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Abstract

Background: Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant
growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and
expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the
regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive.

Methodology/Principal Findings: Using auxin transport assays and quantitative analysis of cellular morphology we
show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance
increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier.
Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of
endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and
pharmacological manipulations.

Conclusions/Significance: The findings indicate the involvement of ABP1 in control of rate of auxin transport across
plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and
highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.
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Introduction

In search for an auxin receptor, an ‘auxin binding site I’ was
first identified in 1970s [1,2] and the corresponding ABP1 was
later purified from membrane fractions from maize coleoptiles
and characterized [3,4]. Maize ABP1 is a small, soluble
glycoprotein with N-terminal signal peptide for entry into the
secretory pathway and a C-terminal KDEL sequence for
luminal endoplasmic reticulum (ER) retention [5,6]. Indeed,
ABP1 has been found predominantly in the ER, and only a
small part of its population is expected to escape through the
secretory system to the outer face of the plasma membrane
(PM) [7-10]. Because of the sharp pH optimum at 5.5 for
binding of auxin to ABP1 [3], it is predominantly the
apoplast/PM-residing fraction of ABP1 that is expected to act
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as an auxin receptor. At the level of plant organs, ABP1 is
expressed primarily in meristems. However, it can be found
throughout the whole plant body of all land plants tested [11],
and recently ABP1 was localized in tobacco in ovary, egg cells
and in embryos at all developmental stages [12,13].

So far no particular protein has been proven in vivo to
cooperate directly with ABP1 on PM; nevertheless, two
candidate proteins were identified in maize using photoaffinity
crosslinking with synthetic peptides corresponding to the C-
terminus of ABP1 and subsequent mass spectrometry analysis.
One of them was GPIl-anchored protein homologous to
members from SKU5-Similar (SKS) family and the other one
belonged to ricin-type lectin family with only one homologous
gene in Arabidopsis [14].
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Early studies suggested that ABP1 mediates rapid ‘non-
transcriptional’ responses to auxin occurring on the PM.
Antibodies raised against maize ABP1 completely inhibited the
electrical response (a shift of transmembrane potential) to
auxin in tobacco protoplasts [15]. Together with studies using
auxin agonist antibodies [16], these findings suggested that the
signal for activation of the relevant H*-ATPase is initiated from
the cell exterior [17,18]. It has been shown that the auxin-
regulated activation of H*-ATPase through phosphorylation of
the penultimate threonine is indeed independent on TIR1/AFB-
dependent auxin signalling, thus supporting the involvement of
ABP1 [19]. Furthermore in rice direct interaction between
ABP% and H*-ATPase has been proven in vitro [20]. It has
been suggested that the C-terminus of ABP1 is likely to convey
the signal for auxin-induced H* extrusion by H*-ATPase into the
cell wall, and that the concurrent K* influx is followed by water
uptake and turgor-driven cell expansion [21].

In tobacco BY-2 cells, reducing ABP1 activity by immuno-
modulation resulted in cell-cycle arrest [22]. Constitutive
overexpression of Arabidopsis thaliana ABP1 (AtABP1) in
maize cell lines led to the production of larger cells [23].
Inducible overproduction of AtABP1 in tobacco plants resulted
in larger leaf cells but in no change in leaf size, indicating that
the increased cell size was accompanied by reduced cell
division. In Arabidopsis, a loss-of-function mutation of ABP1
resulted in disoriented cell division and increased cell
elongation and resulted in embryo lethality, demonstrating that
ABP1 function is indispensable for plant development [24].
Interestingly, reducing the ABP1 activity seems to have
opposite effects in shoot and root apices. In the shoot, leaf
growth is reduced due to impaired cell expansion so that the
cells end up being much smaller [25], whereas a lack of ABP1
in the root prompts the elongation of meristematic cells which
are resistant to indole-3-acetic acid (IAA) [26]. Furthermore, the
ABP1 activity has been shown to act upstream of Rho GTPase
signalling, which mediates the lobed growth of epidermal
pavement cells in Arabidopsis leaves [27].

