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Abstract

The structure of hierarchical networks in biological and physical systems has long been characterized using the Horton-
Strahler ordering scheme. The scheme assigns an integer order to each edge in the network based on the topology of
branching such that the order increases from distal parts of the network (e.g., mountain streams or capillaries) to the ‘‘root’’
of the network (e.g., the river outlet or the aorta). However, Horton-Strahler ordering cannot be applied to networks with
loops because they they create a contradiction in the edge ordering in terms of which edge precedes another in the
hierarchy. Here, we present a generalization of the Horton-Strahler order to weighted planar reticular networks, where
weights are assumed to correlate with the importance of network edges, e.g., weights estimated from edge widths may
correlate to flow capacity. Our method assigns hierarchical levels not only to edges of the network, but also to its loops, and
classifies the edges into reticular edges, which are responsible for loop formation, and tree edges. In addition, we perform a
detailed and rigorous theoretical analysis of the sensitivity of the hierarchical levels to weight perturbations. In doing so, we
show that the ordering of the reticular edges is more robust to noise in weight estimation than is the ordering of the tree
edges. We discuss applications of this generalized Horton-Strahler ordering to the study of leaf venation and other
biological networks.
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Introduction

Networks and network theory have been utilized to represent

and analyze the structure and function of a myriad of biological

systems. These systems span scales from cells to ecosystems and

include gene regulatory networks [1,2], metabolic pathways [3,4],

disease dynamics [5,6], food webs [7,8], host-parasite webs [9,10],

and social interactions [11–13]. In the process, structural

archetypes have been identified including scale-free behavior,

motifs, modularity, the emergence of hubs, and small-world

structure [11,14–20]. However, these theories do not typically

incorporate the spatial constraints that underlie the location and

connections amongst nodes and edges. Indeed, there are many

examples of delivery and distribution networks where nodes and

edges are physical structures embedded in space, e.g., leaf venation

networks [21,22], cardiovascular networks [23,24], cortical

networks [25], root networks [26], ant trails [27] and road

networks [28]. Hence, theory is also needed to characterize

biological networks whose structure is strongly influenced by

physical constraints (for a review, see [29]).

Although the theory of spatial networks is quite diverse, the

theory as applied to resource delivery networks in biology often

involves certain simplifying assumptions. For example, in fractal

branching theory, a network is seen as a perfectly self-similar

structure, e.g. a dividing binary tree [30]. A prominent theory of

metabolic scaling in mammals assumes the cardiovascular system

is a fractal whose physical dimensions have evolved to optimally

transport fluid from the aorta to capillaries [31,32]. An extension

of this model to the above-ground structure of tree branches makes

similar assumptions [33]. Both models have inspired a wide array

of follow-up work with increased recognition that the original

fractal branching assumption is overly simplistic [34–38]. For

example, in reality, physical networks in biology have side

branches and are not perfectly balanced binary trees [21].

Theories of side-branching resource delivery and distribution

networks have their origins in the study of river networks. In a

river network, streams merge together to form larger streams.

However, small streams can merge into larger streams of all scales.

The topological structure of river networks can be analyzed using

the so-called Horton-Strahler order [39,40]. This scheme assigns

an integer number to every branch of the network. The numbers

represent different levels of the branch hierarchy, with larger

numbers corresponding to the larger stream segments in the

network. The Horton-Strahler ordering is the basis for the

characterization of the statistical properties of river networks

[41], including the finding that river networks are fractal [42].

Moreover, the side-branching statistics first introduced by

Tokunaga [43] can be used to characterize universal features of

river networks and departures thereof [44].
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Leaf venation networks are a prominent example of a physical

delivery and distribution network whose structure possess numer-

ous side branches. The structure of leaf venation networks has

broad functional implications. For example, leaf vein density is

positively correlated with photosynthetic rates [45] and also

influences the extent to which leaves form a hydraulic bottleneck

in whole plants [46,47]. However, many leaves of higher plants

(notably most leaves of angiosperm lineages), have reticulate

venation networks, involving loops within loops [22]. It has been

hypothesized that reticulate patterns allow leaves to maintain the

supply of water and nutrients to and from photosynthetically active

chloroplasts even when flow through some edges in the network is

lost [48–51] due to mechanical damage or herbivory. Unfortu-

nately, the Horton-Strahler ordering scheme developed for the

analysis of river networks is not directly applicable to reticular

networks. The reason is that loops lead to inconsistencies in the

merging procedure in which a strictly hierarchical order is

assigned to all edges.

