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Abstract

In large populations, many beneficial mutations may be simultaneously available and may compete with one another,
slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual
population, we find limits to the rate of adaptive substitution, L, that depend on simple parameter combinations. When
variance in fitness is low and linkage is loose, the baseline rate of substitution is L0~2NUSsT, where N is the population
size, U is the rate of beneficial mutations per genome, and SsT is their mean selective advantage. Heritable variance v in log
fitness due to unlinked loci reduces L by e{4v under polygamy and e{8v under monogamy. With a linear genetic map of
length R Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive
substitutions depends on s, N , U , and R only through the baseline density: L=R~F L0=Rð Þ. Under the approximation that
the interference due to different sweeps adds up, we show that L=R* L0=Rð Þ= 1z2L0=Rð Þ, implying that interference
prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and
numerical calculations confirm the scaling argument and confirm the additive approximation for L0=R *; 1; for higher L0=R,
the rate of adaptation grows above R=2, but only very slowly. We also consider the effect of sweeps on neutral diversity and
show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more
common—diversity can be maintained even in populations experiencing very strong interference. Our results indicate that
for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on
the mutation supply and the strength of selection.
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Introduction

In an adapting population, beneficial alleles may be spreading

simultaneously at multiple genetic loci. New beneficial mutations

usually arise in different individuals, and thus compete with each

other for fixation [1,2]. In asexual populations, this ‘‘clonal

interference’’ among alleles can drastically reduce the rate of

adaptation [3–11]. In sexual populations, recombination can

speed adaptation by breaking up negative associations among

beneficial alleles [1,2]. While this effect is implied by Weismann’s

explanation for the advantage of sex [12], and was first

investigated mathematically nearly half a century ago [13–16],

there has been surprisingly little explicit treatment of the effects of

interference on rates of adaptation. This is largely because the

substantial body of theory on the evolution of recombination has

focussed on the fate of modifiers of recombination, and on the

effects of deleterious rather than favorable mutations (e.g. [17–20];

reviewed by [21]). The effect on the rate of adaptation itself has

remained implicit. Recently, there has been intense interest in

adaptation by asexual populations, stimulated by laboratory

selection experiments on bacteria, and this has led on to

theoretical studies of multilocus evolution in sexual populations

[22–30], although these have generally focused on unlinked loci in

facultative sexuals.

While not much is known quantitatively about the effect of

interference among beneficial mutations in sexual populations, it is

plausible that it is significant. Evidence of clonal interference has

been repeatedly observed in experimental evolution of viruses

[31–35], bacteria [36–40], and eukaryotic microbes [6,41–44],

and selected polymorphisms at linked loci must occur simulta-

neously in plants and animals undergoing artificial selection – the

motivation for Hill and Robertson’s initial analysis [14]. Thus, it is

important both to understand how linkage among beneficial alleles

affects adaptation, and how it can be detected in natural

populations from sequence data.

A simple way to measure adaptation is by the accumulation of

favorable mutations. The rate of accumulation, L, is equal to the

product of the number of haploid individuals, N, the beneficial

mutation rate per genome per generation, U , and the average

probability that a single new mutation will ultimately fix, �PP:

L~NU �PP. (See Table 1 for a summary of the notation.) �PP itself

will in turn generally depend on L, because each mutation that

sweeps to fixation will reduce the chance that other mutations will

fix. (This reduction in fixation probability is an example of the

Hill-Robertson effect [45]). To see why this is so, note that all pre-

existing beneficial alleles that are not present in the original

mutant individual must be lost in the absence of recombination, as

must all new mutations that occur on the ancestral background
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[1,2]. Copies of other alleles that are in individuals carrying the

sweeping allele will have an increased fixation probability, but

because this increase is on average far less than the decrease in

fixation probability for copies on the ancestral background, the net

effect of the sweep is negative. The fixation probability thus

decreases as the rate of sweeps increases.

Here we derive simple approximate expressions for L by

analyzing a basic model of an adapting population. We begin by

considering unlinked loci, but then focus on the recombination

model of most biological interest, namely a linear genome with

cross-overs randomly scattered at a total rate R per generation.

We use a robust scaling argument to show that the proportional

reduction to �PP caused by interference depends only on the density

of sweeps, L=R. We derive an explicit form for �PP as a function of

L=R, under the approximation that the effects of multiple sweeps

are additive. We find that, in sufficiently large populations, L is

proportional to R but nearly independent of the rate at which

beneficial mutations are produced (NU ), indicating that adapta-

tion is primarily limited by the rate at which recombination can

bring beneficial alleles together. (A preliminary version of these

results was outlined by [46].) Simulations confirm the scaling

argument, and show that the expression for �PP is accurate up to

L=R*1. Finally, we consider the effect of multiple sweeps on

neutral diversity, and find that it scales differently than the effect

on adaptation: neutral diversity can be greatly reduced even when

sweeps are too sparse to interfere with each other, but it is not

much more reduced when interference is strong.

Results

The model
We consider a well-mixed population of N haploid individ-

uals. All mutations are beneficial and the effects of different

alleles on fitness multiply. There is a constant genomic

beneficial mutation rate U , regardless of genetic background,

so that beneficial mutations are never exhausted. Our model

can thus be seen as a best-case scenario for adaptation, ignoring

the deleterious mutations, negative epistasis among beneficial

mutations, and lack of available beneficial mutations that

presumably limit adaptation in many real populations. (We

consider the effect of deleterious mutations and population

structure in the Discussion.) Under these assumptions, the

population will approach an expected steady long-term rate of

substitution, L; we focus on populations close to this steady

state. (We discuss fluctuations in the rate of substitution in Text

S5 and Figure S9.)

Background: Fixation probabilities and adaptation in the
absence of interference

In the absence of interference from linked alleles, a single allele

with advantage s&1=N has probability P~2s=V of going to

fixation, where V is the variance in offspring number among

individuals [47,48]. (This expression also applies to more

complicated demographic models, with V taken to be the variance

in reproductive value [49].) For the rest of this paper, we will

assume that individuals’ offspring distributions are approximately

Poisson, corresponding to a base value (in the absence of

interference) of V0~1, as under the Wright-Fisher model (Eq.

1.48 of [50]). The expected probability of fixation of a beneficial

mutation is therefore SPT~2SsT and the baseline rate of

accumulation of favorable alleles is L0~2NUSsT. (We use SaT
to indicate the expectation of quantity a over possible values of s,

and �aa to indicate the expectation over individuals in a population;

for the baseline rate L0 we are neglecting variation in the genetic

backgrounds among individuals.)

It will be helpful to consider log fitness; for an individual with k

favorable alleles, each providing advantage si, this is z:
Pk

i~1

log 1zsið Þ. By Fisher’s ‘‘Fundamental Theorem’’ [1], the rate of

increase of the population mean log fitness, D�zz, is given by the

heritable variance in log fitness, v. (Here we are neglecting the

direct effect of new mutations, which we address below.) A

substituted allele with advantage s makes a contribution log (1zs)
to �zz, so the rate of increase is D�zz~v~NUSP log (1zs)T. In the

absence of interference, the baseline rate of increase is v0~2NU

Ss log (1zs)T&2NUSs2T (for s%1).

Complete recombination
We begin by assuming that in each (discrete) generation, each

individual is generated by choosing its genes independently from a

common pool (‘‘complete recombination’’). Thus, the state of each

gene is statistically independent of the other genes, or in other words,

Table 1. Symbol definitions.

Symbol Definition

N Haploid population size

U Genomic beneficial mutation rate

R Total genetic map length

s Selective advantage of beneficial mutations

P Probability of fixation of a beneficial mutation

L Genomic rate of fixation of beneficial mutations

v Heritable variance in log fitness in the population

L0,v0 Values of L and v in the absence of interference

U Expected time for a pair of neutral lineages to coalesce

The definitions of the main symbols used in the text. N , U , R, s, L0 , and v0 are
population parameters, and P, L, v, and U are variables. In addition, we use S:T
to denote the expectation of a variable taken over a distribution of selective
coefficients s, and �:: to denote the expectation over possible genetic
backgrounds.
doi:10.1371/journal.pgen.1002740.t001

Author Summary

In small populations, adaptation may be limited by a lack
of beneficial alleles on which selection can act; in such
populations, increasing the supply of mutations (by
increasing the population size or the rate of beneficial
mutation per individual) proportionally increases the rate
of adaptation. However, when multiple beneficial muta-
tions arise simultaneously, they will typically occur in
different individuals and will compete against each other,
slowing adaptation. Recombination (sex) alleviates this
interference among mutations by bringing them together
in the same individuals. By analyzing and simulating a
simple model of an adapting sexual population, we find
that interference prevents the rate of adaptive substitu-
tions from greatly exceeding one substitution per centi-
morgan in every 200 generations. Populations with
infrequent outcrossing, such as many microbes and plants,
may approach this limit. In these populations, the rate of
adaptive substitutions is hardly affected by increasing the
mutation supply or the strength of selection, but grows
proportionally (up to very high rates) as recombination
increases.

Limits to the Rate of Adaptation
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there is no linkage disequilibrium. This does not correspond to any

real organism, but could be realized in principle: it corresponds to a

kind of mass meiosis, in which all members of the population take

part. (This procedure can be approximated by multiple rounds of

random mating with no selection, and is used directly in some

genetic algorithms [51].)

Since each individual chooses all of its alleles independently,

its log fitness is the sum of independent contributions from all

the polymorphic loci. When many ongoing selective sweeps

contribute to variance in fitness, z will be approximately

normally distributed (with variance v). In this case, the variance

in the number of offspring of a new allele, taken over all genetic

backgrounds, is V~ev. The fixation probability of an allele

with advantage s is therefore reduced to P~2s=V~2se{v.

Thus, the net rate of increase in mean log fitness, D�zz, is reduced

by a factor e{v, and so we have D�zz~v~v0e{v. This can be

rewritten as D�zz~v~ v0ð Þ, where v0ð Þ is the product log

function (also known as the Lambert W function), which is

approximately v0 for v0%1, and log v0ð Þ for v0&1. Thus, if the

rate of adaptation is so extremely high that most variance in

offspring number is due to selective sweeps (rather than simple

drift), the rate of adaptation only increases very slowly

(logarithmically) with the number of new mutations entering

the population.

