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Abstract. Graph games played by two players over finite-state graphs
are central in many problems in computer science. In particular, graph
games with w-regular winning conditions, specified as parity objectives,
which can express properties such as safety, liveness, fairness, are the
basic framework for verification and synthesis of reactive systems. The
decisions for a player at various states of the graph game are repre-
sented as strategies. While the algorithmic problem for solving graph
games with parity objectives has been widely studied, the most promi-
nent data-structure for strategy representation in graph games has been
binary decision diagrams (BDDs). However, due to the bit-level repre-
sentation, BDDs do not retain the inherent flavor of the decisions of
strategies, and are notoriously hard to minimize to obtain succinct rep-
resentation. In this work we propose decision trees for strategy repre-
sentation in graph games. Decision trees retain the flavor of decisions
of strategies and allow entropy-based minimization to obtain succinct
trees. However, decision trees work in settings (e.g., probabilistic mod-
els) where errors are allowed, and overfitting of data is typically avoided.
In contrast, for strategies in graph games no error is allowed, and the
decision tree must represent the entire strategy. We develop new tech-
niques to extend decision trees to overcome the above obstacles, while
retaining the entropy-based techniques to obtain succinct trees. We have
implemented our techniques to extend the existing decision tree solvers.
We present experimental results for problems in reactive synthesis to
show that decision trees provide a much more efficient data-structure for
strategy representation as compared to BDDs.

1 Introduction

Graph Games. We consider nonterminating two-player graph games played on
finite-state graphs. The vertices of the graph are partitioned into states controlled
by the two players, namely, player 1 and player 2, respectively. In each round
the state changes according to a transition chosen by the player controlling
the current state. Thus, the outcome of the game being played for an infinite
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number of rounds, is an infinite path through the graph, which is called a play.
An objective for a player specifies whether the resulting play is either winning
or losing. We consider zero-sum games where the objectives of the players are
complementary. A strategy for a player is a recipe to specify the choice of the
transitions for states controlled by the player. Given an objective, a winning
strategy for a player from a state ensures the objective irrespective of the strategy
of the opponent.

Games and Synthesis. These games play a central role in several areas of com-
puter science. One important application arises when the vertices and edges of a
graph represent the states and transitions of a reactive system, and the two play-
ers represent controllable versus uncontrollable decisions during the execution of
the system. The synthesis problem for reactive systems asks for the construction
of a winning strategy in the corresponding graph game. This problem was first
posed independently by Church [17] and Biichi [14], and has been extensively
studied [15,28,37,45]. Other than applications in synthesis of discrete-event and
reactive systems [43,46], game-theoretic formulations play a crucial role in mod-
eling [1,21], refinement [30], verification [3,20], testing [5], compatibility checking
[19], and many other applications. In all the above applications, the objectives
are w-regular, and the w-regular sets of infinite paths provide an important and
robust paradigm for reactive-system specifications [36,50].

Parity Games. Graph games with parity objectives are relevant in reactive syn-
thesis, since all common specifications for reactive systems are expressed as w-
regular objectives that can be transformed to parity objectives. In particular, a
convenient specification formalism in reactive synthesis is LTL (linear-time tem-
poral logic). The LTL synthesis problem asks, given a specification over input and
output variables in LTL, whether there is a strategy for the output sequences to
ensure the specification irrespective of the behavior of the input sequences. The
conversion of LTL to non-deterministic Biichi automata, and non-deterministic
Biichi automata to deterministic parity automata, gives rise to a parity game to
solve the LTL synthesis problem. Formally, the algorithmic problem asks for a
given graph game with a parity objective and a starting state, whether player 1
has a winning strategy. This problem is central in verification and synthesis.
While it is a major open problem whether the problem can be solved in polyno-
mial time, it has been widely studied in the literature [16,48,52].

Strategy Representation. In graph games, the strategies are the most important
objects as they represent the witness to winning of a player. For example, winning
strategies represent controllers in the controller synthesis problem. Hence all
parity-games solvers produce the winning strategies as their output. While the
algorithmic problem of solving parity games has received huge attention, quite
surprisingly, data-structures for representation of strategies have received little
attention. While the data-structures for strategies could be relevant in particular
algorithms for parity games (e.g., strategy-iteration algorithm), our focus is very
different than improving such algorithms. Our main focus is the representation
of the strategies themselves, which are the main output of the parity-games
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solvers, and hence our strategy representation serves as post-processing of the
output of the solvers. The standard data-structure for representing strategies is
binary decision diagrams (BDDs) [2,13] and it is used as follows: a strategy is
interpreted as a lookup table of pairs that specifies for every controlled state of
the player the transition to choose, and then the lookup table is represented as
a binary decision diagram (BDD).

Strategies as BDDs. The desired properties of data-structures for strategies are as
follows: (a) succinctness, i.e., small strategies are desirable, since strategies cor-
respond to controllers, and smaller strategies represent efficient controllers that
are required in resource-constrained environments such as embedded systems;
(b) explanatory, i.e., the representation explains the decisions of the strategies.
In this work we consider different data-structure for representation of strategies
in graph games. The key drawbacks of BDDs to represent strategies in graph
games are as follows. First, the size of BDDs crucially depends on the variable
ordering. The variable ordering problem is notoriously difficult: the optimal vari-
able ordering problem is NP-complete, and for large dimensions no heuristics are
known to work well. Second, due to the fact that strategies have to be input to
the BDD construction as Boolean formulae, the representation though succinct,
does not retain the inherent important choice features of the decisions of the
strategies (for an illustration see Example 2).

Strategies as Decision Trees. In this work, we propose to use decision trees,
i.e. [38], for strategy representation in graph games. A decision tree is a structure
similar to a BDD, but with nodes labelled by various predicates over the system’s
variables. In the basic algorithm for decision trees, the tree is constructed using
an unfolding procedure where the branching for the decision making is done in
order to maximize the information gain at each step.