In this paper we propose a method that generalizes the Horton-

Strahler order to planar, weighted reticular networks. Such

networks encompass a large class of physical networks, where

weights can often be obtained by estimating dimensions of edges,

such as branch widths, or other indicators of cost or importance.

While coinciding with the Horton-Strahler order for branching

networks, our method also assigns hierarchical levels to the loops

of the network. Moreover, it categorizes the branches into the ones

responsible for the formation of loops, and the ones forming the

tree structure of the network. Edge weights play an important role

in our algorithm, and we perform a theoretical analysis of possible

effects of weight perturbations on the hierarchical levels. We find

that the loop hierarchy is more robust to measurement error of

network edge weights than is the tree hierarchy. In the past,

comparisons of the statistical similarity between river networks and

leaves have been proposed, albeit such comparisons are restricted

to leaves without loops [52]. Hence, we also discuss applications of

the current method to the characterization and comparison of

reticulate leaf venation networks as well as obstacles to extending

this method to a more general class of networks.

Results

A Graph Theoretic Approach to Horton-Strahler Ordering
of Rooted Trees

We start by reviewing the algorithm for constructing the

Horton-Strahler order. For the remainder of the paper, we shall

adopt the language of graph theory [53,54]. Note that in graph

theory, the ‘‘leaves’’ of the network are those vertices which only

have a single edge that connects to them. In this context, the input

to the Horton-Strahler ordering algorithm is a rooted tree,

T~(V ,E), where V is the set of vertices and E is the set of edges.

Given such a tree, the algorithm assigns a level, l(e), to each edge

e [E in the following way. First, assign level 1 to all edges

connected to the leaves of T. Next, for each vertex having only one

incident edge, e, with undefined l(e), let l be the maximal level

among the other incident edges. If there is a single incident edge of

level l, then l(e)~l. If there are two or more incident edges of

level l, then l(e)~lz1. The result of this algorithm is illustrated in

Fig. 1A. Conventionally in the study of river networks [42], this

algorithm can be summarized by a single rule which states that the

order of a downstream segment is equal to

l~max(l1,l2)zdl1,l2
ð1Þ

where l1 and l2 are the order of the two upstream segments that

are merging and d is the Kronecker delta.

It is clear, however, that if the network has loops, as in Fig. 1B,

the algorithm cannot proceed because there always will be a vertex

having more than one incident edge with an undefined level.

Moreover, loops in this graph seem to also form a hierarchy. For

example, the loop outlined in Fig. 1B by the red dotted line may

belong to a higher level than the loop outlined by the blue dashed

line. It turns out that such a hierarchy can be constructed and

separated from the tree hierarchy if edges have weights and the

Figure 1. Examples of networks with hierarchical structure. A common ‘‘root’’ or outlet denoted by the red dot at the bottom of each
network: (A) Horton-Strahler stream order of branch hierarchy in a tree network; (B) Reticular network with possible loop hierarchy: the, blue, dashed
loop might be less important than the red, dotted loop; (C) Reticular network of (B) with weights.
doi:10.1371/journal.pone.0036715.g001
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graph itself is planar. An example of such a graph is shown in

Fig. 1C, where the weights represent widths of the branches.

