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Abstract. We survey a class of models for spatially structured populations which

we have called spatial Λ-Fleming-Viot processes. They arise from a flexible framework

for modelling in which the key innovation is that random genetic drift is driven by a

Poisson Point Process of spatial ‘events’. We demonstrate how this overcomes some of

the obstructions to modelling populations which evolve in two (and higher) dimensional

spatial continua, how its predictions match phenomena observed in data, and how it

fits with classical models. Finally we outline some directions for future research.
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1. Introduction

Almost all naturally occurring populations contain abundant genetic variation. This

variation, generated by mutation and recombination, is then modified through the

evolutionary processes of genetic drift, the movement of genes from place to place, and

natural selection. A fundamental goal of theoretical population genetics is to understand

the interactions between these evolutionary processes and their relative importance in

shaping the patterns of genetic variation that we see in the world around us.

A natural starting point is a ‘forwards in time’ model for the way in which

frequencies of different genetic types (allele frequencies) change with time. Such a model

should then be compared to data. This generally takes the form of DNA sequences taken

from individuals sampled from the population. These sequences are then used to infer

the genealogical relationships between the individuals in the sample. For example they

may be used to infer the tree describing the shared ancestry of a particular gene from

the differences in the DNA sequence corresponding to that gene in different individuals

in the sample. Thus, in order to compare the predictions of a mathematical model to

data, one also needs a ‘backwards in time’ description of the genealogical trees relating

individuals in a sample from a population evolving under that model. The resulting

models are collectively known as coalescents.

The outstanding success in this area has been Kingman’s coalescent which provides

a description of the genealogical trees relating individuals in a sample from a highly

idealised population (see §2.1). The resulting coalescent model is parametrised by a

single number, the total population size, N . Although the assumptions of the population

models of §2.1 are far too stringent to be satisfied by any real population (even in a

laboratory), the power of the Kingman coalescent stems from that fact that if one

replaces the census population size, N , by an effective population size, Ne, then the

Kingman coalescent can be applied in an enormous variety of situations. Provided the

sample is taken from sufficiently well-separated individuals, this approach even works

when the population is spatially structured (see §4.1). Thus the effective population

size is somehow capturing the effects of population structure, natural selection, variable

population size and so on. However, it is important to note that the effective population

size is typically orders of magnitude different from census population size. For example,

for humans, while the census population size now stands at 7 × 109, the effective

population size is O(104) ([1, 2]). We would like to understand how the different

processes of evolution are feeding into this number. Moreover, the approach assumes

that we are sampling ‘uniformly from the whole population’ and does not capture any

information about spatial patterns of genetic variation. In order to address these issues

we must explicitly incorporate spatial structure into our models.

The purpose of this article is to survey a framework for modelling spatially

structured populations which was introduced, and for which some preliminary analyses

were carried out, in a series of recent papers [3, 4, 5, 6, 7, 8]. The main innovation of this

framework is the approach to modelling genetic drift, which, as we shall see, overcomes
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obstacles that appear in the classical approach. This leads to a class of measure-

valued processes which we believe to be of independent mathematical interest. The

framework is very versatile: we can approximate the ‘discrete deme’ models of spatially

structured populations from classical population genetics (§3.6), but it goes beyond

that in incorporating the large-scale extinction/recolonisation events that dominate the

demographic histories of many species (§3.1). In providing mathematically well-defined

and consistent models for the (forwards in time) dynamics of allele frequencies and

the (backwards in time) genealogical trees relating individuals in a sample from the

population, it offers us a powerful toolbox with which to derive large scale results that

do not depend upon the details of the construction.

It is useful to place this work in its historical context and so we begin with a

brief description of some of the more widely studied models of population genetics. For

more thorough mathematical introductions see, for example, [9, 10, 11] and for more

of the biologicial background see [12]. Rather than presenting formal proofs, the core

of the article (§3-§5) aims to motivate our approach and explain why results are true.

For technical proofs the reader is referred to the original articles. Although, in order

to simplify the exposition we have, in several places, considered special cases of our

rigorous results, for ease of reference we have aimed as far as possible to use notation

consistent with the original work. We shall also describe some more recent work which

incorporates natural selection into our framework and explain how this approach is

connected to established models. In §6 we briefly mention some related models before,

finally, in §7 outlining some directions of future research.

Before embarking on this, let us make some remarks about our assumptions. If

we trace the ancestry of a sample of chromosomes from an asexually reproducing

population, each chromosome can be identified with a unique parent and so as we

trace backwards in time ancestral lineages can only merge (when two chromosomes

have a common parent) and not branch. As a result the ancestry is encoded in a tree.

If chromosomes in sexually reproducing populations were passed down from parent to

offspring as indivisible blocks, then the same would be true. However, as a result of

recombination, the chromosome that a human mother, for example, passes to her child

is not an exact copy of one of her chromosomes, but rather a mosäıc of complementary

blocks taken from the pair of chromosomes that she carries. Thus, if we wish to trace the

ancestry of a sample from a sexually reproducing population, then for each individual

in the sample, we must trace back its parents, grandparents, great grandparents and

so on. Eventually, since population sizes are finite, we will see individuals appear at

multiple points in the resulting pedigree (even for a sample of size one). Thus the

ancestral relationships between individuals will form a complex branching and coalescing

web. Nonetheless, if one is interested, not in whole chromosomes, but in sufficiently

small blocks of genome, it is reasonable to ignore recombination within the blocks and

treat them as indivisible. This greatly simplifies the mathematical analysis. To avoid

unnecessary complication, for (most of) the remainder of this article we shall do this.

However, in §4.3 we comment briefly on how our approach can be adapted to incorporate
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recombination and the implications for statistical inference.

Let us close this section with some terminology. When we deal with populations

subject to recombination, two genetic loci are said to be tightly linked if they are

sufficiently close together that the possibility of recombination between them can be

ignored. Two loci are loosely linked if recombination events between them are sufficiently

frequent that types at the two loci are inherited essentially independently (for example

if they are on different chromosomes). Finally, most populations are either haploid,

meaning that individuals carry one copy of each chromosome, or diploid, meaning that

chromosomes are carried in pairs.

2. Some history

2.1. Drift

To establish terminology and fix ideas, in this subsection we recall two classical

approaches to modelling genetic drift. Our spatial model borrows ideas from both.

The first model was developed independently by R.A. Fisher and S. Wright (see

[9] for some history). It considers an (idealised) unstructured population, of constant

(large) size, N , in which all individuals are equally fit.

Definition 2.1 (The neutral Wright-Fisher model) Under the neutral Wright-

Fisher model for a haploid population of constant size N , the population evolves in

discrete generations. The number of offspring (in generation t + 1) of each of the

individuals in generation t is determined by multinomial sampling with equal weights.

In other words, each individual in generation t + 1 chooses its parent independently at

random from those present in generation t.

It is a simple matter to describe the genealogical trees relating individuals in a sample

from a population evolving according to this model. The probability that two individuals

share a common parent in the previous generation is 1/N and so, for a sample of size

two, the time back to their most recent common ancestor (MRCA) has a geometric

distribution with parameter 1/N . Since this has mean N , we immediately see that

the appropriate timescale for evolution is units of N generations. In these time units,

the time to the MRCA is approximately exponentially distributed with parameter 1.

The chance that three or more individuals have a common parent is O(1/N2), and,

similarly, the chance that two distinct pairs of ancestral lineages merge in a single

generation is O(1/N2). Thus for large populations, with high probability, all lineages

ancestral to a finite sample will merge (pairwise) without us seeing any such events.

Putting this together, for a sufficiently large population, the ancestry of a sample of

size k is described as follows: the time we must trace back until we see the first merger

of ancestral lineages is exponential with rate
(

k
2

)

(the minimum of the exponential one

random variables governing the
(

k
2

)

possible pairwise mergers). At that time it is equally

likely to be any of the pairs of lineages which merges. There are then (k− 1) remaining
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lineages and the additional time we must wait until the next merger is exponential with

parameter
(

k−1
2

)

and so on. This is an informal description of Kingman’s coalescent.

In order to obtain the Kingman coalescent, we first measured time in units of N

generations and then let N → ∞. To see what this corresponds to in our forwards

in time Wright-Fisher model, we suppose that our population is divided into just two

types, which we label a and A, and that each offspring inherits the type of its parent.

Since, if the proportion of type a alleles in the parental population is p, the absolute

number of type a offspring is binomial with parameters (N, p), it is elementary to see

that the change ∆p in the proportion over a single generation satisfies

E[∆p] = 0, E[(∆p)2] =
1

N
p(1 − p) and E[(∆p)k] = O

(

1

N2

)

for k ≥ 3.

One generation corresponds to 1/N of our new units of time, so the N in these

expressions can be interpreted as the length of the infinitesimal time interval over which

we are measuring the change in proportion, and we deduce (for example from §15.1 of

[13]) that in the limit as N → ∞ the proportion of a-alleles in the population will evolve

according to the Wright-Fisher diffusion,

dpt =
√

p(1 − p)dWt,

where {Wt}t≥0 is a standard Brownian motion. This is the classical model of genetic

drift. It is an unfortunate accident of history, that the biological term ‘drift’ refers to

this purely stochastic term, in contrast to the usual mathematical terminology. We see

immediately that under the action of drift alone, one of the types in our population will

eventually fix (the diffusion will be absorbed at either p = 0 or p = 1).

We now have two dual models: forwards in time, allele frequencies evolve according

to the Wright-Fisher diffusion and backwards in time, genealogical trees relating

individuals in a sample are described by the Kingman coalescent. Before we can compare

to data, we must take into account the rescaling of time that has taken place and our

dual models become:

Forwards in time: Backwards in time:

dpτ =
√

1
Ne
pτ (1 − pτ )dWτ Coalescence at rate 1

Ne

(

k
2

)

Notice that in place of the census population size, N , we have substituted an effective

population size, Ne. As commented in §1, the Kingman coalescent provides an excellent

model in an enormous variety of situations, provided we make this substitution and this

is reflected in the Wright-Fisher diffusion. The size of Ne is a measure of the strength of

the genetic drift - the smaller the effective population size, the more quickly genetic drift

will wipe out variability in our population. Of course, without variability we couldn’t

infer the genealogical trees relating individuals in our sample. The ultimate source of

all variation is mutation. In this classical setting, mutations are modelled as falling at

a Poisson rate along each branch of the coalescent tree (see, e.g.[11]).
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A mathematically convenient consequence of this ‘robustness’ of the Kingman

coalescent and the corresponding Wright-Fisher diffusion, is that we can expect the

same limiting models if we replace the Wright-Fisher model by essentially any model

that captures the key assumptions of Definition 2.1. A particular instance of this is

that we can replace the Wright-Fisher model (in which generations are discrete) by the

Moran model in which generations overlap.

Definition 2.2 (The neutral Moran model [14]) A population of size N is said

to evolve according to the neutral Moran model if at exponential rate
(

N
2

)

a pair of

individuals is chosen uniformly at random from the population, one dies and the other

splits in two.

