
Average Case Analysis of the Classical Algorithm
for Markov Decision Processes with Büchi
Objectives∗

Krishnendu Chatterjee1, Manas Joglekar2, and Nisarg Shah3

1 IST Austria (Institute of Science and Technology Austria)
2 Stanford University
3 Carnegie Mellon University

Abstract
We consider Markov decision processes (MDPs) with specifications given as Büchi (liveness)
objectives. We consider the problem of computing the set of almost-sure winning vertices from
where the objective can be ensured with probability 1. We study for the first time the average
case complexity of the classical algorithm for computing the set of almost-sure winning vertices
for MDPs with Büchi objectives. Our contributions are as follows: First, we show that for
MDPs with constant out-degree the expected number of iterations is at most logarithmic and the
average case running time is linear (as compared to the worst case linear number of iterations
and quadratic time complexity). Second, for the average case analysis over all MDPs we show
that the expected number of iterations is constant and the average case running time is linear
(again as compared to the worst case linear number of iterations and quadratic time complexity).
Finally we also show that given that all MDPs are equally likely, the probability that the classical
algorithm requires more than constant number of iterations is exponentially small.

1998 ACM Subject Classification D.2.4 Formal methods

Keywords and phrases MDPs, Büchi objectives, Average case analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.461

1 Introduction

Markov decision processes. Markov decision processes (MDPs) are standard models for
probabilistic systems that exhibit both probabilistic and nondeterministic behavior [13], and
widely used in verification of probabilistic systems [1, 15]. MDPs have been used to model
and solve control problems for stochastic systems [12]: there, nondeterminism represents
the freedom of the controller to choose a control action, while the probabilistic component
of the behavior describes the system response to control actions. MDPs have also been
adopted as models for concurrent probabilistic systems [7], probabilistic systems operating
in open environments [18], under-specified probabilistic systems [2], and applied in diverse
domains [15]. A specification describes the set of desired behaviors of the system, which
in the verification and control of stochastic systems is typically an ω-regular set of paths.
The class of ω-regular languages extends classical regular languages to infinite strings, and
provides a robust specification language to express all commonly used specifications, such

∗ The research was supported by FWF Grant No P 23499-N23, FWF NFN Grant No S11407-N23 (RiSE),
ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.

© K Chatterjee, M Joglekar, N Shah;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 461–473

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.461
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

462

as safety, liveness, fairness, etc [20]. Parity objectives are a canonical way to define such ω-
regular specifications. Thus MDPs with parity objectives provide the theoretical framework
to study problems such as the verification and control of stochastic systems.
Qualitative and quantitative analysis. The analysis of MDPs with parity objectives
can be classified into qualitative and quantitative analysis. Given an MDP with parity ob-
jective, the qualitative analysis asks for the computation of the set of vertices from where the
parity objective can be ensured with probability 1 (almost-sure winning). The more general
quantitative analysis asks for the computation of the maximal (or minimal) probability at
each state with which the controller can satisfy the parity objective.
Importance of qualitative analysis. The qualitative analysis of MDPs is an important
problem in verification that is of interest independent of the quantitative analysis problem.
There are many applications where we need to know whether the correct behavior arises
with probability 1. For instance, when analyzing a randomized embedded scheduler, we are
interested in whether every thread progresses with probability 1 [9]. Even in settings where
it suffices to satisfy certain specifications with probability p < 1, the correct choice of p is a
challenging problem, due to the simplifications introduced during modeling. For example, in
the analysis of randomized distributed algorithms it is quite common to require correctness
with probability 1 (see, e.g., [16, 14, 19]). Furthermore, in contrast to quantitative analysis,
qualitative analysis is robust to numerical perturbations and modeling errors in the transition
probabilities, and consequently the algorithms for qualitative analysis are combinatorial.
Finally, for MDPs with parity objectives, the best known algorithms and all algorithms used
in practice first perform the qualitative analysis, and then perform a quantitative analysis on
the result of the qualitative analysis [7, 8, 6]. Thus qualitative analysis for MDPs with parity
objectives is one of the most fundamental and core problems in verification of probabilistic
systems.
Previous results. The qualitative analysis for MDPs with parity objectives is achieved by
iteratively applying solutions of the qualitative analysis of MDPs with Büchi objectives [7,
8, 6]. The qualitative analysis of an MDP with a parity objective with d priorities can
be achieved by O(d) calls to an algorithm for qualitative analysis of MDPs with Büchi
objectives, and hence we focus on MDPs with Büchi objectives. The qualitative analysis
problem for MDPs with Büchi objectives has been widely studied. The classical algorithm
for the problem was given in [7, 8], and the worst case running time of the classical algorithm
is O(n ·m) time, where n is the number of vertices, and m is the number of edges of the
MDP. Many improved algorithms have also been given in literature, such as [5, 3, 4], and the
current best known worst case complexity of the problem is O(min{n2,m ·

√
m}). Moreover,

there exists a family of MDPs where the running time of the improved algorithms match the
above bound. While the worst case complexity of the problem has been studied, to the best
of our knowledge the average case complexity of none of the algorithms has been studied in
literature.
Our contribution. In this work we study for the first time the average case complexity of
the qualitative analysis of MDPs with Büchi objectives. Specifically we study the average
case complexity of the classical algorithm for the following two reasons: (1) the classical
algorithm is very simple and appealing as it iteratively uses solutions of the standard graph
reachability and alternating graph reachability algorithms, and can be implemented effi-
ciently by symbolic algorithms; and (2) for the more involved improved algorithms it has
been established that there are simple variants of the improved algorithms that never re-
quire more than an additional linear time as compared to the classical algorithm, and hence
the average case complexity of these variants is no more than the average case complexity