In deriving this formula, we have assumed that there are enough

selective sweeps that z is approximately normally distributed. We

have checked this approximation by simulating the full model, and

find very close agreement over a wide range of parameters. (See

Text S1 and Figure S1.)

Unlinked loci
We now extend this argument to a more realistic model, and

find the same qualitative result. We consider a Wright-Fisher

population, in which each individual is the offspring of two

parents in the previous generation, chosen with probability

proportional to their fitnesses. We assume the infinitesimal

model, under which two parents with trait values z1,z2 produce

offspring with values normally distributed around the mid-

parent value z1zz2ð Þ=2, and variance vLE=2, where vLE is the

variance of z in a population at linkage equilibrium [52]. This

model has been found to be a good approximation for the

response to selection of many quantitative traits in sexual

populations [53]. Under the assumption of weak selection per

locus, and free recombination (r~
1

2
), linkage disequilibria

among alleles sweeping to fixation are negligible, and so

v*vLE. (Note, however, that linkage disequilibrium decays only

at a rate rv1 per generation, distinguishing this model from the

complete recombination model above.)

We can consider two models: polygamous and monogamous. In

the first, an individual with trait value z has a Poisson number of

offspring with expectation proportional to ez. Each offspring is

produced with a different mate, with an individual with trait value

y chosen as a mate with probability proportional to ey. In the

second, pairs with trait values fy,zg form at random, and produce

a Poisson number of offspring, with expectation proportional to

eyzz. Because all of an individual’s offspring are influenced by the

same mate, this model introduces substantially more random drift.

In Text S2 , we show that in both models, fixation probability of a

new mutation is proportional to the square of the fitness of the

individual in which it arises (i.e., ezð Þ2~e2z). With polygamy, the

average fixation probability is reduced by a factor e{4v. Arguing as

before, we find that the overall rate of adaptation is given by

D�zz~v~
1

4
4v0ð Þ: ð1Þ

This is consistent with Robertson’s heuristic argument that variation

in fitness that is inherited with probability (i.e., recombination fraction)

r~1=2 has 1=r2~4 times the effect of non-inherited fitness variation

[54]. However, with monogamy, inherited variation in fitness has an

even larger effect, reducing fixation probability by a factor e{8v, and

giving a rate of adaptation Dz~v~
1

8
8v0ð Þ. (Note that the pre-

liminary expression in [46] is incorrect.) We have checked Eq. (1) by

direct simulation of the infinitesimal model (Text S2 and Figure S2). It

is straightforward to extend this result to populations of facultative

sexuals that outcross at regular intervals; in this case a ‘‘generation’’

should be seen as the several rounds of clonal reproduction between

outcrossing events, with all selective coefficients scaled up accordingly.

[26,27] have recently modeled a different kind of facultative sex; see the

Discussion for a comparison of our results.

A linear map
We now turn to the case of most biological interest, namely, loci

arranged linearly on chromosomes, with recombination within

chromosomes occurring via crossovers. When there are many

chromosomes or each chromosome is long (so that the total genetic

map length R is &1), most loci will be effectively unlinked (r~
1

2
),

and so we expect these to reduce fixation probability by a factor

e{4v, assuming polygamy. However, tightly linked loci are expected

to make a substantial contribution. Since, according to a straight-

forward generalization of [54], those at map distance r are expected

to reduce fixation probability by exp {v=r2
� �

, the average over a

linear map should diverge as *1=r for small r. Plainly, a more

sophisticated argument is needed to deal with tightly linked loci.

In general, we must follow the fixation probability of an allele,

considered as a function of the genetic background X in which it

sits; the vector X is a binary string which represents the 2n

genotypes that are possible with n concurrent sweeps. When

recombination and selection occur at rates small compared to the

generation time but large compared to the mutation rate, the

fixation probability of an allele conferring advantage s on a genetic

background X evolves according to:

{
LP Xð Þ

Lt
~ szS Xð Þð ÞP Xð Þz

X
Y

r X ,Yð Þ P Yð Þ{P Xð Þð Þ{ P Xð Þ2

2

ð2Þ

(from Eq. 4 of [55]). Here S Xð Þ is the net selective advantage of

background genotype X , relative to the population mean. r X ,Yð Þ
is the rate at which a focal allele on background X recombines

onto background Y ; this depends on both recombination rates and

genotype frequencies, g Xð Þ, which will vary in time. (Intuitively, in

the right-hand side of Eq. (2) , the first term describes the increase

or decrease in the allele frequency due to selection, the second

term describes how recombination shuffles the allele’s genetic

background, and the third term describes the effect of drift.)

The quantity of most interest is the average fixation probability

over all possible genetic backgrounds, �PP~
P

X g Xð ÞP Xð Þ. If we

take the time derivative of this average probability, we find that terms

in Eq. (2) due to selection on the background, and recombination,

cancel, giving:

Limits to the Rate of Adaptation
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{
L�PP

Lt
~s�PP{

�PP2zVar P½ �
2

ð3Þ

(Text S3). Fixation probability is always reduced below 2s by

variation in fixation probability across backgrounds (Var P½ �w0). In

the special case where Var P½ � is constant through time, we have
�PP~2s=½1z(C:V :)2� where C:V :~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var P½ �

p
=�PP. Factors that

increase the short-term rate of drift in a way that does not depend

on genetic background (unequal sex ratio, uncorrelated fitness

variance, etc.) can be included by multiplying the last term in Eq. (2)

by a factor V , the variance in reproductive value. This result is

remarkably general: it does not depend on the pattern of recom-

bination, and it does not assume additive effects: szS Xð Þ is simply

the net rate of increase of the focal allele when on genetic

background X . (The effect of the focal allele, s, must be additive, but

remaining alleles can have arbitrary epistatic interactions with each

other, as described by S Xð Þ.) However, Eq. (3) does not help us

calculate the magnitude of the reduction in the fixation probability,

since Var P½ � depends on recombination, selection, and the back-

ground genotype frequencies (r,S,g).

Note that the derivation of Eq. (3) still holds when we extend the

genetic background and recombination to include spatial location

and migration in a structured population. If an allele has the same

selective advantage, s, everywhere, then the fixation probability is

equal to 2s, independent of structure [56,57]. If selection varies

from place to place, with mean s, then Eq. (3) shows that the

average fixation probability is necessarily reduced below 2s. In this

context, Eq. (3) may be related to a similar expression found by

[58]; the possible connection is discussed in Text S6.

The net reduction in the rate of adaptation depends only
on the baseline density of sweeps, L0=R

When there are many possible genetic backgrounds due to

multiple interfering sweeps, it is generally difficult to calculate �PP
exactly from Eqs. (2) and (3). In the following, we derive an

approximate expression for �PP that is accurate up to very strong

interference. For simplicity, we will assume in this section that all

mutations confer the same selective advantage, s, regardless of

genetic background. (Our argument holds more generally as long

as the distribution of selective effects has a characteristic scale s;

see below.) First, we use a scaling argument to show that in large

populations, the rate of selective sweeps per unit map length, L=R

(which we refer to as the ‘‘density’’ of sweeps), depends on N , U , s,

and R only through the rate in the absence of interference between

loci, L0=R~2NUs=R. In other words, we show that there is a

function F such that L=R~F L0=Rð Þ. Later, we use simulations to

confirm this argument, even for very strong interference.

The key observation is that alleles are most vulnerable to in-

terference when rare, but cause the most interference when

moderately common. (Intuitively, a mutant allele causes the most

interference when it is near frequency 1=2 – frequent enough to

significantly affect other alleles, but not so frequent that most other

alleles are on the mutant background; see Figure 1 and Figure S3.)

We assume that N is very large, so that there is a number n&1,

n%N such that alleles which are present in n copies are

established (i.e., are very likely increase to fixation along a roughly

deterministic trajectory), while still being at low frequency in the

population. This allows to us to make the crucial approximation

that each mutation has a negligible effect on other mutations prior

to its establishment, separating the roughly deterministic increase

of alleles that are destined to fix (and which interfere with the

fixation of others) from the stochastic fluctuations of rare alleles.

For a given pattern of established sweeps, these rare alleles can be

treated as independent branching processes, with fixation prob-

ability given by Eq. (2) . Notice that we can rescale Eq. (2) by

writing it in terms of W:P=2s, t:st, and r:r=s, and letting

k(X ):S(X )=s be the difference between the number of beneficial

alleles in background X and the average number:

{
LW Xð Þ

Lt
~ 1zk Xð Þð ÞW Xð Þz
X

Y

r X ,Yð Þ W Yð Þ{W Xð Þð Þ{W Xð Þ2
ð4Þ

This rescaled equation does not explicitly depend on N,U ,s, or

R – only implicitly, through the dependence of k and r on the

genotype frequencies, g(X ). This is still true when we average over

genotype frequencies to find the scaled version of Eq. (3) . Thus, the

scaled probability of fixation of a new mutation that falls on a random

genetic background, �WW, depends on N, U , s, and R only through

their effect on the number and pattern of interfering sweeps.

To find the dependence of g(X ) on the population parameters,

we further assume that N and R are large enough that, by the time

a sweeping allele becomes common, any linkage disequilibrium

with other common alleles will have decayed sufficiently that it can

be neglected. (We revisit this assumption below.) In this case, we

can approximate g(X ) by the product of the frequencies of all the

alleles in X , with each allele following a deterministic trajectory.

When this is valid, the trajectories of common alleles are

independent of N,U ,R, and s (when written as functions of the

scaled time t). Thus, the parameters affect g(X ) only through their

effect on the distribution of sweeps in time and across the genome,

and this distribution (in terms of the scaled time and scaled map

distances) entirely describes their effect on W.