The processes of cell expansion and cell division depend on
distinct and finely tuned levels of intracellular auxin. The auxin
levels are largely regulated by the PM-residing auxin
transporters, in particular PIN efflux carriers [28]. Membrane
vesicles carrying PIN proteins undergo dynamic recycling to
and from the PM [29,30] and auxin regulates its own transport
by inhibiting the endocytic step of this recycling [31]. It has
been shown that the effect of auxin on endocytosis involves a
non-transcriptional mechanism and that ABP1 mediates this
effect [32]. Here we concentrated on the mechanism of ABP1
effect(s) on transmembrane auxin transport, namely on the
functional consequences of the ABP1-mediated regulation of
PIN-dependent auxin efflux. Our results show that in
suspension-cultured tobacco BY-2 cells, the overexpression of
ABP1 balances the auxin efflux, and that ABP1 acts through
regulating the amount and dynamics of PIN auxin efflux
carriers at the PM.
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Results and Discussion

To investigate the involvement of ABP1 in the regulation of
auxin transport at the cellular level we used tobacco BY-2 cells
[33], an established model system for quantitative assays of
auxin transport [34]. We generated BY-2 cell lines expressing
either  Arabidopsis ABP1 under the glucocorticoid
(dexamethasone, DEX)-inducible promoter [35] (GVG-AfABP1
cells) or tobacco ABP1 under the constitutive CAMV 35S
promoter (35S-NtABP1 cells). Arabidopsis and tobacco ABP1
genes were also transformed into BY-2 lines expressing
Arabidopsis PIN7 (GVG-PIN7 cells [28]) and PIN1::PIN1: GFP
[36] (PIN1-GFP cells [37]), yielding GVG-PIN7/N{ABP1 and
PIN1-GFP/GVG-AtABP1 cell lines, respectively. These cell
lines allowed us to study simultaneously the effect of ABP1
overexpression on AfPIN7-dependent auxin transport and the
role of ABP1 in AfPIN1 localization and dynamics.

Phenotypes of DEX-induced GVG-AfABP1 cells (Figure 1)
and 35S-NtABP1 cells (Figure 2) were similar to those in the
control cell lines, and consisted of cell chains during the
exponential growth phase, which gradually disintegrated in the
stationary phase. Growth rates (reflecting the cell division
activity) in induced GVG-AtABP1 cells were similar to those in
non-induced controls (Figure 1F); likewise, the growth rates in
the constitutively expressing 35S-NtABP1 cells were similar to
those in the corresponding controls (Figure 2F). Nevertheless,
when compared with non-induced controls, in three-day-old
induced GVG-AtABP1 cell line cells were significantly larger
(Figure 1C). The extent of cellular phenotypic responses
presumably reflects the fact that the DEX induction increased
AtABP1 expression ~30-times (Figure 1H) whereas the 35S-
driven expression of NtABP1 was increased only ~two-times
(Figure 2H). Positive effect of ABP1 on elongation growth is in
agreement with previously reported ABP1-mediated elongation
of epidermal cells in tobacco leaves [23,38].

The growth rate and morphology (elongation) of cell files in
tobacco cell lines have been reported to be regulated by 1-
naphthylphthalamic acid (NPA)-sensitive directional transport
of auxin [39-42]. To test whether ABP1 action on cell
elongation and division is mediated by auxin efflux, we applied
10 uM NPA to GVG-AfABP1 induced and non-induced cells
and also to control BY-2 and 35S-NtABP1 cells at the time 0
(i.e. at the time of cell culture inoculation). After three days of
cultivation, a higher proportion of cell files with elongated cells
were observed in both induced GVG-AtABP1 (Figure 1C, E)
and 35S-NtABP1 lines treated with NPA (Figure 2C, E).
Moreover, at the end of the subculture period (day 7), induced
GVG-AtABP1 cells showed less inhibition of cell division after
NPA treatment. NPA treatment reduced cell number by one
third compared with reduction by ca. one half in the non-
induced GVG-AtABP1 cells (Figure 1F). In concert with our
results, impaired cell division activity was also observed after
the application of a comparable concentration of NPA (12uM)
in four-day-old BY-2 cells [43].