K. Chatterjee, M. Joglekar, and N. Shah 463

of the classical algorithm. We study the average case complexity of the classical algorithm
and establish that as compared to the quadratic worst case complexity, the average case
complexity is linear. Our main contributions are summarized below:
1. MDPs with constant out-degree. We first consider MDPs with constant out-degree. In

practice, MDPs often have constant out-degree: for example, see [10] for MDPs with
large state space but constant number of actions, or [12, 17] for examples from inventory
management where MDPs have constant number of actions (the number of actions cor-
respond to the out-degree of MDPs). We consider MDPs where the out-degree of every
vertex is fixed and given. The out-degree of a vertex v is dv and there are constants dmin
and dmax such that for every v we have dmin ≤ dv ≤ dmax. Moreover, every subset of the
set of vertices of size dv is equally likely to be the neighbour set of v, independent of the
neighbour sets of other vertices. We show that the expected number of iterations of the
classical algorithm is at most logarithmic (O(logn)), and the average case running time
is linear (O(n)) (as compared to the worst case linear number of iterations and quadratic
O(n2) time complexity of the classical algorithm, and the current best known O(n ·

√
n)

worst case complexity). The average case complexity of this model implies the same
average case complexity for several related models of MDPs with constant out-degree.
For further discussion on this, see Remark 3.4 following Theorem 16.

2. MDPs in the Erdös-Rényi model. To consider the average case complexity over all MDPs,
we consider MDPs where the underlying graph is a random directed graph according to
the classical Erdös-Rényi random graph model [11]. We consider random graphs Gn,p,
over n vertices where each edge exists with probability p (independently of other edges).
To analyze the average case complexity over all MDPs with all graphs equally likely we
need to consider the Gn,p model with p = 1

2 (i.e., each edge is present or absent with
equal probability, and thus all graphs are considered equally likely). We show a stronger
result (than only p = 1

2) that if p ≥ c·log(n)
n , for any constant c > 2, then the expected

number of iterations of the classical algorithm is constant (O(1)), and the average case
running time is linear (again as compared to the worst case linear number of iterations
and quadratic time complexity). Note that we obtain that the average case (when p = 1

2)
running time for the classical algorithm is linear over all MDPs (with all graphs equally
likely) as a special case of our results for p ≥ c·log(n)

n , for any constant c > 2, since
1
2 ≥

3·log(n)
n for n ≥ 17. Moreover we show that when p = 1

2 (i.e., all graphs are equally
likely), the probability that the classical algorithm will require more than constantly
many iterations is exponentially small (less than

(3
4
)n).

Implications of our results. We now discuss several implications of our results. First, since
we show that the classical algorithm has average case linear time complexity, it follows that
the average case complexity of qualitative analysis of MDPs with Büchi objectives is linear
time. Second, since qualitative analysis of MDPs with Büchi objectives is a more general
problem than reachability in graphs (graphs are a special case of MDPs and reachability
objectives are a special case of Büchi objectives), the best average case complexity that can
be achieved is linear. Hence our results for the average case complexity are tight. Finally,
since for the improved algorithms there are simple variants that never require more than
linear time as compared to the classical algorithm it follows that the improved algorithms
also have average case linear time complexity. Thus we complete the average case analysis
of the algorithms for the qualitative analysis of MDPs with Büchi objectives. In summary
our results show that the classical algorithm (the most simple and appealing algorithm) has
excellent and optimal (linear-time) average case complexity as compared to the quadratic
worst case complexity.

FSTTCS 2012

464

Technical contributions. The two key technical difficulties to establish our results are as
follows: (1) Though there are many results for random undirected graphs, for the average
case analysis of the classical algorithm we need to analyze random directed graphs; and (2) in
contrast to other results related to random undirected graphs that prove results for almost
all vertices, the classical algorithm stops when all vertices satisfy a certain reachability
property; and hence we need to prove results for all vertices (as compared to almost all
vertices). In this work we set up novel recurrence relations to estimate the expected number
of iterations, and the average case running time of the classical algorithm. Our key technical
results prove many interesting inequalities related to the recurrence relation for reachability
properties of random directed graphs to establish the desired result. Detailed proofs omitted
due to space restriction are available at: http://arxiv.org/abs/1202.4175.

