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Abstract

When a mutation with selective advantage s spreads through a pan-
mictic population, it may cause two lineages at a linked locus to coalesce;
the probability of coalescence is exp(−2rT ), where T ∼ log(2Ns)/s is the
time to fixation, N is the number of haploid individuals, and r is the re-
combination rate. Population structure delays fixation, and so weakens the
effect of a selective sweep. However, favourable alleles spread through a spa-
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tially continuous population behind a narrow wavefront; ancestral lineages
are confined at the tip of this front, and so coalesce rapidly. In extremely
dense populations, coalescence is dominated by rare fluctuations ahead of
the front. However, we show that for moderate densities, a simple quasi-
deterministic approximation applies: the rate of coalescence within the front
is λ ∼ 2g(η)/(ρℓ), where ρ is the population density and ℓ = σ

√

2/s is the
characteristic scale of the wavefront; g(η) depends only on the strength of
random drift, η = ρσ

√

s/2. The net effect of a sweep on coalescence also
depends crucially on whether two lineages are ever both within the wave-
front at the same time: even in the extreme case when coalescence within
the front is instantaneous, the net rate of coalescence may be lower than in
a single panmictic population. Sweeps can also have a substantial impact on
the rate of gene flow. A single lineage will jump to a new location when it is
hit by a sweep, with mean square displacement σ2

eff/σ2 = (8/3)(L/ℓ)(Λ/R);
this can be substantial if the species’ range, L, is large, even if the species-
wide rate of sweeps per map length, Λ/R, is small. This effect is half as
strong in two dimensions. In contrast, the rate of coalescence between lin-
eages, at random locations in space and on the genetic map, is proportional
to (c/L)(Λ/R), where c is the wavespeed: thus, on average, one-dimensional
structure is likely to reduce coalescence due to sweeps, relative to panmixis.
In two dimensions, genes must move along the front before they can coalesce;
this process is rapid, being dominated by rare fluctuations. This leads to a
dramatically higher rate of coalescence within the wavefront than if lineages
simply diffused along the front. Nevertheless, the net rate of coalescence
due to a sweep through a two-dimensional population is likely to be lower
than it would be with panmixis.

Keywords: spatial structure, hitchhiking

1. Introduction

For many years, population geneticists have been trying to distinguish
the signature of natural selection from other forces of evolution. If a single
mutation is fixed by selection in a hard sweep, then diversity will be elim-
inated at the target of selection, but can also be substantially reduced at
sufficiently tightly linked loci, as the alleles that were fortunate enough to
be carried by the chromosome on which the favourable mutation first arose
‘hitch a lift’ to achieve higher frequency in the population. The first attempt
to quantify this genetic hitchhiking was due to Maynard Smith and Haigh
(1974), and their work has been refined and extended by many authors
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since (see e.g. Stephan et al. (1992); Barton (1998); Durrett and Schweins-
berg (2004); Schweinsberg and Durrett (2005); Etheridge et al. (2006)). Es-
sentially all this work deals with panmictic populations. However, most
populations have spatial structure, with many evolving in two dimensional
spatial continua. In this setting, if a favourable mutation fixes, it will sweep
through the population in an expanding wave. Very little is known about
the degree of hitchhiking as such a sweep passes through the population
and our intuition from the panmictic case may be of little help. Slatkin and
Wiehe (1998) conisder hitchhiking in a subdivided population under the as-
sumption that migration rates are small. Kim and Maruki (2011) consider
higher migration rates, but their analysis is restricted to the case when the
population is subdivided into just two demes. Barton (2000) derives the
increase of a linked neutral allele due to a sweep through a continuous two-
dimensional habitat, using a deterministic analysis forwards in time. Here,
we focus on the effect of a sweep on coalescence, backwards in time, and in
a spatially continuous habitat.

It is not at all obvious whether the net effect of a sweep on the genetic
diversity at linked neutral loci will be stronger or weaker in a spatially
structured population. On the one hand fixation will take much longer,
extending the timescale over which recombination can ‘free’ the hitchhiking
allele, but on the other hand, local founder events at the wavefront may
greatly increase genetic drift (Klopfstein et al., 2006; Excoffier et al., 2009;
Hallatschek et al., 2007; Hallatschek and Nelson, 2008, 2010).

In order to quantify the strength of hitchhiking in a spatially structured
population, we focus on the net rate of coalescence of neutral genes due
to sweeps at linked loci passing through the population. We leave other
questions, such as “What is the spatial signature of genetic hitchhiking?”
for future work.

Our analysis rests on understanding the wave of advance of a favoured
allele. Fisher (1937) described this through a deterministic diffusion equa-
tion (1) which exhibits travelling wave solutions. However, the speed of the
Fisher wave is determined by its behaviour in regions where the frequency of
the favoured allele is extremely low and, consequently, it is very sensitive to
stochastic fluctuations. In recent years there has been considerable progress
in understanding the coupling between such fluctuations and the progress
of the ‘bulk’ of the wave (Brunet and Derrida (1997, 2001); van Saarloos
(2003); Brunet et al. (2006); Hallatschek and Nelson (2008); Mueller et al.
(2011); Berestycki et al. (2012)). Much of this work is concerned with the
spread of a new species into an empty habitat, but the mathematical models
apply equally to the spread of a selectively favoured allele through a stable
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population.
Analytic results for models that mimic noisy Fisher waves are restricted

to one spatial dimension and they deal almost exclusively with asymptotic
behaviour as the population density tends to infinity. Three ramifications of
the presence of small amounts of genetic drift have been explored: first, drift
slows down the rate of advance of the wave by a factor proportional to the
dimensionless quantity 1/(log(ρσ

√

s/2))2 where ρ is population density, σ2

is the rate of diffusion and s is the selection coefficient (Brunet et al., 2006;
Mueller et al., 2011); second, the resulting cline shape (that is the shape of
the wavefront) is well-approximated by a truncated Fisher wave (described
in more detail in §2.1), Brunet and Derrida (1997); Mueller et al. (2011);
and third, the genealogy of a sample from the wavefront will be dominated
by ‘founder effects’ (resulting from fluctuations in the wavefront) and in
an appropriate timescale is approximated not by a Kingman coalescent,
but instead by the so-called Bolthausen-Sznitman coalescent in which, in
particular, multiple lineages merge in a single event (Brunet et al., 2006;
Berestycki et al., 2012).

Our goal is to apply this body of theory to understand the effect of a
selective sweep on the genealogy of a sample from a spatially distributed
population. Key to this is to investigate the accuracy of the (asymptotic)
predictions of the theory for biologically realistic population densities. What
we shall see in one dimension is that although the prediction for the reduction
in the wavespeed is remarkably robust, by contrast, for realistic population
densities, fluctuations are much less important for the genealogy of a sam-
ple. Instead a simple deterministic approximation (which nonetheless draws
on the asymptotic theory) provides a surprisingly good approximation: a
substantial fraction of coalescence occurs within the ‘average’ wave rather
than in extreme events.

Armed with an understanding of the genealogy of a sample from the
selected locus, we can investigate the strength of hitchhiking. Lineages can
escape the sweep through recombination into the less fit genetic background.
The rate of ‘successful’ recombination events will depend on the availability
of individuals of the unfavoured type with whom to recombine. Since lin-
eages ancestral to the selected locus typically lie near the ‘front’ of the wave,
and, at least if the local population density is not too small, the favoured
allele comprises a small proportion of the population there, we suppose that
all recombinations will be successful. (For very low population densities,
this approximation is less accurate and instead we should consider an ‘ef-
fective’ recombination rate which takes into account the allele frequencies
in a neighbourhood of a typical ancestral lineage.) Thus, we can find the
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chance that two genes sampled from behind a sweep will coalesce within
it, rather than recombining away. In a finite range, we can also find the
chance that lineages will trace all the way back to the original favourable
mutation. For one dimension, we summarise these arguments by finding the
net rate of coalescence between randomly sampled genes, and averaging over
a random rate of sweeps. We compare this net rate of coalescence to that
in the absence of sweeps, and to that due to classic genetic sweeps within a
panmictic population.

In two spatial dimensions there is essentially no rigorous theory on which
to draw. It is still the case that at the selected locus, genes sampled from
behind the advancing wavefront trace back to ancestors that lived at the
front of the wave. Even if the population density is high, such ancestors were
in effect confined to an extremely small population. This greatly increases
the rate of random genetic drift. In models of species expanding into empty
habitat, this has been shown to lead to ‘surfing’, in which neutral, and
even deleterious, alleles that are lucky enough to arise at the tip of the
wave can be carried to high frequency in the population (Klopfstein et al.,
2006; Excoffier et al., 2009). This effect will be reinforced by fluctuations
at the front: occasionally an individual moves far ahead of the rest of the
population, where the only competition that it experiences is from its own
family. Such individuals leave an exceptionally large number of descendants.
In particular, descendants of this single individual can comprise a significant
piece of the wavefront at a later time.

In two dimensions, we consider only the simplest case of a linear wave-
front. In that setting, it seems natural to assume that ancestral lineages
become trapped in a narrow (effectively one-dimensional) front, along which
they diffuse. Our one-dimensional arguments are then easily adapted to give
explicit approximations for the rate of coalescence. However, we show (by
simulation) that this gives a very poor approximation. In contrast to one di-
mension, even when neighbourhood size is small, coalescence is dominated
by the effect of fluctuations in the wavefront. This leads to a drastically
stronger effect of hitchhiking in two dimensions, and makes it much more
likely that genetic diversity is shaped by ‘genetic draft’ in spatially extended
populations.

