
Can quantitative and population genetics help us

understand evolutionary computation?

ABSTRACT
Even though both population and quantitative genetics, and
evolutionary computation, deal with the same questions,
they have developed largely independently of each other.
I review key results from each field, emphasising those that
apply independently of the (usually unknown) relation be-
tween genotype and phenotype. The infinitesimal model
provides a simple framework for predicting the response of
complex traits to selection, which in biology has proved re-
markably successful. This allows one to choose the schedule
of population sizes and selection intensities that will max-
imise the response to selection, given that the total number
of individuals realised, C =

P
t Nt is constrained. This ar-

gument shows that for an additive trait, the optimum pop-
ulation size and the maximum possible response are both
proportional to

p
C.
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F.2.2 [Analysis of Algorithms and Problem Complex-
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General Terms
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1. INTRODUCTION
Evolutionary biology began with Darwin’s development of

the idea of natural selection, by analogy with the artificial se-
lection of domesticated plants and animals. The rediscovery
of Mendelian genetics in 1900 led to its eventual synthesis
with Darwinian selection; by the 1930s, the population ge-
netics developed by Fisher, Haldane and Wright provided a
sophisticated quantitative theory of evolution [31]. Follow-
ing the elucidation of the physical basis of heredity in the
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1960s, Kimura applied stochastic population genetics to the
evolution of DNA sequence [18]. In parallel, quantitative ge-
netics developed in the practical context of plant and animal
breeding, providing a statistical description of the evolution
of complex traits that is largely independent of the genetic
details.

It was realised very early that selection provides a pow-
erful and general algorithm for designing complex systems:
indeed, this was the central problem which Darwin set out to
explain. Fisher [7] presented a simple geometrical model for
optimisation in multiple dimensions, which has been widely
applied in recent years [28]. Wright [40] introduced the
metaphor of the “adaptive landscape”, and the theory of a
“shifting balance”, to understand how evolution might avoid
being trapped at local optima. Kimura [16] estimated the
amount of information that could be accumulated by selec-
tion

�⇠ 108 bits since the Cambrian). Digital comput-
ers were first used to simulate evolving populations in the
1950’s, and the idea that such simulations could be used to
solve computational problems was taken up soon after [8].
This has led to diverse approaches to evolutionary compu-
tation: genetic algorithms, genetic programming, artificial
life, and so on. Population geneticists also used computer
simulation extensively, yet there has been remarkably little
interaction between these parallel developments.

Why have the fields developed almost independently? Evo-
lutionary biology is concerned with many issues that are not
directly relevant to computation: tracing the actual history
of species and genes, understanding the genetic basis of [phe-
notypic variation and the processes that maintain it, under-
standing the origin of new species, and so on. Yet, natural
selection plays a special role as the sole cause of adaptation,
and understanding how selection leads to complex adapta-
tion is central to both evolutionary biology and evolutionary
computation.

An important di↵erence between the fields is that evolu-
tionary biologists are resistant to ideas that evolution is in
any sense optimal, leading to “progress” or to any necessary
increase in complexity (though, see [35]). This is largely
a reaction against naive ideas that evolution acts “for the
good of the species” (see [39]). Thus, rather than asking
what genetic system would be most e↵ective, we ask what
in fact evolves - which may in extreme cases even lead to ex-
tinction (e.g. [9]). Another di↵erence is that in evolutionary
computation, we are free to make up arbitrary rules - retain-
ing the fittest individuals indefinitely, allowing sex between
more than two individuals, and changing parameters at will.
Nevertheless, actual algorithms tend to use the same basic



processes, and as we shall see, diverse implementations are
often equivalent. The lack of communication between evo-
lutionary biology and evolutionary computation may sim-
ply reflect the human tendency to form separate communi-
ties; indeed, both fields are fragmented into many subfields,
grouped around di↵erent journals and conferences. The
arguments set out here suggest that recombination between
fields as well as subfields would be beneficial.