To test the effect of constitutive and inducible expression of
ABP1 on the NPA-sensitive auxin efflux, we measured the
accumulation of radioactively labelled auxin. For this purpose
we used the synthetic auxin naphthalene-1-acetic acid (NAA),
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Figure 1. The effects of inducible expression of AtABP1 in GVG-AtABP1 tobacco BY-2 cells, and treatment with the
inhibitor of auxin efflux NPA. (A-E) Morphology of three-day-old non-induced and induced cells, control and NPA-treated (10uM
for three days). (A,B,D,E) Nomarski DIC images. Scale bars, 40 um. (C) Cell length of non-treated (Ctrl) and NPA-treated (10 uM for
three days) cells. 100%, value for non-induced control. Error bars, SEM, n~300. Asterisks indicate significantly different means
between cells non-expressing and expressing the AtABP1 gene, two sample t-test assuming unequal variances; *P < 0.005,
degrees of freedom (df) = 581; **P < 0.001, df = 573). (F) Growth curves for non-induced and induced cells, non-treated and treated
with NPA (10 uM for three days). Error bars, SEM, n=4. (G) Accumulation of [*H] NAA as an indicator of the auxin efflux. One-day-
old GVG-AtABP1 cells were treated with [*H] NAA (2 nM) alone (Ctrl) or in combination with NPA (10 uM), and radioactivity was
measured after 25 min. Data values are percentages of non-induced, non-treated control (100%). Error bars, SEM, n=3. The
differences in [*H] NAA accumulation between non-induced and induced GVG-AtABP1 cells either without or after NPA application
are not statistically significant (P = 0.707 and P = 0.328, respectively, paired samples t-test). (H) Relative expression of the AtABP1
gene in the GVG-AtABP1 cell line. qRT-PCR at 24 hours after induction with dexamethasone (DEX, 1 uM). Error bars, SEM, n=6. (I)
Accumulation of [°*H] NAA in BY-2 cells transformed with an empty pTA7002 vector, measured 25 min after the addition of [°*H] NAA
(2 nM). Data are expressed as percentages of non-treated control (100%), and represent the mean of four technical repetitions.
Error bars, SEM, n=4.

doi: 10.1371/journal.pone.0070050.g001
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Figure 2. The effects of 35S-driven expression of NtABP1 in 35S-NtABP1 tobacco BY-2 cells, and treatment with the
inhibitor of auxin efflux NPA. (A-E) Morphology of three-day-old non-induced and induced cells, control and NPA-treated (10uM
for three days). (A,B,D,E) Nomarski DIC images. Scale bars, 20 um. (C) Cell length of non-treated and NPA-treated (10 uM for
three days) cells. 100%, value for non-treated BY-2 cells. Error bars, SEM, n~300. Asterisks indicate significantly different means
between cells non-expressing and expressing 35S-driven NtABP71 gene. Two sample t-test assuming unequal variances; *P <
0.001, df = 465; **P < 0.001, df = 320. (F) Growth curves for BY-2 and 35S-NtABP1cells. Error bars, SEM, n=4. (G) Accumulation of
[*H] NAA as an indicator of the auxin efflux. Difference in [*H] NAA accumulation between cells non-treated and treated with NPA is
shown for one-day-old BY-2 (control) and 35S-NtABP1 cells. Radioactivity was measured 25 min after addition of radioactively
labelled auxin (2 nM) without or together with NPA (10 uM). Error bars, SEM, n=3. The asterisk denotes statistical significance of
difference (P = 0.018 in paired samples t-test). (H,I) Relative expression of NtABP1 gene in control BY-2 and 35S-NtABP1 cell lines.
(H) gRT-PCR from cDNA 24 hours after inoculation of cells into the fresh medium. Error bars, SEM, n=6. (I) PCR of NtABP1 using
genomic DNA (702bp fragment of endogenous gene, 256bp fragment of transgenic cDNA).

doi: 10.1371/journal.pone.0070050.g002
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accumulation of which in tobacco cells reflects mainly the
activity of auxin efflux carriers [44]. All auxin efflux assays were
performed with one-day-old cells in order to detect only the
early ABP1-mediated effects on auxin efflux. [FH] NAA
accumulation and the effect of NPA were the same in both non-
induced and induced GVG-AtABP1 cells (Figure 1G). In 35S-
NtABP1 cells the sensitivity of [*H] NAA accumulation towards
NPA was slightly decreased (Figure 2G). This difference in
NPA sensitivity between the inducible GVG-AtABP1 line and
the constitutive, 35S-NtABP1 line presumably reflects
mechanisms that compensate for long-term stable
overexpression of ABP1.

Altogether, both cell phenotype analyses and auxin transport
assays suggest a link between ABP1 action, cell division and
elongation, and NPA-sensitive auxin efflux. The latter is
consistent with a finding that basipetal auxin transport was
reduced in heterozygous abp1/ABP1 mutant [45]. Certainly, the
data may reflect downstream changes triggered by the ABP1 at
both transcriptional and non-transcriptional levels [46].

