N (y′, s′)N

×
(
x + y

2
− sy′

2s′
,
(s′ − s)(s′ + s)

4s′
)
dz′ dx

= 1

4

∫
1y′>|y|
s′>|s|

1

s′
(
1− (y′)2

s′
)
N (y′, s′) dz′

= 1

4

∫
1y′>|y|
s′>|s|

1√
s′

(
1− (y′)2

s′
)
N (y′/

√
s′, 1) dz

′

s′
.
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At this stage, for fixed y′, we perform the change of variables r = y′/
√
s′, so that

dz′/s′ = 2dy′ dr/r , thus yielding

F1(z) = 1

2

∫ ∞
|y|

1

y′

∫ y′√|s|

0

(
1− r2

)N (r, 1) dr dy′

= −1

2

∫ ∞
|y|

1

y′

∫ y′√|s|

0
∂2r N (r, 1) dr dy′

= −1

2

∫ ∞
|y|

1

y′
(∂1N )

( y′√|s| , 1
)
dy′ = 1

2

∫ ∞
|y|

1√|s|N
( y′√|s| , 1

)
dy′

= 1

2

∫ ∞
|y|√|s|

N (q, 1) dq = 1

4
− 1

4
Erf

( |y|√
2|s|

)
.

Let’s now turn to F2. Setting fx (z) = x−y
s N (x − y, s), a simple calculation shows

that

F2(z) = 1

2

∫
fx (z − z′) fx (−z′)

(
1y′<(0∧y) + 1y′>(0∨y) − 1

)
dz′ dx

= −1

2

∫
fx (z − z′) fx (−z′)1−|y|<2y′−y<|y| dz′ dx

= 1

2

∫
x − y + y′

s − s′
x + y′

s′
N (x − y + y′, s − s′)N

× (x + y′,−s′)1|2y′−y|<|y| dz′ dx

= −1

8

∫
(2x + y′)2 − y2

(s′)2 − s2
N (y, s′)N

×
(
x + y′

2
+ ys

2s′
,
(s′)2 − s2

4s′
)

1|y′|<|y| dz′ dx

= −1

8

∫ |y|
−|y|

∫ ∞
|s|

( 1

s′
− y2

(s′)2
)
N (y, s′) ds′ dy′

= |y|
4

∫ ∞
|s|

1

s′
( y2

s′
− 1

)
N (y, s′) ds′ = −|y|

2
N (y, |s|),

where the last equality was obtained in exactly the same way as above. Combining
these identities with (6.20) and exploiting the fact that F is 0-homogeneous under the
parabolic scaling, we finally obtain

c̄−ε =
∫
R2

(ρ̄ ∗ ρ)(s, y)

(
1

4
− 1

4
Erf

( |y|√
2|s|

)
− |y|

2
N (|y|, |s|)

)
ds dy = a

2
,

(6.21)

where a is the quantity given in (1.8).
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If momentarily one also includes the dependence of c±ε on ρ, one has, by symmetry,
c+ε (ρ) = c−ε (ρ̂), with ρ̂(t, x) = ρ(t,−x). Therefore by (6.21), c+ε = c̄+ε − ĉ+ε , where
ĉ+ε → 0 as ε→ 0 and c̄+ε is given by

c̄+ε =
∫
R2

( ¯̂ρ ∗ ρ̂)(s, y)F(y, s) ds dy =
∫
R2

(ρ̄ ∗ ρ)(s, y)F(−y, s) ds dy = a

2
,

(6.22)

since F is symmetric in both of its arguments.
We can conclude that, for any fixed constants b̂± ∈ R, setting

R̂εRD+ (DΨ )�2 = Aε
2 − Bε

0 + Cε
0 −

1

2
1t>0

(
(a − b̂−)δ−1 + (a + b̂+)δ1)

)
, (6.23)

for the models (Πε, Γ ε) and

R̂0RD+ (DΨ )�2 = A2 − B0 + C0 − 1

2
1t>0(b̂+δ1 − b̂−δ−1)

)
, (6.24)

for the limiting model, the desired properties (5.4) and (5.5) of (R̂ε)ε∈[0,1] hold.
Similarly to before, but accounting for the additional Dirac masses, we then see that
for any fixed ε > 0 the function hε = R(uε + Ψ ε) (there is no ambiguity for the
reconstruction operator as far as the solution uε is concerned, it is trivially given simply
by the component in the direction 1) solves

∂t h
ε = 1

2∂
2
x h

ε + (∂xh
ε)2 + 2c∂xh

ε − Cε + ξε on R+ × [−1, 1],
∂xh

ε = ∓a + b± on R+ × {±1},
hε = u0 on {0} × [−1, 1], (6.25)

where c is given by (6.26) below. Hence, clearly, ĥε = hε + cx + (Cε + c2)t solves
(1.6) with boundary data b̂± = ∓a + b± + c and û0(x) = u0(x)+ cx .

Applying again Theorem 5.6, combined with the results of [13] regarding the con-
vergence of the corresponding admissible models, we conclude that, for any choice
of b±, the solution to (6.25) (which is precisely the same as (1.7) provided that the
constant Cε is adjusted in the appropriate way) converges locally as ε→ 0 to a limit
which depends on the choice of b± but is independent of the choice of mollifier ρ.
It remains to show that this limit coincides with the Hopf–Cole solution to the KPZ
equation with Neumann boundary data given by b±. This follows by considering the
special case ρ(t, x) = δ(t)ρ̂(x), which is covered by the above proof, the only minor
modification being the proof of convergence of the corresponding admissible model
to the same limit, which can be obtained in a way very similar to [9,10]. As already
mentioned at the end of Sect. 1.1, one has a = c = 0 in this case, so that in particular
b̂± = b±. In this case, we can apply Itô’s formula to perform the Hopf–Cole trans-
form and obtain convergence to the corresponding limit by classical means [5], which
concludes the proof.
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6.3.1 Expression for the drift term

It follows from [13] that the constant c appearing in (6.25) is given by

c = −2〈ρ ∗ ρ̄, ∂x P ∗ ∂x P ∗ ∂x P〉 =: 〈ρ ∗ ρ̄, F0〉, (6.26)

where P is the heat kernel. Similarly to above, we obtain the identity

(∂x P ∗ ∂x P)(t, x) =
∫

x − y

t − s

y

s
N (y, s)N (x − y, t − s) dy ds

= N (x, t)
∫

x − y

t − s

y

s
N

(
y − sx

t
,
s(t − s)

t

)
dy ds

= N (x, t)
∫ t

0

x2 − t

t2
ds = N (x, t)

x2 − t

t
,

which then implies that the function F0 is indeed given by

F0(t, x) = 2
∫

y2 − s

s

x − y

t − s
N (y, s)N (x − y, s − t)1s≥0∨t dy ds

= 2
∫

y2 − s

s

x − y

t − s
N (x, 2s − t)N

(
y − sx

2s − t
,
s(s − t)

2s − t

)
1s≥0∨t dy ds

= 2
∫

(2y2 − r − t)(y − x)

r2 − t2
N (x, r)N

(
y − (r + t)x

2r
,
r2 − t2

4r

)
1r≥|t | dy dr

=
∫ ∞
|t |

(r + t)x

2r2

(
3− x2

r

)
N (x, r) dr = Erf(x/

√
2|t |)+ 2xN (x, t).

To obtain (1.9), it remains to note that the first term is odd under the substitution
(t, x)↔ (−t,−x), while ρ ∗ ρ̄ is even, so that this does not contribute to the value of
c.
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