Evolutionary biology and evolutionary computation share
the same fundamental questions, and can learn much from
each other. First, how e↵ective can selection be? Thinking
on the largest scale, were ⇠ 4,000 million years (Myr) needed
for the present complexity of life to evolve? Could we have
evolved in 400 Myr, or in 40 Myr? What limits the ability
of selection to evolve and maintain complex organisms and
complex algorithms? On a smaller scale, how should we
optimise a selection scheme, given constraints on the num-
ber of organisms and their reproductive capacity, or on the
number of computations? Second, does the genetic system
evolve to be evolvable? In evolutionary biology, a long-
standing question has been whether mutation and recombi-
nation are maintained because these processes produce the
variation that is essential for adaptation; such questions are
close to the parallel questions in evolutionary computation,
of what are the optimal rates of mutation and cross-over,
and how can they be chosen. A harder question - which
has only recently received sustained attention in biology -
concerns the relation between genotype and phenotype [20].
In evolutionary computation, it is clear that the way an al-
gorithm is coded is crucial. It is extraordinary that the
development and behaviour of a complex organism can be
coded by relatively little information (at most 6 ⇥ 109 bits
in the human genome, for example), and that organisms are
robust to random changes in this code.

2. A COMMON FRAMEWORK
The basic theoretical framework is common to both fields.

A genotype is represented by a linear sequence that repre-
sents a DNA molecule or a bit string. In real organisms,
each nucleotide can take four values {A, T,G,C}, but this
is most often approximated by {0, 1}, since there are usu-
ally at most two variants per site. Blocks of sequence can
be represented by multiple discrete values (alleles) or by a
continuous value. Nevertheless, for most cases a bit string
X su�ces.

Selection acts through the fitness of each individual; I take
the fitness of an individual to be the number of o↵spring it
produces after one discrete generation, W , or its rate of re-
production in continuous time, r. A full stochastic model
would require the distribution of fitness of each genotype.
However, when selection is weak, all that matters is the ex-
pected fitness; the variance in fitness determines the rate of
random fluctuation, and can be taken to be the same for all
genotypes. I write the expected fitness of genotype X as
W (X) or r(X), in discrete or continuous time. In evolu-
tionary computation, “fitness” often refers to some measure
that is to be optimised, and reproduction isn some function
of this measure. I will keep to the population genetic usage,
referring to such measures as fitness components, !(X). Of-
ten, we also need to consider a set of traits, whose expected
value is an arbitrary function of genotype, z(X), and which
in turn determine the fitness components, !(z). To give a
concrete example, a cow can be described by a set of traits

(milk yield, growth rate, lifespan, etc), and these depend in
a complex way on both genotype and environment. This
traits in turn determine some selection index, !, which the
farmer uses to determine which cows will breed: for exam-
ple, those below some threshold ail have zero fitness. (Note
that there are complex issues concerning the way we average
over variation at each level, which we ignore).

Crucially, in both the real and the virtual worlds, the re-
lation between phenotype (i.e., the traits, z) and genotype,
X, is inknown. It can be determined for any particular
X by rearing an organism, or by carrying out a computa-
tion, both being expensive. I take this realisation of the
organism or algorithm to determine the cost of the breed-
ing program. Of course, in a computer we directly observe
the code, and in biology, it is now feasible to determine the
entire genome of an organism. However, observing the phe-
notype of even a very large number of individual genotypes
does not tell us which sites cause di↵erences in phenotype,
or how they interact: this fundamental problem frustrates
large-scale genome-wide association studies aimed at finding
the variants that cause human disease. In plant and an-
imal breeding, it is not at all clear how much knowing the
full genome sequence helps.

The basic processes of selection, mutation, recombination
and random sampling are common to both fields. (Migration
between distinct populations may also be important, but is
not considered here). In evolutionary computation, any
kind of mutation or recombination can be invented, but also
in biology, there can be arbitrary errors and rearrangements
in copying the DNA sequence.