2 Definitions

Markov decision processes (MDPs). A Markov decision process (MDP)
G = ((V,E), (V1, VP), δ) consists of a directed graph (V,E), a partition (V1,VP) of the
finite set V of vertices, and a probabilistic transition function δ: VP → D(V), where D(V)
denotes the set of probability distributions over the vertex set V . The vertices in V1 are
the player-1 vertices, where player 1 decides the successor vertex, and the vertices in VP
are the probabilistic (or random) vertices, where the successor vertex is chosen according
to the probabilistic transition function δ. We assume that for u ∈ VP and v ∈ V , we have
(u, v) ∈ E iff δ(u)(v) > 0, and we often write δ(u, v) for δ(u)(v). For a vertex v ∈ V , we
write E(v) to denote the set { u ∈ V | (v, u) ∈ E } of possible out-neighbours, and |E(v)|
is the out-degree of v. For technical convenience we assume that every vertex in the graph
(V,E) has at least one outgoing edge, i.e., E(v) 6= ∅ for all v ∈ V .
Plays, strategies and probability measure. An infinite path, or a play, of the game
graph G is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of vertices such that (vk, vk+1) ∈ E for
all k ∈ N. We write Ω for the set of all plays, and for a vertex v ∈ V , we write Ωv ⊆ Ω
for the set of plays that start from the vertex v. A strategy for player 1 is a function σ:
V ∗ · V1 → D(V) that chooses the probability distribution over the successor vertices for all
finite sequences ~w ∈ V ∗ · V1 of vertices ending in a player-1 vertex (the sequence represents
a prefix of a play). A strategy must respect the edge relation: for all ~w ∈ V ∗ and u ∈ V1,
if σ(~w · u)(v) > 0, then v ∈ E(u). Once a starting vertex v ∈ V and a strategy σ ∈ Σ is
fixed, the outcome of the MDP is a random walk ωσv for which the probabilities of events
are uniquely defined, where an event A ⊆ Ω is a measurable set of plays. For a vertex v ∈ V
and an event A ⊆ Ω, we write Pσv (A) for the probability that a play belongs to A if the
game starts from the vertex v and player 1 follows the strategy σ.
Objectives. We specify objectives for the player 1 by providing a set of winning plays
Φ ⊆ Ω. We say that a play ω satisfies the objective Φ if ω ∈ Φ. We consider ω-regular
objectives [20], specified as parity conditions. We also consider the special case of Büchi
objectives.

Büchi objectives. Let B be a set of Büchi vertices. For a play ω = 〈v0, v1, . . .〉 ∈ Ω, we
define Inf(ω) = { v ∈ V | vk = v for infinitely many k } to be the set of vertices that
occur infinitely often in ω. The Büchi objectives require that some vertex of B be visited
infinitely often, and defines the set of winning plays Büchi(B) = {ω ∈ Ω | Inf(ω)∩B 6= ∅}.
Parity objectives. For c, d ∈ N, we write [c..d] = { c, c+ 1, . . . , d }. Let p: V → [0..d] be
a function that assigns a priority p(v) to every vertex v ∈ V , where d ∈ N. The parity
objective is defined as Parity(p) = { ω ∈ Ω | min

(
p(Inf(ω))

)
is even }. In other words,

K. Chatterjee, M. Joglekar, and N. Shah 465

the parity objective requires that the minimum priority visited infinitely often is even.
In the sequel we will use Φ to denote parity objectives.

Qualitative analysis: almost-sure winning. Given a player-1 objective Φ, a strategy σ ∈ Σ is
almost-sure winning for player 1 from the vertex v if Pσv (Φ) = 1. The almost-sure winning
set 〈〈1〉〉almost(Φ) for player 1 is the set of vertices from which player 1 has an almost-sure
winning strategy. The qualitative analysis of MDPs correspond to the computation of the
almost-sure winning set for a given objective Φ.
Algorithm for qualitative analysis. The almost-sure winning set for MDPs with parity
objectives can be computed using O(d) calls to compute the almost-sure winning set of
MDPs with Büchi objectives [6, 7, 8]. Hence we focus on the qualitative analysis of MDPs
with Büchi objectives. The algorithms for qualitative analysis for MDPs do not depend
on the transition function, but only on the graph G = ((V,E), (V1, VP)). We now describe
the classical algorithm for the qualitative analysis of MDPs with Büchi objectives and the
algorithm requires the notion of random attractors.
Random attractor. Given an MDP G, let U ⊆ V be a subset of vertices. The random
attractor AttrP (U) is defined inductively as follows: X0 = U , and for i ≥ 0, let Xi+1 =
Xi ∪ { v ∈ VP | E(v) ∩ Xi 6= ∅ } ∪ { v ∈ V1 | E(v) ⊆ Xi }. In other words, Xi+1
consists of (a) vertices in Xi, (b) probabilistic vertices that have at least one edge to Xi, and
(c) player-1 vertices whose all successors are in Xi. Then AttrP (U) =

⋃
i≥0 Xi. Observe

that the random attractor is equivalent to the alternating reachability problem (reachability
in AND-OR graphs).
Classical algorithm. The classical algorithm for MDPs with Büchi objectives is a simple
iterative algorithm, and every iteration uses graph reachability and alternating graph reach-
ability (random attractors). Let us denote the MDP in iteration i by Gi with vertex set V i.
Then in iteration i the algorithm executes the following steps: (i) computes the set Zi of
vertices that can reach the set of Büchi vertices B ∩ V i in Gi; (ii) let U i = V i \ Zi be the
set of remaining vertices; if U i is empty, then the algorithm stops and outputs Zi as the
set of almost-sure winning vertices, and otherwise removes AttrP (U i) from the graph, and
continues to iteration i+ 1. The classical algorithm requires at most O(n) iterations, where
n = |V |, and each iteration requires at most O(m) time, wherem = |E|. Moreover the above
analysis is tight, i.e., there exists a family of MDPs where the classical algorithm requires
Ω(n) iterations, and total time Ω(n ·m). Hence Θ(n ·m) is the tight worst case complexity
of the classical algorithm for MDPs with Büchi objectives. In this work we consider the
average case analysis of the classical algorithm.