The key advantages of decision trees over BDDs are as follows:

— The first two advantages are conceptual. First, while in BDDs, a level corre-
sponds to one variable, in decision trees, a predicate can appear at different
levels and different predicates can appear at the same level. This allows for
more flexibility in the representation. Second, decision trees utilize various
predicates over the given features in order to make decisions, and ignore all
the unimportant features. Thus they retain the inherent flavor of the decisions
of the strategies.

— The other important advantage is algorithmic. Since the data-structure is
based on information gain, sophisticated algorithms based on entropy exist
for their construction. These algorithms result in a succinct representation,
whereas for BDDs there is no good algorithmic approach for variable reorder-
ing.

Key Challenges. While there are several advantages of decision trees, and decision
trees have been extensively studied in the machine learning community, there
are several key challenges and obstacles for representation of strategies in graph
games by decision trees.



388 T. Brazdil et al.

— First, decision trees have been mainly used in the probabilistic setting. In
such settings, research from the machine learning community has developed
techniques to show that decision trees can be effectively pruned to obtain suc-
cinct trees, while allowing small error probabilities. However, in the context
of graph games, no error is allowed in the strategic choices.

— Second, decision trees have been used in the machine learning community
in classification, where an important aspect is to ensure that there is no
overfitting of the training data. In contrast, in the context of graph games,
the decision tree must fit the entire representation of the strategies.

While for probabilistic models such as Markov decision processes (MDPs), deci-
sion trees can be used as a blackbox [9], in the setting of graph games their use
is much more challenging. In summary, in previous settings where decision trees
are used small error rates are allowed in favor of succinctness, and overfitting is
not permitted, whereas in our setting no error is allowed, and the complete fit-
ting of the tree has to be ensured. The basic algorithm for decision-tree learning
(called ID3 algorithm [38,44]) suffers from the curse of dimensionality, and the
error allowance is used to handle the dimensionality. Hence we need to develop
new techniques for strategy learning with decision trees in graph games.

Our Techniques. We present a new technique for learning strategies with decision
trees based on look-ahead. In the basic algorithm for decision trees, at each step
of the unfolding, the algorithm proceeds as long as there is any information gain.
However, suppose for no possible branching there is any information gain. This
represents the situation where the local (i.e., one-step based) decision making
fails to achieve information gain. We extend this process so that look-ahead is
allowed, i.e., we consider possible information gain with multiple steps. The look-
ahead along with complete unfolding ensure that there is no error in the strategy
representation. While the look-ahead approach provides a systematic principle
to obtain precise strategy representation, it is computationally expensive, and
we present heuristics used together with look-ahead for computational efficiency
and succinctness of strategy representation.

Implementation and Ezxperimental Results. Since in our setting existing decision
tree solvers cannot be used as a blackbox, we extended the existing solvers with
our techniques mentioned above. We have then applied our implementation to
compare decision trees and BDDs for representation of strategies for problems in
reactive synthesis. First, we compared our approach against BDDs for two clas-
sical examples of reactive synthesis from SYNTCOMP benchmarks [32]. Second,
we considered randomly generated LTL formulae, and the graph games obtained
for the realizability of such formulae. In both the above experiments the deci-
sion trees represent the winning strategies much more efficiently as compared to
BDDs.

Related Work. Previous non-explicit representation of strategies for verification
or synthesis purposes typically used BDDs [51] or automata [39,41] and do not
explain the decisions by the current valuation of variables. Decision trees have
been used a lot in the area of machine learning as a classifier that naturally
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explains a decision [38]. They have also been considered for approximate repre-
sentation of values in states and thus implicitly for an approximate representa-
tion of strategies, for the model of Markov decision processes (MDPs) in [7,8].
Recently, in the context of verification, this approach has been modified to cap-
ture strategies guaranteed to be e-optimal, for MDPs [9] and partially observable
MDPs [10]. Learning a compact decision tree representation of an MDP strategy
was also investigated in [35] for the case of body sensor networks. Besides, deci-
sion trees are becoming more popular in verification and programming languages
in general, for instance, they are used to capture program invariants [27,34]. To
the best of our knowledge, decision trees were only used in the context of (possi-
bly probabilistic) systems with only a single player. Our decision-tree approach
is thus the first in the game setting with two players that is required in reactive
synthesis.

Summary. To summarize, our main contributions are:

1. We propose decision trees as data-structure for strategy representation in
graph games.

2. The representation of strategies with decision trees poses many obstacles, as in
contrast to the probabilistic setting no error is allowed in games. We present
techniques that overcome these obstacles while still retaining the algorith-
mic advantages (such as entropy-based methods) of decision trees to obtain
succinct decision trees.

3. We extend existing decision tree solvers with our techniques and present
experimental results to demonstrate the effectiveness of our approach in reac-
tive synthesis.

Further details and proofs can be found in [12].
2 Graph Games and Strategies

Graph Games. A graph game consists of a tuple G = (S, 57, Sq, 41, Az, d),
where:

— S is a finite set of states partitioned into player 1 states S; and player 2 states
Sa;

— Aj (resp., Ag) is the set of actions for player 1 (resp., player 2); and

—§: (51 x A1) U (S2 x Ag) — S is the transition function that given a player
1 state and a player 1 action, or a player 2 state and a player 2 action, gives
the successor state.

Plays. A play is an infinite sequence of state-action pairs (spapsia; ...) such
that for all j > 0 we have that if s; € S; for i € {1,2}, then a; € A; and
d(sj,aj) = sj+1. We denote by Plays(G) the set of all plays of a graph game G.