Provided that the composition of a population changes
slowly, evolution can be approximated as being continuous
in time, with the details of each process being absorbed into
a single parameter - the selection coe�cient, s, the rate of
random sampling fluctuations, 1 /Ne , the rate of mutation,
µ, and so on. As we shall see, the evolution of allele frequen-
cies at individual loci may be slow, even when selection ion
the overall phenotype is strong. The outcome depends on
the ratios between these rates (Nes , Neµ, etc.); this gives
population genetics a remarkable generality, which carries
over to describe the idiosyncrasies of genetic algorithms.

Under this continuous time approximation, the distribu-
tion of states of the population follows a di↵usion equa-
tion that depends on the mean and variance of change be-
tween generations: there is a precise analogy between the
stochastic evolution of a population, and the di↵usion of a
molecule. In physics, we may deal with an actual collection
of molecules, whereas in population genetics, we must imag-
ine an abstract probability distribution across possible states
of a single population; however, the mathematical descrip-
tion is the same. (The di↵usion approximation developed
independently in physics and population genetics, both trac-
ing back originally to a model for share prices; [5]). Kimura
[18] developed the di↵usion approximation and applied it to
molecular evolution; it is intimately connected with the co-
alescent process that describes the evolution of genealogical
relations between sampled genes.

Even where the di↵usion equation cannot be solved, it
plays a key role in justifying the use of scaled parameter
combinations, and allowing extrapolation from simulations
of small populations over short times out to very large pop-
ulations over long times. Moreover, it provides a precise
connection with statistical physics, which rests on the same
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mathematical foundation.

2.1 Some key results
Although any model can in principle be calculated numeri-

cally, we seek general analytical results that aid our intuitive
understanding. The main di�culty is in dealing with arbi-
trary interactions in the nonlinear relation between genotype
and phenotype, z(X). Nevertheless, there are some gen-
eral results, summarised in Table 1. Most of these results
apply with arbitrary interactions; exceptions are the three
results for genetic load are derived assuming no interaction,
but which extend to allow some forms of interaction.

It is surprising that few results have been transferred be-
tween the fields, or independently re-derived. Perhaps the
most prominent theoretical concept in evolutionary compu-
tation is Holland’s [14] idea of “schema”, which correspond
in population genetics to the average excess of a combina-
tion of alleles; Livnat et al.’s [22] coe�cients of “mixability”
are closely related, and correspond to average e↵ects - a
regression of trait values onto the allelic values. Attention
has been drawn to Wright’s “shifting balance” theory, but
only in a qualitative way [27, 37]. The strongest connec-
tion between evolutionary biology and evolutionary compu-
tation has been made by Mühlenbein and Mahnig [24], whio
use the breeder’s equation to make a deterministic analy-
sis of genetic algorithms; they emphasise the independent
evolution of allele frequencies, which will be the focus of
this note. Several statistical physicists have included the
e↵ect of random sampling on evolving populations; Prugel-
Bennet (1997) describes a maximum-entropy approximation
for trait evolution, whilst [4, 36] independently derive the
stationary distribution in the limit where populations are
close to fixation for a single type. These results are closely
related to Wright’s [41] more general formula for the sta-
tionary distribution of allele frequencies [2, 3].

2.2 Evolution as hill-climbing
I will focus on how selection can most e�ciently accumu-

late favourable alleles, viewing evolution as a hill-climbing
algorithm. This needs some justification, since the cen-
tral problem in optimisation is often seen quite di↵erently:
how to find the best solution, without being trapped at lo-
cal peaks. These di↵erent viewpoints were at the heart of
the long dispute between Fisher and Wright [32]. Fisher’s
view was that although “adaptive valleys” obviously exist,
populations may never rcross them: there may always be
ways by which fitness can increase, especially since in na-
teure, the adaptive landscape changes with the environment.
The metaphor of an adaptive landscape may be misleading
when visualised in two dimensions: if there are enough de-
grees of freedom, progress may always be possible in some
direction. If the landscape were in fact so rugged that
populations are trapped within a few steps, then any seacrh
algorithm would be frustrated: values of individuals already
tested must carry some information about untested individ-
uals, otherwise search might as well be random.