For ease of reference, definitions of the important parameters in what
follows are collected together in Table 1.
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Table 1: Frequently used notation

s selection coefficient
σ2 dispersal rate
r recombination rate
ρ population density
p allele frequency
x distance in direction of wave movement
y distance transverse to the wave
η = σρ

√

s
2 dimensionless parameter

c∞ = σ
√

2s wave speed at infinite density
cη < c∞ wave speed at finite density

ℓ = σ
√

2
s characteristic spatial scale

w =
∫

4p(1 − p)dx width of wave
λ = 2

ρℓg(η) rate of coalescence within the wavefront

m migration rate between demes
N # of haploids in each deme
f(x) distribution of ancestral lineages (Eq. (7))
g(η) scaled rate of coalescence in the front (Eq. (B.2)

h
(

Lλ
c

)

∼ net rate of coalescence (Eq. C.2)
φ(t, x) density of the time taken for biased Brownian motion

from x to hit 0 (Eq. 10))
Ψ(t, z) density of time to coalescence of lineages z

apart (Eq. (14))
L length of species’ range
Λ rate of sweeps per genome, per generation
R map length of genome

2. Previous work

2.1. One dimensional waves of advance

The classical approach to modelling the spread of alleles through a spa-
tially distributed population dates back to Fisher (1937) and Kolmogorov,
Petrovsky & Piscounov (1937). Fisher considers a population evolving in
R. Denoting the frequency of the favoured allele at point x and time t by
p(t, x), he found

∂p

∂t
(t, x) =

σ2

2

∂2p

∂x2
(t, x) + sp(t, x) (1 − p(t, x)) . (1)
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We shall refer to this equation as the Fisher-KPP equation. It has a whole
family of travelling wave solutions. However, if we start from a non-negative
initial condition which tends to 1 at −∞ and 0 at +∞ and decays quickly
enough in space (for example one in which favoured alleles are initially con-
fined to the negative half line), then the solution to (1) converges to the
non-negative travelling wave of the smallest possible velocity, c∞ = σ

√
2s,

(Bramson, 1983). If we write the corresponding travelling wave solution as
p(t, x) = pc∞(x − c∞t), then, as Fisher showed, when pc∞(z) is small it can
be approximated by exp(−c∞z/σ2).

The first obstruction that we must overcome is that equation (1) tacitly
assumes an infinite population density at every point in space (hence our
notation c∞) and so we see no coalescence in this picture. This problem
is traditionally circumvented by supposing the population to be subdivided
into discrete demes and assuming that allele frequencies can be modelled by
a stepping stone model with selection and, say, nearest neighbour migration.
We assume that the population is subdivided into demes, each containing
N haploid individuals. Reproduction within each deme is according to the
Wright-Fisher model (with selection). Thus, if the proportion of favoured
alleles in deme i at generation t is pi(t), then each offspring, independently,
is of the favoured type with probability (1 + s)pi(t)/(1 + spi(t)). The re-
production step is followed by a migration step in which a proportion m of
offspring are exchanged with neighbouring sites. Our simulations will all be
based upon this model.

If selection is weak, and the population size within each deme is reason-
ably large, then it is often mathematically convenient to replace this discrete
(individual and generation) model, by a diffusion approximation (Kimura,
1953). In one dimension this takes the form

dpi(t) =
m

2
(pi+1(t) + pi−1(t) − 2pi(t)) dt + spi(t) (1 − pi(t)) dt

+

√

1

ρ
pi(t) (1 − pi(t))dWi(t), i ∈ Z, (2)

where pi(t) once again denotes the frequency of the favoured allele in deme i
at time t and {Wi(·)}i∈Z are independent Brownian motions. The quantity
ρ represents population density and will correspond to N in our simulations.
In one spatial dimension one can perform a diffusive rescaling to obtain a
continuum analogue of this system encoded by the stochastic partial differ-
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ential equation

dp(t, x) =
σ2

2

∂2

∂x2
p(t, x)dt + sp(t, x) (1 − p(t, x)) dt

+

√

1

ρ
p(t, x) (1 − p(t, x))W (dt, dx) (3)

where W (dt, dx) is a space-time white noise (Shiga, 1988). The scaling is
made explicit (in the neutral case) in Lemma 2.7 of Barton et al. (2002);
this spatial diffusion approximates a wide range of models, both discrete and
continuous, provided that the distribution of dispersal distance declines fast
enough that the motion of a single ancestral lineage rescales to Brownian
motion. To mimic the behaviour of (3) we take N = ρ and m = σ2 in our
simulations.

There is now a considerable body of work exploring the stochastic pde (3)
in the case of small noise (corresponding to weak selection and very high
local population density). Most of this work deals with the scaled equation

dp̃(t, x) =
∂2

∂x2
p̃(t, x)dt + p̃(t, x) (1 − p̃(t, x)) dt

+

√

1

η
p̃(t, x) (1 − p̃(t, x))W (dt, dx). (4)

These results can be translated into the setting of (3) through the transfor-
mation

p(t, x) = p̃

(

st,

√
2s

σ
x

)

which is valid on setting

η = σρ

√

s

2
.

The dimensionless quantity η, introduced in Nagylaki (1978), will be at the
heart of our analysis: it measures the strength of random drift, relative to
selection and dispersal.

There is a travelling wave solution to (3) (Mueller and Sowers, 1995),
for which, in contrast to the classical Fisher wave, the region in which p /∈
{0, 1} is bounded. Indeed, even in the case without selection, if we start
from an initial condition in which the ‘interface’ between the two types is
bounded, then the region in which p(t, y) /∈ {0, 1} remains bounded for all
time (Mueller and Tribe, 1997).
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The Fisher wave is what is known as a pulled wave. It is propagating
from a stable (saturated) state into an unstable state, and its asymptotic
speed is determined through linearisation about the unstable state (where
p = 0). As a result, the fluctuations (of order

√

p/ρ) induced by the noise
in (3) have a surprisingly big effect on the speed of the wave, slowing it down
by an amount proportional to 1/(log η)2 for large η. (Here, and throughout,
we use log to denote the natural logarithm.) This is sometimes referred to
as Brunet-Derrida behaviour and has now been established rigorously for a
whole raft of related models (see Berestycki et al. (2012); Bérard and Gouéré
(2011) for recent reviews) and it is reasonable to expect that the reduction
of wavespeed in (2) compared to that in the limit as η → ∞ will (to leading
order) also be proportional to 1/(log η)2. The wavespeed in (3) is just that
in (4) multiplied by σ

√

s/2. Thus writing cη for the wavespeed (in any of
our models), the theory predicts that

cη ≈ c∞

(

1 − A

(log(η))2

)

(5)

for some constant A. In the case of (3) it has been proved rigorously that
A = π2/2 (Mueller et al., 2011).

The heuristic arguments of Brunet and Derrida, and indeed the rigorous
proof of Brunet-Derrida behaviour of (3), rest on comparing the solution to
the travelling wave solution of the deterministic Fisher-KPP equation (1)
corresponding to the wavespeed cη. Since cη < c∞, this deterministic so-
lution will not remain positive and so we truncate it at the smallest x at
which it is zero. We denote the resulting wavefront by pcη(·). We discuss
the form of the solution in a little more detail in Appendix A.

The rigorous mathematical results described above apply only in the
limit as the population density tends to infinity. However, in spatially
distributed populations one might expect neighbourhood size to be small.
There are essentially no results available for the resulting ‘strong noise’ sce-
nario, although Hallatschek and Korolev (2009) suggest that in the strong
noise limit, the exponential decay in the front of the wave will be replaced
by a power law decay. Here we shall restrict our attention to large, but bio-
logically realistic, deme sizes (N = 10, . . . , 106, m = 0.25, s = 0.01, 0.05, 0.1
in our individual based stepping stone model, corresponding to values of η
ranging from approximately 10−1 to 105). Note that since we assume the
diffusion scaling, the value of m in itself should not affect the results; we
choose m = 0.25 to make simulations most efficient.
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2.2. Location of a single ancestral lineage

Suppose now that we sample an individual of the favoured type from
our population. We assume that the sweep has passed through as a trav-
elling wave (with a stationary form). The ancestral lineage of our sampled
individual will initially move around according to a Brownian motion (or
random walk in the stepping stone setting), but (tracing backwards in time)
at some point it will be ‘caught’ by the wave and will start to experience a
drift (in the mathematical sense) away from the wavefront and back towards
the origin of the sweep. Only then does it have any chance of recombining
with an individual of the unfavoured type, and thus escaping the sweep.
The ‘escape’ of lineages from the sweep is illustrated in Fig. 1.

We are interested in ascertaining the movement of an ancestral lineage
within the wavefront. If the shape of the wave is deterministic, the drift
is easily calculated to be σ2p′cη

(x)/pcη(x) where p′cη
(x) = dpcη/dx. (To

see why this is true, recall that in a stepping stone model on Z in which
the population size of the deme at k is Nk, and with symmetric nearest
neighbour migration with rate m, an ancestral lineage migrates from k to
k − 1 at rate mNk−1/(2Nk) and to k + 1 at rate mNk+1/(2Nk). Applying
the diffusive rescaling, and assuming that the population size scales to pcη

one obtains a Brownian motion with the drift given above.) In other words,
writing the position of the lineage (relative to the tip of the travelling wave)
at time t as Xt and cη for the speed of the wave,

dXt = −
(

σ2p′cη
(Xt)

pcη(Xt)
+ cη

)

dt + σdBt, (6)

where {Bt}t≥0 is a one-dimensional Brownian motion. If {Xt}t≥0 has a
stationary distribution, with density f say, then

f(x) ∝ p2
cη

(x) exp
(

2
cηx

σ2

)

(7)

which, if the right hand side is integrable (and so can be normalised to be
a probability density function), provides an explicit expression for f (see,
for example, Karlin and Taylor (1981) for the theory of one-dimensional
diffusions). Equation (7) is also derived in Hallatschek and Nelson (2008).
If the wavefront is given by a deterministic Fisher wave and the lineage is
far out in the front, where the frequency of favoured alleles is small, then
the drift away from the wavefront reduces to −σ

√
2s, exactly sufficient to

compensate for the speed of the wave. If a lineage escapes too far from
the tip of the wave, then σ2p′cη