There are many ways to parametrize this model. Our choice here has the advantage that

the genealogy of a sample from the population is given by Kingman’s coalescent (there

is no need to rescale time). Notice that reproduction is driven by a Poisson process (we

shall see this reflected in our spatial model of §3).

The duality that we have described between the Kingman coalescent and the

Wright-Fisher diffusion is ‘strong’ in the sense that the genealogical trees relating

individuals in a sample from the Wright-Fisher model converge to the Kingman

coalescent and so it is reasonable to refer to the Kingman coalescent as describing the

genealogy of a sample from a population evolving according to the limiting diffusion.

Donnelly and Kurtz ([15]) exploited the fact that one can embed the Moran model

for a population of size N into one for a population of size N + 1 to construct the

Wright-Fisher diffusion (or more generally the Fleming-Viot process, [16, 17], which

describes allele frequencies under the limiting model when the type space consists of a

possibly infinite number of types) and the Kingman coalescent simultaneously on the

same probability space. Often one reports a weaker form of the duality, moment duality.

If n(t) denotes the number of ancestral lineages alive in the Kingman coalescent at time

t, then it follows that if p(t) denotes the proportion of a-alleles at time t under the

Wright-Fisher diffusion, then

Ep(0)[p(t)
n(0)] = En(0)[p(0)n(t)]. (1)

Here (and throughout) we use Ex[X(t)] to denote the expectation of the random variable

X(t) given that X(0) = x. The expectation on the left of (1) is with respect to the

distribution of the Wright-Fisher diffusion, while that on the right is for the Kingman

coalescent. The arrow of time for these two processes points in opposite directions,

but we follow the usual convention of denoting time for the Kingman coalescent as a

positive quantity. Thus in (1), a sample of n(0) individuals is taken at time t for the

Wright-Fisher diffusion (which corresponds to time 0 for the Kingman coalescent) and

n(t) is the number of ancestral lineages alive at time t before the sampling time (which

is time 0 for the Wright-Fisher diffusion).

To see why (1) should hold, the left hand side is the probability that all individuals

in a sample taken from the population at (Wright-Fisher) time t are of type a and, in

the absence of mutation, this is the same as the probability that all individuals ancestral
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to the sample at time 0 were of type a. The number of individuals alive at time 0 that

are ancestral to a sample taken at time t is n(t) and so the right hand side is precisely

the probability that we seek. The analogue of (1) will be a key tool for analysis of our

more complex models. However, it is important to understand that a moment duality of

this form does not in general imply the stronger duality. In [18], Taylor gives examples

of different individual based models for which the forwards in time processes of allele

frequencies all converge to the same limit, but the genealogical processes converge to

different limits.

2.2. Introducing space

Modelling spatially structured populations has a long history. Wright’s island model

([19]) was an early attempt to understand the effects of spatial subdivision. In this

model, the ‘islands’ of population are assumed to sit at the vertices of a complete graph

and individuals migrate between islands. This has been refined and extended in many

ways, but most models have the same basic structure: the population is subdivided

into islands or demes which are situated at the vertices of a graph. Interaction between

subpopulations is through migration of individuals along the edges of the graph.

An important example of models of this class is the Kimura stepping stone model,

[20]. Let us index the vertices of the graph by a finite or countable set I and, for i, j ∈ I,

write i ∼ j if the vertices labelled i and j are neighbours. Just as the Wright-Fisher

diffusion was obtained as a limit of the neutral Wright-Fisher model as population

size went to infinity, the Kimura stepping stone model can be obtained as a limit of

a structured Wright-Fisher model as the size of the subpopulation in each deme tends

to infinity. In the prelimiting model, in each generation each subpopulation reproduces

according to the neutral Wright-Fisher model, but now, in addition, after reproduction it

exchanges a proportion of individuals with its neighbours. More precisely, for each pair

(i, j) with i ∼ j, mij individuals chosen at random from deme i migrate to deme j and,

to preserve population size in each deme, we suppose that
∑

j:i∼j mij =
∑

j:i∼j mji. We

suppose that the effective population size in each deme is Ne and that
∑

i:i∼j mij ≪ Ne.

(In fact, under this assumption, one obtains the same approximation if, for example, a

Poisson number of individuals with mean mij migrate from deme i to deme j after each

reproduction event.) If the population is divided into just two types, a and A, writing

pi for the proportion of a-alleles in deme i, the Kimura stepping stone model takes the

form

dpi =
∑

j:j∼i

mji(pj − pi)dt+

√

1

Ne
pi(1 − pi)dWi, (2)

where {Wi}i∈I are independent standard Brownian motions. This standard stepping

stone model does not consider the effect of spatial variation in population density of

migration, although this is easily incorporated (see, for example, [21]).

We can also mimic our previous arguments to understand the genealogical trees

relating individuals in a sample from a population whose dynamics are governed by (2).
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Just as we never saw mergers of three or more lineages in the Kingman coalescent, so

(since
∑

i:i∼j mij ≪ Ne) we never see a simultaneous merger and migration in this

structured coalescent. The genealogical tree relating a finite sample of individuals,

consisting of ni individuals from deme i for each i ∈ I, is traced out by the system

of coalescing random walks {(ni(t))i∈I}t≥0, where

• for each i ∈ I, ni 7→ ni − 1 at instantaneous rate 1
Ne

(

ni

2

)

• for each i, j ∈ I with i 6= j,

{

ni 7→ ni − 1

nj 7→ nj + 1
at instantaneous rate nimji.

Once again this implies a weaker moment duality between the stepping stone model

and the structured coalescent which we shall see reflected in our model in a spatial

continuum. For any vector n(0) = (ni(0))i∈I with non-negative integer components and
∑

i ni(0) <∞ and any initial condition p(0) = (pi(0))i∈I for (2),

Ep(0)

[

∏

i∈I

pi(t)
ni(0)

]

= En(0)

[

∏

i∈I

pi(0)ni(t)

]

. (3)

Note once again that time for the coalescent process runs backwards and so we have

adopted the same conventions as in (1).

2.3. Spatial continua: the pain in the torus

In some situations, the stepping stone model is very natural. However, many populations

are not subdivided, but instead are distributed across a spatial continuum. For such

populations, in order to use the stepping stone model, one must impose an artificial

subdivision of space and choose a graph (often Z
2) which caricatures the local geography.

One would like instead an analogue of the stepping stone model in a spatial continuum.

The stepping stone model is a system of stochastic ordinary differential equations,

indexed by the set I, for which a natural continuum analogue would be the stochastic

partial differential equation

dpt =
1

2
∆pdt+

√

1

Ne
pt(1 − pt)W (dt, dx), (4)

where W is a space-time white noise. In one space dimension, one can obtain (4) through

a diffusive rescaling of the stepping stone model on Z. Moreover, under this rescaling,

the system of coalescing random walks which describes the genealogy of a sample from

the population (2) converges to a system of Brownian motions which coalesce at a

rate depending upon the local time that they spend together. However, in two spatial

dimensions equation (4) has no solution. Moreover, if one applies the diffusive rescaling

to the stepping stone model on Z
2, the limit obtained is deterministic. The easiest way

to see this is to consider what happens when one rescales the genealogical trees. Just

as in one dimension, the motion of a single lineage will converge to Brownian motion,

but since two Brownian motions in two dimensions will never meet, we don’t see any
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coalescence and, as we saw in §2.1, the coalescence backwards in time corresponds to

the random genetic drift forwards in time.

Although in two spatial dimensions, two Brownian motions will never meet, they

will come arbitrarily close to one another infinitely often. This suggests another possible

approach: model the genealogy of a sample from the population as a system of Brownian

motions which coalesce at an instantaneous rate depending upon their separation. We

must also specify the location of the parent, for example as the midpoint between the

two coalescing lineages. However, such a model lacks sampling consistency. To see this,

take the genealogical tree relating a sample of three individuals and delete the ancestral

lineage corresponding to a randomly chosen individual in the sample. With positive

probability, this lineage was involved in the most recent coalescence event in our full

tree and at the time of that coalescence event, the other lineage which was involved

(which is ancestral to our subsample) will jump. This jump would not be seen if we

modelled the genealogy of the subsample directly.

Malécot and Wright attempted to model populations living in a spatial continuum

in the 1940s ([22, 19]). Their model assumes that individuals are dispersed according

to a Poisson Point Process of constant intensity in R
2. The reproduction mechanism

mimics that of the Wright-Fisher model: the population evolves in discrete generations

and the number of offspring of each individual is Poisson with mean one. This is exactly

the distribution of the family size of a single individual in the Wright-Fisher model as

N → ∞. The twist is that offspring now have a spatial position which is sampled

(independently) from a Gaussian distribution centred on the spatial location of their

parent. In addition, the model incorporates mutation: with probability µ an offspring,

rather than inheriting the genetic type of its parent, is of a type never before seen in

the population.

The work of Malécot and Wright predates the coalescent by forty years. Instead of

discussing genealogical trees, they calculated F (x), the probability of identity in state

of two individuals sampled at separation x ∈ R
2; that is the probability that the two

individuals carry identical copies of an ancestral allele. This is equivalent to calculating

the generating function of the number of generations back to their MRCA. Malécot uses

a recursion to obtain an approximation for F (x) in terms of K0, the modified Bessel

function of the second kind of order zero:

F (x) ≈ 1

N + log (l/κ)
K0

(‖x‖
l

)

, ‖x‖ > κ, (5)

where κ is a local scale, l = σ/
√

2µ is the characteristic length scale, σ2 is the variance

of the Gaussian distribution that determines the location of offspring and N is Wright’s

neighbourhood size, which, loosely, measures the number of ‘potential parents’ of each

offspring. We shall refer to (5) as the Wright-Malécot formula.

However, as first observed by Felsenstein in 1975 ([23]), the assumptions of Wright

and Malécot are inconsistent. On the one hand they assume that the population is

at stationarity and distributed across the plane as a Poisson point process of constant

intensity, but on the other that it evolves according to a branching random walk. The
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F

Figure 1. Identity in state in a stepping stone model on Z
2. The horizontal axis is

the (Euclidean) separation at which individuals are sampled. The three sets of dots

correspond to exact values for three different values of Ne. The curves are obtained

from the Wright-Malécot formula.

difficulty is that in (one and) two spatial dimensions, populations whose dynamics are

governed by spatial branching processes (with homogeneous branching and dispersal

mechanisms) have no stationary distribution. If not extinct, they develop clumps of

arbitrarily large density and extent. To overcome this, Felsenstein tried working on a

torus instead of the whole plane. However, the total population size is then governed

by a Galton-Watson branching process, which will either eventually die out or grow

without bound, and so next he tried exogenously specifying the population size. But

this does not overcome the clumping. Felsenstein famously dubbed the problem ‘the

pain in the torus’. The key point is that to overcome clumping, the population size

must be regulated locally. There are models based on spatial branching processes

which incorporate local regulation of the population size and exhibit stable population

dynamics (e.g.[24, 25, 26, 27, 28]), but these are challenging to work with and there seems

little hope of recovering explicit descriptions for the corresponding genealogical trees. In

[29], we successfully extend the Wright-Malécot formula to a class of population models

that incorporate local regulation. However, the usefulness of this result is limited due

to the lack of explicit models for which the assumptions of our model can be validated

and parameters established.