We now make the final approximation that sweeps occur at

approximately uniformly and independently distributed times and

map positions, as they would in the absence of interference. In this

case, the distribution, and therefore �WW, depends only on the

density, L=R. (The scaled and unscaled densities of sweeps are the

same, since the scaling factors s for time and 1=s for map length

cancel; see Figure 2.) There is a subtlety to this argument. If we

consider a given set of sweeps, occurring at defined times and map

positions, then their effects on a randomly placed mutation would

depend on the strength of selection, and our scaling argument

would fail. However, because the distribution of sweeps is

invariant under rescaling, the fixation probability averaged over

all possible configurations of sweeps is unchanged (Figure 2).

We still face a difficulty, however, in that the locations and times

of sweeps are not independent: because the amount of interference

varies stochastically over the genome and through time, we expect

them to be overdispersed. The scaling argument will still hold if the

effects of different sweeps add up (the approximation developed

below), or if the distribution in scaled time and map length is non-

uniform but still depends on the population parameters only

through L=R. We show by simulation that the heuristic scaling

argument is in fact accurate (Figure 3 and Figure 4), and that

distribution of sweeps is close to uniform even for very strong

interference (Figure 2). This may seem somewhat puzzling – sweeps

should preferentially begin at loci and times that are experiencing

less interference. However, when sweeps are rare, most of the

genome experiences almost no interference in most generations,

and thus little variation in the amount of interference. Conversely,

when sweeps are common, most of the genome experiences

Limits to the Rate of Adaptation
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substantial interference from multiple sweeps in most generations,

and the stochastic variations in the amount of interference ex-

perienced from locus to locus and generation to generation are small

compared to this average effect.

Above, we have shown that if interference has only a mild effect

on the distribution and trajectories of common alleles that cause

the most interference, then the expected scaled fixation probability

depends only on the density of sweeps, i.e., that �WW~f (L=R)

for some function f . Since L~�WWL0, we can rewrite this as

L~L0f (L=R), or L=R~F L0=Rð Þ, where F is implicitly defined

by F(x):xf (F (x)); the density of sweeps L=R depends only on

the baseline density in the absence of interference, L0=R.

In the above derivation, we have omitted two additional com-

plications regarding the distribution of sweeps across the chro-

mosome. First, for strong interference, while the rate of sweeps is

nearly uniform in the middle of the chromosome, it is higher near

the ends, since these end loci have fewer nearby loci to interfere with

them. We will assume that the chromosome is long compared to the

scale of interference, R&s (see Figure 1 and Figure S4), so that these

edge effects can be neglected at most loci. (Note that if the total map

length R is the sum over several chromosomes, we require that each

chromosome individually have a map length &s.) Second, a

uniform distribution over the chromosome does not exactly

correspond to a uniform distribution over recombination fractions

with a given locus, because the recombination fraction saturates at

r~
1

2
. Thus, for genomes with long total map lengths, R&1, each

locus will experience sweeps uniformly distributed across nearby loci,

plus many more sweeps at effectively unlinked loci, which generate a

variance in log fitness of &v~Ls. As shown in the previous section,

the cumulative effect of these unlinked loci is to cause short-term

fluctuations, which increase the rate of random drift by a factor e4v

(assuming polygamy). The term in P2 in Eq. (2) is therefore multiplied

by this factor, and the fixation probability is reduced by the same

factor. Combining this with the expression in the previous paragraph,

we obtain an implicit equation for the rate of sweeps:

L~L0f
L

R

� �
e{4Ls ð5Þ

Note that the density of sweeps now depends on the additional

parameter Ls, in addition to L=R; the ratio between the two

Figure 1. A selective sweep causes interference over a time *1=s and a genetic distance *s. Fixation probability of a new mutation with
advantage s occurring after an interfering sweep with the same selective advantage s. The fixation probability �PP, scaled by its baseline value 2s, is
plotted against the scaled map position of the new mutation relative to the interfering sweep, r=s, and its scaled time of occurrence relative to the
time at which the interfering sweep reaches frequency 1=2, st. Note that the relationship between these scaled variables is independent of s, as long
as Ns&1. The X marks the time when the interfering sweep is at frequency 1=Ns for Ns~103 ; it is assumed to follow a deterministic trajectory. The
sweep causes the most interference once it becomes common (frequency *>10%), and causes little interference to common alleles (i.e., alleles that
arise around the same time or earlier). �PP is calculated numerically using Eqs. (2) and (3) .
doi:10.1371/journal.pgen.1002740.g001

Limits to the Rate of Adaptation
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parameters, Ls=(L=R)~sR, determines whether the interference

experienced by a beneficial allele comes primarily from a few closely-

linked sweeps (small sR) or many unlinked sweeps (large sR).

We progressively strengthened our assumptions at each stage of

the above derivation of Eq. (5) . In the end they amount to the

approximation that alleles are essentially only affected by

interference when rare, and cause interference only when common

(although the factor exp ({4Ls) allows these assumptions to be

violated for interference among unlinked loci). We can actually

weaken this assumption by allowing interference to affect the

trajectories of common alleles, as long as this effect only depends

on L=R. Still, for given N, we expect that this approximation will

break down for sufficiently strong interference, but that for any

given strength of interference (i.e., value of L0=R), the accuracy of

our scaling argument will increase with increasing N, as the

separation between rare and common alleles increases. The

simulation results shown in Figure 3 and Figure 4 confirm that Eq.

(5) is accurate over a broad region of parameter space.

Figure 2. The distribution of sweeps in time across the genome. Points show the beginnings of simulated selective sweeps. The distribution
over time and map length appears approximately uniform. Time is in generations from the beginning of the simulation, and position is map distance
in Morgans from the end of the chromosome. In the right panel, the time scale is halved and the length scale is doubled compared to the left panel,
illustrating the effect of a doubling of s on the scaled distribution of sweeps that enters into Eq. (4) for the scaled probability of fixation �PP=2s. If we
consider a focal mutation occurring in the middle of the chromosome at generation 2500 (the large gold dot), the rescaling changes the interference
it experiences from any given sweep (e.g., the one marked by the large purple dot), but the total expected interference from the whole distribution of
sweeps remains unchanged. Simulation parameters are chosen such that there is strong interference: N~104 , U~0:3, s~0:05, R~1.
doi:10.1371/journal.pgen.1002740.g002

Figure 3. Reduction in fixation probability only depends on baseline density of sweeps. The scaled probability of fixation of a beneficial
mutation, �PP=2s, plotted as a function of the strength of selection, s. R is varied along with s, so that the ratio R=s (and therefore L0=R) is held
constant. Circles show simulation results and curves show the analytical approximation given by Eq. (8) . The scaled probability of fixation is nearly
constant until s becomes large enough that unlinked sweeps become important (s*1=R). U~10{4 , R=s~100 is shown in purple; U~5|10{4,
R=s~100 is shown in gold; U~10{4 , R=s~10 is shown in blue. N~105 for all points and curves. Note that for R=s~10, Eq. (8) slightly
overestimates the amount of interference, because the chromosome is short enough that boundary effects must be considered. All simulations were
run until the rate of substitution approached a steady value, and then continued until at least 1000 substitutions accumulated. The standard error is
less than the radius of the points.
doi:10.1371/journal.pgen.1002740.g003
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The additive approximation
We now turn to determining the function f in Eq. (5) that

determines the decrease in fixation probability due to interfer-

ence (�PP~2sf (L=R)>). As mentioned above, since the number of

backgrounds that must be included in Eq. (2) grows exponentially

with the number of interfering sweeps, it is impractical to solve it

exactly for �PP. Instead, we will make the approximation that the

average amount of interference experienced by a focal allele

increases linearly with the density of sweeps, L=R; i.e., that

common alleles are unaffected by interference, and that the

expected effects of multiple sweeps on �PP combine additively. The

approximation that the effects combine additively can be justified

rigorously when interfering sweeps have selective coefficients

much larger than those of the sweeps being interfered with (see

Text S4). Even in the case we are concerned with here, in which

all sweeps have the same selective advantage s, the approxima-

tion is necessarily accurate when sweeps are sufficiently rare that

a new allele is unlikely to experience substantial interference from

more than one sweep. In addition, we show numerically that for

small numbers of interfering sweeps, their effects are roughly

additive even when they occur quite close together. (See Figure

S5.) Thus we will assume additive effects for the remainder of this

derivation.

Under the additive approximation, the average effect of multiple

sweeps on fixation probability across the genome and time is just the

sum of their individual effects. The effects of a single substitution at a

given genetic distance and time from a focal allele can be calculated

numerically by following the coupled equations for the fixation

probabilities on the two alternative backgrounds, P(0) and P(1)
(Eq. 5 of [55]). This can then be numerically integrated over sweeps

distributed uniformly over time and across the genome to find the

expected fixation probability of a new mutation (Text S4):

�PP&2s 1{
2ZL

R

� �
, ð6Þ

where Z = 1.05. In the following, we will take Z~1 and omit it for

simplicity. (A 5% difference is not worth worrying about given that

our underlying model is an extreme oversimplification of a real

population and that Eq. (6) is only approximately true even for our

model.) Since the rate of sweeps is L~NU �PP we can solve for L:

L&
L0

1z2L0=R
: ð7Þ

(Recall that L0~2NUs.)