(x)/pcη (x) decreases in magnitude, is no
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Figure 1: The effect of a sweep through a one-dimensional population on genealogies at
linked loci. The picture is the result of a forwards simulation of a stepping stone model
on Z (see the Supplementary Material for details). Initially, an allele with advantage
s = 0.01 is fixed for x < 0, but absent elsewhere (top left). There is nearest-neighbour
migration, with a fraction m = 0.5 moving per generation; demes contain N = 105 haploid
individuals. The advance rapidly settles to a wave with speed slightly slower than that
of the corresponding deterministic wave which is

√
2ms = 0.1 demes per generation, and

width ∼
p

2m/s = 10; the grey scale is proportional to
√

p, to make the low frequencies out
at the front more visible. At time t = 104, 5 genomes are sampled from each of 6 locations
just behind the wavefront, and 10 demes apart (bottom right); their ancestry at the
selected locus is shown in red, and coalescence events are shown as blue dots. The MRCA
of the 30 lineages at the selected locus is 7338 generations back (blue dot at upper left).
The ancestry of ten marker alleles, spaced 0.01cM apart on one side of the selected locus
was also traced, backwards through time. Purple dots show lineages where the closest
marker has recombined onto the less fit background; orange lines show lineages where
the second closest marker, 0.02cM away, has recombined onto the ancestral background.
Green dots show recombination events that separate the closest marker from the favoured
allele, and yellow dots show recombinations that separate ancestral material at the first and
second markers. Note that almost all coalescence events are on the selected genealogy, and
occur in the wavefront: there are 33 coalescence events on the ancestral selection graph,
of which 29 are responsible for the coalescence of the 30 lineages at the selected locus.
The remaining four are between various recombinant lineages, but still occur within the
wavefront. Similarly, almost all recombinations lead to escape of neutral lineages. There
are four recombinations that separate the proximal marker from the selected locus (green
dots) of which two allow escape onto the ancestral background (purple lines) and the
remaining two (which occur further back from the front) are betweeen parents carrying
the fitter allele. Moving along the genome, there are 12 events that separate the two
closest marker loci (yellow dots) of which all occur within the front, leading to escape
of the second marker (orange lineages). However, one event separates these two markers
along a lineage that has already escaped (yellow dot at t = 5726).11



longer sufficient to compensate the wavespeed, and the wave starts to catch
up, driving the lineage back into the front. As η → ∞, the width of the
region in which the allele frequencies are between any two assigned values
is proportional to σ

√

2/s (Fisher, 1937) and so for large s/σ2, this suggests
that ancestral lineages can be thought of as trapped within a narrow front.
We shall write

ℓ = σ
√

2/s

for the characteristic lengthscale of the travelling wavefront.
In fact, for the Fisher wave, σ2p′c∞(x)/pc∞(x) only becomes close to the

asymptotic value −σ
√

2s when pc∞(x) is extremely small, and so for a large
(but finite) value of η the mechanism described above drives lineages into
regions where the classical Fisher wave is no longer a valid approximation
for allele frequencies and the correction achieved by replacing pc∞ by pcη

becomes important.

2.3. Genealogies in one dimension

We now turn to the genealogy of a sample from the population. In the
discussion above, we have considered only the ‘bulk’ of the travelling wave
and we have ignored the fluctuations in the position of the front. The anal-
yses of Brunet and Derrida (2001); Brunet et al. (2006); Berestycki et al.
(2012) of models which are believed to mirror the behaviour of solutions
to (3) suggest that, at least for large η, for most of the time the determinis-
tic approximation pcη(·) provides a good approximation to the shape of the
wavefront, but at time intervals of order O((log η)3) there are appreciable
fluctuations. Roughly, these occur because an individual in the population
manages to get significantly ahead of the bulk of the wave. There it repro-
duces without competition (other than from its own descendants) until the
rest of the population catches up (O((log η)2) units of time later). By that
time, it has reproduced so successfully that a significant portion of the indi-
viduals in the wavefront are descendants of this single individual. This will
have significant impact on the genealogy of a sample from the population.

If we could ignore the stochastic fluctuations in the wavefront, then the
genealogy of a sample of individuals from the population would be deter-
mined by a system of Brownian motions with drift (as in (6)) which can
coalesce upon meeting at a rate which is inversely proportional to ρpcη(x),
where pcη(x) is the frequency of the favoured allele at the point where they
meet. However, the work of Brunet et al. (2006); Berestycki et al. (2012)
suggests that in fact it is coalescence due to fluctuations in the wavefront
that dominate. More precisely, if we take a sample of lineages from the
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wavefront, the expected time until a pair of lineages coalesces is O((log η)3),
which determines the appropriate timescale on which to view coalescence.
(The exact spatial locations at which we sample the lineages is not important
as long as they are within the front, where the favoured allele is not fixed.)
On this timescale, asymptotically (as η → ∞), the genealogy of the sample
is given by the so-called Bolthausen-Sznitman coalescent, introduced (in a
very different context) in Bolthausen and Sznitman (1998). In particular,
we see multiple mergers, in which more than two ancestral lineages coalesce.
Each coalescence event corresponds to the coalescence of all lineages de-
scended from an individual that escaped the rest of the population during
an extreme fluctuation. At least as η → ∞, it is the coalescences driven
by these fluctuations that dominate the genealogy. One of our goals is to
establish whether this asymptotic regime is representative of the moderate
population densities that we can expect in natural populations.

2.4. Two dimensions

Although Fisher only considered one spatial dimension, equation (1) can
be applied in dimensions d ≥ 2 on replacing ∂2/∂x2 by the d-dimensional
Laplacian. The difficulties begin when we try to incorporate random genetic
drift. The analogue of the stochastic partial differential equation (3) has no
solution in dimensions two or higher and so the theory that we have appealed
to above has no counterpart.

Ralph and Coop (2010) examine the patterns of diversity resulting from
competing selective sweeps arising through parallel adaptation. The ran-
domness in their model is associated with the time and spatial location at
which favoured alleles arise rather than genetic drift. Martens and Hal-
latschek (2011) investigate clonal interference in a two-dimensional setting.
Other work on stochastic models in two dimensions has largely been moti-
vated not by the study of spatial selective sweeps, but instead by the desire
to understand the patterns of genetic variation resulting from range ex-
pansion (Excoffier et al., 2009). The ‘surfing’ to high frequency of neutral
alleles that arise at the frontier of an expanding species, observed in simu-
lations of the stepping stone model, mirrors the rare appearances of highly
successful individuals at the wavefront of a population evolving according
to (3) described in §2.3. Hallatschek et al. (2007); Hallatschek and Nelson
(2010) consider expanding microbial colonies and through both in vitro ex-
periments and numerical simulation of individual based models shows how
two competing, but equally fit, strains, expanding into new territory in a
circular wave, naturally subdivide into sectors of the two types. There are
many other observations of sectoring in expanding colonies (e.g Yin (1993);
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Wei and Krone (2005); Krone et al. (2007)). This provides some information
on the structure of genealogies in what corresponds to a strong noise and
strong selection setting, although there is not yet any detailed theoretical
work on how the sectors are created.

We recently introduced a model for the evolution of allele frequencies
in populations evolving in spatial continua (Barton et al., 2010a,b) which
captures (for different parameter values) both weak and strong (and indeed
intermediate) noise. It is readily extended to incorporate selection and re-
combination, but the (challenging) mathematical analysis is deferred to later
work.

3. Results

Our results are based on simulations of the stepping stone model. They
are mostly concerned with the case of one spatial dimension where we explore
the accuracy of the asymptotic approximations described above for moderate
population densities and their implications for the genealogy of a sample
from a spatially distributed population after the passage of a selective sweep.

3.1. Outline of the argument

Our first goal is to estimate the net rate of coalescence due to sweeps
passing through the population. We begin by focussing on genes at the se-
lected locus; this argument is easily extended to a linked neutral locus. The
simplest case is when each sweep is an isolated wave spreading through a
one-dimensional population which is dispersed over an infinite range. Sup-
pose that we sample two individuals at separation ∆x at some time after the
sweep has passed. What is the probability that when we trace backwards
in time, the coalescence of their two ancestral lineages is caused by the pas-
sage of the sweep? Initially the lineages will follow independent random
walks which coalesce on meeting at a rate which is inversely proportional
to the local population density. Once caught by the wave, each lineage
will be carried back in a narrow wavefront whose shape we approximate by
the (truncated) deterministic travelling wave pcη(·). Once both lineages are
within the front they evolve according to a random walk with drift whose
stationary distribution can be approximated by that for the corresponding
Brownian motion with drift which has density f determined by (7). The
proportion of time for which the two lineages are both at the location x is
then approximately f(x)2, assuming that mixing within this small region is
sufficiently fast. When in the same location they coalesce at rate 1/(ρpcη (x))
and so we can estimate the net rate of coalescence between two genes ∆x
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apart in a one-dimensional population given some rate of sweeps. We inves-
tigate this approximation for a variety of parameter values in §3.3.1.

So far we have considered just the genealogy at the selected locus, for
which coalescence is inevitable. Our second goal is to understand the effect
of the sweep on neutral variation at linked loci. For this we need to find
the rate at which lineages recombine out into the unfavoured background.
If the population density is high and ancestors are far out in the wave front,
where the favoured allele forms a small proportion of the population, then
this is just determined by the recombination rate. If local population den-
sity is low, this need not be the case, because lineages may find themselves
in regions where the favoured allele is at appreciable frequency. Then, the
instantaneous rate of recombination is given by the recombination rate mul-
tiplied by 1 − pcη(Xt) where pcη(Xt) is the frequency of the favoured allele
at the current location of the lineage. Once again we can approximate this
from the deterministic frequencies. In fact we can (and do) omit this (small)
correction for the range of population densities simulated here.