At this point we have two (unsatisfactory) approaches to modelling populations in

a spatial continuum. We can artificially subdivide the population and use a stepping

stone model or we can ignore the inconsistencies in the assumptions and use the Wright-

Malécot formula. What is striking is just how close these two approaches turn out to be.

Figure 1 shows the probability of identity at different separations under the stepping

stone model on Z
2 (with mij = 1/4 if i ∼ j) for three different choices of Ne. The curves

are the corresponding predictions of the Wright-Malécot formula (for appropriate choices

of parameters). The fit is astonishing, even for a deme-spacing of one.
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3. A framework for modelling

3.1. Some biological considerations

We have so far focused on the mathematical shortcomings of the classical models for gene

flow. But they also fail to provide an explanation of biological data: in particular, for

the wide range of spatial scales over which patterns in allele frequencies persist, for the

magnitude of random fluctuations seen even in dense populations, and for correlations

across unlinked genetic loci. The Wright-Malecot formula predicts an approximately

exponential decay in the probability of identity as a function of separation; in contrast,

data reveals that although this is a good approximation over relatively short distances,

correlations in allele frequencies persist over much longer spatial scales (e.g. [30]). There

is also no convincing explanation for the huge discrepancy between census population

size and effective population size that is implied by the moderate levels of genetic

diversity seen even in abundant populations ([31]). Finally, the classical theory of

isolation by distance implies that patterns at loosely linked loci are independent of each

other. Yet, the whole field of phylogeography ([32]) is based on the idea that genetic

patterns reflect demographic history - shaped by large-scale population movements -

which implies that such patterns are shared across loci. The idea that a population’s

history can be inferred from its genetics makes no sense under the classical theory. One

possible explanation for all three effects is that the demographic history of many species

is dominated by large-scale extinction/recolonisation events, which substantially reduce

genetic diversity and cause collective movements of genes across large distances.

There is a further consideration when modelling spatially distributed populations.

Our approximation of the exact genealogical trees for the Wright-Fisher model, which

do (albeit rarely) admit mergers of three or more ancestral lineages, by the Kingman

coalescent, in which there are only pairwise mergers, rests on the fact that offspring

are selecting parents (independently and uniformly) from a very large pool. In the

language of §2.3, neighbourhood size is very large. However, in a spatial continuum,

neighbourhood size can be small and then pairwise coalescence of ancestral lineages

may not dominate.

The framework that we now describe not only overcomes the pain in the torus,

but it also allows us to explicitly incorporate both large-scale extinction/recolonisation

events and small neighbourhood size. The key innovation is that reproduction and

extinction/recolonisation events are both driven by a space-time Poisson process rather

than being based upon individuals. Of course, a Poisson process is probably not

an appropriate model for some types of large scale events (e.g. glacial maxima), but

for others (forest fires, storms etc.) it can be viewed as a reasonable starting point.

Moreover, the framework provides a mechanism for modelling populations conditional

on such events. We shall focus on a particular model that arises from this framework,

and briefly mention another variant in §3.3, but it should be emphasised from the outset

that the framework itself is very flexible: only the formulation of genetic drift in terms of

a Poisson process of events is crucial. The exact form of those events is not important.
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3.2. Individual based models

We begin with an individual-based model. For this section we shall suppose that the

population evolves in R
d. We can work in any dimension, but from the biological point

of view, the most interesting case is d = 2. The model is parametrized by a real number

λ > 0 and a measure which we write as

ξ(dr, du) = µ(dr)νr(du) (6)

on (0,∞)×(0, 1]. Here µ is a (possibly infinite) measure on (0,∞) which will determine,

for each r, the rate at which ‘events of size r’ fall on any given point. For each r, νr is

a probability measure on (0, 1] which will determine the ‘impact’ of an event. To avoid

trivialities we also assume that ξ ((0,∞) × (0, 1]) > 0. The dynamics are driven by a

Poisson point process, Π, on R+ × R
d × R+ × (0, 1] with intensity dt⊗ dx⊗ ξ(dr, du).

Each point (t, x, r, u) of Π is thought of as an ‘event’ which affects only individuals

living within Br(x), the closed ball of radius r and centre x ∈ R
d. Frequent ‘small’

events model ordinary reproduction, whereas infrequent ‘large’ events mimic the effects

of large-scale extinction/recolonisations. More precisely, at a point (t, x, r, u) of Π, if

Br(x) is empty do nothing. Otherwise:

• choose a parent uniformly at random from those individuals present in the ball;

• each individual in Br(x) (including the parent), independently, dies with probability

u;

• throw down new individuals (with the same type as the parent) according to an

independent Poisson point process with intensity uλ1Br(x)(y)dy (where 1A is the

indicator function of the set A).

This mechanism can then be thought of as regulating the reproductive success of

individuals. If the ball Br(x) is crowded, then each individual living there has only a

small chance of reproducing. On the other hand if the ball is only sparsely populated

they have a significant chance of producing a Poisson number of offspring with mean

λuVd(r) where Vd(r) is the volume of a ball of radius r in R
d.

In order to ensure that this process exists, in [4] we assumed that
∫ ∞

0

∫ 1

0

urd
(

1 + rd
)

νr(du)µ(dr) <∞. (7)

In fact this condition is stronger than is really required and A.V. and Anton

Wakolbinger (personal communication) have shown that the model exists under the

weaker condition (12) below.

If we were to allow ‘births’ in events when there is no potential parent present in

the ball, then the population would have a Poisson point process with intensity λdx

as stationary distribution. However, we do not. Nonetheless, because neighbourhoods

overlap, an empty region can subsequently become recolonised. The question is whether

this is enough to prevent the population from dying out. In [4], it is shown that there

is a critical value of the parameter λ below which extinction is certain, but above which
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the population, started from a Poisson random measure with constant intensity, survives

(indeed there is an ergodic stationary distribution).

Ideally, we would now identify the distribution of the genealogy of a sample from

such a population. However, it turns out that this is complicated. Because regions

can, and do, become empty, knowing that there is an individual in our sample at a

point x ∈ R
2 tells us something about the Poisson process of events that have occurred.

In particular, it is not possible to infer the ancestry by simply reversing the Poisson

process of events. On the other hand, for sufficiently large λ, one expects the genealogy

to be well approximated by the system of coalescing lineages generated by reversing the

Poisson process and assuming that the regions are never empty. The methods of [4]

can be used to make this precise. Here, instead, in the next subsection we turn to a

variant of the model in which explicit calculations are feasible and examine the stability

of genealogical trees as the density of individuals changes in that setting.

3.3. A Gaussian replacement mechanism

The individual based model considered above is very special. There is of course no

reason to suppose that reproduction or extinction/recolonisation events should affect

discs and still less that they should have the same ‘impact’ on everyone living in a

region. An alternative model was studied in [6]. The dynamics are again driven by

a Poisson point process of events, but now instead of affecting a compact region, an

event has the potential to affect all individuals in the population, but with a probability

that decreases (with Gaussian decay) with distance from the ‘centre’ of the event. More

precisely, dynamics are driven by a Poisson process, Π1, with intensity Λdt⊗dx for some

constant Λ. If (t, x) ∈ Π1 then we first choose a parent by taking a weighted sample

from the current population, where an individual at y is given weight

v(y, x) = exp

(

−‖y − x‖2

2α2θ2

)

.

Here we will assume that α, θ ∈ R are constant, but they can, more generally, be taken to

be random (and not necessarily independent). Each individual is killed with a weighted

probability, so that an individual at z, say, is killed with probability

u(z, x) = u0 exp

(

−‖z − x‖2

2θ2

)

where 0 < u0 ≤ 1. Offspring, of the same type as the parent, are thrown down according

to a Poisson process with intensity λu(z, x)dz.

This time, the process has a stationary distribution for all choices of λ, given by a

homogeneous Poisson process in the plane with intensity λdx. Moreover, the genealogy

can be obtained by simply reversing the Poisson process of events. However, analogous

to the effect of empty regions in our disc model, if λ is small, it may be that an ancestral

lineage sometimes has to make a very long jump to find a parent. In contrast to the

disc model, in this setting, provided we assume that the population is at stationarity,
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it is possible to establish a closed form expression for the distribution of that jump and

our aim is to estimate just how sensitive this is to changes in the population density λ.

This is equivalent to understanding how the distribution of the position of the parent

picked in an event depends on λ. In particular, we are interested in seeing how rapidly

this converges to a limit as λ→ ∞.

Since the dynamics are spatially homogeneous, it is enough to consider a

reproduction event centred on the origin. Let us identify the probability that the parent

chosen in the event is in an infinitesimal neighbourhood of the point y. First, there must

be a point of the population at y which happens with probability λdy. Second, we must

have chosen that point when we took our weighted sample. Now, given that there is an

individual at y, the rest of the population is distributed according to an independent

Poisson point process with intensity λdx. Thus the probability that we sampled the

individual at y is E[a/(a + S)]dy where

a = exp(− y2

2α2θ2
), S =

∑

Xi∈π

exp(− X2
i

2α2θ2
),

and π is a Poisson point process with intensity λdx. To calculate this probability, we

first find the Laplace transform of S.

E[exp(−ηS)] = E

[

∏

i

exp
(

−ηe−X2
i /(2θ2α2)

)

]

= exp

(

−λ
∫

R2

(1 − φ(x))dx

)

,

where

φ(x) = exp
(

−ηe−x2/(2θ2α2)
)

.

Transforming to polar coordinates and making the substitution u = e−r2/(2θ2α2) yields

E[e−ηS ] = exp

(

−2θ2α2πλ

∫ 1

0

(

1 − e−ηu

u

)

du

)

.

Now observe that

E

[

a

a + S

]

=

∫ ∞

0

E [a exp (−η(a+ S))] dη,

and use that

η − η2

4
≤

∫ 1

0

(

1 − e−ηu

u

)

du ≤ η,

to obtain

E

[

a

a+ S

]

=
a

a + 2θ2α2πλ

(

1 + O
(

1

λ

))

=
a

2θ2α2πλ

(

1 + O
(

1

λ

))

.

From this, we see that the probability of sampling a parent in an infinitesimal

neighbourhood of y is

1

2θ2α2π
exp

(

− y2

2θ2α2

) (

1 + O
(

1

λ

))

dy.
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Even this rather crude calculation guarantees that up to a relative error of order 1/λ we

can approximate the jump of the ancestral lineage by the Gaussian distribution obtained

in the limit as λ→ ∞. Of course, for λ <∞, successive jumps will not be independent,

but an analogous argument guarantees the rapid decay of correlations as λ increases.