Strategies. A strategy is a recipe for a player to choose actions to extend finite
prefixes of plays. Formally, a strategy 7 for player 1 is a function 7: S* - S; — A
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that given a finite sequence of visited states chooses the next action. The def-
initions for player 2 strategies v are analogous. We denote by II(G) and I'(G)
the set of all strategies for player 1 and player 2 in graph game G, respectively.
Given strategies m € II(G) and v € I'(G), and a starting state s in G, there is
a unique play o(s,m,7y) = (soagsiai ...) such that sop = s and for all j > 0 if
sj € S1 (resp., s; € Sa) then a; = w((sps1...5;)) (resp., a; = v({sps1...5;)))- A
memoryless strategy is a strategy that does not depend on the finite prefix of the
play but only on the current state, i.e., functions 7: S; — A; and ~: S; — As.

Objectives. An objective for a graph game G is a set ¢ C Plays(G). We consider
the following objectives:

— Reachability and safety objectives. A reachability objective is defined by a set
T C S of target states, and the objective requires that a state in T is visited
at least once. Formally, Reach(F') = {(soagsia1 ...) € Plays(G) | Ji : s; € T'}.
The dual of reachability objectives are safety objectives, defined by a set
F C S of safe states, and the objective requires that only states in F' are
visited. Formally, Safe(F) = {(spapsiai ...) € Plays(G) | Vi: s; € F}.

— Parity objectives. For an infinite play ¢ we denote by Inf(p) the set of states
that occur infinitely often in p. Let p: S — N be a priority function. The
parity objective Parity(p) = {0 € Plays(G) | min{p(s) | s € Inf(g)} is even }
requires that the minimum of the priorities of the states visited infinitely
often be even.

Winning Region and Strategies. Given a game graph G and an objective
p, a winning strategy m from state s for player 1 is a strategy such that for all
strategies v € I'(G) we have o(s, 7,7v) € ¢. Analogously, a winning strategy ~ for
player 2 from s ensures that for all strategies m € II(G) we have o(s,m,7v) € ¢.
The winning region W1 (G, ) (resp., Wo(G,P)) for player 1 (resp., player 2) is
the set of states such that player 1 (resp., player 2) has a winning strategy.
A fundamental result for graph games with parity objectives shows that the
winning regions form a partition of the state space, and if there is a winning
strategy for a player, then there is a memoryless winning strategy [25].

LTL Synthesis and Objectives. Reachability and safety objectives are the
most basic objectives to specify properties of reactive systems. Most properties
that arise in practice for analysis of reactive systems are w-regular objectives.
A convenient logical framework to express w-regular objectives is the LTL (linear-
time temporal logic) framework. The problem of synthesis from specifications,
in particular, LTL synthesis has received huge attention [18]. LTL objectives can
be translated to parity automata, and the synthesis problem reduces to solving
games with parity objectives.

In reactive synthesis it is natural to consider games where the state space is
defined by a set of variables, and the game is played by input and output player
who choose the respective input and output signals. We describe such games
below that easily correspond to graph games.
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I/O Games with Variables. Consider a finite set X = {x1,29,...,2,} of
variables from a finite domain; for simplicity, we consider Boolean variables only.
A valuation is an assignment to each variable, in our case 2% denotes the set of
all valuations. Let X be partitioned into input signals, output signals, and state
variables, i.e., X = I & O W V. Consider the alphabet Z = 27 (resp., O = 2°)
where each letter represents a subset of the input (resp., output) signals and
the alphabet V = 2V where each letter represents a subset of state variables.
The input/output choices affect the valuation of the variables, which is given by
the next-step valuation function A: V x Z x O — V. Consider a game played
as follows: at every round the input player chooses a set of input signals (i.e.,
a letter from 7), and given the input choice the output player chooses a set of
output signals (i.e., a letter from @). The above game can be represented as a
graph game (S, 51,52, A1, Ay, d) as follows:

- S=VvU(VxI);

— player 1 represents the input player and S; = V; player 2 represents the
output player and So =V x T;

— Ay =7 and Ay = O; and

— given a valuation v € V and a; € A; we have §(v,a;) = (v,a1), and for
az € Ay we have §((v,a1),a2) = A(v,ay,az).

In this paper, we use decision trees to represent memoryless strategies in such
graph games, where states are represented as vectors of Boolean values. In Sect. 5
we show how such games arise from various sources (AIGER specifications [31],
LTL synthesis) and why it is sufficient to consider memoryless strategies only.

3 Decision Trees and Decision Tree Learning

In this section we recall decision trees and learning decision trees. A key appli-
cation domain of games on graphs is reactive synthesis (such as safety synthesis
from SYNTCOMP benchmarks as well as LTL synthesis) and our comparison
for strategy representation is against BDDs. BDDs are particularly suitable for
states and actions represented as bitvectors. Hence for a fair comparison against
BDDs, we consider a simple version of decision trees over bitvectors, though
decision trees and their corresponding methods can be naturally extended to
richer domains (such as vectors of integers as used in [9]).

Decision Trees. A decision tree over {0,1}? is a tuple 7 = (T, p,0) where T
is a finite rooted binary (ordered) tree with a set of inner nodes N and a set of
leaves L, p assigns to every inner node a number of {1,...,d}, and 6 assigns to
every leaf a value YES or NO.

The language £(7) C {0,1}¢ of the tree is defined as follows. For a vector
x = (z1,...,24) € {0,1}¢, we find a path p from the root to a leaf such that
for each inner node n on the path, x(p(n)) = 0 iff the first child of n is on p.
Denote the leaf on this particular path by ¢. Then « is in the language £(7) of
T iff 0(¢) = YES.
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Ezample 1. Consider dimension d = 3. The language of the tree depicted in
Fig. 1 can be described by the following regular expression {0,1}%-0+{0,1}-1-1.
Intuitively, the root node represents the predicate of the third value, the other
inner node represents the predicate of the second value. For each inner node, the
first and second children correspond to the cases where the value at the position
specified by the predicate of the inner node is 0 and 1, respectively. We supply
the edge labels to depict the tree clearly. The leftmost leaf corresponds to the
subset of {0,1}3 where the third value is 0, the rightmost leaf corresponds to
the subset of {0,1}3 where the third value is 1 and the second value is 1.