Next, we tested the involvement of ABP1 in the regulation of
cellular auxin efflux specifically with respect to the activity and
localization of canonical, PM-localized PIN proteins, which are
rate-limiting components of auxin efflux [28]. We used double-
transformed lines GVG-PIN7/N{ABP1 and PIN1-GFP/GVG-
AtABP1. Following induction of AfPIN7 expression by DEX,
GVG-PIN7 cells characteristically showed marked elongation
( [28,47]; see also Figure 3A, C, E) and cessation of cell
division (Figure 3F). Both responses represent symptoms of
auxin starvation in auxin-dependent cell populations [48,49]. In
contrast, induction of PIN7 expression with concomitant 35S-
driven ABP1 expression in GVG-PIN7/NtABP1 cells neither
promoted cell elongation (Figure 3B, D, E) nor reduced cell
division activity (Figure 3G). This indicates that the AtPIN7-
mediated auxin efflux is negatively affected by 35S-driven
ABP1 expression. To confirm this possibility and to estimate
the activity of auxin efflux carriers, we measured [*H] NAA
accumulation in these cell lines. As for previous experiments,
all auxin efflux assays with PIN7-expressing cells were
performed with one-day-old cells in order to detect only the
early effects on auxin transport. Whereas the 24-h-DEX-
induced expression of AtPIN7 alone in the GVG-PIN7 cell line
promoted auxin efflux significantly, the PIN7-dependent
stimulation of auxin efflux in the induced GVG-PIN7/NtABP1
cell line was dramatically reduced (Figure 3H). In the case of
35S-driven NtABP1 expression, the susceptibility to NPA was
significantly decreased regardless of the AtPIN7 expression (cf.
the differences between open and grey bars in Figure 3H).
Again, this suggests that ABP1 affects predominantly the NPA-
sensitive auxin efflux. The complementary approach using
PIN1-GFP/GVG-AtABP1 cells, where ABP1 expression could
be induced on the background of stably expressed PIN1-GFP,
also showed lower sensitivity of auxin efflux to NPA after the
induction of AtABP1 (Figure 3l).

In summary, the auxin accumulation assays on tobacco BY-2
cells presented here provide quantitative data showing that
ABP1 negatively regulates PIN-dependent auxin efflux, thus
complementing the previous results [32]. In our experimental
model, the ABP1 effect on auxin efflux becomes very obvious
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only after overexpression of PM-localized PIN transporters; this
suggests either that there are limitations in the model itself or
that ABP1 displays its action under conditions of massive
transmembrane auxin flow. The ABP1-related reduction of PIN-
dependent and NPA-sensitive auxin efflux indicates that ABP1
either modulates the amount of auxin efflux carriers at the PM
(as less auxin efflux carriers would represent fewer target sites
for NPA action) and/or that it interferes with a hypothetical
NPA-interacting component [50,51] in a pathway regulating PIN
activity.

To elucidate whether ABP1 regulates the activity of PIN
proteins directly or via changes in their incidence at the PM, we
investigated the ABP1-mediated dynamics of PIN proteins in
stably transformed BY-2 cells in further details, including their
clathrin-mediated endocytosis [32]. We used PIN1-GFP/GVG-
AtABP1 cells for in-vivo confocal microscopy observation of
PIN1-GFP dynamics after induction of ABP1 expression.
Fluorescence recovery after photobleaching (FRAP) of PIN1-
GFP located within the PM of the AtABP1-expressing tobacco
cells was significantly slower compared to that in non-induced
cells (Figure 4A, C, D). DEX itself (used for induction of
AtABP1 expression) had no effect on FRAP of PIN1-GFP
(Figure 4B). These results suggest that ABP1 acts on the
resident time of PIN at the PM.

In principle, there are three plausible scenarios to explain
this effect: ABP1 may influence endocytosis of membrane
vesicles [32], or it may control the deposition of vesicles to the
PM, or it may act on both processes simultaneously. To
discriminate between these possibilities, we used inhibitors of
retrograde (endocytosis) and anterograde (including recycling
back to the PM) vesicle trafficking, and quantified FRAP after
170s (Figure 3D). After treatment with the inhibitor of
anterograde protein trafficking in plants, brefeldin A (BFA), the
FRAP of PIN1-GFP remained slower in the induced ABP1-
expressing line compared with that in the non-induced line,
suggesting that the effect of ABP1 on PIN1-GFP dynamics is
independent of anterograde vesicle transport. In contrast,
tyrphostin A23, an inhibitor of recruitment of endocytic cargos
(including canonical PINs) into clathrin-mediated endocytic
pathway [30], completely abolished the effect of ABP1
expression on PIN1-GFP recovery at the PM. Similarly, treating
cells with 5uM NAA, which has been shown to inhibit PIN
endocytosis as well [31,32], again prevented the ABP1-
mediated decrease of FRAP and even slightly increased the
FRAP rate of PIN1-GFP. So, due to binding of auxin (NAA),
ABP1 activity may have been inhibited, resulting in even
increased recovery of PIN to the PM. Despite high variability,
there was no statistical difference between induced and non-
induced lines after NPA application, and NPA, similar to
tyrphostin A23, seemed to completely abolish the effect of
ABP1 expression on PIN1-GFP recovery at the PM. However,
in case of NPA this could be also due to the increased
intracellular auxin levels resulting from inhibition of auxin efflux
and leading to higher binding of auxin to ABP1. After auxin
binding, the rate of the ABP1-mediated endocytosis is reduced
and the recovery of PIN1 would be faster. Overall, the FRAP
observations indicate that ABP1 does act on the dynamics of
PIN proteins and that it is a result of the ABP1 effect on