In two spatial dimensions things are significantly more difficult. We re-
strict ourselves to the simplest setting of a linear wavefront. Orthogonal
to the wavefront we can expect lineages to follow a random walk with drift
towards the origin of the sweep. The question is: what is the behaviour of
lineages transverse to the wave? One might guess that, at least for small
values of ℓ = σ

√

2/s, the lineages would be trapped in an effectively one-
dimensional wavefront along which they diffuse independently until coalesc-
ing on meeting at a rate inversely proportional to an effective population
density in the wavefront. The distribution of their coalescence times would
then be determined by the one-dimensional Wright-Malécot formula (D.1).
We test this intuition (and find it badly wanting) in §4.3.

3.2. Speed and shape of the wave

3.2.1. Average behaviour

We measure the position of the wavefront by its centre of mass and we
use twice the total number of heterozygotes, that is w(t) =

∫

4p(t, x)(1 −
p(t, x))dx, as a proxy for its width. At any time, the expected rate of
advance, c = d/dt

∫

p(t, x)dx, is given by sw(t)/4. In Fig. 2, we illustrate
the way in which the speed and the ‘width’ of the wave fluctuate together.

In Fig. 3 we investigate the effect of noise on the average speed of the
advancing wave of favoured alleles. Even though our simulations are based
on the stepping stone model, the prediction of Brunet and Derrida (1997)
that the correction should be O(1/(log η)2) remains accurate. However,
for the range of values of η considered here, we are not close enough to
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Figure 2: Under the weak selection approximation (2), the expected speed of advance,
speed being defined as c = d/dt

R

p(t, x)dx, is necessarily proportional to the expected
‘width’ defined as w(t) =

R

4p(t, x)(1− p(t, x))dx. The graph shows this relationship (for
our simulations, detailed in the Supplementary Material, of the individual based stepping
stone model which (2) approximates) for N = 100 (lower pair of lines; black: sw/4, orange:
c) and N = 106 (upper pair of lines; blue: sw/4, red: c). Speed is defined as the change in
total allele frequency between generations; both speed and width are smoothed for clarity,
using a Gaussian kernel with standard deviation 5. The slight discrepancy is due to the
inaccuracy of the weak selection approximation; here, s = 0.05.

the asymptotic regime for the constant A in equation (5) to be π2/2. We
therefore use the fitted formula from Fig. 3 (rather than the asymptotic
prediction) to approximate cη for the remainder of our analysis.

In Fig. 4 we investigate the shape of the wave. This is achieved by calcu-
lating average allele frequencies (at each distance from the centre of mass)
over 105 generations. The expected shape of the wave relative to its centre
of mass is close to the approximation provided by the deterministic Fisher
wave. This does converge to an exponential distribution far away from the
centre of the wave, but extremely slowly, and before we achieve this regime
the expected wavefront turns down, in agreement with the approximation
pcη . At the extreme tip of the wave, the expected allele frequency is sub-
stantially higher than pcη . We attribute this to occasional large fluctuations.

3.2.2. Fluctuations in the wavespeed

Although the bulk of the wave is close to the deterministic solution, there
are rare large fluctuations in the front (as predicted by the theory). These
propagate back to cause modest fluctuations in the ‘width’ and speed of the
wave. We define the ‘mass in the front’ to be the total mass more than a
specified distance ahead of the centre of mass of the wave. Then we observe
a delay: an increase in mass in the front is followed by an increase of the
speed of the wave which then relaxes down again. See the Supplementary
Material for simulations. If we simulated over a long enough time, we would
expect to generate a long-tailed distribution of such excursions.
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Figure 3: The results of Brunet and Derrida (1997) suggest that the speed of the wave
should be reduced in the presence of noise by a factor of the form (1 − A/(log(Bη))2)
for some constants A and B. Thus, 1/

p

1 − c/c∞ should be a linear function of log η,
where c∞ =

√
2ms is the speed of the deterministic wave corresponding to N = ∞. The

graph is based on the mean speed over 105 generations; m = 0.25, s = 0.01, 0.05, 0.10
(red, black, blue). The lines show least-squares fits for these three selection strengths.
The best fit, combining s = 0.01, 0.05 gives A = 6.83 and B = 24.82 so that cη/c∞ ∼
1 − 6.83/(log(35.10η)2. (See the Supplementary Material for details of the simulations.)

17



0 10 20 30
x

0.0001

0.001

0.01

0.1

0.9

0.99

p

Figure 4: Cline shape for N = 100, 104, 106 (black, purple, red dots); s = 0.05, m =
0.25, 105 generations. For each generation, the position, x, of each deme relative to
the centre of mass of the wave, is plotted against its allele frequency, p; each dot shows
the means of 5000 such (x, p) values. The upper black curve shows the solution to the
deterministic Fisher-KPP equation, which has speed

√
2ms; the grey, blue and orange

curves show the deterministic solutions assuming that speed is reduced by a factor 1 −
6.83/(log(24.82N

√
sm))2 (as estimated from Fig. 3). The actual shape fits closely to this

prediction, except at very low frequency, where the average allele frequency is higher. We
attribute this to occasional fluctuations that take the front of the wave well ahead of the
centre of mass. Details of the simulations are in the Supplementary Material.
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Figure 5: The dots show the distribution of locations of ancestral lineages, relative to the
centre of mass, for N = 10, 100, . . . , 106 (left to right); s = 0.05, m = 0.25. The curves

show the predicted locations, f ∝ p2

cη
e2cηx/σ2

, where the allele frequency is calculated
using the deterministic Fisher-KPP equation, with speed estimated from the formula in
Fig. 3. For each N , four replicate lineages were propagated back through 105 generations,
using a single realisation of the forwards process. Ancestors tend to be ahead of the
deterministic prediction, which may be because of the upturn in allele frequency which
we attribute to random fluctuations. Details of the simulations are in the Supplementary
Material.

3.3. Sampling from the wavefront

3.3.1. A single ancestral lineage within the wavefront

In Fig. 5 we plot the position of ancestral lineages relative to the centre
of mass of the wave. We superpose on this the approximation for the sta-
tionary distribution of the position of the ancestral lineage predicted by (7)
with pcη(·) determined by the (truncated) deterministic Fisher wave and cη

predicted by the formula fitted in Fig. 3. The fit is quite good, illustrating
the fact that the large fluctuations in the wave front are rather rare and
hardly distort the picture at all.

One might hope to obtain a better approximation by substituting the
actual cline shape of the simulation (rather than the deterministic wave
with speed cη) in (7). However, this approach fails. The fluctuations in the
wavefront are such that we can no longer normalise the distribution (7) to
obtain a probability measure.
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3.3.2. Coalescence within the wavefront

The theory summarised in §2.1-§2.3 predicts that, at least for very high
population densities, the genealogy of a sample taken from the propagating
wavefront will be dominated by a series of ‘founder events’ at the tip of
the wave, caused by (relatively) rare events in which an individual moves
substantially ahead of the bulk of the wave and then multiplies unimpeded
by competition for long enough that its descendants form a significant pro-
portion of the population in the wave at all future times.

For modest population densities, at least in one spatial dimension, these
fluctuations can be expected to be less effective since the competition from
the individual’s own family rapidly becomes significant. In Fig. 6 we com-
pare the rate of coalescence in the simulated front to that predicted in the
absence of fluctuations, f2/(ρpcη ), with f given by (7) and pcη the approx-
imation to the cline given by the deterministic Fisher-KPP equation. As
before, cη is approximated using the formula in Fig. 3. Although, as we ex-
pect, for large values of η this approximation underestimates the coalescence
rate, we see in Fig. 6 that it provides a surprisingly good approximation for
modest values of η. This suggests that for these moderate values the fluctua-
tions are much less significant. For small population densities, the ancestral
lineages are no longer trapped within the front and coalescence outwith the
wavefront becomes significant (so that the actual coalescence rate is slower
than that predicted by the approximation). In Fig. 7 we look at the lo-
cations of coalescence events within the front. Once again, for very large
values of η fluctuations become more important.

4. Analysis

We now turn to some analytic predictions. Having presented the basis
for the analysis, in §4.2.2, §4.2.3 we use a simple approximation to compare
the effect of sweeps in a one-dimensional population to two baselines: a
neutral structured population and a sweep in a panmictic population. In
two spatial dimensions our approximations are no longer valid and there is
essentially no existing theory to draw upon. Instead, in §4.3 we present a
preliminary qualitative analysis of the new effects that we see in simulations.

4.1. Assumptions underlying the analysis

For the rest of our analysis, we shall ignore fluctuations in the wavespeed
and assume that it takes the constant value c. (We shall drop the subscript
η in our notation, but it should be implicitly understood that c = cη .)
We shall also suppose that the species range, L, satisfies L ≫ ℓ. Under
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Figure 6: The inverse rate of coalescence within the front is plotted against eta. The
observed values are indicated by bars, showing twice the standard error; this is based on 10
replicates, each of 400 pairs, started at 0, 104, . . . , 9×104 generations; s = 0.05, m = 0.25.
Large blue dots show the a priori predictions, based on the Fisher-KPP equation with
speed given as in Fig. 3. Small red dots show the predicted rate f2/(Npcη

), when one
takes the observed distribution of ancestors for f . These two predictions correspond to
the upper and middle curves in the distributions of locations of coalescences in Fig. 7. The
deterministic prediction fits λ−1 ∼ (1.4/s)(ρσ

√
s)0.44 (blue dots), whereas the simulations

(detailed in the Supplementary Material) fit λ−1 ∼ (3.7/s)(ρσ
√

s)0.30 (error bars).