Standard DT Learning. We describe the stan-
dard process of binary classification using deci-
sion trees (see Algorithm 1). Given a training set
Train C {0,1}%, partitioned into two subsets Good
and Bad, the process of learning according to the
algorithm ID3 [38,44] computes a decision tree 7
that assigns YES to all elements of Good and NO Fig. 1. A decision tree over
to all elements of Bad. In the algorithm, a leaf {0,1}

¢ C {0,1}4 is mized if ¢ has a non-empty intersec-

tion with both Good and Bad. To split a leaf £ on

bit € {1,...,d} means that ¢ becomes an internal node with the two new leaves
£y and ¢; as its children. Then, the leaf ¢y contains the samples of £ where the
value in the position bit equals 0, and the leaf ¢ contains the rest of the samples
of ¢, since these have the value in the position bit equal to 1. The entropy of a
node is defined as

[¢n G00d|l [¢N Good| |€ﬂBad|l |¢ N Bad|
- 092 - 092
4] 4] 4] 1]

H(t) =

An information gain of a given bit € {1,...,d} (and thus also of the split into
Ly and £7) is defined by
|4o]

(e) — S H ) - 'fa'mm 1)

where £ is the set of all ® = (z1,...,24) € £ C {0,1}% with 24y = 0 and
{1 = £~ {p. Finally, given ¢ C {0,1}% we define

YES [¢N Good| > |¢N Bad|

NO  otherwise.

Intuitively, the splitting on the component with the highest gain splits the

set so that it maximizes the portion of Good in one subset and the portion of
Bad in the other one.

mazclass(f) =

Remark 1 (Optimizations). The basic ID3 algorithm for decision tree learning
suffers from the curse of dimensionality. However, decision trees are primarily
applied to machine learning problems where small errors are allowed to obtain
succinct trees. Hence the allowance of error is crucially used in existing solvers
(such as WEKA [29]) to combat dimensionality. In particular, the error rate is
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Algorithm 1. ID3 learning algorithm

Inputs: Train C {0, l}d partitioned into subsets Good and Bad.
Outputs: A decision tree 7 such that £(7) N Train = Good.
/* train 7 on positive set Good and negative set Bad */

1: T « ({ Train}, 0, { Train —° YES})

2: while a mixed leaf ¢ exists do

3: bit < an element of {1,...,d} that maximizes the information gain
4: split £ on bit into two leaves £o and {1, p(£) = bit

5: 0(¢o) «— maxclass(fo) and 0(¢1) — mazclass(fr)

6: return 7

exploited in the unfolding, where the unfolding proceeds only when the infor-
mation gain exceeds the error threshold. Further error is also introduced in the
pruning of the trees, which ensures that the overfitting of training data is avoided.

4 Learning Winning Strategies Efficiently

In this section we present our contributions. We first start with the representation
of strategies as training sets, and then present our strategy decision-tree learning
algorithm.

4.1 Strategies as Training Sets and Decision Trees

Strategies as Training Sets. Let us consider a game G = (S, S, So, A1, Az, ).
We represent strategies of both players using the same method. So in what follows
we consider either of the players and denote by S, and A, the sets of states and
actions of the player, respectively. We fix 6: S, — A, a memoryless strategy of
the player.

We assume that G is an I/O game with binary variables, which means S, C
{0,1}™ and A, C {0,1}*. A memoryless strategy is then a partial function
5:{0,1}" — {0, 1}*. Furthermore, we fix an initial state sq, and let S C {0,1}"
be the set of all states reachable from sy using o against some strategy of the
other player. We consider all objectives only on plays starting in the initial state
so. Therefore, the strategy can be seen as a function o: S® — A, such that
g = &|Sf .

Now we define

— Good = {(s,0(s)) € SE x A,}
— Bad = {(s,a) € SE x A, |a# o(s)}

The set of all training examples is a disjunctive union Train = Good W Bad C
{0, 1}"*e,

As we do not use any pruning or stopping rules, the ID3 algorithm returns a
decision tree 7 that fits the training set Train exactly. This means that for all
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s € SE we have that (s,a) € L(7) iff 0(s) = a. Thus 7 represents the strategy
o. Note that for any sample of {0,1}"%%\ Train, the fact whether it belongs
to L(7) or not is immaterial to us. Thus strategies are naturally represented as
decision trees, and we present an illustration below.

=( =1 =0 =1 =0 =1 =0 =1
Fig. 2. Tree representation of strategy o

Ezxample 2. Let the state binary variables be labeled as statel, state2, and
state3, respectively, and let the action binary variable be labeled as action.
Consider a strategy o such that ¢(0,0,0) =0, 0¢(0,1,0) =1, o¢(1,0,0) =1,
0(1,1,1) = 0. Then

~ Good = {(0,0,0,0),(0,1,0,1),(1,0,0,1),(1,1,1,0)}
~ Bad = {(0,0,0,1),(0,1,0,0), (1,0,0,0), (1,1,1,1)}

Figure 2 depicts a decision tree 7 representing the strategy o.

Remark 2. The above example demonstrates the conceptual advantages of deci-
sion trees over BDDs. First, in decision trees, different predicates can appear at
the same level of the tree (e.g. predicates state2 and action appear at the second
level). At the same time, a predicate can appear at different levels of the tree
(e.g. predicate action appears once at the second level and twice at the third
level).