We developed an alternative, graph theoretic approach to

implement the Horton-Strahler algorithm for the case when the

tree T is binary and weighted (see Methods for the complete

algorithm). Note that in a rooted tree, it is possible to partially

order the edges such that e1ve2 if there exists a path from the root

to e1 (e.g., an upstream edge) that passes through e2 (e.g., a

downstream edge). Further, we assume that there exist weights,

w(e), whose values are strictly increasing with respect to this order,

that is, w(e1)vw(e2) if e1ve2. In the graph theoretic formulation

of the Horton-Strahler algorithm we proceed as follows. First, we

assign an order l(e)~1 to all edges that connect to the leaves of

the tree. Further, each edge is considered to be a disjoint

component c. Next, we iterate through the remainder of the edges

in order of increasing weight. For each edge e, we first evaluate

whether the edge shares a vertex with a single component (c1) or

with two components (c1 and c2). If an edge shares a vertex with a

single component, then we merge c1 and e to form a new

component whose order is the same as that of e. This merging

represents the continuation of a subnetwork (e.g., the extension of

a flowpath broken into segments). If an edge shares a vertex with

two components, then the inclusion of edge e involves merging of

two ‘‘upstream’’ components of the rooted tree (e.g., the merging

of streams at a junction). The components are merged with the

new edge to form a new (larger) component c which includes the

edges in c1, c2 as well as the new edge e. The order l(c) is assigned

via the classic Horton-Strahler rule (see Eq. (1)) based on the order

of the merged components, l(c1) and l(c2). Further, the order of

the assigned edge is set equal to that of the merged component,

i.e., l(e)~l(c).

Ordering of Planar Weighted Graphs
We developed a graph theoretic procedure to generalize the

Horton-Strahler order for planar graphs (see Methods for the

complete algorithm). The input to this ordering procedure is a

planar graph, G~(V ,E) whose weights w(e) are assumed to be

unique. In cases where weights are non-unique then ties will be

resolved arbitrarily. This planar graph need not be a tree and may

contain loops. The objective of this procedure is to order both the

edges and the faces of the planar graph. In the previous Results

section we showed how to merge disjoint components (i.e., 0-

dimensional homology classes) to reproduce the Horton-Strahler

ordering for rooted trees. Whereas for planar graphs, we are

interested in constructing a hierarchy of loops which represent 1-

dimensional homology classes. Hence, the basis for our graph

theoretic procedure is to merge loops and to merge disjoint

components. The key insights to our procedure stem from noting

that (i) the boundary of a face of the graph G is a loop; (ii) we can

merge two faces by removing a shared edge.

The procedure to order planar weighted graphs can be

summarized as follows. First, an order l(f )~1 is assigned to all

faces in the graph. We then iterate through edges in order of

increasing weight. When a given edge is on the boundary of two

distinct faces, then this edge is removed, creating a merged face.

The order of this merged face follows the Horton-Strahler rule (see

Eq. (1)) given the orders of the two faces. Similarly, the order of the

edge to be removed is set equal to the minimum of the order of the

two merged faces. A step-by-step illustration of loop merging

applied to the tree in Fig. 1C is shown in Fig. 2. Notice that this

procedure builds a rooted binary tree, where leaves correspond to

the faces of G, and the rest of the vertices correspond to unions of

these faces. The assignment of levels in this tree follows the original

Horton-Strahler algorithm. It is also useful to remember that faces

of G are vertices of its dual graph, G�, and merging faces of G can

be thought of as adding an edge to G�. Hence, the two merging

procedures that we described are, in some sense, dual. We shall

refer to the binary tree of faces as the co-tree of G, and denote it by

T�(G).

The construction of T�(G) removes edges from G which are

responsible for the existence of loops. We shall call such edges

reticular. Assignment of levels for such edges is based on the

assumption that a merger should not be more significant than any

of the merging elements. Notice that after removing reticular edges

from G we have a spanning tree of G, which we denote by T(G).
This tree captures the tree-like structure of the original network,

and we can assign hierarchical levels to its edges using the original

Horton-Strahler algorithm. We only need to determine which

vertex should be the root, and we do this by finding the vertex with

a single incident weight of maximum weight. Hence, as noted in

the Methods, the final step is to aply the Horton-Strahler ordering

to the remainder of the graph (which is a rooted tree). The result of

the complete algorithm applied to the tree in Fig. 1C is provided in

Fig. 3.