21



0 10 20
x

0.1

0.2

Figure 7: The distribution of coalescence events, plotted against the position x relative
to the centre of mass of the cline. Three sets of curves are shown for N = 100, 104, 106

(black, blue, red). Each set is based on a single forwards sweep of 105 generations,with

s = 0.5, m = 0.25. The smooth curve is the prediction f2/(Npcη
) ∝ p3

cη
e2cηx/σ2

/N ,
calculated as in Fig. 3. The middle jagged curve, drawn in a lighter shade, is the prediction
f2/Npcη

obtained by using the actual distribution of the location of ancestral lineages
in the simulation for f . The broadest curve in each set is the observed distribution
of coalescence events. Each is based on sampling one pair of lineages, replicated 400
times from each of 10 time points at t = 0, 104, . . . , 9 × 104 (counting backwards). The
distribution of coalescence events is close to the prediction based on the actual locations
of ancestral locations, though somewhat further out to the front. The prediction based
on the deterministic Fisher-KPP equation is sharper and lies further back - especially for
the largest deme size, N = 106 (red curves at the right). Details of the simulations are in
the Supplementary Material.
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this assumption, as we trace backwards in time, a lineage sampled at a
distance x behind the travelling wave will be ‘caught’ by the wavefront
at a time with mean x/c whose distribution we estimate in (10) below.
The assumption L ≫ ℓ also allows us to assume that from its inception
the travelling wavefront of favoured alleles is in its stationary form. In
particular, we can then make the approximation λ =

∫∞
0 f2(x)/(ρpcη (x))dx

for the coalescence rate within the front. In Appendix B we show that
λ can be written as the product of 2/(ρℓ) and a function, g, of the single
dimensionless parameter η, that is λ = 2g(η)/(ρℓ) (although we have no
explicit expression for g).

4.2. Sampling from outside the front

We have seen that, once two lineages enter the wavefront, they coalesce
at approximately the rate λ. We now build on this to find the effect of sweeps
on the ancestry of genes sampled at arbitrary locations in space and on the
genetic map, and at arbitrary times. To do this, we must allow for three
factors: the diffusion of ancestral lineages as we trace backwards in time,
before they are caught by the wavefront; their rate of escape from the front
through recombination onto the unfavoured background; and their chance of
tracing back to coalesce at the original favourable mutation. Figure 8 shows
these mechanisms in action in a simulation. These calculations allow us to
compare the rate of coalescence at a neutral locus due to sweeps arising
at rate Λ and crossing a species range, to the rate of coalescence in the
absence of sweeps. Finally, we compare the average rate of coalescence due
to successive sweeps with the rate due to those same sweeps in a panmictic
population.

4.2.1. Motion of a single lineage

Before considering the rate of pairwise coalescence, we consider the effect
of hitchhiking on the spatial motion of a single lineage. Each passing sweep
can cause the lineage to experience a large jump, which may in the long run
be more significant for the dynamics of the lineages than simple diffusion
at rate σ2. This effect can be seen clearly for the lineages in Fig. 8. To
quantify this, note that once within a wavefront a neutral gene at map
distance r from the selected locus will escape from the front at a rate r. (As
explained in §1, we will assume that the favoured allele is sufficiently rare in
the vicinity of the ancestral lineage that all recombination events are with an
individual of the unfavoured type and so result in escape from the sweep.)
If the wave is travelling at speed c and the selected mutation arose at a
distance x away (in space) from the current location of the lineage, then the
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Figure 8: The effect of 5 successive selective sweeps on the ancestry of three genes, sampled
at x = 300, 500, 700; genes diffuse at a rate σ2 = 1. The origin of five selective sweeps is
shown by the red dots, and the advancing wavefronts by the orange lines. The origin, speed
and position on the genetic map were drawn from a uniform distribution; in this example,
the map location, relative to the focal locus, is −0.90cM, +0.80cM, −0.77cM, +0.83cM,
−0.19cM. When a lineage hits a wavefront, it is carried back towards the favourable
mutation (red dot) but may escape by recombination. The population is assumed very
dense, so that coalescence only occurs within the wavefront. In this example, the purple
and black lineages lie within the same wavefront (x ∼ 600 − 750, t ∼ 3500), but escape
from it without coalescing. The only coalescence event occurs at the origin of the oldest
selective sweep (x ∼ 700, t ∼ 6800), when both the purple and black lineages are carried
back to coalesce on the genome that carried the favourable mutation. See Supplementary
Material for details.
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expected length of time between the lineage being caught by the sweep and
the origin of the favourable mutation is x/c (see equation (10) below for the
approximate distribution of this time). In particular, the probability that
the lineage will trace back to that mutation, and so return to the ancestral
background without recombination, is approximately exp(−rx/c). More
generally, as a result of a sweep which is travelling at rate c, the lineage will
move an exponentially distributed distance (with parameter c/r), truncated
at the location of the origin of the mutation. This represents a mean square
displacement of a lineage due to the sweep of

2
( c

r

)2 (

1 −
(

1 +
rx

c

)

e−rx/c
)

, (8)

see Appendix C.1.
We assume that sweeps are uniformly distributed over a genetic map of

length R and that they originate at points that are uniformly distributed
over a one-dimensional range of length L. In Appendix C.1 we show that
if the overall rate of sweeps is Λ across the entire range and genome, and
RL/c ≫ 1, then the mean square displacement per unit time of a lineage
sampled uniformly from the species range due to hitchhiking, relative to
that without hitchhiking, is

σ2
eff

σ2
≈ 8

3

L

ℓ

Λ

R
, (9)

where, as before, ℓ = σ
√

2/s is the characteristic length scale of the wave-
front when η = ∞. There will be some bias in the direction of this dis-
placement, because unless a lineage is sampled from exactly the centre of
the range, there will always be more sweeps arising on one side of it than
the other.

4.2.2. Comparison to a neutral one-dimensional population

The long-term effective size of a structured population is determined by
the rate of coalescence between two genes, sampled uniformly at random
from the whole population (Charlesworth et al., 2003). In this subsection
we compare this quantity in the presence of sweeps to that in a spatially
structured neutral population.

Suppose first that we sample a lineage at distance x behind the current
position of the wavefront. Relative to the front, it follows a random walk
with drift (which as usual we approximate by its Brownian counterpart). If
x/ℓ ≫ 1, then we can suppose that the time until a lineage is ‘caught by the
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wave’ is approximately the time for a Brownian motion with drift −c to hit
zero for the first time, given that it started at x. This time has density

φ(t, x) =
x

σ
√

2πt3
exp

(

−(x − ct)2

2σ2t

)

, (10)

see e.g. Cox and Miller (1977) p.221, Equation 74. Notice that, at least if
x ≫ σ, this is essentially a Gaussian density, centred on t = x/c, the time
since the wave was at the current location of the lineage, with standard
deviation σ/c.

Now suppose that we sample two lineages from behind the wavefront.
For all but small population densities, we can neglect the chance that the
lineages will coalesce before they are both captured by the wavefront and so
until that time they evolve independently of one another and equation (10)
determines the distribution of that time. Once a lineage enters the front, it
can recombine out onto the less fit background at a rate r. (We ignore the
chance that it recombines in again, since the fitter background is typically
rare, and is receding as we trace backwards in time). Once both lineages
are within the wavefront, each can escape at rate r or the two lineages can
coalesce at rate λ. Thus, if the favourable mutation is sweeping across an
infinite range, then once in the front the chance of coalescence before either
lineage escapes through recombination is just λ/(λ + 2r). Putting all this
together, if the favourable mutation were sweeping across an infinite range,
the probability of coalescence of two lineages sampled at distances x1, x2

behind the wavefront would be approximately

P (x1, x2) =
λ

λ + 2r

∫ ∞

0

∫ ∞

0
φ (t1, x1) φ (t2, x2) e−r|t2−t1|dt1dt2. (11)

(The integrand is the probability that the lineages enter the front at times
t1 and t2 respectively, multiplied by the probability that the lineage which is
captured first does not escape through recombination before the second lin-
eage is captured.) In a finite range we will have to correct this expression to
take into account the possibility that the lineages trace back to the origin of
the sweep before recombining away. We perform this correction in Appendix
C.1. From equation (11) we see that (provided the sweep is not of too recent
origin) the chance that both lineages will meet in the wavefront (i.e., the
double integral in (11)) depends on the scaled distances from the front, xi/ℓ,
where, as before, ℓ = σ

√

2/s, and on the rate of recombination relative to
selection, r/s. Figure 9 shows that (in an infinite range) provided r ≪ s,
if we sample two lineages from the same location, even if that location is a
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Figure 9: The probability that two lineages will meet in the wavefront, given that they
are sampled at distances x, x + ∆x behind the front. The three pairs of curves are
for r/s = 0.01, 0.1, 1 (top to bottom); solid curves are for ∆x = 0, dashed curves for
∆x = 10. The probability of coalescence equals this probability, multiplied by λ/(λ + 2r)
(equation (11)).

long way from the wavefront, there is a high probability that as we trace
backwards in time the ancestral lineages will meet in the wavefront. The
explanation is that the lineages will not diffuse far apart before being caught
by the wave and so the time during which there is exactly one lineage in the
front is short. In particular, the chance of us seeing the recombination event
required for the lineage to ‘escape’ during this period is small. A separation
∆x between genes sampled from just behind the front makes little difference
to the chance of the two lineages meeting in the front if linkage is tight
(upper dashed curve, r/s = 0.01 in Fig. 9) but greatly reduces their chances
if linkage is loose (lower dashed curve, r/s = 1). This suggests that, as one
expects, the portion of the rate of coalescence between two randomly cho-
sen lineages that can be attributed to hitchhiking is almost entirely due to
sweeps at loci that are linked tightly to the selected locus. In Appendix C.1,
we show that the mean rate of coalescence, averaged over random locations
of genes and sweep, and over a genetic map of length R ≫ 1 is

2
Λ

R

c

L
h

(

Lλ

c

)

,
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for a function h(θ) which tends to 1 for small θ, and to

2

(

log

(

θ

2

)

+ γ − 1

)

for large θ, where γ=0.577. . . is Euler’s gamma. Since h(θ) increases only
logarithmically with θ, the net rate of coalescence is insensitive to the rate of
coalescence within the front: the limiting factor is the rate at which tightly
linked sweeps occur.