Second advantage is a bit technical, but very crucial. In the example there
is no pair of samples ¢ € Good and b € Bad that differs only in the value of
state3. This suggests that the feature state8 is unimportant w.r.t. differentiating
between Good and Bad, and indeed the decision tree 7 in Fig.2 contains no
predicate state3 while still representing o. However, to construct a BDD that
ignores state3 is very difficult, since a Boolean formula is provided as the input
to the BDD construction, and this formula inevitably sets the value for every
sample. Therefore, it is impossible to declare “the samples of {0,1}"T \ Train
can be resolved either way”. One way to construct a BDD B would be B =
\/gecood g. But then B(0,0,0,0) = 1 and B(0,0,1,0) = 0, so state3 has to be
used in the representation of B. Another option could be B = A, z,, 7b, but
then B(0,0,0,1) = 0 and B(0,0,1,1) = 1, so stated still has to be used in the

representation.

Ezample 3. Consider Good = {(0,0,0,0,1)} and Bad = {(0,0,0,0,0)}. Algo-
rithm 1 outputs a simple decision tree differentiating between Good and Bad
only according to the value of the last variable. On the other hand, a BDD
constructed as B =\/ 5,4 9 contains nodes for all five variables.
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4.2 Strategy-DT Learning

Challenges. In contrast to other machine learning domains, where errors are
allowed, since strategies in graph games must be represented precisely, several
challenges arise. Most importantly, the machine-learning philosophy of classifiers
is to generalize the experience, trying to achieve good predictions on any (not
just training) data. In order to do so, overfitting the training data must be
avoided. Indeed, specializing the classifier to cover the training data precisely
leads to classifiers reflecting the concrete instances of random noise instead of
generally useful predictors. Overfitting is prevented using a tolerance on learning
all details of the training data. Consequently, the training data are not learnt
exactly. Since in our case, the training set is exactly what we want to represent,
our approach must be entirely different. In particular, the optimizations in the
setting where errors are allowed (see Remark 1) are not applicable to handle
the curse of dimensionality. In particular, it may be necessary to unfold the
decision tree even in situations where none of the one-step unfolds induces any
information gain.

Solution: Look-Ahead. In the ID3 algorithm Algorithm 1, when none of the
splits has a positive information gain (see Formula (1)), the corresponding node
is split arbitrarily. This can result in very large decision trees. We propose a
better solution. Namely, we extend ID3 with a “look-ahead”: If no split results
in a positive information gain, one can pick a split so that next, when splitting
the children, the information gain is positive. If still no such split exists, one
can try and pick a split and splits of children so that afterwards there is a split
of grandchildren with positive information gain. And so on, possibly until a
constant depth k, yielding a k-look-ahead.

Before we define the look-ahead formally, we have a look at a simple example:

Ezample 4. Consider Good = {(0,0,0,0,0,1,1),(0,0,0,0,0,0,0)} and Bad =
{(0,0,0,0,0,1,0),(0,0,0,0,0,0,1)}, characterising xg = x7. Splitting on any z;,
i € {1,...,7} does not give a positive information gain. Standard DT learning
procedures would either stop here and not expand this leaf any more, or split
arbitrarily. With the look-ahead, one can see that using z¢ and then x7, the
information gain is positive and we obtain a decision tree classifying the set
perfectly.

Here we could as well introduce more complex predicates such as x4 xor x7
instead of look-ahead. However, in general the look-ahead has the advantage that
each of the 0 and 1 branches may afterwards split on different bits (currently
best ones), whereas with xg xor x7 we commit to using z7 in both branches.

The example illustrates the 2-look-ahead with the following formal definition.
(For explanatory reasons, the general case follows afterwards.) Consider a node
¢ C {0,1}4. For every bit, bitg, bit; € {1,...,d}, consider splitting on bit and
subsequently the 0-child on bitg and the 1-child on bit;. This results in a partition
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P(bit, bito, bitl) = {£007€01,€10,€11} of £. We assign to P(bit, bito, bit1) its 2-
look-ahead information gain defined by

IG(bit,bito, bit1) =

€01
|

[10]
1]

H (o) — @H(fu)

H(f) - @H(EOO) - w‘

|£| H(&Jl) -

The 2-look-ahead information gain of bit € {1,...,d} is defined as
IG(bit) = max IG(bit, bitg, bitq)

bitg,bity

We say that bit € {1,...,d} maximizes the 2-look-ahead information gain if
bit € argmax IG

In general, we define the k-step weighted entropy of a node ¢ C {0,1}? with
respect to a predicate bit € {1,...,d} by
WE"(¢,bit) = min WE* 1 ({x € £ | zp; = 0}, bity)

blto,b’itl
+WE* 1 ({x € | 2piy = 1}, bity)

and

WE? (¢, bit) = |¢] - H({)
Then we say that bit € {1,...,d} mazimizes the k-look-ahead information gain
in £ if

bit € argmax (H(C) — WEF (¢, bit)/|¢]) = argmin WE* (¢, -)
bite{1,...,d}

Note that 1-look-ahead coincides with the choice of split by ID3. For a fixed
k, if the information gain for each i-look-ahead, i < k is zero, we split based on a
heuristic on Line 8 of Algorithm 2. This heuristic is detailed on in the following
subsection. Note that Algorithm 2 is correct-by-construction since we enforce
representation of the entire input training set. We present a formal correctness
proof in [12, Appendix B].

Remark 3 (Properties of look-ahead algorithm). We now highlight some desirable
properties of the look-ahead algorithm.

— Incrementality. First, the algorithm presents an incremental approach: com-
putation of the k-look-ahead can be done by further refining the results of
the (k — 1)-look-ahead analysis due to the recursive nature of our definition.
Thus the algorithm can start with k£ = 2 and increase k only when required.