3 Average Case Analysis for MDPs with Constant Out-degree

In this section we consider the average case analysis of the number of iterations and the
running time of the classical algorithm for computing the almost-sure winning set for MDPs
with Büchi objectives on family of graphs with constant out-degree (out-degree of every
vertex fixed and bounded by two constants dmin and dmax).
Family of graphs and results. We consider families of graphs where the vertex set V (|V | =
n), the target set of Büchi vertices B (|B| = t), and the out-degree dv of each vertex v is
fixed across the whole family. The only varying component is the edges of the graph; for
each vertex v, every set of vertices of size dv is equally likely to be the neighbour set of v,
independent of neighbours of other vertices. Finally, there exist constants dmin and dmax
such that dmin ≤ dv ≤ dmax for all vertices v. We will show the following for this family
of graphs: (a) if the target set B has size more than 30 · x · log(n), where x is the number

FSTTCS 2012

466

of distinct degrees, (i.e., t ≥ 30 · x · log(n)), then the expected number of iterations is O(1)
and the average running time is O(n); and (b) if the target vertex set B has size at most
30 · x · log(n), then the expected number of iterations required is at most O(log(n)) and
average running time is O(n).
Notations. We use n and t for the total number of vertices and the size of the target set,
respectively. We will denote by x the number of distinct out-degree dv’s, and let di, for
1 ≤ i ≤ x be the distinct out-degrees. Since for all vertices v we have dmin ≤ dv ≤ dmax, it
follows that we have x ≤ dmax − dmin + 1. Let ai be the number of vertices with degree di
and ti be the number of target (Büchi) vertices with degree di.
The event R(k1, k2, ..., kx). The reverse reachable set of the target set B is the set of vertices
u such that there is a path in the graph from u to a vertex v ∈ B. Let S be any set comprising
of ki vertices of degree di, for 1 ≤ i ≤ x. We define R(k1, k2, ..., kx) as the probability of the
event that all vertices of S can reach B via a path that lies entirely in S. Due to symmetry
between vertices, this probability only depends on ki, for 1 ≤ i ≤ x and is independent of
S itself. For ease of notation, we will sometimes denote the event itself by R(k1, k2, ..., kx).
We will investigate the reverse reachable set of B, which contains B itself. Recall that ti
vertices in B have degree di, and hence we are interested in the case when ki ≥ ti for all
1 ≤ i ≤ x.

Consider a set S of vertices that is the reverse reachable set, and let S be composed of ki
vertices of degree di and of size k, i.e., k = |S| =

∑x
i=1 ki. Since S is the reverse reachable

set, it follows that for all vertices v in V \S, there is no edge from v to a vertex in S (otherwise
there would be a path from v to a target vertex and then v would belong to S). Thus there
are no incoming edges from V \ S to S. Thus for each vertex v of V \ S, all its neighbours

must lie in V \ S itself. This happens with probability
∏
i∈[1,x],ai 6=ki

(
(n−k

di
)

(n
di

)

)ai−ki

, since in

V \ S there are ai − ki vertices with degree di and the size of V \ S is n − k (recall that
[1, x] = {1, 2, . . . , x}). Note that when ai 6= ki, there is at least one vertex of degree di in
V \ S that has all its neighbours in V \ S and hence n− k ≥ di. For simplicity of notation,
we skip mentioning ai 6= ki and substitute the term by 1 where ai = ki. The probability
that each vertex in S can reach a target vertex is R(k1, k2, ..., kx). Hence the probability of

S being the reverse reachable set is given by:
∏x
i=1

(
(n−k

di
)

(n
di

)

)ai−ki

· R(k1, k2, ..., kx). There

are
∏x
i=1
(
ai−ti
ki−ti

)
possible ways of choosing ki ≥ ti vertices (since the target set is contained)

out of ai. Notice that the terms are 1 where ai = ki. The value k can range from t to
n and exactly one of these subsets of V will be the reverse reachable set. So the sum of
probabilities of this happening is 1. Hence we have:

1 =
n∑
k=t

∑∑
ki=k,ti≤ki≤ai

 x∏
i=1

(
ai − ti
ki − ti

)
·

((
n−k
di

)(
n
di

))ai−ki
 ·R(k1, k2, ..., kx) (1)

Let

ak1,k2,...,kx
=

 x∏
i=1

(
ai − ti
ki − ti

)
·

((
n−k
di

)(
n
di

))ai−ki
 ·R(k1, k2, ..., kx);

αk =
∑∑

ki=k,ti≤ki≤ai

ak1,k2,...,kx
.

Our goal is to show that for 30 · x · log(n) ≤ k ≤ n − 1, the value of αk is very small;
i.e., we want to get an upper bound on αk. Note that two important terms in αk are

K. Chatterjee, M. Joglekar, and N. Shah 467

((
n−k
di

)
/
(
n
di

))ai−ki

and R(k1, k2, . . . , kx). Below we get an upper bound for both of them.
Firstly note that when k is small, for any set S comprising of ki vertices of degree di for
1 ≤ i ≤ x and |S| = k, the eventR(k1, k2, . . . , kx) requires each non-target vertex of S to have
an edge inside S. Since k is small and all vertices have constant out-degree spread randomly
over the entire graph, this is highly improbable. We formalize this intuitive argument in the
following lemma.

I Lemma 1 (Upper bound on R(k1, k2, . . . , kx)). For k ≤ n− dmax

R(k1, k2, . . . , kx) ≤
x∏
i=1

(
1−

(
1− k

n− di

)di
)ki−ti

≤
x∏
i=1

(
di · k

n− dmax

)ki−ti
.

Now for
((
n−k
di

)
/
(
n
di

))ai−ki

, we give an upper bound. First notice that when ai 6= ki,
there is at least one vertex of degree di outside the reverse reachable set and it has all its
edges outside the reverse reachable set. Hence, the size of the reverse reachable set (i.e.
n− k) is at least di. Thus,

(
n−k
di

)
is well defined.