The average rate of coalescence per sweep per map length is inversely
proportional to L/c, which is the time a sweep takes to cross the species’
range. Since this is typically large, and Λ/R is expected to be small, the
rate of coalescence due to hitchhiking will be very small. However, in a
sufficiently dense population, genetic sampling drift will be negligible, so
that hitchhiking may still be the main cause of coalescence (Maynard Smith
and Haigh, 1974; Gillespie, 2000). The effective size of a neutral haploid

one-dimensional population is ρL + 1
12

(

L
σ

)2
, where ρL is the total num-

ber of haploid individuals (Charlesworth et al., 2003). The contribution of
hitchhiking will be larger than this if

2
Λ

R

c

L
h

(

Lλ

c

)

>
1

ρL

or if 2(Λ/R)cρh(Lλ/c) > 1. The factor cρ is proportional to swρ, where w is
the total number of heterozygotes, which we introduced as a proxy for the
width of the wave in §3.2.1. We expect w to be proportional to ℓ = σ

√

2/s
and so swρ will be proportional to the quantity that we have called η. Thus,
in one dimension, if the product of the rate of sweeps per map length and
the parameter η is large, hitchhiking will be the main cause of coalescence.

4.2.3. Comparison to panmixis

We can also compare the probability of coalescence of two neutral lin-
eages (sampled uniformly from the population) due to the sweep with the
same probability for a sweep in a panmictic population. If we suppose that
the species range is big enough that we can ignore the probability of indi-
viduals tracing back to the original mutation (that is Lr ≫ c) then, as we
saw in the last section, the chance that two lineages sampled at separation
∆x meet in the front and coalesce is approximately

λ

λ + 2r
e−r∆x/c. (12)
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Assuming that we sample uniformly from the species’ range, the probability
of coalescence of a randomly chosen pair of lineages is then approximately

λ

λ + 2r

2c

rL
, (13)

see Appendix C.1. As we recall in Appendix D, in a panmictic population
of N haploid individuals, the probability that a sweep will cause two lineages
to coalesce is approximately (2Ns)−2r/s (Maynard Smith and Haigh, 1974).
This is of a quite different form to (13): the effect of a sweep on coalescence
falls away much faster on the genetic map in a panmictic population than
in one spatial dimension (∼ e−r/s vs. ∼ 1

r ), but (still assuming r ≪ s) is

less sensitive to population size (∼ N−r/s vs. 1
L).

Now suppose that we sample two individuals at separation ∆x from be-
hind the wavefront. Until caught by the wave lineages have no chance to
escape the sweep through recombination. The effectiveness of hitchhiking
is determined by the length of the time period during which exactly one
ancestral lineage is in the wavefront. (After this period, the probability
of escape is 2r/(λ + 2r).) This period is of duration roughly ∆x/c which
should be compared to the duration of a sweep through a panmictic popu-
lation (throughout about half the course of which favoured alleles are rare
and so both lineages have a chance to escape through recombination). Thus
the effectiveness of hitchhiking in a spatially structured population will be
greater than in a panmictic popluation for individuals sampled at a sepa-
ration ∆x with ∆x/c < log(2Ns)/s which we can write ∆x/ℓ < log(2Ns)
where, as usual, ℓ = σ

√

2/s.

4.3. Two spatial dimensions

Our analysis so far has been entirely concerned with populations dis-
tributed across a one-dimensional range. In higher dimensions there is es-
sentially no analytic theory on which to draw. We shall show that under-
standing the effect of selective sweeps on the movement and coalescence of
genes in two dimensions will not be a straightforward extrapolation of the
one-dimensional results.

We focus on the simplest case of a linear wavefront. Let us try to mimic
what we did in one dimension and examine the probability that the ancestral
lineages of two neutral genes sampled from behind the wavefront coalesce
as a result of a sweep. We distinguish their positions transverse to the
wave, which we denote by y1, y2, from those orthogonal to the wave, x1, x2.
Tracing backwards in time, just as in one dimension, if we can neglect the
fluctuations in the wavefront, the orthogonal distances between the ancestral
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lineages and the wavefront will follow (approximately) Brownian motions
with drift and so the distribution of the times t1 and t2 when they are
caught by the wave is determined by (10).

Since the favoured allele is rare in the wavefront, we assume, as before,
that all recombination events to affect a lineage in the wavefront result in
escape. The chance that the first lineage to be caught escapes the sweep
before the second one is caught is then e−r|t2−t1|. If that does not happen,
then both lineages will be caught in the front. We assume that until they
are both caught by the wavefront, their separation transverse to the wave is
governed by a diffusion of rate 2σ2, started from y = y1 − y2. Once within
the front, we consider the lineages to be trapped. Let us write Ψ(t, z) for the
probability density of the time until the ancestral lineages of two favoured
alleles, sampled at separation z from within the wavefront, coalesce. The
chance of coalescence due to the sweep of our two neutral lineages sampled
from behind the wave can then be written

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

1
√

4πσ2|t2 − t1|
e−(y−z)2/(4σ2|t2−t1|)

φ(t1, x1)φ(t2, x2)e
−r|t2−t1|e−2rtΨ(t, z)dzdtdt2dt1. (14)

The size of this probability will hinge on the nature of the relative motion
of the two lineages transverse to the wavefront (which, combined with the
‘effective population density’ in the wavefront will determine Ψ(t, z)).

A natural conjecture is that the motion of a single lineage along the
wavefront is governed by a one-dimensional Brownian motion with variance
σ2. If lineages evolve independently until meeting, their separation will also
be governed by a Brownian motion, but with twice the variance. Just as
in one dimension, essentially all recombination events that take place in the
wavefront lead to a lineage escaping the sweep. Provided we work on an
infinite range, the probability of recombination before coalescence, which in
the notation above is

∫ ∞

0
e−2rtΨ(t, z)dt, (15)

can then be calculated from the classical one-dimensional Wright-Malécot
formula (D.1), with recombination playing the rôle of mutation and with an
effective population density ρe = 1/λ.

In Fig. 10, we plot the resulting probability of coalescence multiplied by
(1 + 2ρeσ

√
2r). This constant is a common factor in the Wright-Malécot

equation, corresponding to the probability that two lineages coalesce before
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Figure 10: The probability that two lineages will coalesce within the wavefront, given that
they are sampled at distances x, x+∆x behind the front, and separated by ∆y transverse
to it. The plotted values must be divided by 1 + 2ρeσ

√
2r to give the actual probability

of coalescence. The three pairs of curves are for r/s = 0.001, 0.01, 0.1 (top to bottom);
solid curves are for ∆x,∆y = 0; long dashed curves are for ∆x = 10ℓ, ∆y = 0; and dotted
curves are for ∆x = 0, ∆y = 10ℓ. Note that linkage is ten times tighter here than in the
corresponding Fig. 9 for one dimension, and that separation in the transverse direction
reduces coalescence by much more than separation in the direction of movement (i.e.,
dotted curves (∆x = 0, ∆y = 10ℓ) are lower than dashed curves (∆x = 10ℓ, ∆y = 0).

recombination if they start in the same location (the analogue in one di-
mension is the factor λ/(λ + 2r) in equation (11)). Since we have no way
to estimate it, we prefer to scale it out rather than assign it an arbitrary
value. The resulting quantity is the probability that two lineages meet (at
separation zero) in the wavefront before either escapes the sweep. We can
compare this to the one-dimensional results in Fig. 9. We notice that if
this analysis applies, then in two dimensions recombination is much more
effective at enabling lineages to escape the sweep than in one dimension.

It is also clear that displacement transverse to the wave reduces the
chance of coalescence by much more than separation in the direction of the
wave movement. This is because motion in the direction of the wave is much
faster than transverse diffusion. In Appendix C.2 we outline the analogue of
our analysis of §4.2.3 and show that if motion of lineages along the wavefront
really were governed by independent diffusions, genetic hitchhiking would
be remarkably ineffective in two spatial dimensions.

If the analysis above were correct, then we would see essentially no coales-
cence within the wavefront, with lineages instead tracing back to the origin
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of the selective sweep. To investigate this, we simulated a sweep on a cylin-
drical habitat, with circumference 200 demes, driven by s = 0.05 and with
m = 0.25; demes were extremely large, with N = 106. The sweep quickly
settled to advance at 0.155 demes per generation, very slightly slower than
the deterministic prediction σ

√
2s = 0.158 demes per generation. Tracing

backwards through time, just as in one dimension, lineages become trapped
within the front. Following one lineage at a time, transverse to the front,
they diffuse at a rate close to the predicted σ2 = m = 0.25 (variance in-
creases as 0.24t for 50 replicate lineages, started at each of 20 points spaced
evenly around the circumference). However, coalescence events are strongly
clustered, along ∼ 3 paths. These correspond to occasional fluctuations,
when a few individuals well ahead of the wavefront have extremely large
numbers of offspring. Thus, while the gross rate of movement of single lin-
eages is close to a simple diffusion, this conceals a clustering that greatly
increases the rate of coalescence (Fig. 11a). Hallatschek et al. (2007) suggest
that the motion of lineages within the front is superdiffusive (with variance
increasing like t4/3). Although our simulations appear to show mean square
displacement increasing linearly with time, there is some noise and it would
require more work to reject superdiffusivity.

Simulations with moderate deme size show a yet more extreme pat-
tern. In Fig. 11(b), N = 100 and m = 0.25, and so ‘neighbourhood size’ is
4πNm ∼ 314 - large enough that the population is well-mixed in the absence
of selection. Nevertheless, once again, the ancestry of lineages within the
front is dominated by rare events, in which a few individuals that happen
to be far ahead of the wave have very many offspring. Tracing back, lin-
eages from a wide section of the front derive from these few ancestors, and
so are very likely to coalesce there. Such events will very greatly increase
the rates of coalescence, far above that predicted from the diffusion analy-
sis, by pulling lineages close together as we trace back in time. This effect
has the potential to make sweeps through a two dimensional population a
powerful source of local coalescence. Moreover, a single sweep would lead
to multiple local founder events, producing substantial spatial heterogeneity
(‘sectoring’), which should be readily detectable.