— Entropy-based minimization. Second, the look-ahead approach naturally
extends the predicate choice of ID3, and thus the entropy-based minimization
for decision trees is still applicable.

— Reduction of dimensionality. Finally, Algorithm 2 uses the look-ahead method
in an incremental fashion, thus only considering more complex “combina-
tions” when necessary. Consequently, we do not produce all these combina-
tions of predicates in advance, and avoid the problem of too high dimension-
ality and only experience local blowups.
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Algorithm 2. k-look-ahead ID3

Inputs: Train C {0,1}? partitioned into subsets Good and Bad.

Outputs: A decision tree 7 such that £(7) N Train = Good.

/* train 7 on positive set Good and negative set Bad */
2 T« ({Train}, 0, { Train —° YESY)
: while a mixed leaf ¢ exists do
if Jbit € {1,...,d} with a positive 1-look-ahead information gain then

bit < an element of {1,...,d} that maximizes the 1-look-ahead information gain
> maximum information gain is positive

else if Jbit € {1,...,d} with a positive k-look-ahead information gain then
bit < an element of {1,...,d} that maximizes the k-look-ahead information gain
> maximum k-look-ahead information gain is positive

else
‘ [€[i=0]nBad| , |£[i=1]NCood| [¢[i=0]nGood| , |¢[i=1]NBad]
b”‘_argmaxie{lwd}max{ Ti=o] T qen=11 Ten=o] T =1

7
8:

9: split £ on bit into two leaves £y and ¢1, p(£) = bit
10: 0(Ly) — mazxclass(fp) and 6(¢1) «— mazxclass({1)

11: return 7

In general, k-look-ahead clearly requires resources exponential in k. However, in
our benchmarks, it was typically sufficient to apply the look-ahead for k equal
to two, which is computationally feasible.

A different look-ahead-based technique was considered in order to dampen the
greedy nature of decision tree construction [24], examining the predicates yield-
ing the highest information gains. In contrast, our technique retains the greedy
approach but focuses on the case where none of the predicates provides any
information gain itself at all and thus ID3-based techniques fail to advance. The
main goal of our technique is to capture strong dependence between the features
of the training set, in order to solve a different problem than the one treated
by [24]. Moreover, the look-ahead description in [24] is very informal, which pre-
vents us from implementing their solution and comparing the two approaches
experimentally.

4.3 Heuristics

Statistical Split-Decision. The look-ahead mentioned above provides a very
systematic principle on how to resolve splitting decisions. However, the com-
putation can be demanding in terms of computational resources. Therefore we
present a very simple statistical heuristic that gives us one more option to decide
a split. The precise formula is bit =

arg max max

{\E[i =0]N Bad|  |¢Ji = 1] N Good| |¢[i = 0] N Good| ~ |¢[i = 1]N Bad\}
ic{1,..,d}

=0 " Wi=11  [E=0) (=1

Intuitively, we choose a bit that maximizes the portion of good samples in one
subset and the portion of bad samples in the other subset, which mimics the
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entropy-based method, and at the same time is very fast to compute. One can
consider using this heuristic exclusively every time the basic ID3-based split-
ting technique fails. However, in our experiments, using 2-look-ahead and then
(once needed) proceeding with the heuristic yields better results, and is still
computationally undemanding.

Chain Disjunction. The entropy-based approach favors the splits where one
of the branches contains a completely resolved data set (¢, C Good or ¢, C Bad),
as this provides notable information gain. Therefore, as the algorithm proceeds,
it often happens that at some point multiple splits provide a resolved data set in
one of the branches. We consider a heuristic that chains all such splits together
and computes the information gain of the resulting disjunction. More specifically,
when considering each bit as a split candidate (line 3 of Algorithm 2), we also
consider (a) the disjunction of all bits that contain a subset of Good in either
of the branches, and (b) the disjunction of bits containing a subset of Bad in
a branch. Then we choose the candidate that maximizes the information gain.
These two extra checks are very fast to compute, and can improve succinctness
and readability of the decision trees substantially, while maintaining the fact
that a decision tree fits its training set exactly. [12, Appendix D] provides two
examples where the decision tree obtained without this heuristic is presented,
and then the decision tree obtained when using the heuristic is presented.

5 Experimental Results

In our experiments we use two sources of problems reducible to the representation
of memoryless strategies in I/O games with binary variables: AIGER specifica-
tions [31] and LTL specifications [42]. Given a game, we use an explicit solver to
obtain a strategy in the form of a list of played and non-played actions for each
state, which can be directly used as a training set. Throughout our experiments,
we compare succinctness of representation (expressed as the number of inner
nodes) using decision trees and BDDs.

We implemented our method in the programming language Java. We used
the external library CuDD [49] for the manipulation of BDDs. We used the
Algorithm 2 with & = 2 to compute the decision trees. We obtained all the
results on a single machine with Intel(R) Core(TM) i5-6200U CPU (2.40 GHz)
with the heap size limited to 8 GB.

5.1 AIGER Specifications

SYNTCOMP [32] is the most important competition of synthesis tools, running
yearly since 2014. Most of the benchmarks have the form of AIGER specifica-
tions [31], describing safety specifications using circuits with input, output, and
latch variables. This reduces directly to the I/O games with variables since the
latches describe the current configuration of the circuit, corresponding to the
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state variables of the game. Since the objectives here are safety /reachability, the
winning strategies can be computed and guaranteed to be memoryless.

We consider two benchmarks: scheduling of washing cycles in a washing sys-
tem and a simple bit shifter model (the latter presented only in [12, Appendix D]
due to space constraints), introduced in SYNTCOMP 2015 [32] and SYNT-
COMP 2014, respectively.