As explained above, we can include the effects of loosely linked

loci by reducing fixation probability by a factor e{4Ls, where

v~Ls is the variance in log fitness. The result is most simply

expressed in terms of this variance, relative to the baseline variance

in log fitness in the absence of interference, v0~sL0~2s2NU ,

which necessarily equals the baseline rate of increase of mean log

fitness. From Eqs. (1) and (6) we have:

v

v0
& 1{

2v

sR

� �
e{4v ð8Þ

As mentioned above, the product sR determines the importance of

loosely-linked loci, relative to tightly linked loci. We now see that

Figure 4. The density of sweeps as a function of the baseline density. The rate of sweeps per unit map length L=R, plotted against the
baseline rate, L0=R:2sNU=R. The solid line shows L~L0 , the dashed curve shows the additive approximation given by the solution to Eq. (8) , and
the points show simulation results. Different kinds of points represent different values of N ; as predicted by the scaling argument, L=R depends on
N only through L0=R. L&L0 until interference becomes strong at L0*R, after which L increases only slowly. While the simulated values of L=R

continue to increase above Eq. (8) ’s ‘‘upper limit’’ of 0.5, they do so only very slowly, remaining v3 even for L0=R~103 . (Note that even when Eq. (8)
underestimates L, it appears that our scaling argument still holds.) Selection and map length are held constant at s~0:05 and R~1 while population
size N and mutation rate U are varied. The points show simulation results averaged over 3:6{4|103 generations for N~102 (circles), N~103

(squares), N~104 (diamonds), N~105 (upward-pointing triangles), and N~106 (downward-pointing triangles). For each value of N , values of U are
shown up the point at which the strength of interference at which the probability of fixation falls to P*O 1=Nð Þ and the neutral accumulation of
mutations becomes important (see Figure S7). The standard errors in the simulation results are less than the size of the points.
doi:10.1371/journal.pgen.1002740.g004
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the condition for interference to be mainly due to the effects of

tightly-linked loci is sR%1. For an organism with total map length

R*10, this corresponds to adaptation being primarily due to

alleles with selective advantage sv10%. Figure 3 compares the

predictions of Eq. (8) with results from individual-based simula-

tions (see Methods) and shows that they are quite accurate up to

levels of interference strong enough to reduce fixation probability

by an order of magnitude. The left side of the figure shows the

regime sR%1 in which interference is caused by tightly-linked loci

and depends only on L0=R; loosely-linked loci begin to interfere

on the right side of the figure, where sRw1.

In the limit of a very large density of incoming mutations,

L0=R&1, Eqs. (7) and (8) imply that L tends to an ‘‘upper limit’’ of

R=2. As expected from our scaling argument, this limit is

independent of both population size and of the strength of selection.

This upper limit implies that fixation probability should begin to

scale almost inversely with NU (the mutation supply) and to depend

only very weakly on s at some finite L0 – in particular, L0&R=2.

Above this limit, our approximations begin to break down and

underestimate L, but L typically depends only weakly on N, U , and

s once it approaches R=2. The exact form of this weak dependence

remains an open question. The regime is analogous to the ‘‘multiple

mutations’’ regime of asexual populations, and indeed results from

this regime in asexual populations provide lower bounds for the rate

of adaptation that increase roughly logarithmically with N, U , and s
(Eq. (41) in [6] and Eq. (53) in [8], reviewed in [11]). However, these

bounds are far too low to be useful for frequently recombining

organisms. A better bound can be found by making the

approximation that the genome is composed of many short,

effectively asexual segments which interfere with each other only

weakly. In this case, back-of-the-envelope calculations suggest that

L=R should grow at least as fast as * log (L0=R)= log (Ns),
although this remains to be carefully investigated. Since beneficial

mutations must be more likely to fix than neutral ones, there is an

additional lower bound LwU that applies when mutation is very

frequent, but in this case mutations are effectively nearly neutral and

may not be detectable as selective sweeps.

Figure 4 compares the above theoretical predictions with results

from simulations. Parameters are chosen such that sR%1, so L
should be approximately given by Eq. (7) . As expected, for fixed

L0=R, L=R approaches the theoretical prediction as N increases.

Agreement is close for large populations (Nw103) up to L0=R*1,

at which point the predicted rate of adaptation approaches an

asymptotic limit while the simulations indicate that it continues to

increase, albeit slowly. Note that the scaling argument (leading to

Eq. (5) ) is more robust than our prediction for the form of the

dependence on L0=R (Eq. (7)); even when the latter underesti-

mates L=R, it is still true that for large N, L=R depends on N and

U primarily through their product. For small populations and

large mutation rates, the probability of fixation approaches the

neutral value 1=N, and L again increases linearly with U as it does

for low interference, although with a much smaller constant of

proportionality.

Very strong interference: Adaptation above the limit
Since our analytical approximation Eq. (8) become inaccurate

for very strong interference, we further investigated this regime by

simulation. Figure 5 shows the results of a typical simulation run

with parameters chosen such that there is very strong interference:

s~0:1, R~1, NU~80. In the absence of interference, the

fixation probability would be �PP0~1{e{2s&0:18, slightly lower

than the weak-selection approximation of 2s~0:2, so the density

of sweeps would be L0=R&15. In the simulations, interference

reduces the average fixation probability to �PP&0:01, which is

roughly twice as large as the fixation probability predicted from

Eq. (8) . Our analytical approximations are thus beginning to

break down, but the general features are still roughly correct. In

particular, our basic assumption that alleles are safe from loss once

they reach appreciable frequency is still true. For these parameters,

loss becomes unlikely once the number of copies exceeds *103,

which is well below the frequencies at which the allele begins to

interfere with others for N *> 104. Our scaling argument assumes

not only that common alleles are certain to be fixed, but also that

their trajectory on the way to fixation is affected by interference in

a way that depends only on the density of sweeps, L=R. Figure 5

shows that this assumption is roughly accurate even at high

interference; the distributions of sweep trajectories and sojourn

times between 10% frequency and 90% frequency (the range in

which sweeps cause the most interference) are similar for N~104,

U~8|10{3 and N~105, U~8|10{4.

Going beyond the scaling argument, the additive approximation

used to derive Eq. (8) assumes that (i) the interference caused by

different sweeps combines additively and (ii) the trajectories of

alleles at intermediate frequencies are unaffected by interference.

In Figure 5, we see that assumption (ii) begins to fail for very strong

interference, as interference increases the sojourn time at in-

termediate frequencies by a factor of &2 for the simulated

parameters, and introduces substantial variance in trajectories.

Note that this slowdown has no direct negative effect on the rate of

adaptation. (If alleles spread more slowly, then each allele in a

given frequency range contributes less to the rate of increase in

mean fitness, but there are more alleles in every frequency range;

these effects precisely cancel.) It does, however, have an indirect

positive effect, because the slower rate of increase of the common

alleles means that they cause less interference for new alleles than

they would in isolation. If we recalculate the expected fixation

probability �PP using the observed rate of increase in common

sweeps (*s=2) and assuming additivity of interference, we obtain

the value found in the simulations. This indicates that assumption

(i) is still valid even at strong interference.

Interestingly, very common alleles are less affected by interfer-

ence than those at intermediate frequencies. With no interference,

we expect an allele destined to fix to spend the same time

increasing from 1 copy to N=2 as to get from N=2 to N{1 [59].

In contrast, while the sweeps in the simulation run with N~105

spend an average of &150 generations at frequencies less than one

half, they spend only &100 generations at frequencies greater

than one half, the latter being the same as they would in the

absence of interference (see Eq. 5.53 in [50]).

Effects on neutral diversity
It is far easier to observe neutral diversity than rates of adaptive

substitution: thus, it is important to know the effects of multiple

selective sweeps on neutral variation. In particular, it is important

to understand how the magnitude of the reduction in fixation

probability of favorable alleles due to interference compares to the

reduction in neutral diversity due to the ‘‘genetic draft’’ [60]

caused by the sweeps. Since extensive molecular variation was first

seen, it has been clear that in abundant organisms, diversity is

much lower than expected from census numbers [61]. Maynard

Smith and Haigh [62] argued that diversity may be limited in

large populations by selective sweeps, an argument set out more

recently by Gillespie [60,63,64]. Thus, we can ask whether a rate

of sweeps that reduces diversity to observed levels will also cause

significant interference with natural selection.

Unfortunately, it is much harder to calculate the effect of

multiple sweeps on neutral diversity than it is to find the effect on

Limits to the Rate of Adaptation
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fixation probability. A full description of samples of neutral genes

requires that we follow their genealogy back through time, under a

coalescent process that is conditioned on the changing frequencies

of selected genetic backgrounds [65]. In place of an exact analysis

of the full spectrum of neutral diversity, we will focus on a single

quantity, the long-term pairwise rate of coalescence. Note that this

single number is not enough to characterize the full effect of draft

on neutral alleles, i.e., there is no one ‘‘effective population size’’;

see the Discussion and Figure S8.

Even calculating the pairwise rate of coalescence exactly is difficult,

so we make the approximation that the rate of coalescence due to

multiple sweeps is the sum of the sweeps’ effects in isolation. As with

our approximation that effects on selected alleles are additive, this

approximation becomes inaccurate for very strong interference, when

Figure 5. Simulation of evolution with strong interference. The figure shows data from simulated populations with mutation supply NU~80.
The total genetic map length is R~1 and mutations provide selective advantage s~0:1. The baseline density of sweeps is L0=R&14:5,
corresponding to interference strong enough that our approximation Eq. (8) for the rate of adaptation is beginning to break down. Top panels:
Trajectories of 1000 example selective sweeps in a population of size N~104 (left), and 713 sweeps in a population of size N~105 (right).
Frequencies are plotted on a logit scale, so that the deterministic trajectory in the absence of interference is a straight line (shown in black). While the
distributions of trajectories differ between the two populations at very low and high frequencies, they are similar in the frequency range 10%{90%
(between the dashed lines) at which sweeps cause the most interference. For each sweep, t~0 is set to be halfway between its origin and fixation,
and time is scaled by s. Most of the trajectories take longer to increase to high frequency than the deterministic trajectory in the absence of
interference; on average, the sweeps are slowed down by interference. Most trajectories lie below frequency 1/2 at t~0, i.e., they take longer to go
from frequency 1=N to 1/2 than from 1/2 to 1. At very low and high frequencies, the trajectories are dominated by drift and are far from the
deterministic trajectory. At the intermediate frequencies at which they cause the most interference, most trajectories increase at a roughly steady
rate, albeit more slowly than they would in the absence of interference. Bottom panel: Sojourn times (scaled by s) of the simulated sweeps shown in
the top panels. Simulation results are compared to the distribution expected under the diffusion approximation with an effective population size of
either the actual size, Ne~N , or scaled by the reduction in fixation probability, Ne~N �PP=�PP0. Points show mean sojourn times, while the error bars
show the standard deviation of the sojourn time. (Note that this is not the standard error of the mean, which is smaller by a factor of &30.) The mean
and standard deviation of the sojourn times at intermediate frequencies are approximately the same for N~104 and N~105 . Strong interference
greatly increases the variance in sojourn times. The mean increases as well, but by no more than a factor of two, much less than might be suggested
by the 15-fold decrease in fixation probability. In contrast to the results in the absence of interference, the sojourn time distribution of the simulations
is asymmetric about frequency 1/2. For the diffusion approximation, mean sojourn time is found from Eq. 5.53 of [50], and the standard deviation of
the sojourn time is found from Eq. 27 of [105].
doi:10.1371/journal.pgen.1002740.g005
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even common alleles’ trajectories are affected by interference [66,67],