It is important to understand that there are distinct ver-
sions of the adaptive landscape: it may refer tp individ-
uals or to populations, and it may refr to genotypes or
to traits. The first distinction is between the fitness of
an individual, considered as a function of its genotype or
traits (W (X)orW (z)), and the mean fitness of a popula-
tion, considered as a function of its allele frequencies, or

trait means
⇣
W̄ (p)orW̄

⇣
z
⌘⌘

; Wright used these without

distinction [32]. However, it is the latter that leads to
a quantitative theory: selection moves populations through
allele frequency or trait space at a rate proportional to the
gradient of mean fitness, and (provided that genes are well
shu✏ed by recombination) the stationary distribution is pro-
portional to W̄ 2N

e [41].
The second distinction is between the adaptive landscape

in allele frequency space versus trait space. I will assume
a smooth relation between fitness and traits, and ask how
e�ciently selection can push a population towards the lo-
cally fittest trait combination. However, even if there is a
single peak in trait space, there may be multiple peaks in
genotype space: even in the simplest case where traits are
additive, many combinations of + and - alleles can give the
optimal phenotype. However, populations cannot evolve
between di↵erent combinations by selection alone, because
mixed populations will produce sub-optimal genotypes by
recombination. We shall see that despite this microscopic
ruggedness of the landscape, low rates of mutation and ran-
dom sampling can allow populations to evolve smoothly and
predictably at the phenotypic level.

Note that in a large sexual population, if the individual-
level landscape has multiple peaks, then so will the population-
level version - provided that we consider allele-frequency
space: if all single-step changes from the locally fittest geno-
type are deleterious, then none can invade from low fre-
quency, and a fitter combination of alleles will be broken
up by recombination. In contrast, an asexual population
can move towards a higher peak provided that the mutation
rate is high enough that fitter combinations, involving mul-
tiple changes, are generated. A similar smoothing occurs in
a sexual population, when we consider the evolution of phe-

notypic traits: the mean fitness of a population
⇣
W̄

⇣
z
⌘⌘

is

a smoothed version of the individual-level landscape (W(z)),
so that if the genetic variance is high enough, adaptive val-
leys may be smoothed out [19].

2.3 Evolution of allele frequencies
In the following, I assume that alleles are well shu✏ed

(i.e., in linkage equilibrium), so that the composition of a
population is described by its allele frequencies. This is
a good approximation for natural populations if recombi-
nation is faster than other processes, and indeed, applies
to most outcrossing sexual species. In simulations, it can
be imposed by constructing individuals locus by locus, from
the list of allele frequencies; this is a kind of mass meiosis,
in which all the genomes in the population take part, rather
than just two at a time [24]. In a breeding program, the
same result could be obtained by allowing several genera-
tions of reproduction in the absence of selection.

The prevalence of sexual reproduction suggests that nat-
ural selection acts most e�ciently in this limit of complete
shu✏ing. However, it has taken a substantial theoretical
e↵ort to show exactly why this is so, and how it leads to the
selection of higher rates of recombination. Essentially, re-
combination is favoured because it breaks up negative associ-
ations between favourable alleles (++–, –++ etc.), increas-
ing the additive genetic variance that drives the response
to selection. An allele that increases recombination is at
an immediate disadvantage, because it breaks up favourable
gene combinations, but gains a long-term advantage, be-
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Population genetics
Breeder’s equation �z̄ = V

a

V
P

S Va : additive variance
Vp : total variance
S : change in z̄ due to selection

[23]

Wright’s gradient formula �z̄ = Va
@ log( ¯W)

@z̄
[21, 41]