Nevertheless, even if fluctuations at the tip of the wave are frequent
enough that lineages coalesce rapidly once they both enter the wavefront, it
is unlikely that the net rate of coalescence for individuals sampled uniformly
across the whole population can be higher than in panmixis (see (C.5) in
Appendix C.2). Indeed, just as in one dimension, the probability of coa-
lescence of two lineages sampled at separation ∆x is limited by the interval
of length ∆x/c between the times when they hit the front; the probability
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of coalescence is bounded above by the expression in (12). Thus the net
rate of coalescence is bounded by that in one-dimension which, we have
seen, is unlikely to be larger than in panmixis. Understanding the local and
global effects of hitchhiking rigorously presents a considerable mathematical
challenge.

5. Discussion

A favourable allele sweeps through a population behind a wave which
is assumed to be much narrower than the species’ range. Most ancestry
derives from a few individuals at the very tip; although the bulk of the
wave advances almost deterministically, its speed is limited by stochastic
fluctuations at the tip. In the limit where log η = log(ρσ

√

s/2) becomes
very large, these fluctuations dominate (Berestycki et al., 2012). However,
we show that for moderately dense one-dimensional populations, the rate of
coalescence within the wavefront is reasonably well approximated by a simple
deterministic calculation, that treats the ancestral population as well-mixed
and homogeneous.

We use this deterministic approximation to the configuration of the an-
cestral population to find the effect of sweeps on arbitrarily placed lineages.
When a sweep of a favourable mutation at map distance r, travelling at
speed c, hits a single lineage, it causes a sudden jump in location with
mean square displacement 2(c/r)2. From equation (9) we see that, averag-
ing over the genome, sweeps will cause more gene flow than simple diffusion
if (Λ/R)(L/ℓ) is large. The quantity Λ/R is the rate of sweeps per map
length, and L/ℓ is the size of the range relative to the width, ℓ, of the
wavefront which is taken to be ℓ = σ

√

2/s. (Recall that the width of the
region in which the allele frequencies in the classical Fisher wave are between
two prescribed values is proportional to σ

√

2/s.) Thus, even if the rate of
sweeps per map distance is low, if the species’ range is long, then in the
long run hitchhiking can be more important than diffusion for the motion
of ancestral lineages. The rate of adaptive sweeps per map length (Λ/R) is
poorly known; the best estimates are from divergence between Drosophila

melanogaster and D. simulans, where perhaps Λ/R ∼ 0.02; it may be much
higher in populations under strong artificial selection, but lower in organ-
isms with longer genetic maps (see the discussion in Weissman and Barton
(2012)). Thus, hitchhiking could substantially inflate gene flow if the species
range is much wider than the wavefront (L/ℓ > 50, say).

To put this another way, since c = cη ≈ σ
√

2s(1−A/(log η)2), hitchhik-
ing will be a significant source of gene flow if the product of the selection
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Figure 11: Coalescence events in two dimensions cluster onto three paths, where most
ancestors are located. The habitat is a cylinder with circumference 200 demes (vertical
axis); time runs from left to right, moving ∼ 520 demes in 4000 generations; s = 0.05,
m = 0.25, a) N = 106, b) N = 100. Coalescence was simulated in two ways. First, 100
pairs of genes were started at each of 20 locations y = 0, 10 . . . , 190 at right; coloured
blue. . .green. . .red); large dots show where these pairs coalesce. By 4000 generations,
461/2000 = 23% had coalesced. Second, 50 single ancestral lineages were propagated
back from y = 0, 10 . . . , 190 (coloured in the same way); small dots show where any pair
that started from the same location coincide in the same deme. This second simulation
is much faster, and indicates the distribution of potential coalescence events, given this
particular selective sweep. The lower panel shows the same for N = 100. In that case
85% had coalesced by 4000 generations. Details of the simulations can be found in the
Supplementary Material.
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coefficient and the time taken for a sweep to cross the species range is large:
sL/c ≈ L/ℓ ≫ 1. However, the spatial motion of lineages due to hitchhik-
ing will be quite different in nature to the diffusion of lineages in a neutral
population which is uniformly distributed across its range. Hitchhiking acts
through very rare events in which a favourable mutation arises in tight link-
age, and carries the neutral lineage across a substantial fraction of the range.

The rate of pairwise coalescence, and hence the long-term effective size
of the population, may be much more weakly influenced than gene flow,
simply because both genes must be trapped within the front if they are
to coalesce there. In both one and two dimensions, the net probability
of coalescence, averaged over the whole genome, depends primarily on the
number of crossovers during the time it takes for the sweep to cross the
whole range (i.e. ∼ 1/(RL/c)). This parallels the result of Maynard Smith
and Haigh (1974) for panmixis, where the probability of coalescence of two
neutral genes also depends on the amount of recombination over the whole
time-course of the sweep. Since fixation must be substantially slower with
spatial structure, we expect the net effect of a sweep to be lower, despite the
possibility of coalescence within the front. In two dimensions, we saw that
lineages coalesce much faster than expected from independent diffusions;
fluctuations dominate, and so greatly increase the rate of coalescence within
the front. Nevertheless, it is unlikely that lineages can be brought together
fast enough to make coalescence faster than in a well-mixed population.
Under panmixis, a single mutation will fix in ∼ (1/s) log(4Nes) generations,
and it is hard for any process to bring together two lineages in different parts
of the broad species’ range faster than this.

Hitchhiking in space may be significant nevertheless. First, the rate of
local sweeps (in which an allele spreads through a limited region) could
be far higher than the rate of species-wide sweeps, which is limited by the
observed rate of substitutions in coding and functional non-coding sequences
that is seen in comparisons between species. Moreover, sweeps from standing
variation will cause ‘surfing’ in much the same way as ‘hard sweeps’ that
start from single mutations: all that matters is that a few individuals at the
front of the wave dominate reproduction. Yet, such sweeps would not be
detected in surveys that count regions of low sequence diversity. It is not
clear how we could estimate this local rate of sweeps: is the rate of sweeps
that pass any given point much higher than the rate of sweeps that fix
across the whole population? Second, hitchhiking in space leaves a distinct
signature, which may be detected even if it makes a weak contribution to
the total species-wide rate of coalescence. It will be interesting to find the
pattern of summary statistics such as Fst. However, in any particlar case
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there will be a limited number of ‘founder events’ at the wavefront, and it
may be more sensible to locate these, rather than to attempt to estimate any
long-term expectation. This could best be done through intensive studies of
variation around loci that are known to have recently spread across a broad
area (e.g. Hoekstra et al. (2006); Karasov et al. (2010)).
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Appendix A. The truncated Fisher wave

Travelling wave solutions to (1) are found by writing p(t, x) = p(x − ct)
where p satisfies

σ2

2

d2p

dx2
+ c

dp

dx
+ sp(1 − p) = 0. (A.1)

In order to understand the shape of such solutions in the ‘front’ of the
wave, where the favoured allele is rare, we look for solutions of the form
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p(x) = exp(−γx). The parameter γ is related to the wavespeed c through

γc(γ) =
σ2

2
γ2 + s. (A.2)

The smallest value of c for which this yields a real-valued γ is c∞ = σ
√

2s,
corresponding to γ∞ =

√
2s/σ = 2/ℓ. Noise has the effect of slowing the

wave down, so the corresponding γ will be complex-valued. To leading order,
if we assume only a small perturbation (corresponding to very large values
of ρ in (3)), the real part will be γ∞, but there will be a complex correction
so that, after a shift of the x-coordinate, the solution becomes

p(x) ≈ Const.
W

π
sin
(πx

W

)

exp (−γ∞x) . (A.3)

We suppose that the solution is truncated at x = W , to ensure that it
is always non-negative. The value of W is such that e−γ∞W ∼ 1/η (as
then the fluctuations will outweigh the deterministic solution), that is W ∼
(log η)/γ∞. Writing p(x) in equation (A.3) as e−γηx we see that

γη ≈ γ∞ +
iπ

W
,

and so using (A.2) we obtain

cη = c(γη) ≈ c(γ∞) − 1

2

( π

W

)2
c′′(γ∞).

Now

c′′(γ∞) =
2s

γ3∞
=

2sσ3

(2s)3/2
=

σ3

√
2s

=
c∞
γ2∞

,

and so

cη ≈ c∞

(

1 − π2

2(log η)2

)

.

This argument is not rigorous, but for (3), writing pcη(z) for the allele fre-
quency in the stationary wavefront, at least where allele frequencies are small
we have (Brunet et al., 2006; Mueller et al., 2011; Berestycki et al., 2012)

pcη(z) ∝ W

π
sin
(πz

W

)

e−c∞z/σ2

, (A.4)

where in these coordinates the ‘front’ of the wave is at z = W = (log η +
3 log log η)ℓ/2.
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Note that η has to be extremely large for this approximation to be ac-
curate. Asymptotically, the minimum speed non-negative solution to the
deterministic Fisher-KPP equation (1) tends to e−γ∞x with γ∞ = 2/ℓ. How-
ever, choosing coefficients such that γ∞ = 1 and solving numerically, we see
that even when p(x) = 0.01 the gradient of log p(x) is only 0.776 and when
p(x) = 0.0001 it is only 0.895. Consequently, although the form of the loga-
rithmic correction to the wavespeed in (5) is accurate, the constants in the
asymptotic form (A.4) are quite misleading.

Appendix B. The coalescence rate within the front

We should like to understand the dependence of our approximation

λ =

∫ ∞

0

1

ρpcη(x)
f2(x)dx, (B.1)

where f is determined by (7), for the rate of coalescence within the front,
on the parameters η and ℓ.