July 2013 | Volume 8 | Issue 7 | €70050



ABP1 Controls Auxin Transport

A GVG-PIN7 induced C D
200 1 == GVG-PIN7 non-induced 180 Y .
GVG-PIN induced 160 —= GVG-PIN7/MABP1 non-induced

=== GVG-PIN7/N{ABP1 induced

* 140

120
100

a
S

=]
S

B  GVG-PIN7/NtABP1 induced

Ccell length
(% of non-induced control)

60
40
20

o
=]

o
o

m
T
@

@
S
~

—— GVG-PIN7/NtABP1 induced —O— GVG-PIN7 non-induced —O— GVG-PIN7/NtABP1 non-induced

g [
£ 50 | === GVG-PIN induced §E 3{ " GVGPINT induosd 5|~ CVGPINTINABRT indiiced
2 0 a5
2 5 2 % 2
s 3
52 o “’2 ;
%5 10 -
N 0
30 50 70 100 150 220 8 0 2 4 6 8
Cell length category (um) Time (day) Time (day)
H |
B 2007 == GVGPIN? 3 200 PIN1-GFP/GVG-AtABP1
$T 150 { === GVG-PIN7/NIABP1 8 150 { = AtABP1 non-induced
zZ= ., 100 2 100 { === AtABP1 induced
X2 * * *% T 0
=88 5 Eig 5
c I ED; 0 i |
88w 882 50
o328 50 = g 3
83< 400 $8% 100
Eco- 225 -150
02c -150 BEE 00
>®©Cc =T
%2 © 200 %g S 250
£3 250 $E 300
® -300 ! PIN7 induced NPA-treated PIN7 induced & 350 PIN1-GFP  PIN1-GFP expressed
NPA-treated expressed NPA-treated
J K
c 8] == oVePINTNABP1 non-induced £ 21— pINI-GFPIGVG-AABP1 non-induced] ©
.g 5] = GVG-PIN7/NABP1 induced -% 18 | === PIN1-GFP/GVG-AtABP1 induced 5
a2 2 16
S 4 5 14 N | i
6 é i
B3 2 10 ( 3
) S 8
] 2 o 6 2
2 2
B 1 g ¢ 1
[} o 2
x gl x ol 0
NtABP1 AtPIN7 AtABP1 AtPIN1-GFP

Figure 3. ABP1 prevents tobacco cells from PIN-dependent auxin starvation phenotype, and from excessive auxin
efflux. (A-D) Morphology of three-day-old GVG-PIN7 and GVG-PIN7/NtABP1. (A,B) Nomarski DIC images. Scale bars, 20 ym. (C,
D) Cell length of non-induced and induced cells. 100%, value for non-induced cells. Error bars, SEM, n~250. Asterisk indicates
significance using two sample t-test assuming unequal variances; (C) *P < 0.001, df = 347; (D) the difference is not statistically
significant, P = 0.736, df = 444. (E) Categorized cell-length distribution and (F,G) growth curves of non-induced and induced GVG-
PIN7 and GVG-PIN7/NtABP1 cells. Error bars, SEM, n=10in E and n =4 in F, G. (H,l) Accumulation of [*H] NAA as an indicator of
the auxin efflux, measured 25 min after the addition of [*H] NAA to one-day-old cells treated with NPA (10 uM, applied immediately
after the addition of [*H] NAA, 2 nM). Data are shown as differences in [*H] NAA accumulation between induced and non-induced
cells (zero level = non-induced/non-treated line). (H) GVG-PIN7 and GVG-PIN7/NtABP1 cells. Error bars, SEM, n=3. Asterisks
indicate significantly different means between cells expressing only the endogenous NtABP1(GVG-PIN7) and over-expressing the
NtABP1 gene (GVG-PIN7/NtABP1). Paired samples t-test, *P < 0.001, **P = 0.006. (I) PIN1-GFP/GVG-AtABP1 cells. Error bars,
SEM, n=2. The asterisk indicates significant difference between induced and non-induced NPA-treated cells, P = 0.013, paired
samples t-test. There was no significant difference between cell lines without NPA treatment. (J, K) qRT-PCR of NtABP1 and
AtPIN7 genes in the GVG-PIN7/NtABP1 cell line (J), and AtABP1 and PIN1-GFP genes in PIN1-GFP/GVG-AtABP1 cell line (K).