Secondary theorem of natural selection �z̄ = cov
�
W
¯W
, z
�

[30, 34]

Mutation load �

¯W
¯W

⇠ �U U: total rate of deleterious mutation [10, 25]

Substitution load
P

t �log
�
W̄

� ⇠ � log
⇣

1

p0

⌘
p
0

: initial allele frequency [11]

Drift load �

¯W
¯W

⇠ � d
2N

e

d : #of degrees of freedom
Ne : e↵ective populatiuon size

[17]

Wright’s distribution
⇣Q

i p
4N

e

µ�1

i q4Ne

⌫�1

i

⌘
W̄ 2N

e µ, ⌫: rate of mutation away from al-
leles P, Q

[41]

Statistical physics
Fitness flux

⌦
e�N

e

�+�H↵
= 1 � : net fitness flux

�H : change in log likelihood
[15, 26]

Maximum entropy @
@t
hAi ⇠ B. (↵� ↵⇤) [3]

Evolutionary computation

Schema theorem E
h
g
t+1[H]

g
t

[H]

i
� W

t

[H]

¯W
t

(1� ⇡) gt[H] : frequency of H at time t
⇡ : probability that H is broken up

[14]

Drift analysis [12]

Table 1: Table 1 summarises key results from the various fields, in schematic form. The first three lines give

alternative formulae for the change in trait mean, �z̄, due to selection and reproduction, ignoring random

fluctuations. The next three lines give the net reduction in mean fitness (i.e., the genetic load) due to

deleterious mutations at total rate U , due to substitution of an allele that was initially at frequency p
0

, and

due to random sampling (termed drift in population genetics). The final formula drawn from population

genetics gives the stationary distribution of allele frequencies under mutation, selection and random sampling.

The first result from statistical physics relates the change in log likelihood, �H, to the net fitness flux, �,
a measure of the total selection acting along an arbitrary path. The next result approximates the change in

expectation of arbitary traits, A, under selection on those traits ↵; ↵⇤
is the selection that would maintain

the current hAi, and B is a generalised additive genetic covariance. The penultimate result sets a bound

on the change in frequency of a combination of alleles (or schema), H, given by the product of its relative

fitness and its chance of surviving recombination and mutation, 1�⇡. Finally, drift analysis sets bounds on

the number of computations (or runtime) needed to achieve some goal.
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cause it is associated with increased additive variance [1].
The key issue, then, is why there should tend to be nega-
tive associations among alleles. Such associations may be
generated by selection, but this requires a delicate choice
of parameters, for which there is little evidence. More
generally, random drift interacts with directional selection
to generate negative associations: in the simplest case, dif-
ferent favourable mutations almost always arise separately,
and so must be brought together by recombination. This
is known a the Hill-Robertson e↵ect [13]; when a large num-
ber of loci are selected, it is more significant than epistatic
interactions, even in large populations [29]. This justifies
our focus on well-shu✏ed populations.

2.4 The infinitesimal model
Here, I focus on the infinitesimal model, introduced by

Fisher [6]. This has been developed as the foundation of
animal breeding, yet has received relatively little attention
within population genetics. It allows a remarkably gen-
eral analysis of the performance of genetic algorithms, with-
out requiring detailed knowledge of the complex relation be-
tween genotype and phenotype.

At the phenotypic level, the infinitesimal model is easily
defined, Unrelated parents produce o↵spring with trait val-
ues that are normally distributed around the mean of the
parents, with fixed variance V0

2

. If individuals mate ran-
domly, and all have the same fitness, then the population
rapidly tends to a normal distribution with variance V

0

:
random mating reduces the variance twofold in each gen-
eration, but this is compensated by the release of genetic
variance within families (i.e., Vt+1

= V
t

2

+ V0
2

). Selection
can produce arbitrary distortions in the trait distribution,
but these rapidly dissipate, so that in the long term, only
the mean changes, the variance remaining constant.