I Lemma 2. For any 1 ≤ i ≤ x such that ai 6= ki, we have
(

(n−k
di

)
(n

di
)

)ai−ki

≤
(
1− k

n

)di·(ai−ki).

Next we simplify the expression of αk by taking care of the summation.

I Lemma 3. The probability that the reverse reachable set is of size exactly k is αk, and
αk ≤ nx ·max∑ ki=k,ti≤ki≤ai

ak1,k2,...,kx
.

Now we proceed to achieve an upper bound on ak1,k2,...,kx
. First of all, intuitively if k is

small, then R(k1, k2, . . . , kx) is very small (this can be derived easily from Lemma 1). On the
other hand, consider the case when k is very large. In this case there are very few vertices
that cannot reach the target set. Hence they must have all their edges within them, which
again has very low probability. Note that different factors that bind αk depend on whether
k is small or large. This suggests we should consider these cases separately. Our proof will
consist of the following case analysis of the size k of the reverse reachable set: (1) when
30 · x · log(n) ≤ k ≤ c1 · n is small (for some constant c1 > 0); (2) when c1 · n ≤ k ≤ c2 · n
is large (for all constants c2 ≥ c1 > 0); and (3) when c2 · n ≤ k ≤ n− dmin − 1 is very large.
The analysis of the constants will follow from the proofs. Note that since the target set B
(with |B| = t) is a subset of its reverse reachable set, we have k < t is infeasible. Hence in
all the three cases, we will only consider k ≥ t. We first consider the case when k is small.

3.1 Small k: 30 · x · log(n) ≤ k ≤ c1n

In this section we will consider the case when 30 · x · log(n) ≤ k ≤ c1 · n for some constant
c1 > 0. Note that this case only occurs when t ≤ c1 · n (since k ≥ t). We will assume this
throughout this section. We will prove that there exists a constant c1 > 0 such that for all
30 ·x · log(n) ≤ k ≤ c1 ·n the probability (αk) that the size of the reverse reachable set is k is
bounded by 1

n2 . Note that we already have a bound on αk in terms of ak1,k2,...,kx
(Lemma 3).

We use continuous upper bounds of the discrete functions in ak1,k2,...,kx
to convert it into a

form that is easy to analyze. Let

bk1,k2,...,kx
=

x∏
i=1

(
e · (ai − ti)
ki − ti

)ki−ti
· e− k

n ·di·(ai−ki) ·
(

di · k
n− dmax

)ki−ti
.

FSTTCS 2012

468

I Lemma 4. We have ak1,k2,...,kx
≤ bk1,k2,...,kx

.

Next we show that bk1,k2,...,kx
drops exponentially as a function of k. This is the key and

non-trivial result of this subsection and requires many involved mathematical inequalities.
Note that this is the reason for the logarithmic lower bound on k in this section.

I Lemma 5 (Upper bound on bk1,k2,...,kx). There exists a constant c1 > 0 such that for
sufficiently large n and t ≤ k ≤ c1 · n, we have bk1,k2,...,kx ≤

(9
10
)k.

Taking appropriate bounds on the value of k, we get an upper bound on ak1,k2,...,kx
.

Recall that x is the number of distinct degrees and hence x ≤ dmax − dmin + 1.

I Lemma 6 (Upper bound on ak1,k2,...,kx
). There exists a constant c1 > 0 such that for

sufficiently large n with t ≤ c1 ·n and for all 30 ·x · log(n) ≤ k ≤ c1 ·n, we have ak1,k2,...,kx <
1

n3·x .

I Lemma 7 (Main lemma for small k). There exists a constant c1 > 0 such that for sufficiently
large n with t ≤ c1 · n and for all 30 · x · log(n) ≤ k ≤ c1 · n, the probability that the size of
the reverse reachable set S is k is at most 1

n2 .

Proof. The probability that the reverse reachable set is of size k is given by αk. By Lemma 3
and Lemma 6 we have αk is at most nx · n−3·x = n−2·x ≤ 1

n2 .

3.2 Large k: c1 · n ≤ k ≤ c2 · n

In this section we will show that for all constants c1 and c2, with 0 < c1 ≤ c2, when t ≤ c2 ·n
the probability αk is at most 1

n2 for all c1 · n ≤ k ≤ c2 · n. We start with a few notations.
Let ai = pi · n, ti = yi · n, ki = si · n for 1 ≤ i ≤ x and k = s · n for c1 ≤ s < c2. We first
present a bound on ak1,k2,...,kx

in Lemma 8. In the following two lemmas we obtain an upper
bound for the bound in Lemma 8. All the lemmas require to prove non-trivial mathematical
inequalities to achieve the result.

I Lemma 8. For all constants c1 and c2 with 0 < c1 ≤ c2 and for all c1 · n ≤ k ≤ c2 · n, we
have ak1,k2,...,kx ≤ (n+ 1)x · Term1 · Term2, where

Term1 =
(

x∏
i=1

(
pi − yi
si − yi

)si−yi
(
pi − yi
pi − si

)pi−si

(1− s)di(pi−si)(1− (1− s)di)si−yi

)n
, and

Term2 =
x∏
i=1

1−
(

1− s
1−di/n

)di

1− (1− s)di


n(si−yi)

.