In the disc replacement model of the previous section there is similar stability. As

λ increases, the chance of a region that is hit by an event being empty decreases rapidly

as λ increases.

3.4. The spatial Λ-Fleming-Viot model

Since the distribution of the genealogical trees relating individuals in a sample rapidly

stabilises as the density λ of individuals in our population grows, it seems reasonable to

consider the model obtained as λ → ∞. At first sight this seems analogous to letting

neighbourhood size tend to infinity in a structured Wright-Fisher model. However, as

we illustrate in §3.6, this is not the right interpretation and in fact our model will

retain a signature of finite neighbourhood size. As a result, the genealogical trees

relating individuals in a sample from the population will be spatial versions of so-called

Λ-coalescents which admit ‘multiple mergers’, by which we mean that three or more

lineages can coalesce in a single event. We describe this in detail in §3.5, but first we

formulate the (limiting) forwards in time model for allele frequencies.

The spatial Λ-Fleming-Viot process is the name given to the process obtained in the

limit as λ→ ∞ in our individual-based model. To understand the form of the limit, let

us begin with a non-spatial analogue of the individual based model of §3.2. Suppose then

that our population initially consists of a Poisson number of individuals with parameter

λ. The dynamics are driven by a Poisson point process Π0 on (0,∞) × (0, 1] with

intensity dt⊗F (du) for a suitable measure F on (0, 1]. At a point (t, u) ∈ Π0, provided

the population is not already extinct, we choose a parent at random from the population

at time t− (that is immediately before the event); each individual, independently, dies

with probability u; and a Poisson number of offspring with mean λu, all of the same type

as the parent, are born. We measure the population in units of size λ. In these units, at

time zero it is of size 1 + O(1/
√
λ) and the proportion of the population replaced at a

reproduction event is u+O(1/
√
λ). We see that as λ→ ∞ the population size becomes

fixed at 1. The model specifies the distribution of types in the population and so is

represented by a probability measure ρ on a (compact) type space K. For (t, u) ∈ Π0,

if the distribution of types in the population at time t− is ρ(t−, ·), then immediately

after the event it is given by

ρ(t, ·) = (1 − u)ρ(t−, ·) + uδk,

where the parental type, k, is chosen according to ρ(t−, ·). For reasons that will emerge

in §3.5 we shall call this process a Λ-Fleming-Viot process. Notice that in passing to

this limit, we are not rescaling time and so our limiting model is driven by the same

Poisson process Π0 of events.
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The spatial analogue of the Λ-Fleming-Viot process is our main object of study.

Whereas, at each time t ≥ 0, the Λ-Fleming-Viot process specifies a single probability

measure on K (which determines the distribution of types in a panmictic population),

our spatial analogue will specify a different probability measure on K at every point in

space. The interpretation is that if we were to sample an individual from the point x at

time t, then its genetic type is determined by a random pick from ρ(t, x, ·).
Definition 3.1 (The spatial Λ-Fleming-Viot process) The spatial Λ-Fleming-Viot

process, {ρ(t, x, ·), x ∈ R
d, t ≥ 0}, specifies a probability measure on a compact type

space K for every t ≥ 0 and every x ∈ R
d. With the notation above, the dynamics of

the process are as follows. At every point (t, x, r) of the Poisson point process Π (inde-

pendently), choose u ∈ (0, 1] according to the measure νr(du). Select a point z at random

from B(x, r) and a type k at random according to ρ(t−, z, ·). For all y ∈ B(x, r),

ρ(t, y, ·) = (1 − u)ρ(t−, y, ·) + uδk. (8)

Sites outside B(x, r) are not affected, that is ρ(t, y, ·) = ρ(t−, y, ·) for every y /∈ B(x, r).

We shall require some conditions on the intensity of the Poisson process Π if such

a process is to exist. These will be made precise in §3.5.

3.5. The spatial Λ-coalescent

The key tool for analysing the spatial Λ-Fleming-Viot process is its coalescent dual.

Indeed in [5] existence of the process is proved from existence of the dual using powerful

results of [33]. To understand that dual process, and to make the connection with earlier

work, we first consider the non-spatial context. As we saw in §3.4, in the non-spatial

version of our Λ-Fleming-Viot process, the allele frequencies change at times dictated by

the points of a Poisson point process. For convenience we think of time being extended

to the whole real line so that this Poisson point process is reversible. The dual process

of coalescing lineages is then driven by the time-reversed process. Suppose that we

sample individuals uniformly at random from the population. Then at a point (t, u) of

the reversed Poisson point process, all those ancestral lineages lying in the portion u of

the population corresponding to ‘offspring’ in the forwards in time model will coalesce

into a common parent. Since our sample was picked at random, each, independently,

has probability u of being among the offspring. Thus, if there are currently n lineages

ancestral to our sample, the chance of a particular subset of k of them coalescing is

uk(1 − u)n−k and since these coalescence events were driven by the time reversal of the

Poisson point process Π0, the rate at which we see such an event can be written as

∫ 1

0

uk(1 − u)n−kF (du).

We recognise these rates as those of a Λ-coalescent. These coalescents were introduced

independently by Donnelly & Kurtz, Pitman and Sagitov in [34, 35, 36]. They exist

provided that F (du) = Λ(du)/u2 where Λ is a finite measure on [0, 1]. The representation



Modelling evolution in a spatial continuum 17

in terms of jumps of a Poisson point process rests on Λ having no atom at 0. The process

still exists with such an atom, which corresponds to adding extra pairwise events (a

Kingman component) to the coalescent process, but our spatial extension does not

admit such a term. The duality between Λ-coalescents and Λ-Fleming-Viot processes

was made explicit by Bertoin & Le Gall in [37].

In the spatial setting, the picture is very similar. Once we extend time to the

whole real line, the Poisson point process Π that dictates the dynamics of the model

is reversible. At any point (t, x, r, u) ∈ Π, each of the lineages ancestral to our sample

that is in Br(x) will (independently), with probability u, jump to the position of the

‘parent’ of the event, which is uniformly distributed on Br(x). Crucially, this is true

even if there is only a single lineage within the ball (otherwise we would lose sampling

consistency, c.f. §2.3). As a result, if we follow a single lineage, then it evolves in a series

of jumps with intensity

dt⊗
(

∫

[|x|/2,∞)

∫

(0,1]

Lr(x, 0)

Vd(r)
uνr(du)µ(dr)

)

dx, (9)

where Lr(x, y) is the volume of Br(x) ∩ Br(y). To see where equation (9) comes from,

suppose (without loss of generality) that our lineage is currently at 0. In order for it to

jump to x, both 0 and x must lie within Br(z) for some (t, z, r, u) ∈ Π. The volume of

admissible centres z is Lr(x, 0). If the lineage is to jump to x, then the point x must have

been chosen as the location of the parent, which, since the parental position is uniformly

distributed on the ball affected by the event, happens with probability dx/Vd(r) and,

finally, the lineage must be among the ‘offspring’ of the event, which happens with

probability u.

In order for this jump intensity to correspond to a well-defined Lévy process, we

require that
∫

(min(1, |x|2)
∫

[|x|/2,∞)

∫

(0,1]

Lr(x, 0)

Vd(r)
uνr(du)µ(dr)dx <∞. (10)

Two lineages currently at separation y ∈ R
d will coalesce if they are both affected by an

event, which will happen at instantaneous rate
∫

[|y|/2,∞)

Lr(y, 0)

∫

(0,1]

u2νr(du)µ(dr). (11)

Evidently, if this is bounded, then so too will be the rates of all other possible coalescence

events.

One might hope that these two conditions would be enough to guarantee existence

of our model. But in order to identify our process we need a stronger condition. We

suppose that

Λ(du) =

∫

(0,∞)

urdνr(du)µ(dr) (12)

defines a finite measure on [0, 1]. As we noted in §3.2, although weaker than the

condition (7) which was required in [4], this condition also suffices for existence of

the prelimiting model of §3.2.
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We defer the formal statement of the moment duality between the spatial Λ-

Fleming-Viot process and the spatial Λ-coalescent described above until we have

specialised to type space K = {0, 1} in §4.4 (where the necessary notation is less

intimidating).

A rigorous proof of convergence of the individual based model of §3.2 to the limiting

spatial Λ-Fleming-Viot process that we have described is the object of joint work of

A.M.E. and Tom Kurtz. A corollary of that work is that the genealogies also converge so

that (as for the duality between the Wright-Fisher diffusion and the Kingman coalescent)

the duality between the forwards in time model of allele frequencies and the spatial Λ-

coalescent is not just a weak moment duality.

3.6. Parameters

In order to gain a better understanding of some of the parameters in the model, it

is helpful to think about how we would try to approximate Kimura’s stepping stone

model in this framework. To this end, let us replace R
2 by Z

2 and instead of taking

events to be balls of radius r based upon points x ∈ R
2, suppose that events cover

exactly two neighbouring lattice points. More precisely, for each x = (x1, x2) ∈ Z
2,

events covering {(x1, x2), (x1 + 1, x2)}, {(x1, x2), (x1 − 1, x2)}, {(x1, x2), (x1, x2 + 1)},
{(x1, x2), (x1, x2 − 1)}, each arrive according to independent Poisson processes of rate

ρ. When such an event falls, each of the points covered is equally likely to be chosen

as the location of the ‘parent’ of the event. For simplicity, let us suppose that u, the

proportion of the population replaced during an event, is fixed. To make the comparison

to the stepping stone model, we investigate the behaviour of ancestral lineages under

this model. Each will jump to a neighbouring site at rate m = 4ρu. If two lineages

are at the same lattice point they coalesce at rate 8ρu2, which we equate to 1
Ne

. We

ignore the fact that lineages in neighbouring demes can coalesce in our model, as this

argument is meant to be no more than heuristic. Roughly then, using m = 4ρu to

eliminate ρ from the expression for 1/Ne, the parameter u can be expressed in terms

of migration rate and ‘local population density’ as u = 1/(2mNe). The quantity mNe

is proportional to Wright’s neighbourhood size, which we introduced in §2.3. What

this shows is that keeping u macroscopic as we pass to the limit as λ → ∞ retains

a signature of finite neighbourhood size. Thus our limit should not be thought of as

analogous to allowing N → ∞ when we pass, for example, from the Wright-Fisher model

to a diffusion approximation. This is further reflected in the fact that if more than two

lineages are in a region hit by an event then any subset of them can coalesce during the

event.

4. Some results in the neutral case

In this section we investigate how our model addresses some of the biological issues

raised in §3.1.
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4.1. Large-scale events and genetic diversity

The results of this subsection are from [38] and can also be found in detail in [5]. For

ease of exposition, we do not present them in their full generality.

In [39], Zähle, Cox & Durrett consider the Kimura stepping stone model on a

torus of side L in Z
2. They show, in particular, that if one samples a finite number of

individuals uniformly at random from the torus, then as L → ∞, measuring time in

units of O(L2 logL), the genealogy of the sample converges to a Kingman coalescent.