If parents are related, sharing a fraction F of their genes
identical by descent, the within-family variance is reduced by
a factor (1�F ); in a population of e↵ective size Ne, (1�F )

decreases by a factor
⇣
1� 1

N
e

⌘
per generation. Mutation

adds a constant variance Vm per generation, and so at an
equilibrium between mutation, random sampling, and sexual
reproduction, the trait variance equilibrates at NeVm.

This simple phenotypic model can be justified in the limit
of a very large number of unlinked loci, n,with additive ef-
fects. The within-family variance is generated by recombi-
nation, at a rate proportional to the number of heterozygous
loci, which is in turn proportional to (1 � F ). Selection on
each locus is weak

�
s ⇠ 1

n

�
, and so only changes the genetic

variance over timescales of ⇠ n generations. Short - term
changes in the distribution are due to correlations between
loci ( linkage disequilibria), and so dissipate rapidly in the
absence of genetic linkage. Here, we assume that the pop-
ulation is in linkage equilibrium, so that the distribution is
close to Gaussian; this is a good approximation even with
quite strong selection, and can be imposed directly in a ge-
netic algorithm.

The infinitesimal model leads immediately to a simple pre-
diction for the total response to selection [33]. Genetic
variance dissipates at a rate 1 � 1

N
e

, and so the total ge-
netic variance, summed over generations, is V

1

Ne. Since
the change in mean (i.e., the selection response) is pro-
portional to Vt in each generation, the total change is justP1

t=1

�z̄t = Ne�z̄
1

. Robertson [33] gave an alternative
derivation of this result, based on the probability u(a, p)

that an allele with e↵ect a and with frequency p will ulti-
mately be fixed in the population. The total change in the
trait mean must be

P1
t=1

�z̄t=
P

i ai (u (ai, pi)� pi), where
the sum on the right is over all loci, i. If the e↵ect of an al-
lele, a, is weak, then u = p+Ne� a p(1� p) +O

�
a2

�
, where

� = @W/@z [33]. This immediately gives
P1

t=1

�z̄t =
Ne�

P
i a

2

i pi (1� pi) = Ne�V
1

= Ne�z̄
1

. This shows that
under the infinitesimal model, the change in the mean is
due to the cumulative e↵ect of small perturbations to the
distribution of allele frequencies at each locus. This simple
additive approximation predicts the selection response over
50 generations remarkably well, for a wide range of traits
and organisms (Fig. 1, from [38]). This suggests that the
infinitesimal model may also give a good approximation to
arbitrary genetic algorithms.

Figure 1: Figure 1. The ratio between the change in

mean over 50 generations, and the change in the first

generation (R
50

/R
1

), plotted against e↵ective popu-

lation size, Ne. Symbols represent the outcome of

independent selection experiments in maize, mouse

and Drosophila. The upper curve (labelled 2Ne)

is Robertson’s (1960) prediction for the ultimate re-

sponse, R1 =2NeR1

, whilst the lower curve is the

prediction for the response at 50 generations, from

the same infinitesimal model. The middle curve

is the prediction including a contribution from mu-

tation, Vm = 0.001Vg, which makes little di↵erence

over this short timescale. The observed responses

are about 10-20% below the prediction, probably re-

flecting the e↵ect of selection on alleles of large ef-

fect; however, the overall relationship fits surpris-

ingly well, given that the selected traits are unlikely

to have an additive genetic basis. From Fig. 4 in

[38].

Robertson’s derivation suggests a generalisation to arbi-
trary relations between genotype and phenotype. If traits
depend on a large number of loci, then strong selection on
the traits may only slightly perturb the underlying distribu-
tion of allele frequencies from its neutral trajectory. More-
over, this perturbation depends only on the marginal e↵ect
of the allele - that is, its additive e↵ect on the trait. In
the short term, the mean changes at a rate proportional to
the additive variance, which itself stays approximately con-
stant. In the longer term, the additive e↵ects change as
the genetic background changes, in an unpredictable way
that depends on how genes interact. However, it may still
be possible to optimise the selection scheme, using purely
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“local” information.