The algorithm produces three types of output. First, it provides

a unique set of orders to those edges involved in the non-reticulate

component of the network (Figure 3 - left panel). Second, it

provides a unique set of orders to those edges involved in the

formation of loops (Figure 3 - right panel). Further, one can also

calculate the side-branching statistics associated with both

orderings. The side-branching statistics, i.e., ‘‘Tokunaga’’ statistics

[43], for a conventional non-loopy tree are summarized by the

numbers Nij which are the number of edges of level j that join with

edges of level i. Because of the ordering process, these statistics are

evaluated for iwj. These numbers can also be divided by the

number of absorbing edges, i.e., the total number of edges of level i

to yield an average number of side-branches per segment. Here,

the algorithm produces two sets of Tokunaga statistics, the

numbers Nij for the side-branching of tree edges (Figure 3 - left

panel) and Mij for the side-branching of reticulate edges (Figure 3 -

right panel).

Sensitivity of Planar Network Ordering to Weight
Perturbations

Clearly, edge weights play an important role in the construction

of both loop and tree hierarchies. Unfortunately, weight estima-

tion done in practice is often imprecise, so the order in which the

algorithm iterates through the edges may be perturbed. In this

section we investigate how such a perturbation affects the loop and

tree hierarchies.

We start by considering the worst possible change in the

hierarchical levels of loops. Notice that the highest level in the

hierarchy of loops can be as low as 2. This happens when the first

reticular edge creates a level 2 face and every other reticular edge

merges a level 1 face with the only level 2 face (see Fig. 4A). On the

other hand, the highest level in the loop hierarchy can be as high

as log (m), where m is the number of faces. This happens when

level 1 faces are merged only with level 1 faces until only faces of

level 2 are left, then level 2 faces are merged with level 2 faces until

only faces of level 3 are left, and so on (see Fig. 4B). It is clear from

the example in Fig. 4 that there is a permutation of edges that can

change the loop hierarchy from one of the extreme cases to the

other. However, in practice such a permutation would generally

result in from a significant perturbation in weights. For small

perturbations, it is more likely that only a few transpositions of

edges will occur.

Let e1, . . . ,en be the order of edges with respect to their weights.

We shall now analyze how the structure of T(G) and T�(G)

Hierarchical Ordering of Reticular Networks
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changes when a single transposition occurs, that is, when the order

of ei and eiz1 is swapped. First, we notice that there will be no

changes to the structure of the co-tree or the spanning tree if ei and

eiz1 are both tree edges, or if ei is a tree edge and eiz1 is a

reticular edge. Hence, there are two cases to consider: when both

ei and eiz1 are reticular, and when ei is a reticular edge and eiz1 is

a tree edge. In the former case, we can regard reticular edges as

edges of the co-tree. We see then that swapping the two edges may

shift a subtree of the co-tree only one level up or down. Therefore,

it is reasonable to expect that hierarchical levels of loops will

change at most by one. The case of a reticular edge and a tree

edge is more complicated. Such a transposition may lead to

detaching a subtree of the remaining spanning tree and attaching

it at a different place. This may have a drastic effect on the tree

hierarchy. A detailed analysis of the two cases justifying the above

conclusions is present below.

Case 1. ei and eiz1 are both reticular. Only the co-tree can

be affected in this case. Let f R
i , f L

i and f R
iz1, f L

iz1 be the faces

merged by removing ei and eiz1, respectively. Also, let

fi~f L
i |f R

i and fiz1~f L
iz1|f R

iz1. Notice that if fi=f L
iz1 and

fi=f R
iz1, then fi is not a child of fiz1 in T�(G)), and there will be

no changes to the structure of the co-tree. Suppose that fi~f L
iz1

(the case when fi~f R
iz1 follows the same argument). Then eiz1 is

adjacent to either f L
i or f R

i ; let us assume it’s f R
i . Removing eiz1

before ei leads to merging f R
iz1 with f R

i first, and then merging the

resulting face with f L
i . The corresponding change in the tree

structure, shown in Fig. 5, is a single rotation around fiz1. Possible

changes in the levels of the nodes involved in the rotation are also

shown in Fig. 5. We can see that these levels can change at most by

one. However, in the worst case the change in levels may

propagate up T�(G) all the way to the root.