Let’s begin by trying to understand this result. Suppose that we sample two individuals

according to the uniform distribution on (Z modL)2 and write t0 for the time since their

MRCA. We divide t0 into two phases. The first, of duration T0, is the period until the

lineages are first in the same deme; the second is the additional period until they actually

coalesce. The first observation of [39] is that T0/(L
2 logL) converges to an exponentially

distributed random variable as L→ ∞; the second is that the additional time, t0−T0, is

asymptotically negligible in the timescale L2 logL. They consider several cases, in some

of which the local population density can be very big, but in the scenario we consider

here it is O(1). The extension to larger samples uses the fact (which we already see

reflected in the exponential distribution of T0/(L
2 logL)) that the time L2 logL is long

enough for a random walk to reach its mixing time on the torus of side L in Z
2 and so

at the time when a pair first come into a common deme the positions of the lineages

ancestral to the sample are no longer correlated with their starting points. This gives

exchangeability: each pair of lineages is equally likely to coalesce. Moreover, when a

first pair of lineages comes together, the other lineages are still far apart and so we will

not see ‘multiple’ mergers of lineages.

In order to investigate the reduction in genetic diversity (or equivalently in effective

population size) resulting from the large-scale extinction/recolonisation events in the

spatial Λ-Fleming-Viot process, it is natural to mimic the approach of [39] and work on

a large torus in R
2.

We write T(L) for the torus of side L in R
2. We shall consider two types of event.

Small events will affect uniformly bounded regions. The rate at which we see small

events of radius r will be governed by a σ-finite measure µs(dr) on [0, Rs]. Large events

will affect regions with a radius of O(Lα) for some 0 < α ≤ 1. The rate at which we see

events of radius Lαr will be determined by a σ-finite measure µB(dr) on [0, RB].

More precisely, the dynamics of our population will be driven by two Poisson point

processes:

• small events are driven by Πs
L, a Poisson point process on R+×T(L)× [0, Rs]×(0, 1]

with intensity dt⊗ dx⊗ ξs(dr, du) where ξs(dr, du) = µs(dr)ν
s
r(du);

• large events are driven by ΠB
L , a Poisson point process on R+×L−α

T(L)× [0, RB ]×
(0, 1] with intensity 1

ρL
dt⊗ dx⊗ ξB(dr, du) where ξB(dr, du) = µB(dr)νB

r (du).

The reproduction mechanism is as before except that at a point (t, x, r, u) of ΠB
L , a

reproduction event takes place in the ball centred at Lαx and of radius Lαr. The



Modelling evolution in a spatial continuum 20

parameter ρL determines the relative frequency of small and large events and therefore

their relative importance in shaping the genealogy of a sample.

Of course, since the sum of two independent Poisson processes is again a Poisson

process, this is the same as the model of Definition 3.1, but we have divided the driving

Poisson Point Process into two parts in order to disentangle the respective effects of

large and small events on the genealogical trees.

It is important to understand that the effect of large scale events here is very

different from that of adding long range dispersal in a classical stepping stone model.

Rather than a single offspring being born at a very large displacement from its parent,

here as a result of a ‘big’ event offspring of a single parent replace a proportion of

the population at every point within a large ball. If we wish to approximate a stepping

stone model with long range dispersal within this framework, then we must do something

analogous to the scalings of §5.3 in which the proportion of the population within the

affected region which is replaced during a reproduction event shrinks to zero. We are

unaware of the existence in the literature of a proof, in that setting, of an analogue of

Theorem 4.1.

Without the large events, the model is very much like the stepping stone model and

so by analogy with the results of [39] we expect that on timescales of O(L2 logL) the

genealogy of a uniform sample from the torus should look approximately like a Kingman

coalescent. Our first result says that for any α < 1 the genealogy of a uniform sample

will still be close to a Kingman coalescent, but the timescale can depend on both big

and small events. To understand that timescale, let us consider just two lineages. As

for the stepping stone model, the time to coalescence can be divided into two phases. If

ρL is not too big, that is large events are sufficiently frequent, then the first phase is the

time that it takes for the two lineages to come within distance 2RBL
α of one another,

so that there is some chance that they will be hit by the same event. The second phase

is the additional time to coalescence which, if ρL is not too big, will be triggered by

a large event. If, on the other hand, ρL is big, then large events are too infrequent to

alter the genealogy and the coalescence will be caused by a small event. The first phase

is then the time to come within distance 2Rs and the second is the additional time to

coalescence. The transition between the two regimes is, as one expects from the results

for the stepping stone model, when ρL ∝ L2 logL.

To state a more precise result, let σ2
s (resp. σ2

BL
2α/ρL) denote the variance in the

displacement of a single ancestral lineage in one time unit due to small (resp. large)

events.

Theorem 4.1 (Special case of Theorem 3.3 of [5]) Define

ωL =



















(1−α)ρLL2 log L

2πσ2
B

L2α if L2α

ρL
→ ∞,

(1−α)L2 log L
2π(σ2

s+bσ2
B

)
if L2α

ρL
→ b ∈ [0,∞),

L2 log L
2πσ2

s
if L2 log L

ρL
→ 0.

Then if we measure time in units of ωL the genealogy of a uniform random sample from
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T(L) converges in law to the Kingman coalescent.

In particular, we see that big events can change the effective population size, even though

the genealogy is asymptotically determined by a Kingman coalescent. Importantly, in

this case coalescence may be due to large scale events, but asymptotically even the large

scale events capture at most two lineages at a time.

For α = 1, so that big events affect a significant proportion of the species range,

the picture is much richer:

Theorem 4.2 (Summary of Theorem 3.7 of [5]) Suppose that α = 1.

(i) if ρL/L
2 → b, rescaling the torus by 1/L, on timescale L2 the genealogy converges

to a spatial Λ-coalescent on T(1) in which, between mergers, lineages follow

independent Brownian motions;

(ii) if ρL/(L
2 logL) → β, on timescale L2 logL the genealogy converges to a (non-

spatial) Λ-coalescent;

(iii) if ρL ≫ L2 logL then on timescale L2 logL the genealogy converges to a Kingman

coalescent.

In particular, in the first two cases the limit is no longer a Kingman coalescent and we

are seeing effects of the large scale events that cannot be captured through a simple

timechange of the classical Kingman coalescent.

We refer to the original article for exact expressions for the parameters in the limits

and content ourselves with trying to understand why the limits take these particular

forms. Once again L2 logL arises as the mixing time of a random walk making jumps

of size O(1) over T(L). In the first scenario, the diffusive rescaling gives rise to the

Brownian motion of ancestral lineages in between large events. In this case the mixing

time has not been achieved when the first large event is seen, so lineages still have

some memory of their starting position at that time and the coalescent retains some

spatial structure. Since large events encompass a positive fraction of the torus, we

may see multiple mergers of ancestral lineages. In the second case, the mixing time

is achieved before we see a large event, and so the limiting coalescent has no spatial

structure. For each surviving lineage, when a large event arrives its chance of being

in the region affected by the event is just the proportion of the torus covered by the

event, irrespective of its starting position and independent of all other surviving lineages.

Moreover, in between large events, which are separated by times of O(L2 logL), we may

see some pairwise coalescences due to small events, leading to a Kingman component

in the limiting coalescent. In the last case, all coalescence is dictated by small events,

before the first large event arrives.

4.2. Comparison with the Wright-Malécot formula

In the previous section we saw that large-scale extinction/recolonisation events certainly

have the potential to reduce effective population size. In §3.1 we also suggested that they

could explain correlations in allele frequencies over large spatial scales. In particular,



Modelling evolution in a spatial continuum 22

Figure 2. The logarithm of the probability of identity of two individuals as a function

of their spatial separation under three different scenarios: just small events, just large

events and a mixture of the two. The impact of the large events in this last case is

seen by the replacement of one initially approximately exponential rate of decay by a

slower rate of decay at larger initial separations.

whereas the Wright-Malécot formula predicts approximate exponential decay in the

probability of identity in state of two individuals as a function of their separation, we

expect an approximately exponential decay over relatively small scales to be replaced by

a slower rate over larger scales. Figure 2 is a simulation of the two-dimensional version

of our model by Jerome Kelleher. It shows the logarithm of the probability of identity of

two individuals as a function of their separation x under three different scenarios: just

small events, just large events, and a mixture of the two. Since we haven’t discussed

incorporation of mutation in our model, this should be interpreted as the generating

function of the time to the MRCA of the two individuals. With just one size of event,

we see the approximately exponential decay of the Wright-Malécot formula, one of the

characteristics one would hope for from a ‘continuum stepping stone model’. When we

have a mixture of small and large events we see the rate of decay of identity decrease as

spatial separation increases, suggesting that large scale extinction/recolonisation events

really do provide one possible explanation of this pattern in observed allele frequencies.

4.3. Introducing Recombination

The results of §4.1 and §4.2 certainly support our claim of §3.1 that large scale

extinction/recolonisation events could explain both long range correlations in allele

frequencies and moderate levels of genetic diversity. However, we still lack observable

measures to distinguish alternative models. For example, Fig. 2 rests on a pairwise
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measure and could equally be derived from a stepping stone model with long range

dispersal. A possible route to finding such measures exploits the third shortcoming of

classical models that we pointed to in §3.1. Whereas under classical models all but

tightly linked loci will evolve independently of one another, under our model spatial

patterns of different - even unlinked - loci will be correlated.

We focus on the case of just two loci. Due to recombination, one offspring can

inherit its types at the two loci from different parents. As a result, as explained in §1,

the ancestry of a sample from the population is encoded in a complex branching and

coalescing web in which branches arise through recombination and coalescences through

shared ancestry.

There are very few mathematical studies of correlations across loci for spatially

structured, selectively neutral populations. Wakeley & Lessard ([40]) work in the context

of Wright’s island model in which demes sit at the vertices of a complete graph. They

compute the means, variances and covariances of coalescence times at the two loci, but

this does not capture the two-dimensional spatial structure in which we are primarily

interested. Zähle et al. ([39]), as an application of the results cited in §4.1, compute

the probability of seeing a recombination before a coalescence, but do not study the

probability that two recombinant lineages quickly coalesce again, causing correlations

to remain strong. As a consequence they do not compute explicitly their measure of

‘linkage disequilibrium’ which involves the covariance in coalescence times across loci.

De & Durrett ([41]) simulate an island model and the stepping stone model, and show

that there are significant differences in their genealogies. In particular, the stepping

stone structure increases the chance that the genealogies at the two loci are perfectly

correlated (as indeed is confirmed by our results below).

To probe correlations in coalescence time across loci in our setting, we must extend

our model.

In [8] we extend the spatial Λ-Fleming-Viot process of Definition 3.1 in two ways.

The first is to incorporate recombination. The second addresses an obvious criticism

of the models described so far: one would expect multiple ‘founders’ in a large scale

extinction/recolonisation event, not just one. In fact, in [8] we allow multiple parents

in events at any scale.