2.5 Optimising the selection response
How can we optimise the net response to selection, for

a given total number of individuals? For simplicity, we
neglect mutation, and assume that the mean changes solely
by selection on the initial pool of variation. We begin
by assuming truncation selection on an additive trait, z,
choosing the best ✓ of individuals out of N (0 < ✓ < 1). In
order to select a fraction ✓ from a normal distribution, those
more than x standard deviations above the mean must be
chosen; ✓ = 1

2

erfc
h

xp
2

i
. The direct e↵ect of selection is to

change the mean by S = i(✓)
p
V , where V is the variance

of the trait, and where i = e
� x

2
2

✓
p
2⇡

. Throughout, we assume
that there is no non-genetic variance.

The problem is to choose the optimal Ni, ✓i, given the
constraint C =

P1
t=1

Nt. We will see that the max-
imum possible response has the form A

p
V
1

C
1

, where A
is to be determined. With this ansatz, we must trade
an immediate gain of i (✓

1

)
p
V
1

against a future gain of

A

r
(C

1

�N
1

)V
1

⇣
1� 1

N1✓1

⌘
; note that the loss of variance

depends on the number of selected individuals, N
1

✓, whereas
the cost is counted as the total number of individuals, C

1

=P1
t=1

Nt. Assuming that Ct, Nt✓t are large, so that Ct >>

Nt, Nt✓t >> 1. Then, the optimal scheme is N
1

=
p

C /✓
1

,

A = �2i0✓3/2
1

. The same argument applies throughout
the process, and so gives the full schedule of Nt, ✓t. We
see immediately that the optimal ✓ is the same through-
out, but that the optimal Nt decreases with the remain-
ing number of individuals,

p
Ct. Approximating change

as continuous in time, this implies that @C/@t = �N =

�p
C/✓, so that C =

⇣p
C

1

� t

2

p
✓

⌘
2, with selection ending

at time t
max

= 2
p
C

1

✓. Integrating over time, we have

A
p
V
1

C
1

= i
p
V
1

R
2

p
C1✓

0

exp

✓
� R t

0

d⌧

2

p
C

⌧

/✓

◆
dt= 2i

p
V1C1✓
1+✓

.

This confirms the ansatz, and implies A = 2i
p
✓

1+✓
. Combin-

ing this with the criterion for optimising ✓, A = �2i0✓3/2,
we find ✓=0.391, A=0.883. For comparison, if we se-
lect with constant N, ✓ for time C

N
, then the response is

i
p
V
1

R C/N

0

exp
�� t

N ✓

�
dt=2N ✓ i

p
V
1

�
1� exp

�� T
2N ✓

��
. The

optimal solution is now when ✓=0.270, N = 1.213
p
C, T =p

C
1.213

= N
1.471

,and the net response is 0.574
p
V
1

C
1

- rather
less than with the optimal schedule, in which N falls over
time, and the total response is 0.883

p
V
1

C
1

.
These arguments are illustrated by simulations of trunca-

tion selection on an additive trait, based on 104 loci of equal
e↵ect, ↵=1, and starting with average alelel frequency 0.5 -
and hence a trait mean

Pn
i=1

↵i pi = n
2

. Figure 2 shows
an example with N = 30 selected individuals, showing how
the standard deviation initially decreases as

p
(1� 1/N)t,

but then falls away more rapidly than predicted by the in-
finitesimal model, as selection fixes favourable alleles. In
any generation, the change in mean is very close to the pre-
diction, ◆

p
Vt. The area under these jagged curves gives

the total response to sleection, which is somewhat less than
the infinitesimal prediction, shown by the area under the
smooth curve. Figure 3 shows that the infinitesimal model
predicts the ultimate response quite well for N30; in larger

populations, selection is more e↵ective at eliminating varia-
tion relative to sampling, and so the infinitesimal prediction
is much to high. This must necessarily be so, because the
ultimate response approaches the maximum possible, n