Let p̃c0(x) solve (A.1) with σ2 = 2, s = 1 and c = c0 = 2(1−A/(log η)2).
Then setting

p(x) = p̃c0

(√
2s

σ
x

)

,

we find that p solves (A.1) with c = σc0

√

s/2. This tells us, in particular,
that, in an obvious notation, the stationary distributions determined by (7)
for these parameter values are related through f(x) = (

√
2s/σ)f̃ (x

√
2s/σ).

From this we see that

λ =

∫ ∞

0

1

ρpcη(x)
f2(x)dx =

∫ ∞

0

1

ρp̃c0(x
√

2s
σ )

2s

σ2
f̃2

(

x

√
2s

σ

)

dx

=

√
2s

ρσ

∫ ∞

0

1

p̃co(x)
f̃2(x)dx. (B.2)

The integral on the right hand side is a function of η alone which we denote
by g(η) and then the coalescence rate becomes

λ =

√
2s

ρσ
g(η) =

2

ρℓ
g(η).
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Appendix C. Averaging over randomly distributed lineages

Appendix C.1. One dimension

We first derive equation (8) which gives the mean square displacement
of a lineage at x due to a mutation that occurs at 0. The displacement,
which we denote by X, is exponentially distributed with parameter r/c, but
truncated at x. Thus

E[X2] =

∫ x

0

r

c
y2e−ry/cdy + x2e−rx/c

=
[

−y2e−ry/c
]x

0
+

∫ x

0
2ye−ry/cdy + x2e−rx/c

=
[

−2y
c

r
e−ry/c

]x

0
+

∫ x

0
2
c

r
e−ry/cdy

= −2
xc

r
e−rx/c + 2

c2

r2

(

1 − e−rx/c
)

= 2
( c

r

)2 (

1 − e−rx/c
(

1 +
xr

c

))

.

We now assume that sweeps are uniformly disributed over a genetic map
of length R and that they originate at points that are uniformly distributed
over a one-dimensional range of length L. The mean square displacement
per unit time of a lineage due to hitchhiking can be obtained by averaging
equation (8) over r ∈ [0, R] and x ∈ [0, L]. Averaging first over x ∈ [0, L] we
obtain

2L2

θ4

(

6 − 4θ + θ2 − 2 e−θ(3 + θ)
)

,

where Lr/c = θ. Multiplying by the rate of sweeps, Λ, and averaging over
a genetic map, length R ≫ 1 gives

σ2
eff =

4

3
cL

Λ

R
.

Dividing by the rate of gene flow with no sweeps, σ2, and substituting
c/2σ2 = 1/ℓ, we have

σ2
eff

σ2
=

8

3

L

ℓ

Λ

R
.

Now, consider a sweep which originates with a favourable mutation aris-
ing at z, and two lineages sampled at x1, x2. If these are on opposite sides of
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the sweep (x1 < z < x2 or vice-versa), then they can coalesce only at the ori-
gin, which will happen with probability e−r|x2−x1|/c. If they are on the same
side (x1 < x2 < z, say), then they coalesce with probability (approximately)

λ

λ + 2r

(

1 − e−(λ+2r) (z−x2)/c
)

e−r(x2−x1)/c.

Integrating over a uniform distribution of x1, x2, z on [0, L], the probability
of coalescence is:

P =
1

L3

∫ L

0

(

2

∫ z

0

∫ L

z
e−r (x2−x1)/cdx2dx1

+ 4

∫ z

0

∫ x2

0

λ

λ + 2r

(

1 − e−(λ+2r) (z−x2)/c
)

e−r (x2−x1)/cdx1dx2

)

dz

=
2

θ3

( 2e−θ(2ω+1)

(1 + ω)(1 + 2ω)3
+

e−θω(2 + θ(1 + ω))

ω2(1 + ω)

+
4θ ω3(2 + θ) − (2 + θ) + 4ω2

(

θ2 − 4
)

+ ω (θ(θ − 4) − 10)

ω2(1 + 2ω)3

)

(C.1)

where ω = r/λ, θ = L/c and where the factors of 2, 4 in the integral arise
from summing over the distinct orders of x1, x2, z. Integrating over a long
map of length R, the mean rate of coalescence due to sweeps

2Λ

R

∫ ∞

0
Pdr =

2cΛ

LR
h

(

Lλ

c

)

,

where

h(θ) =
2

θ2

{

(

1 − θ2
)

− (1 + θ)e−θ

+
(

2eθ(Ei[−2θ] − Ei[−θ]) −
(

2 + 2θ + θ2
)

(

Ei[−θ] − γ − log

(

θ

2

)

))}

,

(C.2)

Ei[z] is the exponential integral, and γ is Euler’s γ. The function h(θ) tends
to 1 for small θ, and to 2 (log(θ/2) + γ − 1) for large θ.

Now we derive the expression (13) for the probability of coalescence of a
randomly chosen pair of neutral genes due to the passage of a single sweep.
It is obtained by averaging the probability of coalescence of a pair of genes
sampled at points x1 and x2, which we obtained in §4.2.3, with respect to a
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uniform sampling distribution. Ignoring the constant factor λ/(λ + 2r), we
have

1

L2

∫ L

0

∫ L

0
e−r|x1−x2|/cdx1dx2 =

2

L2

∫ L

0
(L − y)e−ry/cdy

=
2

L2

∫ L

0

∫ L

y
e−ry/cdxdy

=
2

L2

∫ L

0

∫ x

0
e−ry/cdydx

=
2

L2

∫ L

0

c

r

(

1 − e−rx/c
)

dx

=
2

L

c

r
− 2

L2

c2

r2

(

1 − e−rL/c
)

(C.3)

≈ 2

L

c

r
,

since rL ≫ c by assumption. The result now follows on multiplying by
λ/(λ + 2r).

Appendix C.2. Two dimensions

Let the distribution of the time to coalescence of two favoured alleles
sampled at separation |y| from within the wavefront be Ψ(t, |y|). Just as in
our one-dimensional calculations, we suppose that the time until a lineage
sampled at a distance x orthogonal to (and behind) the front is caught
by the wave is approximately x/c and let us suppose that at the moment
when they are first caught, their separation transverse to the wave is |y|.
(In Fig. 10 we assumed that up to that time they each followed independent
diffusions with rate σ2 transverse to the wave as in (14), but this assumption
is not important for what follows.) Then the probability of coalescence of
two neutral genes sampled at distances x1 and x2 orthogonal to the front
and with a separation transverse to the front of |y| is

∫ ∞

0
Ψ(t, |y|)e−2rte−r|x1−x2|/cdt.

Averaging over random locations x1 and x2 and using (C.3) we obtain

1

L2

∫ L

0

∫ L

0

∫ ∞

0
Ψ(t, |y|)e−2rte−r|x1−x2|/cdtdx1dx2

=
2c

L2r2

(

ce−rL/c − c + rL
)

∫ ∞

0
Ψ(t, |y|)e−2rtdt.
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Integrating over a linear genome we obtain

2

R

∫ R

0

∫ ∞

0
Ψ(t, |y|)e−2rt 2c

L2r2

(

ce−rL/c − c + rL
)

dtdr

≈ 4c

Lr

∫ ∞

0
Ψ(t, |y|)

((

1 +
2ct

L

)

log

(

1 +
L

2ct

)

− 1

)

dt. (C.4)

Let us write τ(|y|) for the coalescence time of two favoured lineages sampled
at separation |y| from within the wavefront, then (C.4) can be written as an
expectation:

4

RT
E

[(

1 +
2τ(|y|)

T

)

log

(

1 +
T

2τ(|y|)

)

− 1

]

, (C.5)

where T = L/c is, approximately, the time that it takes for a sweep to cross
the whole range. The comparable quantity for a classic sweep through a
panmictic population is

2

R

∫ R

0
e−2rT ∗

dr ≈ 1

RT ∗ ,

where T ∗ = (log(2Ns))/s. Even if genes that hit the front come together
and coalesce quickly (τ(|y|) ≪ T ), it is hard for the expression in (C.5) to
exceed 1/(RT ∗). Thus hitchhiking will be much less effective in a population
distributed across two spatial dimensions than in a panmictic population.

Appendix D. Some classical results

For ease of reference, we record two classical results.

Appendix D.1. The Wright-Malécot formula in one dimension

We calculate the Laplace transform of the time to coalescence of individ-
uals sampled at separation x from an infinite one-dimensional range. This is
equivalent to assuming an infinitely many alleles mutation model and ask-
ing for the probability, φ(x) that two individuals sampled at separation x
are identical in state. In the absence of sweeps this is given by the classi-
cal Wright-Malécot formula (Malécot, 1948). In one spatial dimension this
takes the form

φ(x) =
1

1 + 4ρσ
√

2µ
exp

(

−|x|
l

)

(D.1)

where ρ is the local population density and l = σ/
√

2µ.
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Appendix D.2. Sweeps in panmictic populations

In the classical model of a sweep through a panmictic population, we
suppose that an allele starts in a single copy and increases to fixation. We
consider a haploid population of N genes and suppose that Ns ≫ 1. Allele
frequencies are assumed to follow the Wright-Fisher diffusion with selection
(corresponding to the non-spatial version of (2)). The time for the allele
to reach high frequency (p = 0.5 say), is t ∼ 1

s log(2Ns). (Note that this
includes a stochastic acceleration by a factor 1/(2s) due to conditioning on
fixation.) For most of this time, the favoured allele is at very low frequency.
The additional time to fixation is dominated by the period when the allele
frequency is close to one. Suppose that we take a sample of size two from
the population and ask for the probability that they coalesce before one of
them escapes the sweep through recombination. This is only going to be
possible during the period when allele frequencies are low. Assuming that
the lineages coalesce only at the time of origin of the sweep, the chance
that neither escapes the sweep through recombination is just exp(−2rt) ∼
(2Ns)2r/s. This approximation is accurate as long as Ns ≫ 1.

46