Scheduling of Washing Cycles. The goal is to design a centralized controller
for a washing system, composed of several tanks running in parallel [32]. The
model of the system is parametrized by the number of tanks, the maximum
allowed reaction delay before filling a tank with water, the delay after which the
tank has to be emptied again, and the number of tanks that share a water pipe.
The controller should satisfy a safety objective, that is, avoid reaching an error
state, which means that the objective of the other player is reachability. In total,
we obtain 406 graph games with safety/reachability objectives. In 394 cases we
represent a winning strategy of the safety player, in the remaining 12 cases a
winning strategy of the reachability player. The number of states of the graph
games ranges from 30 to 43203, the size of training example sets ranges from 40
to 3359232.
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Fig. 3. Washing cycles — safety

The left plot in Fig. 3 displays the size of our decision tree representation of
the controller winning safety strategies versus the size of their BDD representa-
tions. The decision tree is smaller than the corresponding BDD in all 394 cases.
The arithmetic average ratio of decision tree size and BDD size is ~24%, the
geometric average is ~22%, and the harmonic average is ~21%.

In these experiments, we obtain the BDD representation as follows: we con-
sider 1000 randomly chosen variable orderings and for each construct a corre-
sponding BDD, in the end we consider the BDD with the minimal size. As a
different set of experiments, we compare against BDDs obtained using several
algorithms for variable reordering, namely, Sift [47], Window4 [26], simulated-
annealing-based algorithm [6], and a genetic algorithm [22]. The results with
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these algorithms are very similar and provided in [12, Appendix C]. Furthermore,
the information about execution time is also provided in [12, Appendix C].

Moreover, in the experiments described above, we do not use the chain heuris-
tic described in Sect. 4.3, in order to provide a fair comparison of decision trees
and BDDs. The right plot in Fig. 3 displays the difference in decision tree size
once the chain heuristic is enabled. Each dot represents the ratio of decision tree
size with and without it.

The decision trees also allow us to get some insight into the winning strate-
gies. Namely, for a fixed number of water tanks and a fixed empty delay, we
obtain a solution that is affected by different values of the fill delay in a mini-
mal way, and is easily generalizable for all the values of the parameter. This fact
becomes more apparent once the chain heuristic described in Sect. 4.3 is enabled.
This phenomenon is not present in the case of BDDs as they differ significantly,
even in size, for different values of the parameter (see [12, Appendix CJ]). For two
tanks and empty delay of one, the solution is small enough to be humanly read-
able and understandable, see Fig.4 (where the fill delay is set to 7). Additional
examples of the parametric solutions can be found in [12, Appendix C]. This
example suggests that decision tree representation might be useful in solving
parametrized synthesis (and verification) problems.

Aempty0
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=0 1
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Fig. 4. A solution for two tanks and empty delay of one, illustration for fill delay of 7.
Solution for other values p are the same except for replacing values p and p — 1 for 7
and 6, respectively. Thus a parametric solution could be obtained by a simple syntactic
analysis of the difference of any two instance solutions.
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Name [S|  |/I|||O||| Trainl||||BDD|||DT|||DT +|
wash.3_1.1.3/102 |3 7 |40 45 3 1 ! ApushO ! ApushO
wash 41131466 |4 |9 |144 76 4 1 ! Apushl ! Apushl
wash 4_1_1.4(346 |4 |9 |96 78 4 1 ! Apush2 ! Apush2
wash 4214958 |4 |9 432 157 4 1 ! Apush3
wash 4.2 2 4|3310 |4 |9 |432 301 4 1 ! Apush4
wash_ 51131862 |5 |11 |416 127, 5 1 ! ApushS
wash 5_1_1.4(1630 |5 |11 |352 121 5 1
wash_5.2_1.4(5365 |5 |11 |2368 255 5 1
wash 522 4|27919|5 |11 |2368 554 5 1
wash_6_1_1.3|6962 |6 [13 |1088 193 6 1
wash_6_1_1.4|6622 |6 |13 [1024 172 6 1
wash_6_2_1.4(27412|6 |13 |10432 419 6 1

Fig. 5. Washing cycles — reachability

The table in Fig. 5 summarizes the results for the cases where the controller
cannot be synthesized and we synthesize a counterexample winning reachability
strategy of the environment. The benchmark parameters specify the total num-
ber of tanks, the fill delay, the empty delay, and the number of tanks sharing a
pipe, respectively. In all of these cases, the size of the decision tree is substan-
tially smaller compared to its BDD counterpart. The decision trees also provide
some structural insight that may easily be used in debugging. Namely, the trees
have a simple repeating structure where the number of repetitions depends just
on the number of tanks. This is even easier to see once the chain heuristic of
Sect. 4.3 is used. Figure5 shows the tree solution for the case of three and six
tanks, respectively. The structural phenomenon is not apparent from the BDDs
at all.

5.2 Random LTL

In reactive synthesis, the objectives are often specified as LTL (linear-time tem-
poral logic) formulae over input/output letters. In our experiments, we use
formulae randomly generated using SPOT [23]'. LTL formulae can be trans-
lated into deterministic parity automata; for this translation we use the tool
Rabinizer [33]. Finally, given a parity automaton, we consider various partitions
of the atomic propositions into input/output letters, which gives rise to graph
games with parity objectives. See [12, Appendix F] for more details on the trans-
lation. We retain all formulae that result in games with at most three priorities.

Consequently, we use two ways of encoding states of the graph games as
binary vectors. First, naive encoding, allowed by the fact that the output of
tools such as [23,33] in HOA format [4] always assigns an id to each state.