2

, as
N increases. Figure 4 shows the optimal choice of N ,and
the maximum possible response, given the constraint that
the total number of individuals realised is C = N T (and us-
ing constant N , ✓ for simplicity). This fits the predictions
N̂ = 1.213

p
CV

0

, R̂ = 0.574
p
C well for N  50; for larger

values of C, N̂ is larger and R̂ is smaller, because selection
as well as sampling eliminate variation.

Figs. 2-4 here

Figure 2: The decrease in the rate of response to

truncation selection over time. The blue curve

shows the change in mean in successive generations,

averaged over 5 replicates. The red curve shows

the predicted change, ◆[✓]
p
Vt, which is proportional

to the standard deviation of the trait. The up-

per smooth curve shows the predicted rate of decay

of the standard deviation,

p
(1� 1/N)t ⇠ e�t/(2N)

.

The area under the blue curve gives the total se-

lection response, whilst the area under the smooth

curve gives the prediction based on the infinitesimal

model. There are N=30 selected individuals, each

with 104 selected loci with equal additive e↵ects,

↵=1. In each generation, N/✓=111 individuals are

generated; the fraction selected is ✓=0.27. Initial

allele frequencies are drawn from a beta distribution

with mean p
0

=0.5, and variance F p
0

q
0

, F = 0.5.
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3. CONCLUSIONS
This note has outlined how quantitative genetics can pre-

dict the response of a population to selection on a trait,
without any detailed knowledge of the genetic basis of that
trait: the assumption is essentially that selection is spread
over so many loci that the distribution of allele frequencies
at each is hardly perturbed. In biology, this very simple
model, which assumes additive e↵ects, is remarkably suc-
cessful in predicting the short-term evolution of traits that
are clearly not additive (e.g. Fig. 1). Figure 3 shows that
the ultimate change due to selection on an additive trait -
made without making any assumptionwhatever about the
number of loci involved, the distribution of allel frequnecies,
or the distirbution of allelic e↵ects - is predicted well for
small population sizes, provided that the number of loci is
large. It overestimates the response for larger popula-
tion sizes, essentially because the population approaches the
global optimum, which sets an upper bound on the response.



Figure 3: Points show the ultimate response to se-

lection,

P1
t=1

�z̄t, plotted against the number of se-

lected individuals, N ; other parameters are as in Fig.

2. The upper flat line shows the maximum possible

change,

n
2

= 5000, and the curve shows the prediction

based on the infinitesimal model, 2N �z̄
1

.
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Figure 4: The optimal population size, N̂ , and

the corresponding maximum possible selection re-

sponse, R̂ =
⇣PT

t=1

�z̄t
⌘

max

, plotted against the total

number of individuals realised, C = T N/✓. These

values are calculated by interpolation from the sim-

ulation results summarised in Fig. 3. The

straight lines show the theoretical predictions, N̂ =
1.213

p
CV

0

, R̂ = 0.574
p
C.
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One might object that in evolutionary computation, one is
interested in precisely this regime. However, local predic-
tions for the response over some tens of generations, may
allow optimisation of the selection scheme. In biology, arti-
ficial selection of domesticated plants and animals has been
remarkable, even though it is very far from producing an
ultimate “global optimal” (whatever that might mean).

There is clearly much more to be done in applying quan-
titative genetic methods to improving evolutionary algo-
rithms: most obviously, in finding the range of non-additive
models for which these methods are su�cient approxima-
tions. Mutation shpould also be incorporated, and here
one must take account of the e↵ect of mutation in degrading
he mean, as well as increasing the variance. An intrigu-
ing possibility is to use the regression of mean and variance
of trait values on the number of mutations in the realised
individuals, to estimate the optimal mutation rate.
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