On simplification, the base of the exponent in Term2 can be shown to be upper bounded
by 1 + c∗/n for some constant c∗ > 0. Since si − yi ≤ 1 and x is a constant, we have the
following.

I Lemma 9. Term2 of Lemma 8 is upper bounded by a constant.

For Term1, we maximize the base of the exponent with respect to every di. When all di’s
take their optimal values, the value of the base becomes 1. But using the fact that di ≥ 2
for all i, we show that not all the di’s can take their optimal values simultaneously and we
prove the following.

K. Chatterjee, M. Joglekar, and N. Shah 469

I Lemma 10. There exists a constant 0 < η < 1 such that Term1 of Lemma 8 is at most
ηn.

I Lemma 11 (Main lemma for large k). For all constants c1 and c2 with 0 < c1 ≤ c2, when
n is sufficiently large and t ≤ c2 · n, for all c1 · n ≤ k ≤ c2 · n, the probability that the size of
the reverse reachable set S is k is at most 1

n2 .

Proof. By Lemma 8 we have ak1,k2,...,kx ≤ (n + 1)x · Term1 · Term2, and by Lemma 9
and Lemma 10 we have Term2 is constant and Term1 is exponentially small in n, where
x ≤ (dmax − dmin + 1). The exponentially small Term1 overrides the polynomial factor
(n + 1)x and the constant Term2, and ensures that ak1,k2,...,kx

≤ n−3x. By Lemma 3 it
follows that αk ≤ n−2x ≤ 1

n2 .

3.3 Very large k: (1− 1/e2)n to n− dmin − 1

In this subsection we consider the case when the size k of the reverse reachable set is
between (1 − 1

e2) · n and n − dmin − 1. Note that if the reverse reachable set has size at
least n − dmin, then the reverse reachable set must be the set of all vertices, as otherwise
the remaining vertices cannot have enough edges among themselves. Take ` = n− k. Hence
dmin + 1 ≤ ` ≤ n/e2. As stated earlier, in this case ak1,k2,...,kx

becomes small since we
require that the ` vertices outside the reverse reachable set must have all their edges within
themselves; this corresponds to the factor of

((
n−k
di

)
/
(
n
di

))ai−ki

. Since ` is very small, this
has a very low probability. With this intuition, we proceed to show the following bound on
ak1,k2,...,kx

.

I Lemma 12. We have ak1,k2,...,kx ≤
(
x · e · `n

)`.
We see that

(
x · e · `n

)` is a convex function in ` and its maximum is attained at one
of the endpoints. For ` = n/e2, the bound is exponentially decreasing with n where as for
constant `, the bound is polynomially decreasing in n. Hence, the maximum is attained
at left endpoint of the interval (constant value of `). However, the bound we get is not
sufficient to apply Lemma 3 directly. An important observation is that as ` becomes smaller
and smaller, the number of combinations

∑
ki = k, where ti ≤ ki ≤ ai in the expression of

αk also decrease. Thus, we break this case into two sub-cases.

I Lemma 13. For dmax + 1 < ` ≤ n/e2, we have ak1,k2,...,kx < n−(2+x) and αk ≤ 1/n2.

I Lemma 14. There exists a constant h > 0 such that for dmin + 1 ≤ ` ≤ dmax + 1, we have
ak1,k2,...,kx

< h · n−` and αk ≤ h
n2 .

I Lemma 15 (Main lemma for very large k). For all t, for all (1− 1
e2) · n ≤ k ≤ n− 1, the

probability that the size of the reverse reachable set S is k is at most O(1
n2).

Proof. By Lemma 13 and Lemma 14 we obtain the result for all (1− 1
e2)·n ≤ k ≤ n−dmin−1.

Since the reverse reachable set must contain all vertices if it has size at least n− dmin, the
result follows.

3.4 Expected Number of Iterations and Running Time

From Lemma 7, Lemma 11, and Lemma 15, we obtain that there exists a constant h such
that (i) αk ≤ 1

n2 , for 30 · x · log(n) ≤ k < n− dmax − 1; (ii) αk ≤ h
n2 , for n− dmax − 1 ≤ k ≤

n − dmin − 1; and (iii) αk = 0, for n − dmin ≤ k ≤ n − 1. Hence using the union bound we

FSTTCS 2012

470

get the following result P(|S| < 30 · x · log(n) or |S| = n) ≥ 1 − h
n , where S is the reverse

reachable set of target set (i.e., with probability at least 1− h
n either at most 30 · x · log(n)

vertices reach the target set or all the vertices reach the target set). Let I(n) and T (n)
denote the expected number of iterations and the expected running time of the classical
algorithm for MDPs on random graphs with n vertices and constant out-degree. Then from
above we have: I(n) ≤

(
1− h

n

)
· 30 · x · log(n) + h

n · n. It follows that I(n) = O(log(n)). For
the expected running time we have: T (n) ≤

(
1− h

n

)
· (30 · x · log(n))2 + h

n · n
2. It follows

that T (n) = O(n). Hence we have the following theorem.

I Theorem 16. The expected number of iterations and the expected running time of the
classical algorithm for MDPs with Büchi objectives over graphs with constant out-degree are
at most O(log(n)) and O(n), respectively.

I Remark. For Theorem 16, we considered the model where the out-degree of each vertex
v is fixed as dv and there exist constants dmin and dmax such that dmin ≤ dv ≤ dmax for
every vertex v. We discuss the implication of Theorem 16 for related models. First, when
the out-degrees of all vertices are same and constant (say d∗), Theorem 16 can be applied
with the special case of dmin = dmax = d∗. A second possible alternative model is when
the outdegree of every vertex is a distribution over the range [dmin, dmax]. Since we proved
that the average case is linear for every possible value of the outdegree dv in [dmin, dmax] for
every vertex v (i.e., for all possible combinations), it implies that the average case is also
linear when the outdegree is a distribution over [dmin, dmax].