Our approach is a simple modification of the framework described in §4.1. Small

and large events will be driven by two independent Poisson Point Processes. For

any parameter L, we fix a fraction rL ∈ (0, 1] of recombinants. During a small

event (t, x, r, u), a random integer Ns ≥ 1 is drawn from a fixed distribution, and

Ns parents are chosen independently and uniformly at random within the area of the

event. We write (ai, bi) for the types carried at the two loci by the ith parent. Then for

y ∈ Br(x), (8) is replaced by

ρ(L)(t, y, · ) = (1 − u)ρ(L)(t−, y, · ) +
u(1 − rL)

Ns

Ns
∑

i=1

δ(ai,bi) +
urL

Ns(Ns − 1)

∑

i6=j

δ(ai,bj). (13)

In words, a fraction 1 − u of the local population remains unchanged and a fraction
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u(1 − rL) (resp., urL) is replaced by non-recombinant (resp., recombinant) offspring of

the Ns parents. We assume that recolonisation is so rapid after a large scale extinction

that the effects of recombination during large scale events can be ignored and so, for

large events, (13) is replaced by the corresponding expression with rL = 0. Of course the

distribution of the number of parents chosen can differ between large and small events.

To understand correlations in patterns at the two different loci, we investigate the

genealogical trees corresponding to these loci. The main result of [8] considers a sample

of size two, but is easily extended to larger samples. It states that there is a critical

sampling distance

D∗
L ≈ Lα

√

1 +
log ρL

rLρL
,

such that if our individuals are sampled at pairwise distances larger than D∗
L, the

genealogical processes corresponding to each locus become independent as the torus

side L tends to infinity. On the other hand, if our individuals are sampled at pairwise

distances less than D∗
L, asymptotically one sees a first phase of complete correlation

between the genealogies at different loci, followed by a sudden decorrelation. In other

words, asymptotically, coalescence events occurring before a ‘decorrelation threshold’

(which can be described explicitly) are completely correlated at the two loci, but

conditional on being greater than this threshold they are independent.

The key idea is one of ‘effective recombination’. Because recombination events

result in two ancestral lineages at a small spatial separation, we can expect that many

of them will rapidly be followed by a coalescence (due to small events). We declare a

recombination event to be effective if at least one of the lineages resulting from the event

is hit by a large event before such a coalescence. The phase of complete correlation is one

in which there are no effective recombinations. The transition to complete decorrelation

is when effective recombination kicks in.

These results not only provide a very good understanding of the mechanisms leading

to decorrelation, but also a good picture of the local correlations. As a consequence,

they suggest appropriate tools for inference of the parameters of local evolution, and to

test for the presence of large events impacting the genetic diversity of the population.

These two points are the main goals of [42].

As concerns inference, it is clear that the number of parameters involved in the

definition of the spatial Λ-Fleming-Viot process is much too large to hope for any

exhaustivity. However, recalling the small number of relevant quantities in the Wright-

Malécot formula (5) and the comparison presented in §4.2, one can try to recognise the

combinations of parameters which, not only matter, but are also observable in data.

Following Theorem 4.1, a quantity which one might call effective population size is the

timescale over which the genealogy of a sample is given by the Kingman coalescent: for

large L’s,

Ne = ωL ∝
{

L2 logL if large events are rare,

ρL

L2α L
2 logL if large events are frequent.
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However, this is only the correct timescale for lineages that are sampled at very large

distances from each other, and combines the contribution of both small and large events

in the evolution of the population. As we can see from the beginning of the slope in

Fig. 2, on much smaller spatial scales, small events may induce the coalescence of close-

by lineages before they experience any large event. Consequently, one has to choose an

appropriate sampling distance to disentangle the effects of events of different orders of

magnitude.

Assuming that some biological considerations give us a good idea of the mean radius

Rs of a small event, the strategy developed in [42] consists in sampling a few individuals

at distances of the order of 10 or 100 times Rs, and considering their genealogies at many

loci. We suppose that, during each reproduction event, each link between two adjacent

loci can be broken by recombination with some small probability, while, with a smaller

probability still, each site can mutate into a new state, never seen before. Using the

analysis carried out in [8], in [42] we derive an approximation of the law of the length of

conserved sequences between two individuals, i.e. of the number of consecutive loci that

are in identical state in the two individuals. We show that this length has a geometric

distribution, whose parameter is a function of the probability that two lineages, having

just recombined, manage to escape far from each other for a time long enough that

one of them may be hit by a mutation (which will then be the end of the conserved

sequence). Although this function is rather complex, it can be used as the basis for a

maximum likelihood approach to the inference of local evolutionary parameters.

4.4. Patterns of allele frequencies

Our results so far have focussed on the genealogical trees relating individuals sampled

from far apart. We now turn to the patterns of allele frequencies generated by our model.

We are interested in large scale structures, where the fine details of the construction

won’t influence the results, but in contrast to Theorem 4.1, not so large that all spatial

information is lost.

From now on we revert to our basic model of Definition 3.1. In particular, the

underlying geographical space is R
d rather than the torus. We specialise to just two

types of individual which we label {0, 1} and then our probability measure on type space

can be replaced by

w(t, x) = ρt(x)({1}),
the proportion of 1s at x at time t.

A rather unnatural feature of the model is that once a type is present, provided

u is never 1, that type can never be lost: there will always be a trace of its presence.

It is natural to ask whether, if a mutation is initially confined to a bounded region, it

will have compact range (that is it will only ever be seen in a compact region) or if

it will eventually be spread across the whole of R
2. This question was resolved in an

important special case in [43]. Saadi specialises to the case ξ(dr, du) = δr ⊗ δu for some

r ∈ (0,∞) and u ∈ (0, 1). Moreover, for convenience, he takes a slight modification
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Figure 3. A snapshot of the interface between two types when we take u = 1 and a

fixed radius of event sizes. The initial condition was a half plane of each type.

of our model in which the parent, instead of being sampled uniformly, is always at

the centre of the ball affected by the event. He uses an elegant martingale argument

to show that if a mutation is initially confined to a bounded region then its range is,

with probability one, bounded. So for events of fixed radii, the range of a mutation

is bounded. However, this doesn’t provide any information about the shape of the

region in which the mutation is eventually represented, nor about the extent to which

we can expect to see different genetic types coexisting. In [7], a more detailed analysis

of the ‘interface’ between different types is undertaken. The results are for the spatial

Λ-Fleming-Viot process in R
d with two different types. We start from a half plane of

type 1s and a (complementary) half plane of type 0s, that is we take the initial condition

w0 = 1H where H = {x ∈ R
d : x1 ≤ 0} (and x1 is the first coordinate of x). In one

spatial dimension, this reduces to the Heaviside function. Figure 3 shows a snapshot

of the population if we take ξ(dr, du) = δr ⊗ δ1. Even with u = 1, so that w(t, x) is

the indicator function of a random set and there are no points in space at which both

types are represented, the interface between the two types is very complex, but it is

reasonable to hope that if we ‘zoom out’ and look over large spatial and temporal scales

then some order might emerge.

The key tool in the analysis is moment duality. (Here we modify our notation for

the expectation of a random variable and write E[X(t)|X(0) = x] = Ex[X(t)].)

Theorem 4.3 (Special case of Theorem 4.2 and §4.2 of [5]) Sample individuals

from locations x1, . . . , xj and write ξ1
t , . . . , ξ

Nt

t for the locations at time t of lineages

evolving according to the spatial Λ-coalescent of §3.5. Then for each ψ ∈ C
(

(Rd)j
)

∩
L1 (dx⊗j) and every t ≥ 0,

∫

(Rd)j

ψ(x1, . . . , xj)E [w(t, x1) · · ·w(t, xj)|w(0, ·) = w0(·)] dx1 . . . dxj
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=

∫

(Rd)j

ψ(x1, . . . , xj)E
[

w0(ξ
1
t ) · · ·w0(ξ

Nt

t )
∣

∣N0 = j, ξ1
0 = x1, . . . , ξ

j
0 = xj

]

dx1 . . . dxj.

This is a sort of ‘weak’ moment duality. It implies that

E

[

j
∏

i=1

w(t, xi)

∣

∣

∣

∣

∣

w(0, ·) = w0(·)
]

= E

[

Nt
∏

i=1

w0(ξ
i
t)

∣

∣

∣

∣

∣

N0 = j, ξ1
0 = x1, . . . , ξ

j
0 = xj

]

(14)

for Lebesgue almost every (x1, . . . , xj). This can be compared to the corresponding

equation (3) for the stepping stone model.

We consider two cases. In the first we allow only small events, whereas in the

second we also include large events.

CASE A. For the first result we take ξ(dr, du) = δr⊗δu for fixed r ∈ (0,∞) and u ∈ (0, 1].

A single ancestral lineage will evolve according to a random walk with bounded jumps.

This suggests that, if we are looking for large-scale patterns, we should apply a diffusive

rescaling, under which the motion of an ancestral lineage will converge to Brownian

motion. We therefore set

wn
t (x) = w(nt,

√
nx) (15)

and start from w0 = 1H.

Theorem 4.4 (Theorem 1.1 of [7]) There exists a random space-time field {w(2)
t (x),

x ∈ R
d, t ≥ 0} such that wn → w(2) as n → ∞ in the sense of weak convergence of

‘almost all’ finite dimensional distributions. Equivalently ρn → ρ(2) in distribution where

ρ(2) has density w(2).

Furthermore, writing {B(2)
t }t≥0 for a standard Brownian motion, there is a σ2 > 0

such that if p2(t, x) = Px[B
(2)

uσ2t ∈ H], then

(i) in d = 1, w(2) is a random field of correlated Bernoulli random variables such that

E[w
(2)
t (x)] = p2(t, x) almost everywhere;

(ii) in d ≥ 2, w(2) is deterministic and w
(2)
t (x) = p2(t, x) almost everywhere.

The correlations between the Bernoulli random variables are given by an analogue

of (14). There are two important observations:

(i) in one dimension there is no coexistence of types: at a given site w
(2)
t (x) ∈ {0, 1};

(ii) the ‘speed’ of evolution is proportional to the parameter u.

Theorem 4.4 tells us that in d = 1, under the diffusive rescaling (15), the limit is the

indicator function of a random set. Indeed w
(2)
t is equal in distribution to 1

x≤B
(2)

uσ2t

.

To see why, note that the dual process of coalescing lineages converges to a system

of coalescing Brownian motions which coalesce instantaneously on meeting (c.f. §4.1).

In one dimension, the Brownian motions can never cross and so it is impossible for a

lineage of type 0 to start to the left of a lineage of type 1. In two dimensions, just as in

the diffusive limit of the Kimura stepping stone model, since two independent Brownian

motions will never meet, the system of allele frequencies reduces to heat flow.
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With this very special choice of ξ(dr, du), the model is very similar to the voter

model. In [44], Cox, Durrett & Perkins showed that under a suitable rescaling, in d ≥ 2

the voter model converges to superBrownian motion. The difference in their setting is

that they take a sparse initial condition.