but must be valid when sweeps are not too common [68,69]. In a

single selective sweep with selective coefficient s, a pair of lineages at a

neutral locus a distance r away, with r%s, have probability

&(2Ns){2r=s of coalescing [62,70–72]. (This can be understood as

the probability e{2rt that two neutral lineages both remain associated

with the sweeping allele during the time t* log (2Ns)=s that it takes

to increase from a single copy to near-fixation.) Averaging over a

linear map of length R&s, the total rate of coalescence due to nearby

sweeps is&L
2

R

ð?
0

(2Ns){2r=sdr~
Ls

R log (2Ns)
[73]. As discussed

above, unlinked sweeps effectively increase the strength of drift (i.e.,

the rate of coalescence) by an additional factor e4v~e4Ls, assuming

polygamy [74]. Altogether, the expected time for a pair of neutral

lineages to coalesce is

U&
R

Ls
e{4Ls log (2Ns): ð9Þ

Since L increases with N, Eq. (9) implies, perhaps counterintuitively,

that effective population size (as measured by heterozygosity) is a

decreasing function of actual population size in moderately large

populations, similar to the results of [63]. This can be understood by

noting that when population size is large, as we assume, the rate of

sampling drift is negligible, and neutral diversity must be determined

primarily by selective sweeps, as Maynard Smith and Haigh

originally argued [62]. Note that while increasing N increases the

number of sweeps, it also decreases the effect of each sweep on neutral

diversity, because of the factor of log (2Ns) in Eq. (9) which arises

from the increase in the time to sweep. Since L increases only slowly

with N for very large N, this may mean that the decrease of U with

increasing N should eventually level off and perhaps even reverse.

Comparing Eq. (9) to Eq. (7) , we see that neutral diversity will

be substantially reduced (U%N) when the rate of sweeps reaches

L*R=(Ns), a far lower rate of sweeps than is necessary to

interfere with adaptive alleles (L*R) for Ns&1. (Sweeps at

unlinked loci affect neutral and adaptive alleles similarly, but

closely-linked loci are generally likely to be the main cause of draft;

see Discussion below.) Thus, at low densities of sweeps, neutral

diversity is much more affected by sweeps than is fixation

probability. In contrast [73], argued that the opposite should be

true, since the characteristic genetic map distance over which a

sweep reduces neutral diversity (*s= log (2Ns)) is smaller than the

scale over which it causes interference (*s). However, this dif-

ference in length scales is not very big 2log (Ns) is unlikely to

approach 100 in natural populations – and thus has only a mild

effect. Our results indicate that some populations (experiencing

weak interference) may be able to adapt much more rapidly than

would be expected from measurements of ‘‘Ne’’ based on het-

erozygosity. (This may be the case for Drosophila – see below and

[75].) On the other hand, even populations experiencing strong

interference may maintain substantial neutral diversity. This is

because the loss of diversity depends on the actual density of

sweeps L=R, which plateaus when interference becomes strong,

rather than on the baseline density L0=R.

As shown in Figure 6, Eq. (9) is roughly in agreement with the

rate of coalescence observed at a neutral marker locus in simulated

populations. Figure 6 also shows the simulation results and the

analytical approximation ( Eq. (8) ) for the rate of adaptation, in

Figure 6. Differing effects of sweeps on selected and neutral alleles. The scaled fixation probability of beneficial alleles and scaled neutral
diversity as a function of the baseline density of sweeps L0=R. Points show simulation results, curves show analytical approximations. The circles and
the black curve are the scaled fixation probability �PP=2s, and show the same data as in Figure 4. The squares and colored curves show the scaled
neutral diversity, U=N . At small L0=R, beneficial alleles do not interfere with each other, but still reduce neutral diversity substantially. However,
increasing L0=R to larger values has little additional effect on neutral diversity, both because interference limits the increase in the number of sweeps
(�PP decreases), and because the combined effect of overlapping sweeps on neutral diversity is less than the sum of their individual effects (the squares
lie above the additive analytical approximation). The analytical approximations match the simulation results up to strong interference (L0=R&1), at
which point they begin to break down. The squares are the averages over 100 simulation runs; see the Methods for how U was measured. The
colored curves show Eq. (9) for U as a function of L, with L taken empirically from the simulations. The mutation rate U is varied, with other
parameters held constant at R~1, s~0:05, and N~104(blue),105(orange). For these parameter values, essentially all interference is caused by
tightly-linked loci.
doi:10.1371/journal.pgen.1002740.g006
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terms of reduction in the probability of fixation, �PP. We can clearly

see the different scalings discussed above: while both neutral

diversity and N decrease as the baseline density of sweeps L0=R

increases, they do so in opposite ways. Beneficial mutations are

nearly unaffected by interference until U approaches one, at which

point N drops rapidly. Neutral diversity, on the other hand, is

strongly reduced even at small U, but is nearly independent of U
for L0=Rw1, precisely because interference limits the increase in

L=R in this regime. In addition, for very high rates of sweeps,

interference between successful sweeps causes their effect on co-

alescence to be sub-additive, further preserving neutral diversity

[66,67]; a similar effect also limits the reduction in neutral diversity

caused by background selection [76,77].

Distribution of selective advantages
Above, we have focused on the case in which all beneficial

mutations provide the same selective advantage s. Using simula-

tions, we have also investigated the effect of allowing exponentially

distributed selective advantages. ([10] and [78] conduct similar

studies for asexual populations.) Figure 7 shows that for both weak

and strong interference, allowing for variation in s makes little

difference to the rate of adaptation. Populations with an exponential

distribution of mutational effects with mean SsT evolve only slightly

slower than populations with a fixed value s~SsT, and show nearly

the same scaling with the strength of selection.

Figure 8 shows that alleles with small selective advantages are

much more affected by interference than those with large selective

advantages. To understand this, consider the probability of

fixation of an allele with advantage s, �PP(s), given the distribution

r(s) of mutational effects. (For the exponential distribution we

consider here, r(s)~SsT{1e{s=SsT.) If the effects of multiple

interfering sweeps are additive, then following the argument given

in Text S4 , we can write the probability of fixation as

�PP(s)&2s 1{
2NU

R

ð
Zs=S

�PP(S)r(S)dS

� �
, ð10Þ

where the factor Zs=S depends only on the ratio of the selective

coefficients. Eq. (10) approaches 0 at some s�w0; alleles with

selection coefficients s&s� are nearly unaffected by interference,

while those with lower s are strongly affected. (Obviously, the Eq.

(10) only applies to values of s above this cutoff s�; we discuss

weakly-selected alleles below.) s� can be understood as the rate at

which the focal allele is knocked back by interfering sweeps [79].

In Text S4, we find that the interference coefficient Zs=S is

approximately

Zs=S&
p2S

6s log 3:8z S
s

h i : ð11Þ

(See Figure S6). While Eq. (11) can be used to solve Eq. (10)

numerically, to find an analytical approximation we will instead

make the crude approximation that Zs=S&S=s. This is accurate

for S&s, but overestimates interference for S&s. With this

approximation, the probability of fixation is �PP(s)&2(s{s�), with

cutoff selective coefficient s�~2ŝsL=R, where ŝs is the mean

selective advantage of alleles that successfully sweep. Approximat-

ing ŝs by its baseline value, ŝs&2SsT, we have

�PP(s)&2s{
8SsTL

R
: ð12Þ

Figure 7. Effect of interference among alleles with a distribution of selective advantages. Simulation results for scaled mean probability
of fixation �PP=2SsT for mutations with exponentially distributed selective advantages (blue circles) and scaled mean selective advantage for successful
mutations ŝs=2SsT (green diamonds), as a function of the baseline density of sweeps L0=R – i.e., the amount of interference. The purple squares
shows �PP for the same parameter values, but with all mutations conferring an identical selective advantage s~SsT. Allowing for a distribution of
selective effects makes little difference in the rate of sweeps, L~NU �PP, and the mean selective advantage of sweeps stays close to 2SsT (dashed
black line), even for strong interference. The theoretical predictions Eqs. (7) and (13) (purple and blue dashed curves, respectively) are accurate for
weak interference, but underestimate fixation probability with strong interference. The mutation rate U is varied, with other parameters held
constant at N~104 , R~1, and mean selective advantage provided by a mutation SsT~0:05. All points are averages over 5000 simulated
generations. Error bars on the top curve show the standard deviation of s for successful mutations. The standard errors are less than the size of the
points.
doi:10.1371/journal.pgen.1002740.g007
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Figure 8 shows that Eq. (12) is accurate for strongly-selected alleles.

While we do not currently have a simple analytic expression for

the fixation probability of alleles with moderate selective

advantages s *; s�, the equivalent expression for asexual popula-

tions has recently been found by [80], and it may be possible to

extend this analysis to sexual populations.

Solving Eq. (12) for the overall rate of sweeps gives

L&
L0

1z4L0=R
: ð13Þ

Comparing Eq. (13) to Eq. (7) , we see that the amount of interference

is twice that of a population with a fixed selective effect s~SsT.

Figure 7 shows that Eq. (13) is accurate for weak interference, but is

even less accurate than Eq. (7) for strong interference.

