Supporting Information

Konrad Lohse¹, Nicholas H. Barton², George Melika³, Graham N. Stone¹

¹Institute of Evolutionary Biology

University of Edinburgh

Kings Buildings

Edinburgh EH9 3JT, UK

² Institute of Science and Technology

Am Campus 1

A-3400 Klosterneuburg

Austria

³ Pest Diagnostic Laboratory

Plant Protection & Soil Conservation Directorate of County Vas

Ambrozy setany 2, 9762 Tanakajd

Hungary

species	code	host	country	locality	col. date	oak host
Caenacis lauta	Clau32	Cynips korsakovi	Iran	Azerbaijan, Ardabil For.	10-04	Q. macranthera
Cecidostiba fungosa	Cfun88	Andricus lucidus	Iran	Lorestan, Piran Shahr	10-04	Q. infectoria
	Cfun70	Callirhytis glandium	Hungary	Szentkut	05-02	Q. cerris
	Cfun139	Andricus quercustozae	Spain	Avila, Puerto de Villatoro	03-02	Q. pyrenaica
Cecidostiba semifascia	Csem40	Biorhiza pallida	Iran	Kordestan, Marivan	10-04	Q. infectoria
	Csem60	Biorhiza pallida	Hungary	Godollo	07-01	Q. robur
	Csem50	Biorhiza pallida	Spain	Madrid, El Escorial	02-06	Q. pyrenaica
Hobbya stenonota	Hste48	Pseudoneuroterus macropterus	Iran	Kemanshah, Javanrod	2004	Q. brantii
	Hste60	Aphelonyx cericola	Hungary	Godollo	05-02	Q. cerris
	Hste55	Andricus kollari	Spain	Madrid, El, Escorial	02-06	Q. pyrenaica
Mesopolobus amaenus	Mama50	Dryocosmus caspiensis	Iran	Mazandaran	04-04	Q. castaneifolii
	Mama51	Andricus glossulariae	Hungary	Vitnyed	10-04	Q. infectoria
	Mama55	Andricus burgundus	Spain	Caldes de Malavella	???	Q. suber

Table 1: Sampling and rearing information of individuals used for sequencing.

ы

Table 2: To test the robustness of the model selection to differences in the number of sampled loci between species, analyses for *C. fungosa* and *M. amaenus* were repeated for 2 subsets of the data including only those loci available for *C. semifascia* (1) and *H. stenonota* (2). The model with the highest lnL is shown in bold, the simplest model retained in likelihood ratio tests is indicated by *. Note that the set of supported models agrees between analyses on the two subsampled and the full (All) datasets in *M. amaenus*.

Model			C. fungosa		M. amaenus		
	k	All	1	2	All	1	2
panmixia	1	-122.82*	-75.82	-63.82*	-90.09	-52.85	-54.43
polytomy	2	-122.59	-73.26*	-63.78	-87.30	-50.47	-53.09
two-pop.	3	-120.77	-73.19	-63.41	-79.58*	-48.28*	-49.17*
full model	4	-120.01	-71.60	-61.95	-79.49	-47.39*	-48.84
C & W topologies	3	polytomy	polytomy	polytomy	polytomy	polytomy	polytomy

Figure 1: ΔlnL plots for ancestral N_e for four oak gall parasitoid species. The maximum likelihood estimate for *C. fungosa* (black) is much larger than that of any other species (*C. semifascia*= blue, *H. stenonota*=green, *M. amaenus*=red). In each species, estimates under all divergence models with substantial support (see Table 2) are shown (Full model = thick dashed lines, two-pop.. = thin dashed lines and polytomy = solid lines). The horizontal line delimits the region of 95 % confidence.

Figure 2: ΔlnL plots for *C. fungosa* (top row) and *M. amaenus* (bottom row) for population divergence estimated using either all loci (Full) or only those available for *C. semifasica* (subset 1) or *H. stenonota* (subset 2). Full model = thick dashed lines, two-pop. = thin dashed lines and polytomy = solid lines. The horizontal line delimits the region of 95 % confidence. Although lnL trajectories are wider when subsets of the data are used, the inference of a significantly older history for *M. amaenus* compared to the other 3 species is robust to differences in the number of loci.

Figure 3: The power to distinguish between alternative models of population divergence in the face of gene flow $M = 2N_em$. We tested the model comparison the LRT on datasets of 18 loci simulated under an 'Out of the East' divergence history. The following parameters were fixed $\theta = 1.5, T_1 = 0.4, T_2 = 1.1$. Each point shows the proportion of replicats (out of 100) for which a particular model was retained using LRT. Points were joined for ease of comparison: full model = thick dashed, 2 pop. = thin dashed, polytomy = solid lines and panmixia = dotted lines