! First, we run randltl from the Spot tool-set randltl -n10000 5--tree-size=20..
25 seed=0 --simplify=3 -p --ltl-priorities ap=3,false=1,true=1,not=1,
F=1,G=1,X=1,equiv=1,implies=1,xor=0,R=0,U=1, W=0,M=0,and=1,or=1 |
1t1filt -- unabbreviate="eiMRW" to obtain the formulae. Then we run Rabinizer
to obtain the respective automata and we retain those with at least 100 states.
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As this id is an integer, we may use its binary encoding. Second, we use a
more sophisticated Rabinizer encoding obtained by using internal structure of
states produced by Rabinizer [33]. Here the states are of the form “formula,
set of formulae, permutation, priority”. We propose a very simple, yet efficient
procedure of encoding the state structure information into bitvectors. Although
the resulting bitvectors are longer than in the naive encoding, some structural
information of the game is preserved, which can be utilized by decision trees to
provide a more succinct representation. BDDs perform a lot better on the naive
encoding than on the Rabinizer encoding, since they are unable to exploit the
preserved state information. As a result, we consider the naive encoding with
BDDs and both, the naive and the Rabinizer encodings, with decision trees.

We consider 976 examples where the goal of the player, whose strategy is
being represented, is that the least priority occurring an infinite number of times
is odd.

Figure 6 plots the size ratios when we compare BDDs and decision trees (note
that the y-axis scales logarithmically). For each case, we consider 1000 random
variable orderings and choose the BDD that is minimal in size, and after that we
construct a decision tree (without the chain heuristic of Sect.4.3). For BDDs,
we also consider all the ordering algorithms mentioned in the previous set of
experiments, however, they provide no improvement compared to the random
orderings.

In 925 out of 976 cases, the resulting decision tree is smaller than the cor-
responding BDD (in 3 cases they are of a same size and in 48 cases the BDD
is smaller). The arithmetic average ratio of decision tree size and BDD size is
~46%, the geometric average is ~38%, and the harmonic average is ~28%.
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Figure 7 demonstrates how decision tree representation improves once the
features of the game-structural information can be utilized. Each dot corresponds
to a ratio of the decision tree size once the Rabinizer encoding is used, and once
the naive encoding is used. In 638 cases the Rabinizer encoding is superior, in
309 cases there is no difference, and in 29 cases the naive encoding is superior.
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All three types of the average ratio are around 80%. In [12, Appendix E] we
present the further improvement of decision trees once we use the chain heuristic
of Sect.4.3.

6 Conclusion

In this work we propose decision trees for strategy representation in graph games.
While decision trees have been used in probabilistic settings where errors are
allowed and overfitting of data is avoided, for graph games, strategies must be
entirely represented without errors. Hence optimization techniques for existing
decision-tree solvers do not apply, and we develop new techniques and present
experimental results to demonstrate the effectiveness of our approach. Moreover,
decision trees have several other advantages: First, in decision trees the nodes
represent predicates, and in richer domains, e.g., where variables represent inte-
gers, the internal nodes of the tree can represent predicates in the corresponding
domain, e.g., comparison between the integer variables and a constant. Hence
richer domains can be directly represented as decision trees without conversion to
bitvectors as required by BDDs. However, we restricted ourselves to the boolean
domain to show that even in such domains that BDDs are designed for the
decision trees improve over BDDs. Second, as illustrated in our examples, deci-
sion trees can often provide similar and scalable solution when some parameters
vary. This is quite attractive in reactive synthesis where certain parameters vary,
however they affect the strategy in a minimal way. Our examples show decision
trees exploit this much better than BDDs, and can be useful in parametrized
synthesis. Our work opens up many interesting directions of future work. For
instance, richer versions of decision trees that are still well-readable could be
used instead, such as decision trees with more complex expressions in leaves
[40]. The applications of decision trees in other applications related to reactive
synthesis is an interesting direction of future work. Another interesting direction
is the application of the look-ahead technique in the probabilistic settings.
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Appendix
A Artifact Description

We provide instructions to replicate the experimental results presented in this
paper, using our artifact that is openly available at [11]. All the results can be
obtained with the heap size limited to 8 GB.

Results for Scheduling of Washing Cycles (Sect. 5.1). Running this batch
takes roughly 30h and generates 7.1 GB of training data. Note that we did not
include around 30 most resource-demanding benchmarks of this batch in the
artifact. (i) in folder art, execute ./run.sh wTOTAL, (ii) observe the results at
art/results/reports/reprWash{2,3,4,reach}.txt, (iii) in folder art/results, execute
python plotsWash.py and observe the plots that correspond to Fig. 3. Alterna-
tively, to run a subset of this batch that takes only 30 min to run and generates
only 265MB of training data, in (i) execute ./run.sh wPART. To additionaly
generate dot representation of DTs/BDDs, in (i) execute either ./run.sh wTO-
TALdot or ./run.sh wPARTdot.

Results for Scheduling of Washing Cycles BDD Reordering ([12,
Appendix C]). Running this batch takes roughly 30 min. (i) make sure you have
the training data obtained by running the batch above, (ii) in folder art/results,
execute ./runBDDreorder.sh, (iii) observe the results at art/results/reports/B-
DDreorder.txt.

Results for Random LTL (Sect. 5.2). Running this batch takes roughly
2h and generates 84MB of training data. (i) in folder art, execute
.Jrun.sh rTOTAL, (ii) observe the results at art/results/reports/reprRan-
domLTL{naive,encoded}.txt, (iii) in folder art/results, execute python plotsRan-
domLTL.py and observe the plots that correspond to Figs.6 and 7.

Results for Bit Shifter ([12, Appendix D]). Running this experiment batch
takes roughly 5 min. Note that we did not include two benchmarks in the artifact
since they take considerable execution time. (i) in folder art, execute ./run.sh
aTOTAL, (ii) observe the results at art/results/reports/reprAiger.txt.
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