Case 2. eiis a reticular edge and eiz1 is a tree edge. Let f L
i

and f R
i be the two faces merged by removing ei. Notice that there

will be no changes in the structure of T(G) or T�(G) if eiz1 is not

adjacent to both f L
i and f R

i . So, let eiz1 be adjacent to f L
i and f R

i .

Then removing eiz1 before ei merges the same f L
i and f R

i , so no

Figure 2. An illustration of the loop merging procedure. The merging is applied to the graph from Fig. 1C. Red, dashed edges are the ones
removed during merging, the corresponding numbers show their levels. Levels of faces is encoded by the color: white faces have level 1, light blue
faces have level 2, and gold faces have level 3. Note that f7 is the unbounded face.
doi:10.1371/journal.pone.0036715.g002
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changes to the structure of the co-tree happen. However, eiz1

turns into a reticular edges, and ei becomes a tree edge.

Consequently, the structure of the spanning tree changes. Let

EL,R be the set of edges incident to both f L
i and f R

i , and let TL,R

be the tree formed by the edges in EL,R and the edges connected

to EL,R and having only f L
i or f R

i as an adjacent face (see Fig. 6).

Removing eiz1 and ei splits TL,R into three trees, TL, TR, and

TM , such that TL and TR are connected to the boundary of

f L
i |f R

i , and TM is not (Fig. 6). If ei is removed before eiz1, then

TM is connected to TR by eiz1. However, if the transposition

happens and eiz1 is removed before ei, then TM is connected to

TL by ei (Fig. 6). To understand the effect of such a change on

hierarchical levels, we first assume that TM does not contain the

root of T(G). Let vR be the vertex incident to eiz1 and TR, and let

vL be the vertex incident to ei and TL. Also, let liz1~l(eiz1),
where eiz1 is regarded as an edge in TM|eiz1 rooted at vR, and

let li~l(ei), where ei is regarded as an edge in TM|ei rooted at

vL. Denote by eR the edge of T(G) which is next to eiz1 in the

path from eiz1 to the root of T(G), and by eL the edge of T(G)
which is next to ei in the path from ei to the root of T(G). Then we

can see that removing eiz1 before ei can decrease the level of eR

by at most maxf1,liz1{1g. At the same time, the level of eL can

increase by at most maxf1,li{1g. In the worst case, these

changes can propagate up T(G) all the way to the root. The case

when the root of T(G) belongs to TM can lead to more drastic

changes. In this case, removing eiz1 before ei leads to

recomputing levels of all edges in T(G){TM by changing the

root from vR to vL. Again, this change can then propagate further

to the root of T(G).

Discussion

We have shown that the hierarchy of loops often observed in

reticular physical networks can be defined explicitly using a

generalization of the Horton-Strahler order. To obtain such a

generalization we regard the network as a weighted graph, with

weights corresponding to the widths of the network branches.

Noticing that the Horton-Strahler order can be computed by

analyzing how specific disjoint components (sub-networks) of a

(non-reticular) network are merged as the edges are added in the

order of increasing weight, we show that the hierarchical order of

loops in a weighted planar graph can then be computed by

analyzing how the faces of the graph are merged as we remove the

edges in the order of increasing weight. This approach naturally

classifies graph edges into reticular edges, which are responsible

for loop formation, and tree edges, which constitute a spanning

tree of the graph. Hence, both the loop and the tree hierarchies

can be computed.

Being able to compute hierarchical levels for loops creates new

possibilities for analyzing the structure of reticular networks. By

means of analogy, river networks can be compared by represent-

ing their connectivity in terms of side-branching statistics [43].