CASE B. We now investigate what happens when we introduce some large scale events.

Since we are hoping for a nice scaling limit, we choose the rate of those events in such a

way that the motion of a single ancestral lineage will scale to a symmetric stable process.

One way to do this is to keep u ∈ (0, 1] fixed and take

µ(dr) =
1

rd+α+1
1r≥1dr (16)

for α ∈ (1, 2) a fixed parameter (and d the spatial dimension). We then define

wn
t (x) = w(nt, n1/αx).

Theorem 4.5 (Theorem 1.5 of [7]) There exists a random space-time field {w(α)
t (x),

x ∈ R
d, t ≥ 0} such that wn → w(α) as n → ∞ in the sense of weak convergence of ‘al-

most all’ finite dimensional distributions. Equivalently ρn → ρ(α) in distribution where

ρ(α) has density w(α).

Furthermore, there is a symmetric α-stable process B(α) such that, for all t ≥ 0,

w(α) is a random field of correlated Bernoulli random variables such that

E[w
(α)
t (x)] = pα(t, x) := P[B

(α)
ut ∈ H] almost everywhere.

Notice that once again the ‘speed’ is proportional to u. This time, however, the limit

is stochastic in all dimensions. At first sight this is surprising. In Case A above (which

we shall refer to as α = 2), the limit in d ≥ 2 was deterministic since the genealogy

of a sample was asymptotically determined by independent Brownian motions which

never meet. It is also the case that independent symmetric α-stable processes with

index α ∈ (1, 2) will not meet in d ≥ 2. However, the genealogy does not reduce to

independent processes. As a result, the patterns of allele frequencies that we observe

are quite different from those we would see in a stepping stone model with long range

dispersal. Here we see local fixation of types, with strong geographic correlations. There

we would see the analogue of Theorem 4.4(ii) with p2 replaced by the corresponding

expression for a symmetric stable process.

Let us try to understand heuristically why any pair of lineages will coalesce in a

finite time even in d ≥ 2.

Suppose that two lineages are at separation x. Take some k > 1. For any r > kx

there is a region with volume proportional to rd such that any event of radius r whose

centre lies in the region will also contain both lineages. Thus the total rate at which

the lineages are both ‘caught’ by a big event is at least

Const.

∫ ∞

kx

rdµ(dr) = Const.

∫ ∞

kx

rd

rd+α+1
dr ∝ 1

xα
.
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If the lineages were evolving independently, then their separation at time t would satisfy

x(t) ∼ t1/α. Of course they are not evolving independently, but censoring events that

are big enough to capture both of them should, if anything, slow down the rate at which

they move apart and so one estimates that they will be captured by a big event at

rate at least C/(x(t))α ∼ C/t and since
∫ ∞

1/tdt = ∞ they will coalesce in finite time

almost surely. Of course this is far from a proof, but in [7] it is replaced by a rigorous

argument.

Unlike Case A, in d = 1 lineages can now jump over one another. The limiting

object will still look like the indicator function of a random set, but the structure of

that set will be complex. Fig. 4 shows some simulations. Essentially what happens is

that from time to time a large event falls on a region in which we see both 0s and 1s,

resulting in an ephemeral state in which there are non-trivial proportions of both types

throughout the affected region, but that region is rapidly resolved by the much more

frequent small events into regions of no coexistence. In the limit we only ever see the

result of this process of resolution. Thus, even when u < 1, the limit is the indicator

function of a random set. Our methods, which are based entirely on the moment duality

of Theorem 4.3, are not strong enough to capture any information about the dynamics

of the limit and nor do we have any more detailed results on the structure of the random

set at a fixed time. Fig. 5 shows a simulation in two dimensions. Although, at first sight,

of more mathematical than biological interest, these results show that predictions of our

model can differ greatly from those of classical stepping stone models and, in particular,

point to the fact that the presence of large scale events can be expected to result in very

complex spatial patterns of allele frequencies.

When α = 2 and d = 1, the rescaling (15) resulted in a Heaviside limit. We have

several times made the analogy between this special form of the model and the stepping

stone model and as we said in §2.3, under the diffusive scaling, in one dimension the

stepping stone model rescales to the stochastic p.d.e.

dp =
1

2
∆pdt+

√

γp(1 − p)W (dt, dx). (17)

The difference here is that we held the parameter u fixed. Recall from §3.6 that u

should be thought of as inversely proportional to neighbourhood size and from §2.1

that the form of the genetic drift in the stepping stone model arises from very large

neighbourhood size. This suggests that if we were to allow u to tend to zero as n→ ∞
(and so neighbourhood size to tend to infinity) we could obtain the stochastic p.d.e. (17)

as a rescaling limit of our model. This will be a special case of the results of §5.3,

but there we should like to work in a more general setting which incorporates another

evolutionary force, natural selection.
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Figure 4. Case B of §4.4 in d = 1 on a line of length 20. (a) initial conditions; (b)

After 100 events: full range; (c) After 100 events: zooming in; (d) After 106 events:

full range; (e) after 106 events: zooming in. Parameters: u = 0.8, n = 104 and α = 1.3.
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(a) (b) (c)

Figure 5. Case B of §4.4 in two dimensions after (a) 105; (b) 106; and (c) 107 events.

We have a square range of edge 8, and the initial patch is a circle of radius 4 with

frequency 0.8 (white is frequency 1, black is 0). The model parameters are: u = 0.8,

α = 1.3 and n = 103.

5. Introducing selection

5.1. Selection in the Wright-Fisher and Moran models

There are many ways of introducing selection into a model for allele frequencies and

indeed many different forms of selection that one might wish to model. We concentrate

on the simplest type of directional selection.

For the Wright-Fisher model, one would typically weight the choice of parental

type. Thus, if at generation t a proportion p of the population is of type a, then the

probability that the parent is of type a is p/(1 + s(1 − p)) and the probability that it

is type A is (1 + s)(1 − p)/(1 + s(1 − p)). For s > 0, this gives an advantage to type

A individuals. If we wish to arrive at a diffusion limit, we take s ∝ 1
N

and then in the

limit as N → ∞, on the diffusion timescale, we arrive at

dp = −σp(1 − p)dt+
√

p(1 − p)dWt (18)

as a model for allele frequencies.

It is straightforward to find a moment dual for this system. First apply Itô’s formula

to pn
t for n fixed to obtain

d(pn
t ) = nσ

(

pn+1
t − pn

t

)

dt+

(

n

2

)

(

pn−1
t − pn

t

)

dt+ dMt

where Mt is a martingale. Now choose {n(t)}t≥0 to be the birth-death process with

rates
{

n 7→ n+ 1 at rate nσ,

n 7→ n− 1 at rate
(

n
2

)

.

Then it is elementary to check that

d

ds
E

[

p(s)n(t−s)
]

= 0
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so that

E
[

p(t)n(0)
]

= E
[

p(0)n(t)
]

, (19)

which should be compared to equation (1).

Another way to obtain the same limiting model for allele frequencies is via a Moran

model. Recall that in the neutral Moran model, at rate
(

N
2

)

a random pair is selected

from the population, one dies and the other reproduces. To mimic the effect of the

selection in the Wright-Fisher model above, we bias the choice of parent. Thus if the

pair picked consists of one type a and one type A individual, then with probability

(1 + s)/2 it is the type A that reproduces. It is sometimes convenient to think of there

being two types of event: neutral events, which occur at rate (1− s)
(

N
2

)

, and ‘potential

selective events’ which happen at rate s
(

N
2

)

. At a potential selective event, if the pair

of individuals chosen consists of one a and one A then with probability one it is the A

that reproduces. This is simply a reformulation and does not change the process. Once

again taking s ∝ 1/N and letting N → ∞ we obtain equation (18) as the limiting model

for allele frequencies.

The moment duality (19) is easy to understand in the Moran context. If we take

a sample of size n from the population at time t, then the left hand side of (19) is

the probability that they are all of type a. Neutral events correspond to coalescence of

ancestral lineages as in §2.1, but when one of our lineages is hit by a potential selective

event, which happens at rate σ, in order for that lineage (which is an offspring of the

event) to be type a, it must be that both the potential parents sampled in the event

were of type a. To confirm this, we must now trace back two ancestral lineages, hence

the birth in the moment dual.

The branching and coalescing structure swept out as we trace ancestry in this

way is known as the ancestral selection graph. It was introduced in work of Krone &

Neuhauser ([45, 46]). They included mutation between the two types a and A in the

population, thus ensuring the existence of a stationary distribution for the process of

allele frequencies. They were then able to recover the true genealogical tree of a random

sample from the population (at stationarity) using the ancestral selection graph. Our

argument only provides a weaker result.

5.2. A simple model

There are also many ways to introduce selection into our spatial model for allele

frequencies. Any parameter of the model could depend on genotype. Moreover,

parameters might depend both on the genotype of any individual involved (e.g. the

parent) and on the local allele frequency. However, here we focus on an analogue of the

directional selection of §5.1.

A natural model mimics our approach in the Wright-Fisher model: rather than

selecting a parent uniformly at random from those present in the region affected by an

event, we choose in a weighted way. Thus if the proportion of a-alleles in the region

immediately before the event is w̄, then the probability that the parent chosen is of type
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a will be w̄/(1+s(1− w̄)). Notice that this does not require s to be small, and so can, in

particular, be used to model strong selection. Moreover, there is no more computational

effort in modelling strong selection than in modelling weak selection. However, since

our aim at this stage is to make contact with established models, we focus on weak

selection. In this case, we rewrite the probability of choosing a type a parent as

w̄

1 + s(1 − w̄)
= w̄ − sw̄(1 − w̄) + O(s2) = w̄(1 − s) + sw̄2 + O(s2) (20)

and that of choosing a type A parent as

(1 + s)(1 − w̄)

1 + s(1 − w̄)
= (1 − s)(1 − w̄) + s(1 − w̄)2 + 2sw̄(1 − w̄) + O(s2).

Up to an error of O(s2), we can then decompose our Poisson process of events into two

types. Neutral events, in which the parent is simply chosen at random, are driven by a

Poisson process with intensity (1− s)dt⊗ dx⊗ ξ(dr, du). Additional ‘potential selective

events’ are driven by a second Poisson point process with intensity sdt⊗ dx⊗ ξ(dr, du).

At such an event two potential parents are chosen. If at least one of them is of type

A, then we will have a type A parent, otherwise the parent is type a. This of course

mirrors what we saw in the Moran model of §5.1 and, in much the same way as there,

we can identify a branching and coalescing (weak) moment dual. We can develop the

power series in (20) to higher order in s to achieve greater accuracy, but truncating at

the term corresponding to sk will result in a moment dual in which lineages branch into

k + 1.