Expression verified at 24 hours after application of 1 yM DEX. Error bars, SEM, n=6. Inset in (K) shows PIN1-GFP fluorescence in
both non-induced and induced cells.
doi: 10.1371/journal.pone.0070050.g003
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Figure 4. ABP1 inhibits fluorescence recovery after photobleaching (FRAP) of PIN1-GFP. (A-D) FRAP in the three-day-old
tobacco PIN1-GFP/GVG-AtABP1 and PIN1-GFP cells. (A) Transversal plasma membranes decorated by PIN1-GFP in the PIN1-
GFP/GVG-AtABP1 cells showing the situation before, immediately after and 170s after the photobleaching. Scale bars, 10 um. (B)
FRAP measured in the PIN1-GFP control cells 170 s after photobleaching. Cells were treated with DEX (1uM) in DMSO or DMSO
only. Error bars, SEM, n=15. (C) Kinetics of FRAP in non-induced and induced PIN1-GFP/GVG-AtABP1 cells. Error bars, SEM,
n=6. (D) Comparison of FRAP after 170 s in cells pre-treated with BFA (20 uM for 30 min), tyrphostin A23 (Tyr A23, 50 uM for 30
min), NAA (5 uM for 60 min), or NPA (10 uM for 25 min). Error bars, SD, Ctrl, n=6; BFA, n=6; Tyr A23, n=6; NAA, n=10; NPA, n=7.
FRAP for the PIN1-GFP/GVG-AtABP1 non-induced cells, 100%. Asterisks indicate significant difference between A{ABP1 non-
expressing (non-induced) and expressing (induced) cells within given treatment. *P < 0.001, **P = 0.080 using independent samples
t-test. The differences for Tyr A23 (P = 0.800), NAA (P = 0.412), and NPA (P = 0.332) treatments are not statistically significant. (E)
Schematic depiction of a dual action of ABP1 in regulation of PIN dynamics and activity, resulting in control of auxin levels in a cell.
In brackets, experimental intervention is presented. Under low intracellular auxin level, e.g. after overexpression of PIN efflux
carriers, ABP1 promotes PIN endocytosis to reduce undesirable auxin export. Under high auxin level, e.g. after external addition of
auxin or after inhibition of the active auxin efflux by NPA, ABP1 counteracts the endocytosis of PINs and leaves them on the PM
thus promoting the active auxin efflux.

doi: 10.1371/journal.pone.0070050.g004
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endocytosis; they are also consistent with the complementary
notion that auxin-induced inhibition of endocytosis is mediated
by ABP1 [32].

It was shown previously, that auxin levels affect also the
state of actin cytoskeleton [43] and thus determine PIN
dynamics [29]. Increasing the amount of auxin inside the cell is
characterized by the formation of fine actin filaments which
promotes the deposition of new auxin efflux carriers to the PM
and in turn reduces the intracellular amount of auxin.
Conversely, actin filaments are bundled in cells that are
depleted from auxin [52]. All these findings reflect the complex
regulatory network by which auxin controls its own levels in
cells.