These statistics depict the ways in which smaller streams connect

to larger streams at all scales of the network [44]. A similar

procedure could be applied to leaf networks. For example, the

Figure 3. Example of hierarchical levels. The levels are assigned to the loops and branches of the network from Fig. 1C. Edge levels are shown
on the left, where black edges have order 1, light blue edges have order 2 and gold edges have order 3; reticular edges are dashed. Face levels are
shown in the co-tree on the right, where white nodes have order 1, light blue nodes have order 2 and gold nodes have order 3. Leaves of the co-tree
are labeled by the corresponding faces while other nodes are labeled by the reticular edges causing the merger of the two child nodes. Numbers Nij

are Tokunaga statistics for the spanning tree and indicate the number of edges of level j joining with edges of level i [43]. Similarly, Mij are Tokunaga
statistics for the reticulate co-tree and indicate the number of edges and faces of level j merging with edges of level i. For both M and N, statistics are
only collected when iwj.
doi:10.1371/journal.pone.0036715.g003
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current algorithm decomposes reticulate networks into a binary-

tree for the loop hierarchy and a separate binary tree for the tree

hierarchy. Both networks have associated Horton-Strahler orders

and therefore their structure can be estimated using Tokunaga

statistics. Recent innovations in software now permit semi-

automated extraction of the dimension and connectivity of entire

leaf vein networks and the areoles that veins surround [55]. Hence,

greater quantification of leaf vein networks from across a wide

range of biological diversity will soon be available for which to

analyze leaf development, variation across environmental gradi-

ents and in paleobotanical studies. Current attempts to compare

reticulate structure have largely focused on the density of areoles

(i.e., network faces) as a proxy for the ‘‘loopiness’’ of the network

[56]. The current study will provide additional metrics to compare

the detailed branching structure of reticulate networks.

An important caveat to keep in mind when comparing reticulate

network structure is that estimating weights in physical networks is

by no means a trivial problem. Therefore, we have performed a

theoretical analysis of possible changes in the loop and tree

hierarchies due to perturbations in edge weights. We have shown

Figure 4. Example of the two extreme cases of the loop hierarchy. The network has m faces, where m~2k for some integer kw0. (m{1) of
these faces are adjacent squares and the other one is the unbounded face. Vertical edges are removed before horizontal edges as follows: (A) The
edges are removed sequentially from left to right. The corresponding co-tree has the shape of a ‘‘comb’’ and the maximal hierarchical level is 2; (B)
The edges are removed from left to right skipping every second edge. The process is repeated until all vertical edges except the rightmost one are
removed. The corresponding co-tree has the height log(m)~k which is the maximal hierarchical level.
doi:10.1371/journal.pone.0036715.g004
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that the worst possible change in the loop hierarchy is attainable,

but requires a significant perturbation of weights. Taking into

account that small perturbations are likely to cause only a few

transpositions in the order in which the edges are removed, we

have shown that a single such transposition can change the

hierarchical levels of loops at most by one. We have also shown

that the change in the hierarchical levels of the remaining

spanning tree can be arbitrarily large even when a single

transposition is performed. It is important to note that in either

case the change does not happen for every transposition. Rather,

the transposed edges have to satisfy a particular condition, which

may happen rarely in practice. The latter claim is supported by the

numerous successful applications of the Horton-Strahler order.

While the method itself does not depend on any weights, the

connectivity of the network is obtained by analyzing digital

elevation map which contain noise [57,58]. In particular, the

difference between the correct and the computed connectivity may

be exactly the same as the difference in the connectivity of our

spanning tree caused by transposing two edges. Hence, the

resulting hierarchy may be drastically different from the correct

one. Nevertheless, the Horton-Strahler order has been successfully

used for over five decades despite the potential instability identified

here [39–42,57]. We suggest that empirical characterizations of

reticulate planar networks include randomization analysis on edge

weights to identify the robustness of claims regarding statistical

structure of side-branching of the tree and co-tree.

Many biological and physical systems are represented by non-

planar physical networks [29,59] and computing hierarchical

levels of loops in such networks is still an open question. While our

method can be applied to obtain the tree hierarchy of such

networks, the loop hierarchy cannot be computed in this case

because the algorithm relies on the fact that any loop in a planar

network corresponds to a union of faces. In the mathematical

language, (boundaries of) faces of a planar graph form a canonical

basis for loops (1-dimensional homology classes). Such a canonical

basis is not present in non-planar graphs. It is not clear at this

point how to handle the non-planar case. Perhaps a method for

computing loop hierarchies which is not based on the widths of the

network branches could provide an answer. We hope that our

approach of using algebraic topology language to deal with nodes

and loops of networks will prove useful in developing such a

method and complement other approaches.