Weakly-selected alleles
To find the probability of fixation of weakly-selected alleles that

primarily experience interference from alleles with much larger

selective coefficients, we can take the small s=S limit of Eq. (11) ,

Zs=S&p2S= 6sR log½S=s�ð Þ [79]. Assuming that the selective

coefficients of mutations that succeed in fixing are clustered fairly

tightly around their mean value, ŝs (as they are in the simulations

shown in Figure 7 and Figure 8), the fixation probability of the

weakly-selected alleles is approximately

�PP(s)&2s{
2p2ŝsL

3R log (̂ss=s)
: ð14Þ

Eq. (14) predicts that there is another, lower, selective coefficient

s�� below which alleles are nearly neutral. Eq. (14) breaks down as

s approaches s��; our derivation assumed that an allele’s fate is

decided when it is rare, which applies only when selection is strong

relative to drift (N �PP(s)&1). More weakly selected alleles must drift

nearly to fixation before selection becomes effective and they are

safe from extinction. Since their fate is decided over time scales

similar to that of neutral alleles and by similar dynamics, we expect

them to be affected similarly by interference. Thus, the degree of

adaptation will depend on Us, where U is given by Eq. (9) . ( Eq. (9)

still approximately holds for an exponential distribution of sweep

strengths under weak interference, with s replaced by ŝs~2SsT.)

For this heuristic argument to agree with Eq. (14) for �PP(s), we

must have Us��,,1; comparing Eqs. (9) and (14) , we see that this

condition is satisfied. However, this is far from conclusive, and the

dynamics of weakly-selected alleles should be investigated further.

Neher and Shraiman [30] conduct a more detailed analysis for the

infinitesimal model, and obtain qualitatively similar results.

Discussion

Summary of results
When many beneficial alleles are sweeping through a popula-

tion, interference among them may greatly retard adaptation. In

this case, the rate of adaptation may be primarily limited by the

rate at which recombination can bring beneficial alleles together in

the same genome. A scaling argument shows that for a given

distribution of selection coefficients, the density of successful

substitutions per generation per chromosome arm, L=R, is a

function solely of the density that would be expected in the absence

of interference, F L0=Rð Þ, and does not depend on the beneficial

mutation rate U , the total genetic map length R, the population

size N, or strength of selection s separately. When mutations have

equal effects, we obtain an explicit approximate formula for the

density of substitutions, L=R& L0=Rð Þ= 1z2L0=Rð Þ. This implies

that there is an ‘‘upper bound’’ to the density of sweeps,

L=R*0:5. When the population variance in log fitness, v, is

large, interference from unlinked loci further reduces the rate of

sweeps by a factor e{4v or e{8v, depending on the mating system.

However, for Rs%1, most interference occurs between linked loci

separated by a map distance r*O sð Þ.
Simulations show that the scaling argument is accurate over a

broad range of parameters. Numerical calculations and simulations

Figure 8. Effect of interference on distribution of successful mutations. Solid curves and points show the probability of fixation of a
mutation as a function of its selective coefficient, �PP(s). Histograms and dashed curves show the distribution of selective coefficients of fixed
mutations. The left panel shows results for moderate interference (L0=R~1), while the right panel shows high interference (L0=R~30). Mutations
with small effects are strongly affected by interference, while large-effect mutations are nearly unaffected; this biases the distribution of successful
mutations towards larger effects. The distribution of mutational effects, r(s), is exponential with mean SsT~0:05. Solid curves show the analytical
approximation Eq. (12), corrected for the effect of unlinked loci and the saturation of fixation probability as s approaches 1 (see Text S4). Dashed

curves show the predicted distribution of selective coefficients of fixed mutations in the absence of interference, p(sDfixation)ds~
s

SsT
r(s)ds, with ds

set to the width of the histogram bins. Parameters are N~104 , R~1, and U~10{3(left),10{2(right). Points and histograms are averages over 5000
simulated generations; error bars show the standard error. Only a few mutations in the simulated populations had very high values of s, so the
estimated probabilities of fixation for these high values are noisy. Note that the horizontal scales of the left and right panels are different.
doi:10.1371/journal.pgen.1002740.g008
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show that the explicit formula for L=R is accurate for up to a few

interacting sweeps, but substantially underestimates the rate of

adaptation when there are many closely-linked, concurrent sweeps.

The simulations indicate that the rate of adaptation continues to

increase above the ‘‘upper bound’’ as N and U increase, perhaps

logarithmically; however, this increase becomes so slow that L=R is

unlikely to greatly exceed one in most populations. Simulations also

indicate that the assumption that all mutations have the same effect

can be relaxed without affecting the key results. Genetic draft

greatly reduces neutral diversity when the density of sweeps exceeds

L=R*1=(Ns), far lower than the density needed to cause

interference; however, even when sweeps are dense enough to

cause extreme interference, neutral diversity is not reduced by much

more.

Relation with previous work
Several authors have recently studied interference among

unlinked loci [23,24,26,27] . Cohen et al. [23,24] and Rouzine

et al. [26] consider models in which the total number of possible

adaptive substitutions is fixed, so that sufficiently large populations

reach a maximum rate of adaptation, a different situation from the

one we consider. However, [26] do show that the infinitesimal

model used here is a good approximation to the dynamics of

unlinked loci for a broad range of parameters. Neher et al.’s model

[27] includes mutations and is more similar to ours. However,

[26,27] consider only facultative sexuals and assume a small rate of

outcrossing, c%1. As mentioned above, our infinitesimal model

can be straightforwardly extended to a similar case, in which

individuals outcross only every 1=c generations, by scaling

selective coefficients by 1=c, i.e., by replacing v by v=c2. This

implies that the boundary between weak and strong interference is

at 4v=c2*1, consistent with [27]. [27]’s result for the weak

interference regime (the second line of their Eq. 12) is the same as

predicted by our Eq. (1) . For strong interference, our scaled Eq.

(1) has the limit v&c2 log 4NUs2=c2
� �

=4, somewhat different from

the first line of their Eq. 12 (v&2c2 log (NU)= log2 (c=s) in our

notation). Both predict only a logarithmic increase in v, but the

dependence on the underlying parameters is different. This is

because in their model rare, extremely fit genotypes can produce

large clonal lineages without being broken up by recombination,

whereas in ours all lineages eventually recombine. Their model is

more appropriate for organisms that have a small chance of

outcrossing in every generation (which is most likely for bacteria

and viruses, and also some eukaryotes), while ours applies to

organisms that outcross at regular intervals between rounds of

asexual reproduction (as is the case with some eukaryotes).

Both [27] and [26] ignore the possibility of varying degrees of

linkage among loci (i.e., there is no genetic map). This is a natural

model for bacteria in which recombination typically involves the

replacement of short stretches of DNA, and most loci therefore

have the same recombination fraction with each other. However,

in viruses and eukaryotes, recombination is primarily due to

crossovers, as in our model. In this case, adjusting our Eq. (8) for

facultative sexuals outcrossing at frequency c gives

v

v0
~ 1{

2v

scR

� �
e{4v=c2

: ð15Þ

Eq. (15) indicates that linked loci are the primary source of

interference when sRvc, which we expect to be true for many

populations. Thus, we expect interference among beneficial

mutations to be more prevalent than predicted by previous

studies. Considering both the differences between the models of

facultative sex discussed in the previous paragraph, and the

differences between the models of recombination, the models of

[26,27] are generally more appropriate for bacteria, while ours is

generally more appropriate for eukaryotes with an obligate

outcrossing stage in their life cycle. For viruses and eukaryotes

that outcross rarely and randomly, their models do a better job of

capturing interference among unlinked loci, and are therefore

more appropriate for organisms with sRwc, while ours is better

when most interference is from tightly-linked loci (sRvc).

Neher and Shraiman [30] have recently extended [27] to

consider the effect of genetic draft on neutral diversity. Although

they consider different measures of diversity than we do, their

results are qualitatively similar to those of our infinitesimal model (

Eq. (9) for L=R?0, and scaled by the outcrossing frequency): draft

is significant when the variance in log fitness exceeds the square of

the outcrossing rate, v *> c2, i.e., v *> 1=4 for our model of obligate

sexuals. A similar result was also derived by Santiago and

Caballero [74]. Note that this is the same threshold value at

which interference from unlinked loci begins to affect advanta-

geous alleles. In our model of a linear genetic map, in contrast, the

rate of sweeps necessary to create significant draft is much lower

than the rate needed to cause strong interference: Eq. (9) predicts

that that U will be much less than N for L *> cR log (2Ns)=(Ns),

typically a much weaker condition than L *> c2=s. If we consider

the case of HIV within-host evolution addressed by [30], taking

the frequency of outcrossing to be c*0:01, the map length to be

R*10, and typical positive selective coefficients to be s*0:005
[29,81,82], we see that for any reasonable population size

(roughly, N&1000), the threshold value of L at which draft from

linked sweeps becomes important is smaller than that at which

draft and interference from unlinked sweeps become important.

Santiago and Caballero [83] extend [74] to allow for the effect of a

genetic map; their framework can be used to derive the roughly

the same threshold rate of sweeps L*cR=(Ns), but drastically

underestimates U for the draft-dominated populations described

by Eq. (9).

Deleterious mutations
Because deleterious mutations are far more frequent than

beneficial mutations, it is important to consider how they affect

our results. The effect of unlinked deleterious mutations is easy to

incorporate into the infinitesimal model by repeating the analysis

using the exact expression for the rate of increase in mean log fitness,

including the direct effect of new mutations, Dz~vzUtotSlog (1z

s)T, where in the second term Utot and the expectation over s
include deleterious mutations. Unlinked mutations simply increase

the effective strength of drift and can be described as reducing the

effective population size. The effect of linked deleterious mutations

can also easily be included when deleterious mutations and sweeps

are not so common that they substantially reduce the efficacy of

negative selection. In this case, deleterious mutations with selective

disadvantage S occurring at a genomic mutation rate Ud reduce

fixation probability at linked sites by a factor & exp ({2aUd=R),
where a&min DSD=s,1f g [55]. In contrast to the effect of unlinked

loci, this clearly cannot be captured by a reduction in a single

effective population size, as beneficial alleles of different effects

experience different amounts of interference; since a decreases with

s, strongly selected alleles experience less interference from

background selection, just as they experience less interference from

other sweeps (Figure 8). Background selection has the largest effect

when there are many linked deleterious alleles, but in this case the

deleterious alleles interfere with each other and the situation

becomes more complicated [76]. This case and the one in which
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deleterious alleles experience strong interference from sweeps

remain to be investigated analytically.