In summary, combined results from the phenotype analysis,
auxin efflux measurements as well as FRAP experiments
strongly suggest that ABP1 regulates the auxin efflux from
cells, and it performs it via control of PIN carriers’ incidence at
the PM. The experiments presented here point at a dual
function for ABP1 (Figure 4E). Under low cellular auxin levels,
e.g. in cells overexpressing canonical, PM-localized auxin
efflux carriers, ABP1 reduces cellular auxin efflux by promoting
PIN endocytosis to prevent an excessive auxin outflow. Under
high auxin levels (e.g. after treatment with NAA or NPA) ABP1
(after binding auxin) mediates inhibition of endocytosis to
stimulate export of auxin from the cell. It should be noted here,
that so far it is not clear where is the actual site of ABP1 action
— at the cell cortex or at the outer side of the PM? Treatment
with NAA may saturate ABP1 on both sides of the PM.
Treatments with NPA (resulting in higher internal auxin
concentration due to inhibition of auxin efflux) may suggest the
action of ABP1 inside cells. Anyway, the auxin-dependent
action of ABP1 seems to be connected with higher auxin
levels; this is in concert with its affinity constant towards I1AA
(maize K, ca. 107 M" [3]). A dual role of ABP1 depending on
auxin levels is in agreement with results from Arabidopsis [32],
where ABP1 acted as a positive regulator of clathrin-mediated
endocytosis and its action was inhibited by high (above
micromolar) auxin levels. Altogether, besides supporting the
role of ABP1 in the regulation of PIN endocytosis, this work
elucidates the physiological output of this regulation, namely
the ABP1-mediated fine-tuning of PIN-dependent auxin efflux.

Materials and Methods

Plant material and gene constructs

The tobacco cell line BY-2 (Nicotiana tabacum L., cv. Bright
Yellow-2 [33]) was cultivated as described [53]. Tobacco BY-2
cell lines carrying Arabidopsis thaliana PIN7 gene under DEX-
inducible promoter (line GVG-PIN7) and intragenic translational
GFP fusion with Arabidopsis thaliana PIN1 gene under native
promoter (line PIN1-GFP) were described previously [28,54].
For gene transformation, the modified protocol [55] was used
as described in [53]. The 35S-NtABP1 cell line was generated
by transformation with Nicotiana tabacum cDNA for the ABP1
gene driven by CaMV35S promoter in pCP60 binary vector
[56]; the construct containing NtABP1 was kindly provided by
Catherine Perrot-Rechenmann (CNRS, Gif sur Yvette, France).
The GVG-AfABP1 cell line was obtained by transformation of
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Arabidopsis thaliana ABP1 gene under DEX-inducible promoter
in the binary vector pTA7002 [35]. The GVG-AtABP1 was
cloned by inserting PCR-amplified cDNA of Arabidopsis ABP1
into the pTA7002 vector. The GVG-PIN7 cell line [28] was re-
transformed with the N{ABP1 construct to create the GVG-
PIN7/NtABP1 cell line. The PIN1-GFP cell line was re-
transformed with GVG-AtABP1 to create the PIN1-GFP/GVG-
AtABP1 cell line. The pTA7002 line was obtained by
transformation of BY-2 cells with the empty vector pTA7002
[35]. Transformed BY-2 cells were maintained in culture media
containing 40 pg ml" hygromycin (cell lines GVG-PIN7 and
GVG-AtABP1) or 100 ug ml' kanamycin (cell lines NtABP1 and
PIN1-GFP) or both (cell lines GVG-PIN7/NtABP1 and PIN1-
GFP/GVG-AtABP1), and 300 pug ml' cefotaxim was added to
all lines. Expression of PIN7 and ABP1 genes in tobacco BY-2
cells was induced by adding DEX (1 yM) from a 30 mM stock
solution in DMSO at the beginning of the subcultivation period.
The corresponding amount of solvent (DMSO) was added to
control cells.

PCR and qRT-PCR

Tobacco genomic DNA was isolated using DNeasy Plant
Mini Kit (Qiagen). NtABP1 gene fragment in 35S-NtABP1line
was amplified by PCR using Tag DNA Polymerase Kit
(Fermentas). The combination of forward primer (5'-
AAACTATGGGAGGTCCGGTT-3') and reverse primer (5-
AACAGGGATATGGAAGGTGC-3’) produced a product of
250bp in case of transgene in the form of cDNA and 700bp
product for the endogenous NtABP1.

Total RNA was isolated using SpectrumTM Plant Total RNA
Kit (Sigma-Aldrich) from transformed one-day-old BY-2 cells.
Isolated RNA was treated with DNAse from DNA-freeTM Kit
(Ambion), separated in 1% agarose gel and its concentration
measured to determine its proper amount for reverse
transcription reaction.

For the 25 pl of reverse transcription reaction, first-strand
cDNA synthesis, was used 1 ug RNA, 0.5 ug Oligo (dT),s and
50 units of M-MLV Reverse Transcriptase (H-) (Promega).