5.3. One dimension - recovering a stochastic p.d.e.

There is a huge body of work on the fate of a selectively advantageous (or

disadvantageous) allele in a spatially structured population, but the difficulties that

we encountered with the pain in the torus are reproduced here. In two (or more) spatial

dimensions, classical models either treat the population as subdivided or they ignore

genetic drift and are deterministic. In one spatial dimension, most work focuses on

either deterministic or stochastic versions of the Fisher-KPP equation. This takes the

form

dp =
1

2
∆pdt− σp(1 − p)dt+ ǫ

√

p(1 − p)W (dt, dx). (21)

When ǫ = 0 this equation is extremely well understood. It was already studied by Fisher

as a model for the way in which a favoured mutation spreads through a population. The

equation with noise admits a stochastic travelling wave solution, but the effect of the

noise is to slow down the spread of the mutation and there has been much recent interest

in understanding exactly how ǫ influences the wavespeed ([47, 48]).

Our aim in this section is to explain how one can obtain (21) as a scaling limit from

our model. Details of the calculation can be found in [49]. Here we just explain how

to find the correct scaling. The purpose of this is to identify the regime in which our

model will behave in the same way as classical stepping stone models and therefore the
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appropriate parameter regimes to consider if we wish to emulate the classical approach.

Different scalings will, of course, lead to different limits.

Suppose that the events in our model all have the same radius r, say. As intimated

at the end of §4.4, in order to obtain a stochastic p.d.e. in the limit, we expect to have

to let the parameter u tend to zero as part of our rescaling and so we set un = 1/nγ,

where γ is to be chosen. Consider the rescaled process

w(nt, nβx)

where β is also to be determined. From §4.4 the ‘speed’ of an ancestral lineage scales

with u, thus in order that the combined effect of these scalings is that ancestral lineages,

individually, follow Brownian motions (which is what we expect if we are to see the

Laplacian in (21)), we need that nun = n2β . In other words

2β + γ = 1.

We also know that in the Moran model, the ratio of the rate of reproductive events to

potential selective events must be proportional to n if we are to obtain a diffusion limit.

If we set sn = σ/nδ, the analogous condition here is nun ∝ nδ (the left hand side being

the effective timescale). Putting this together, we see that we should define

wn
t (x) = w(nt, n1/3x), with un =

u

n1/3
, sn =

σ

n2/3
.

It is proved in [49] that this does indeed yield (21) in the limit as n→ ∞.

One can perform analogous calculations with events of fixed radius replaced by

events governed by the measure µ of (16). If one uses the same parameter s irrespective

of the size of the event, then one obtains the stochastic p.d.e.

dp = ∆αpdt− σp(1 − p)dt+ ǫ
√

p(1 − p)W (dt, dx)

in the rescaling limit, where ∆α is the infinitesimal generator of a symmetric stable

process of index α. Notice, in particular, that the large scale events don’t affect the

term due to selection or, unlike the parameter regime of §4.4, the form of the noise.

This reflects the fact that we must take un → 0 in order to mimic the stepping stone

model.

Since the stochastic Fisher KPP equation has no solution in dimension two (or

more), the corresponding rescaling can only yield a solution to the deterministic equation

in higher dimensions. However, for finite n our model makes perfectly good sense in any

dimension and provides a natural framework in which to study selection in a spatially

distributed population. The scaling of parameters above guides us if we wish to replicate

classical results. Figure 6 shows a snapshot of a population evolving according to this

model for finite n. An alternative approach to using our model is of course to use the

Kimura stepping stone model (2) with an additional term spi(1−pi)dt on the right hand

side to model selection. Notice that in contrast to that setting, in Fig. 6 the range of
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Figure 6. A snapshot of the wave of advance of a selectively advantageous mutation

under the model of §5.2.

the compact allele is compact at all times. In the stepping stone model it is present at

all sites of Z
2 at any positive time. This is an artefact of the discrete deme structure,

the same is not true of solutions to (21). In order to obtain a picture that more closely

resembles what one sees for the stepping stone model, we must take a smaller value of

u. Although much of the work on equation (21) has been devoted to understanding the

behaviour for small values of the parameter ǫ, corresponding to very weak genetic drift,

there has been some interest in understanding the strong noise limit ([50]). In order

to understand strong genetic drift in our framework we simply keep u macroscopic. In

that setting, if we take a strong selection limit we obtain a growth model which can be

compared to that of, for example, [51].

6. Related models

In this brief section, let us mention some closely related models that have been studied

by others.

There is a huge literature on λ-coalescents (without space). We refer to [52] for an

excellent review. Although we have used the term spatial Λ-coalescent for the process of

coalescing ancestral lineages of §3.5, that name was already used by Limic and Sturm

[53] for a somewhat different process. Limic and Sturm suppose that the population is

subdivided into discrete demes. Ancestral lineages migrate between demes and whenever

there is more than one lineage in a deme they are allowed to coalesce according to a

Λ-coalescent. This is a natural extension of the structured coalescent dual to Kimura’s

stepping stone model which we described in §2.2. They also follow [39] in considering

the effect of sampling at random from a large torus. They work in dimensions d ≥ 3

(althought the same results would hold in d = 2) and, as one expects, recover a Kingman

coalescent with an effective population size. However, since they only allow coalescence

within demes, they cannot recover the multiple merger coalescents that we obtain in

Theorem 4.2. The time to coalescence in their setting is dominated by the time taken for
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two lineages to meet in the same deme. This dictates the timescale of their coalescent

and, on this timescale, the chance of ever seeing three or more lineages in the same deme

is negligible. This also means that they don’t see the reduction in effective population

size that results from our large events.

There have been many attempts to construct continuum stepping stone models.

The approach of Evans ([33]) that we used to prove existence of our model was originally

devised to construct stepping stone models in continuous geographical space. The idea is

to first construct a coalescent process, in which ancestral lineages evolve independently

until they meet at which point they coalesce, and then show the existence of a forwards in

time model which has this coalescent as its dual. In [54], Liang uses the same technology

to construct two different ‘continuum stepping stone models’ for which the geographical

space is a circle and coalescence of ancestral lineages is no longer instantaneous, but

again occurs only when lineages coincide. As far as we know, ours is the first satisfactory

approach in dimensions bigger than one, where, under classical models of dispersal,

independently evolving ancestral lineages fail to meet.

There are a variety of models that incorporate extinction/recolonisation

events. For example in [55], Kang et al. consider a stepping stone model with

extinction/recolonisation events. However, in their setting such events only affect one

deme at a time and consequently the long range correlations in allele frequencies that

we see in the presence of large events will not be present. Taylor & Véber ([56] consider

island models in which extinction events affect multiple demes, but their underlying

geographical space is much simpler than that considered here.

Since our spatial Λ-coalescent consists of a system of dependent coalescing jump

processes, exact calculations of quantities of interest are only really tractable when

one takes suitable rescaling limits as we have done here. On the other hand, it is

reasonable to hope that if we replace geographical space with a tree-like structure,

then exact calculations will be possible without such a limiting procedure. A natural

candidate is the hierarchical group which is often used to mimic higher dimensional

spaces. The spatial Λ-coalescent on the hierarchical group is the subject of [57]. In

[58], Freeman also works on a geographical space with a hierarchical structure and

considers the corresponding spatial Λ-coalescent. The main novelty in his construction

is that one can allow ‘individuals’ to be hit by events at an infinite rate. The space

is sufficiently simple that interesting questions can be addressed through branching

processes in varying environments, but sufficiently complex that one sees phenomena

not present in the non-spatial setting.

There is a huge amount of work, especially in the physics literature, on spatial

waves of invasion that goes well beyond what we have cited here. We refer to [59] for

a review. For a more general survey of applications of methods of statistical physics in

evolutionary biology we refer to [60].
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7. Directions for future research

Our work fulfils two distinct rôles. First, it provides a convenient model of movement and

reproduction in a truly continuous population. It can be simulated efficiently forwards

in time: on a desktop computer, it is feasible to follow 108 individuals, or (in the

limit of infinite density) up to 103 genotypes. If there is no selection, lineages can be

simulated back through time in a coalescent process that corresponds precisely to the

forwards model. Second, we can include events over a range of scales, allowing both for

individual reproduction, and for large events that affect whole regions; such large-scale

processes are essential to describe real populations. It is the relative rôle of large and

small-scale events that gives greatest scope for future research: in particular, how to

make inferences from genetic data, and in understanding selection over different scales.

A substantial community is devoted to inferring population structure and

demographic history from genetic data, for its own interest, for practical population

management, and to provide a null model against which alleles that affect quantitative

traits can be detected. There are a plethora of methods, ranging from qualitative

inference from genealogies (‘phylogeography’) to quantitative tests, which may be

essentially descriptive (e.g. spatial autocorrelation; [30]) or based on a specific model.

In the latter case, we can distinguish two classes of model: individual reproduction, with

different loci evolving more or less independently (as in Wright and Malécot), or models

where distinct populations diverge and mix (e.g.[61, 62]). Recently, models of isolation-

with-migration that combine elements of both have received attention ([63]). Our model

provides a common framework that has the potential to bring together these different

approaches: it includes both local gene flow and large-scale population movement, but

without imposing artificial boundaries. One focus of our research is to provide a coherent

understanding of the diverse methods in use at present.

It will clearly not be possible to infer all the parameters of our model, even with

the abundant genomic data that are now available. We therefore have two specific aims

in our work on inference: first, to find simple parameter combinations that capture the

main features of the process, and second, to find robust ways to reject null hypotheses:

for example, that there is only local reproduction, or that selection does not act on

particular loci. Here, we may also be able to exploit the fact that with small-scale

events, lineages either coalesce locally in the recent past, or escape into the distant past

- a generalisation of Wakeley’s ‘collecting’ and ‘scattering’ phases (e.g. [64, 65]), first

identified for the island model.

If any parameter of our model depends on individual genotype, or on genotype

frequencies in the local population, then selection will act. There are several

fundamental questions here. What is the relative importance of selection on different

parameters (i.e., on death rate, or probability of being chosen as a parent) and at

different scales? Is there any necessary relation between the classes of event that are

responsible for most coalescence and random drift, and the classes on which selection

is most effective? (For example, local reproduction might have negligible effect on
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random drift, and yet cause the most effective selection.) Which processes most affect

the ‘tension zones’ that bound diverging populations?

The framework can also be used to investigate the interaction between random drift,

gene flow and selection, since it provides a mathematically well-defined model of fine-

scale reproduction. In particular, we are interested in the spread of a favourable allele

through a spatially continuous population, which is dominated by random fluctuations

at the leading edge ([66, 67]). This process distorts variation at linked neutral sites.

Can such spatially extended sweeps be distinguished, either singly, or through their

cumulative effect? Is the signature of spatial hitch-hiking similar to that of large-scale

extinction events?

An abundance of DNA sequence data is now becoming available for a wide variety

of species - almost all of which are spread over a two-dimensional range. We believe

that our framework for modelling reproduction over a range of spatial scales will help

us to understand what such data has to tell us about the evolution of species in nature.
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process. Ann. Inst. H. Poincaré (to appear), arXiv:1107.4254v2[math.PR], 2012.
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