4 Average Case Analysis in Erdös-Rényi Model

In this section we consider the classical Erdös-Rényi model of random graphs Gn,p, with n
vertices, where each edge is chosen to be in the graph independently with probability p [11]
(we consider directed graphs and then Gn,p is also referred as Dn,p in literature). First, in
Section 4.1 we consider the case when p is Ω

(
log(n)
n

)
, and then we consider the case when

p = 1
2 (that generates the uniform distribution over all graphs). We will show two results:

(1) if p ≥ c·log(n)
n , for any constant c > 2, then the expected number of iterations is constant

and the expected running time is linear; and (2) if p = 1
2 (with p = 1

2 we consider all graphs
to be equally likely), then the probability that the number of iterations is more than one
falls exponentially in n (in other words, graphs where the running time is more than linear
are exponentially rare).

4.1 Gn,p with p = Ω
(log(n)

n

)
In this subsection we will show that given p ≥ c·log(n)

n , for any constant c > 2, the probability
that not all vertices can reach the given target set is at most O(1/n). Hence the expected
number of iterations of the classical algorithm for MDPs with Büchi objectives is constant
and hence the algorithm works in average time linear in the size of the graph. Observe that
to show the result the worst possible case is when the size of the target set is 1, as otherwise
the chance that all vertices reach the target set is higher. Thus from here onwards, we
assume that the target set has exactly 1 vertex.
The probability R(n, p). For a random graph in Gn,p and a given target vertex, we denote
by R(n, p) the probability that each vertex in the graph has a path along the directed edges
to the target vertex. Our goal is to obtain a lower bound on R(n, p).

K. Chatterjee, M. Joglekar, and N. Shah 471

The key recurrence. Consider a random graph G with n vertices, with a given target vertex,
and edge probability p. For a set K of vertices with size k (i.e., |K| = k), which contains
the target vertex, R(k, p) is the probability that each vertex in the set K, has a path to
the target vertex, that lies within the set K (i.e., the path only visits vertices in K). The
probability R(k, p) depends only on k and p, due to the symmetry among vertices.

Consider the subset S of all vertices in V , which have a path to the target vertex. In
that case, for all vertices v in V \S, there is no edge going from v to a vertex in S (otherwise
there would have been a path from v to the target vertex). Thus there are no incoming
edges from V \ S to S. Let |S| = i. Then the i · (n − i) edges from V \ S to S should be
absent, and each edge is absent with probability (1 − p). The probability that each vertex
in S can reach the target is R(i, p). So the probability of S being the reverse reachable set
is given by:

(1− p)i·(n−i) ·R(i, p). (2)

There are
(
n−1
i−1
)
possible subsets of i vertices that include the given target vertex, and i

can range from 1 to n. Exactly one subset S of V will be the reverse reachable set. So
the sum of probabilities of the events that S is reverse reachable set is 1. Hence we have:
1 =

∑n
i=1
(
n−1
i−1
)
· (1 − p)i·(n−i) · R(i, p). Moving all but the last term (with i = n) to the

other side, we get the following recurrence relation:

R(n, p) = 1−
n−1∑
i=1

(
n− 1
i− 1

)
· (1− p)i·(n−i) ·R(i, p). (3)

Bound on p for lower bound on R(n, p). We will prove a lower bound on p in terms of n such
that the probability that not all n vertices can reach the target vertex is less than O(1/n).
In other words, we require R(n, p) ≥ 1−O

(1
n

)
. Since R(i, p) is a probability value, it is at

most 1. Hence from Equation 3 it follows that it suffices to show that

n−1∑
i=1

(
n− 1
i− 1

)
· (1− p)i·(n−i) ·R(i, p) ≤

n−1∑
i=1

(
n− 1
i− 1

)
· (1− p)i·(n−i) ≤ O

(
1
n

)
(4)

to show that R(n, p) ≥ 1−O
(1
n

)
. We will prove a lower bound on p for achieving Equation 4.

Let us denote by ti =
(
n−1
i−1
)
·(1−p)i·(n−i), for 1 ≤ i ≤ n−1. The following lemma establishes

a relation of ti and tn−i.

I Lemma 17. For 1 ≤ i ≤ n− 1, we have tn−i = n−i
i · ti.

Define gi = ti + tn−i, for 1 ≤ i ≤ bn/2c. From the previous lemma we have

gi = tn−i + ti = n

i
· ti = n

i
·
(
n− 1
i− 1

)
· (1− p)i·(n−i) =

(
n

i

)
· (1− p)i·(n−i).

We observe that in the range of [2, bn2 c], gi attains its maximum value at one of the two
endpoints. Then observing that g2 ≤ t1 and gbn/2c ≤ t1, we conclude the following.

I Lemma 18. For sufficiently large n, if p ≥ c·log(n)
n with c > 2, then gi ≤ t1 for all

2 ≤ i ≤ bn2 c.

Now we simplify the expression of t1 and prove the following using standard inequalities.

I Lemma 19. For sufficiently large n, if p ≥ c·log(n)
n with c > 2, then t1 ≤ 1

n2 .

FSTTCS 2012

472

We are now ready to establish the main lemma that proves the upper bound on R(n, p)
and then the main result of the section.