Methods

Algorithm for Graph Theoretic Ordering of Rooted Trees
Here we present a graph theoretic algorithm for ordering the

edges within a rooted tree, T~(V ,E), where V is the set of

vertices and E is the set of edges. Consider the case when the

tree T is binary and weighted. Let w : E?R be the weight

function, that is, w(e) is the weight of an edge e [E. Since the

tree is rooted, there is a partial order defined on E as follows:

e1ƒe2 if there is a path from the root to e1 which passes through

e2 (in other words, e2 is closer to the root than e1). Let us assume

that the weight function is strictly increasing with respect to this

order, that is, w(e1)vw(e2) if e1ve2. In this case, the Horton-

Strahler order can be computed using the following procedure:

N Let C5E be the set of edges incident to leaves of T, regarded

as a set of disjoint components. For each e [C let l(e)~1.

Figure 5. Effect of a single transposition of two reticular edges. (A) the part of the network containing the two edges being transposed and
the effect of the transposition on the structure of the co-tree; (B) possible level changes caused by the transposition.
doi:10.1371/journal.pone.0036715.g005

Figure 6. Effect of a single transposition of a reticular edge and a tree edge. (A) The part of the network containing the two edges being
transposed. The brown, blue, and green triangles (and edges) denote the subtrees adjacent to the edges. (B) The effect of the transposition on the
structure of the spanning tree and its hierarchical levels.
doi:10.1371/journal.pone.0036715.g006
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N Iterate through (the rest of the) edges in order of increasing

weight. For each edge e do the following:

- If e shares a vertex with a single component c1[C, then merge

c1 and e into a new component c, and let l(e)~l(c)~l(c1).

- If e shares a vertex with two components c1,c2[C, then merge

c1,c2, and e into a new component c, and assign levels as

follows:

N * If l(c1)~l(c2), then l(c)~l(c1)z1.

N * If l(c1)=l(c2), then l(c)~ maxfl(c1),l(c2)g.
N * l(e)~l(c).

Algorithm for Graph Theoretic Ordering of Planar
Weighted Graphs

Here we present the algorithm for constructing the generalized

Horton-Strahler order of a weighted planar graph. Let G~(V ,E)
be a planar graph, not necessarily a tree, and again let w : E?R

be a weight function. We shall assume that w is injective (i.e., all

weights are unique). Otherwise, the ties will be resolved arbitrarily.

The merging procedure for computing the Horton-Strahler order

works with disjoint components, which, in the language of

algebraic topology, are 0-dimensional homology classes. Loops,

on the other hand, are 1-dimensional homology classes. Hence, we

may try to construct a hierarchy by merging loops. Notice that the

boundary of a face of the graph G is a loop, and we can merge two

neighboring faces by removing a shared edge. Using these two

observations, we obtain the following merging procedure for loops:

N Sort the edges so that w(e1)vw(e2)v � � �vw(en), where

n~DED is the number of edges.

N Let l(f )~1 for each face f.

N Iterate through e1, . . . ,en and do the following:

- If ei is adjacent to a single face, skip to the next edge.

- If ei is adjacent to two distinct faces fL and fR, remove ei from

the graph, let fmerged~fL|fR, and assign the levels as

follows:

N * If l(fL)~l(fR) then l(fmerged )~l(fL)z1.

N * If l(fL)=l(fR) then l(fmerged )~ maxfl(fL),l(fR)g.
N * l(ei)~ minfl(fL),l(fR)g.

This algorithm will remove reticular edges from G, generating a

spanning tree of G, which we denote by T(G). Hence, we augment

the procedure for constructing the loop hierarchy by the following

statement:

N Apply the Horton-Strahler ordering to the remainder of the

graph, T(G), (which is a rooted tree).
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