Population subdivision
It is important to consider how population subdivision interacts

with interference in determining the rate of adaptation. When few

favorable alleles enter in each generation, so that L0~2NUSsT is

small, the rate of adaptation increases in proportion to population

size, N, while Hill-Robertson interference leads to diminishing

returns for increasing population size. This appears to suggest that

a subdivided population, consisting of many small demes, might

adapt more efficiently. However, note that for an allele to fix in the

entire population, it must fix in every deme; in addition, other

alleles may fix only locally before going extinct. Thus, every deme

experiences at least the same rate of sweeps, L, as would a single

panmictic population. Thus, strong population subdivision will

increase interference among sweeps, most of which enter the local

deme by migration, rather than by mutation. [56,57] showed that

with conservative migration, and in which each deme contributes

according to its size, the fixation probability of a favorable allele is

unaffected by population structure. We believe that this result does

not carry over to the effects of multiple sweeps, and that overall,

the fixation probability will be reduced by subdivision. This has

been found to be true for asexual populations [84], but remains an

open question in sexual populations.

Likely strength of Hill-Robertson interference
It is unclear how important the Hill-Robertson effect due to

selective sweeps is in biological populations, both because it is

difficult to measure the local rate of adaptive substitutions and

because the expected amount of interference had not been

determined theoretically. Above, we addressed the second

question, and found that interference between substitutions

becomes important as the rate of adaptive substitutions approach-

es one per Morgan every two generations. Here we briefly discuss

what is known about the first question, and what this implies for

the relevance of Hill-Robertson interference from sweeps.

Artificial selection. Does Hill-Robertson interference limit

the response to strong artificial selection on sexual populations? At

first, the response must be due to standing variation, and may

depend on alleles initially in many copies. (However, many

microbial evolution experiments start with very little standing

variation; this situation is discussed in Text S5.) The reduction in

fixation probability considered here is hardly relevant in this initial

phase, though negative linkage disequilibria between favorable

alleles will slow down the response. However, even completely

homogeneous populations respond to selection after an initial delay,

showing that there is a high rate of increase in genetic variance due

to new mutations, Vm: typically, Vm*0:001{0:01Ve, where Ve is

the non-genetic component of the variance in the trait [53]. Thus,

after some tens of generations, new mutations will start to

contribute, and ultimately, the rate of fixation of such mutations

limits the selection response [85,86]. In the absence of Hill-

Robertson interference, this could in principle lead to an extremely

high rate of adaptive substitution. An allele with effect a on a trait

with total phenotypic variance Vp has selective advantage s~ab,

where b is the selection gradient, which is typically of order 1=
ffiffiffiffiffiffi
Vp

p
.

(For example, if the top 10% are selected, b*1:76=
ffiffiffiffiffiffi
Vp

p
).

Therefore, the baseline rate of substitution due to mutations of

effect a, arising at net rate m per genome per generation, is

L0~2Nmab. Since Vm~2ma2 (assuming that mutations are equally

likely to increase or decrease the trait under selection), this can be

rewritten as L0~NVmb=a. Selection can pick up alleles with effect

larger than a*1=(Nb), and so substitutions could occur at up to

L0*N2b2Vm. Using the middle of the estimated range of Vm from

[53] and assuming Vp*Ve gives L0*0:01N2. Thus, even

moderately-sized populations could in principle sustain extremely

high baseline rates of adaptive substitution, both because they

generate large numbers of mutations, and because selection can be

effective on alleles of small effect. It seems that populations under

artificial selection could easily be in the regime L0=R *> 1=2 in

which Hill-Robertson interference is strong.

It is difficult to determine if Hill-Robertson interference has

limited the response in past artificial selection experiments, largely

because we still have very limited understanding of the causes of

mutational heritability, and of the genetic basis of selection

response [87,88]. Sequencing of genomes from pedigrees and from

mutation accumulation lines has given good estimates of the total

genomic mutation rate [89], but we do not know what fraction of

these mutations have significant effects on traits, or the distribution

of these effects. In a classic experiment, selection for increased oil

content in maize has caused a large and continuing response; after

70 generations, Laurie et al. [90] identified 50 QTL responsible

for 50% of the genetic variance in a cross between selected and

control lines, implying Lw50=70~0:7 on a map of R*16. The

effective population size here is extremely small (Ne*10) and so

much of this response must be due to new mutations [91], so the

density of sweeps is L=Rw0:05. Thus, it is unclear if Hill-

Robertson interference has been important, but it would likely at

least be an obstacle to attempts to increase selection response

further via increasing Ne. Burke et al. [92] have recently identified

many regions (‘‘several dozens’’) that show consistent changes in

allele frequencies across replicate populations of Drosophila

melanogaster, selected over 600 generations for accelerated devel-

opment. However, these do not show the complete loss of

variation expected for a classic sweep, even though most of the

response over this long timespan should be due to new mutations.

This may be because the causal alleles have very small effect, and

have not yet fixed – implying that the long-term rate of adaptive

substitution could be very high. (Similarly, there are hardly any

fixed differences between human populations on different conti-

nents, despite extensive adaptive divergence [93].) Whole-genome

sequencing of selection experiments may soon give us a much

better understanding of the rate at which adaptive mutations are

picked up by selection. At present, however, selection experiments

are inherently limited to detecting at most fifty or so sweeps over

some tens of generations, and so without longer-running experi-

ments we will not know how high the long-term rate of substitution

may be.
Natural populations. To see whether Hill-Robertson inter-

ference could plausibly limit adaptation or diversity in natural

populations, consider the evolution of Drosophila since the

divergence between simulans and melanogaster. Taking the rate of

adaptive substitutions (including those in non-coding regions) to be

*1 every two years [94] and the generation time to be roughly

two weeks (Table 6.11 in [95]), we find that the per-generation

rate is L*0:02. The total sex-averaged map length is R&1:5 [96],

so the density of substitutions is L=R*0:01, well below the

interference threshold. Observed levels of neutral diversity [97,98]

and per-base mutation rates [99] suggest that the (long-term)

effective population sizes of Drosophila melanogaster and simulans are

roughly Ne*106. Taking the above estimate of L=R*0:01, and

considering the effect of the *25% of the sweeps that Sattath et al.

[100] estimate to have selective coefficients s*0:005, Eq. (9) tells

us that this corresponds to an actual population size of about

N*6|109, consistent with the estimate of [75]. This suggests that

Drosophila may lie in the intermediate region illustrated in

Limits to the Rate of Adaptation
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Figure 6, in which sweeps are frequent enough to suppress neutral

diversity, but not frequent enough to interfere with each other.

However, the estimates of the underlying parameters are very

uncertain; see Sella et al.’s review [101].

The above back-of-the-envelope calculation probably under-

states the importance of the Hill-Robertson effect in evolution for

several reasons. First, our results indicate that for many pop-

ulations interference occurs primarily between tightly linked sites,

so that it is the local, rather than genome-wide, density of sweeps

that is constrained; thus, if positively selected loci are unevenly

distributed across the genome, the genomic density of substitutions

will underestimate the amount of interference. Similarly, regions of

the genome with low recombination rates may experience

increased interference. Second, we find that the interference is

mainly caused by selection driving alleles from moderately low

frequencies to intermediate frequencies, with relatively little

interference caused by very rare alleles reaching low frequencies

or common alleles going to fixation. This means that soft sweeps,

partial sweeps, and polymorphic loci undergoing fluctuating

selection could contribute substantially to the Hill-Robertson

effect without showing up as fixed differences between species.

Third, local populations may experience a substantially higher rate

of selective sweeps than indicated by the species-wide molecular

clock. Most importantly, organisms that have a linear genome but

do not outcross every generation, such as selfers and many viruses,

are more likely candidates for experiencing Hill-Robertson

interference among selected alleles than are obligate out-crossers

like Drosophila. For instance [29], find that interference likely

reduces the rate of adaptation of HIV in the chronic stage of

infection by a factor of roughly 4.

No single effective population size
The effect of selection on surrounding genetic variation is often

described as a reduction in an ‘‘effective population size.’’ Our

results show that lumping drift and interference together in a single

number in this way is generally misleading. Drift and unlinked

variance in fitness dominate short-term stochasticity in allele

trajectories, while the effect of linked sweeps becomes important

over longer time scales (see Figure S8). This means that the

‘‘effective population size’’ estimated from the common, old alleles

that dominate heterozygosity is likely to be very different from the

relevant quantity for rare, young alleles. Thus, estimates of the

strength of selection against rare alleles in, e.g., Drosophila may be

systematically off by orders of magnitude. This contrast between

drift dominating at short time scales and draft dominating at

longer ones may also be used to estimate the amount of

interference in natural populations from site frequency spectra

[30,102].

Hill-Robertson interference and the evolution of
recombination

If adaptation is limited by the rate of recombination, then there

should be strong selection to increase it. Barton [46] outlined the

results derived here, and their implications for the debate over the

maintenance of sex and recombination. Our results imply that if

recombination does limit adaptation, then increasing recombina-

tion would increase fitness in proportion. However, a modifier of

recombination would itself gain an advantage only to the extent

that it remained associated with the favorable combinations of

alleles that it helped generate. With loosely linked loci, its

advantage would be of the same order as the fitness gain across

one generation; on a linear map, a recombination modifier would

gain only from tightly linked alleles, less than *s map units away;

the net effect would seem likely to be very small [19]. Yet,

recombination does increase significantly in artificially selected

populations [103], and simulations of populations adapting at

many loci show that selection for increased recombination can be

strong [28,104]. In addition, deleterious mutations are also likely

to create Hill-Robertson interference, increasing selection for

recombination [18,76]. An analytical description of the evolution

of modifiers of recombination rates in populations experiencing

substantial genome-wide interference remains to be found.

Methods

Simulations
Simulations of multilocus evolution are computationally de-

manding, because we must follow very many individuals, and very

many alleles. Because many alleles segregate simultaneously, there

are typically a very large number of possible genotypes. Therefore,

we must follow individuals rather than genotype frequencies,

which limits the size of population that can be simulated.