I Lemma 20. For sufficiently large n, for all p ≥ c·log(n)
n with c > 2, we have R(n, p) ≥

1− 1.5
n .

I Theorem 21. The expected number of iterations of the classical algorithm for MDPs with
Büchi objectives for random graphs Gn,p, with p ≥ c·log(n)

n , where c > 2, is O(1), and the
average case running time is linear.

Proof. By Lemma 20 it follows that R(n, p) ≥ 1− 1.5
n , and if all vertices reach the target set,

then the classical algorithm ends in one iteration. In the worst case the number of iterations
of the classical algorithm is n. Hence the expected number of iterations is bounded by:
1 ·
(
1− 1.5

n

)
+ n · 1.5

n = O(1). Since the expected number of iterations is O(1) and every
iteration takes linear time, it follows that the average case running time is linear.

4.2 Average-case analysis over all graphs

In this section, we consider uniform distribution over all graphs, i.e., all possible different
graphs are equally likely. This is equivalent to considering the Erdös-Rényi model such that
each edge has probability 1

2 . Using 1
2 ≥ 3 · log(n)/n (for n ≥ 17) and the results from

Section 4.1, we already know that the average case running time for Gn,1/2 is linear. In this
section we show that in Gn, 1

2
, the probability that not all vertices reach the target is in fact

exponentially small in n. It will follow that MDPs where the classical algorithm takes more
than constant iterations are exponentially rare. We consider the same recurrence R(n, p) as
in the previous subsection and consider tk and gk as defined before. The following theorem
shows the desired result.

I Theorem 22. In Gn, 1
2
with sufficiently large n the probability that the classical algorithm

takes more than one iteration is less than
(3

4
)n.

Proof. We first observe that Equation 3 and Equation 4 holds for all probabilities. Next
we observe that Lemma 18 holds for p ≥ c·log(n)

n with any constant c > 2, and hence
also for p = 1

2 for sufficiently large n. We have
∑n−1
i=1 ti ≤

3·n
2 · t1. For p = 1

2 we have
t1 =

(
n−1

0
)
·
(
1− 1

2
)n−1 = 1

2n−1 . Hence we have R(n, p) ≥ 1− 3·n
2·2n−1 > 1− 1.5n

2n = 1−
(3

4
)n.

The second inequality holds for sufficiently large n. It follows that the probability that
the classical algorithm takes more than one iteration is less than (3

4)n. The desired result
follows.

5 Conclusion
In this work both for the general case and the important special case of MDPs with con-
stant out-degree we establish that the average case running time of the classical algorithm is
linear, as compared to the quadratic worst case complexity. Moreover, as for the improved
algorithms it is known that they require at most linear time more than the classical al-
gorithm, it also follows that the average case running time of all the improved algorithms is
also linear. We considered models where all MDPs in the relevant class are equally likely. We
are not aware of any work that characterizes more appropriate probability distributions over
graphs to represent MDPs that arise in practice. Characterizing distributions over MDPs
that arise in practice and studying the average case complexity under such distributions is
beyond the scope of this work, and is a subject for future work.

K. Chatterjee, M. Joglekar, and N. Shah 473

References
1 C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
2 A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.

In FSTTCS 95, volume 1026 of LNCS, pages 499–513. Springer-Verlag, 1995.
3 K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for maximal end-

component decomposition and related graph problems in probabilistic verification. In
SODA. ACM-SIAM, 2011.

4 K. Chatterjee and M. Henzinger. An O(n2) algorithm for alternating Büchi games. In
SODA. ACM-SIAM, 2012.

5 K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity games. In
CSL’03, volume 2803 of LNCS, pages 100–113. Springer, 2003.

6 K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity games.
In SODA’04, pages 121–130. SIAM, 2004.

7 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857–907, 1995.

8 L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
1997.

9 L. de Alfaro, M. Faella, R. Majumdar, and V. Raman. Code-aware resource management.
In EMSOFT 05. ACM, 2005.

10 L. de Alfaro and P. Roy. Magnifying-lens abstraction for markov decision processes. In
CAV, pages 325–338, 2007.

11 P. Erdös and A. Rényi. On the evolution of random graphs. Math. Inst. of the Hungarian
Acad. of Sciences, pages 17–61, 1960.

12 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
13 H. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
14 M. Kwiatkowska, G. Norman, and D. Parker. Verifying randomized distributed algorithms

with prism. In Workshop on Advances in Verification (WAVE’00), 2000.
15 M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model

checker. In TOOLS’ 02, pages 200–204. LNCS 2324, Springer, 2002.
16 A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus algorithm

of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–186, 2000.
17 M. L. Puterman. Markov Decision Processes. J. Wiley and Sons, 1994.
18 R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis, MIT, 1995. Technical Report MIT/LCS/TR-676.
19 M.I.A. Stoelinga. Fun with FireWire: Experiments with verifying the IEEE1394 root

contention protocol. In Formal Aspects of Computing, 2002.
20 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edit-

ors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

FSTTCS 2012

	Introduction
	Definitions
	Average Case Analysis for MDPs with Constant Out-degree
	Small k: 30xlog(n) k c1 n
	Large k: c1 n k c2 n
	Very large k: (1-1/e2)n to n-dmin-1
	Expected Number of Iterations and Running Time

	Average Case Analysis in Erdös-Rényi Model
	Gn,p with p=(log(n)n)
	Average-case analysis over all graphs

	Conclusion