The model described above was simulated using the C

programming language. To minimize memory use, only a single

copy of each mutation is stored; each individual is an array of

references to mutation objects. Each mutation object records its

location in the genome, its effect on fitness, and how many

organisms in the population carry it; once this count drops to zero

or rises to N copies, the mutation object is removed from each

individual’s record, and is noted as fixed or lost. This memory

management scheme allows simulations of more than 106

individuals to be run on a modern desktop computer. Individual

fitness was calculated as the product of contributions 1zsi from

each mutation; in most simulations, s was constant. In each

generation, N pairs of parents were chosen independently, with

probability proportional to their fitnesses, with each pair

producing a single offspring individual. (This is the ‘‘polygamous’’

model described above.) The offspring genome was generated

using a Poisson number of uniformly distributed crossovers, with

expectation R, and a Poisson number of new mutations occur in

each generation, with expectation U . The Mersenne Twister

algorithm (MT19937) was used to generate random numbers.

All simulations began with purely wild-type populations which

then accumulated mutations. All data used in figures are from

after the rate of substitution approached a steady value, which

took 102{103 generations, depending on the parameters.

Neutral diversity
To determine the neutral diversity, we adjusted the model

described above using a method similar to [66]. After 1000 gen-

erations of evolution to allow the populations to approach a steady

rate of adaptation, we ‘‘painted’’ each individual with a unique

neutral marker allele at a locus in the middle of the chromosome, and

then continued the simulation until one marker allele fixed. We then

calculated the heterozygosity at the marker locus in each generation,

defined as H(t)~1{
XN

i~1

X
pi(t)

2, where the pi(t) are the

frequencies of each of the marker alleles in generation t. From this we

estimated the rate of coalescence using the mean long-term rate of

decrease in heterozygosity, E
H(t){H(tz1)

H(t)

� �
, averaged over 100

simulations run until all diversity at the marker locus was lost (see

Figure S8).

Numerical calculations
Numerical analysis was performed using Mathematica. The code

will is available in Protocol S1.
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Supporting Information

Figure S1 Reduction in the rate of adaptation caused by

uncorrelated fitness fluctuations. The rate of selective sweeps L
when fitness fluctuations are uncorrelated across generations, as a

function of the baseline rate in the absence of fitness fluctuations,

L0~2NUs. The dots show simulation results, the solid curve

shows the theoretical prediction L~
1

s
(L0s), and the dashed

line shows L~L0. The selective advantage of mutant alleles is

s~0:1. For the simulations, population size is held constant at

N~106 while mutation rate U is varied. The points are the

average rate of sweeps over 1000 simulated generations, discarding

the first 200 generations.

(TIF)

Figure S2 Interference among unlinked loci. The reduction in

fixation probability due to inherited variation in fitness, under the

infinitesimal model. The scaled fixation probability P(z)=2s, of an

allele with advantage s~0:01 that arises in a haploid individual with

value z is plotted against z on a log scale. The lines show the

predictions e2z{4v for polygamy (left panel) and e2z{8v for

monogamy (right panel); the variance in log fitness is v~0,0:2,0:4
(left) and v~0,0:1,0:2 (right), running from top to bottom. Points

show estimates from simulations of the infinitesimal model; these

were run until at least 400 lineages reached a size greater than 5000

individuals, at which point they were considered fixed. Standard

errors are less than the size of the points.

(TIF)

Figure S3 Interference caused by a single sweep over time. The

scaled loss of fixation probability, V1=2s:1{�PP=2s, of a new allele

with advantage s caused by the sweep of an allele also with advantage

s at another locus, as a function of the scaled time st between the

midpoint of the sweep and the birth of the focal allele. (Negative times

correspond to the focal allele arising before the interfering sweep

reaches frequency 1/2.) The curves show the effect of interfering loci

at scaled genetic distance r=s~10{3,10{2,10{1,1,10 (moving

down). Note that for all values of r=s the amount of interference

peaks at st*{1, and falls off as exp {sDt{tmaxDð Þ away from this

maximum. Note also that for r&s, interference peaks at less than 1%
reduction in fixation probability, while for r%s, interference depends

only weakly on r. �PP is calculated numerically from Eqs. (2) and (3) .

(TIF)

Figure S4 Total interference caused by a single sweep at different

genetic distances. The dotted line shows the total interference

caused by a selective sweep at a locus a map length r away. Both the

sweep and the alleles with which it is interfering have selective

adavantage s; the interference V1 then depends only on r=s. The

points are obtained by numerically solving and integrating Eqs. (2)

and (3) . The solid blue line shows
s

r

ð
V1(s,t)dt; we see that the

dotted line falls off faster than 1=r for rws, while falling off slower

than 1=r for rvs, indicating that the total interference integrated

over loci (E V½ �, see 4 ) is dominated by r*s. For r&s, the slope

approaches {2 on this log-log plot (purple line), as predicted by

Robertson [54] and by our argument for unlinked loci above.

(TIF)

Figure S5 Reduction in fixation probability due to a pair of

sweeps. Numerical results for the reduction in fixation probability

caused by two sweeps, as a function of the distance between them.

Both plots show dimensionless scaled variables, so that they are

independent of the strength of selection s in large populations

(Ns&1). Solid curves show results for a ‘‘finite population’’, in

which the sweeps begin in complete negative linkage disequilib-

rium at frequency 1=N, and then follow deterministic trajectories.

Dashed curves show the results for an infinite population in which

the sweeps are in linkage equilibrium. The dotted curves shows the

summed effect of two sweeps that occur very far apart in time, so

that there is no interaction. At all map distances, the amount of

interference is close to that of two independent sweeps, even

allowing for linkage disequilibrium. The curves are obtained by

numerically solving and integrating Eqs. (2) and (3). Left panel:

The net reduction in fixation probability at a single locus caused

by two sweeps, V~
Ð

2s{�PPð Þdt, is plotted against the scaled map

distance r=s between the sweeps and the focal locus, which lies

midway between them. V is averaged over possible time intervals

between the sweeps ranging from sDt~0 to 5; V depends only

weakly on this time interval, varying by less 50% betweeen sDt~0
and sDt~5 for each of the map distances. The solid curve is for

population size N~105. Right panel: The scaled net reduction in

fixation probability over the whole genome caused by a pair of

simultaneous sweeps,
Ð
Vdr=s, where the integral is over the map

position of the new mutation. This is plotted against the scaled

map distance between the two sweeps. The solid curve is for

population size N~106. The effects of linkage disequilibrium and

interaction between the sweeps are always small, but they are

largest for r=s*1, when the region of the genome experiencing

substantial interference from both sweeps is maximized. (At larger

values of r=s, the sweeps become approximately independent.)

(TIF)

Figure S6 Interference coefficient Zs=S . Zs=S , defined in Eq. (10)

, describes how much sweeps with selective coefficient S interfere

with alleles with selective coefficient s. Points show the result of

numerical integration of Eq. (6) of [55]. The blue curve shows the

s%S approximation from 4 . The purple line shows the s&S
approximation Zs=S&ZS=s&S=s. These two approximations are

valid for s=Sv0:2 and w0:2, respectively. The black curve shows

the combined approximation, Eq. (11) . The numerical results are

expected to be overestimate Zs=S (i.e., the amount of interference)

for S%s, but even so predict that the interference will typically be

negligible.

(TIF)

Figure S7 The density of sweeps as a function of the baseline

density. A more detailed version of Figure 4, including the

accumulation of mutations by neutral drift (combined theoretical

predictions shown by dashed curves). For small populations

(N~102 for the parameters shown), drift overwhelms selection

once interference becomes strong, and ‘‘adaptive’’ mutations

become effectively neutral. In this regime, L*U , and our scaling

argument breaks down. In larger populations (Nw103), the

probability of fixation remains much higher than 1=N even for

strong interference. This parameter regime remains to be

described analytically, but it appears that the scaling argument is

still a good approximation.

(TIF)

Figure S8 Decrease in neutral diversity over time. Decay of

heterozygosity, H, over time at a neutral locus, for a population in

which every individual starts with a unique marker and there is no

further mutation at the marker locus. The right panel shows the

same data as the left, but on a log-logit scale. Initially, heterozygosity

decays by neutral drift, decreasing at a rate of 1{1=N per

generation, but then decays faster due to genetic draft. Since the

stochasticity introduced by genetic draft has different strengths over

different time scales, it cannot be fully described by adjusting a

single ‘‘effective population size.’’ Black dots are averages over 100
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simulation runs, with error bars showing the standard error. The

blue curves show the heterozygosity expected for a population

evolving neutrally in continuous time, H(t)~e{t=N . The red curves

are a fit to the simulation data for tw100, when the heterozygosity

has approached its long-term rate of decrease: H(t)~e{ t{t0ð Þ=U ,

where t0 is an offset to account for the initial slow decrease in H(t).
The inferred value U&170 is insensitive to the exact fitting method

used. Parameters are as in Figure 6, with N~104 and beneficial

mutation rate U~3|10{3, corresponding to L0=R~3. (The

curves for other values of U are qualitatively the same.)

(TIF)

Figure S9 Variation in rate of increase of mean fitness. The

increase in mean log fitness per generation, Dz(t) (left panel), and

the auto-correlation function Corr Dz(t),Dz(tzDt)½ � (right panel)

for a simulated population. Dz(t) is negatively auto-correlated on

the time scale t�* log (Ns)=s&100 over which alleles go from a

few copies to the frequency *1=2 at which they cause the most

interference. The population was initially monomorphic, and thus

Dz starts low, then spikes as the first wave of mutations reach

intermediate frequencies. This wave then strongly interferes with

new mutations, causing a later decrease in Dz; etc. The population

parameters are as in Figure 5, with N~105. Data in the left panel

are averaged over a 5-generation window. Excluding the first 500

generations leaves the auto-correlation shown in the right panel

somewhat noisier, but qualitatively the same.

(TIF)

Protocol S1 Numerical analysis.

(NB)

Text S1 Complete recombination.

(PDF)

Text S2 Unlinked loci.

(PDF)

Text S3 Average fixation probability.

(PDF)

Text S4 Additive effects of multiple sweeps.

(PDF)

Text S5 Fluctuations in the rate of adaptation.

(PDF)

Text S6 Variation among backgrounds and spatial variation.

(PDF)
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