First strand cDNA was diluted 50x and gPCR was performed
using DyNAmMoTM Flash SYBR® Green gPCR Kit (Finnzymes)
in a final volume 20 pl according to the manufacturer's manual.
Plastic EU Semi skirted Thin-wall Plates (BlOplastics,
Landgraaf, The Netherlands) were applied. LightCycler 480
(Roche) was programmed as follows: after 7 min of initial
denaturation at 95°C, 40 cycles of 10 s at 95°C for melting, 15
s at 56°C for annealing and 1 min at 70°C for final extension
were performed. Primers in 10 yM final concentration were

used as follows: NtABP1 forward 5%
AAACTATGGGAGGTCCGGTT-3', reverse 5'-
AACAGGGATATGGAAGGTGC-3; AtABP1 forward 5'-
TGTGAAGAGGTTTTTGTTGTCC-3, reverse 5
GCAGCAGTGTGTGGCATAA-3; AtPIN7 forward 5
GGGAAGAAGAGTCGGAGAG-3, 5'-
AAGAGCCCAAATGAGACCAA-3; AtPIN1  forward 5'-
GCTGGGAGGTTTCATTATC-3, reverse 5'-
GTTTCCGTCTTGTCTTTTC-3; NtACT2 forward 5'-
CTATTCTCCGCTTTGGACTTGGC-3', reverse 5'-

AGGACCTCAGGACAACGGAAACG-3".
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PCR efficiencies were estimated from calibration curves
generated from serial dilution of cDNAs. The calibrated
normalized ratios of the relative amount of the target and
reference gene were calculated as published in Chab et al.
[57]: ER®PRx E+CPT where E-, Eg are the efficiencies for target or
reference gene gRT-PCR assay, and CpT, CpR a crossing
points for target or reference genes. Expression levels were
normalized against NtACT2 as the reference gene. Resulting
values are expressed as a ratio of relative expression of
particular gene in transformed/induced cells against relative
expression of this gene in non-transformed/non-induced cells.
Every sample was measured in three biological repetitions
which were in duplicates giving 6 repetitions in sum.

Microscopy, image analysis and determinations of cell
growth parameters

Nomarski DIC microscopy was performed using Nikon
Eclipse E600 microscope (Nikon, Japan), and images were
grabbed with colour digital camera (DVC 1310C, USA). Cell
length was measured interactively using LUCIA image analysis
software (Laboratory Imaging, Prague, Czech Republic) and
expressed as a percentage of mean length of control cells. The
categorized length distribution of cells from each of 10 optical
fields of each sample was presented as the percentage of total
cell number (~200 cells). Each category corresponds to the
maximum value of each cell-length interval (0-30, 30-50, 50-70,
70-100, 100-150, 150-220 pm). The diameter of the cells did
not change during the subcultivation period and varied between
25-40 pm. Cell density was determined by counting the cells
using a Fuchs-Rosenthal haemocytometer slide, performed
periodically during the entire subcultivation period; individual
values represent the average of at least four aliquots of every
sample. A stock solution of NPA (100 mM) in DMSO was
added to the cultivation medium at the beginning of the
subcultivation period to a final concentration of 10 uM.

Confocal microscopy and FRAP

Zeiss LSM 5 Duo confocal microscope (Carl Zeiss, Jena,
Germany) with appropriate filter sets for GFP detection
(excitation 488 nm, emission 505-550 nm) and 40x C-
Apochromat water immersion objective (NA=1.2) was used. For
FRAP experiments, a rectangular region of interest (ROIl) of
40x20 pixels with the PM in the centre was applied interactively
at the transversal PMs of the cell files. Bleaching with maximal
laser intensity was followed by 170 seconds tracking of
fluorescence recovery with imaging every 7 seconds. For the
compensation of the fluorescence bleaching during recovery
period, rectangular ROI (100x20pixels) was applied using Carl
Zeiss Image Examiner software on non-bleached part of the
transversal PM. The fluorescence in this ROl was measured
and FRAP values were corrected for this background.
Presented values are displayed as means of at least 6
measured cells (one ROI/cell) expressed as proportion of the
initial signal intensity before photobleaching. For all FRAP
experiments, three-day-old cells induced by 1 uyM DEX in
DMSO at the beginning of subcultivation were used. For
inhibitor studies, the cells were pre-treated for 30 minutes
before the FRAP experiment with 50 pM tyrphostin A23
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(Sigma-Aldrich, USA) added from a 50 mM stock solution in
DMSO, or alternatively for 60 min with 5 yM NAA (Sigma-
Aldrich, USA) added from a 100 mM stock solution in ethanol,
or for 25 min with 10uM NPA added from a 100 mM stock
solution in DMSO. The corresponding amount of solvent was
added into controls.

Auxin accumulation assays

Auxin accumulation in one-day-old cells was measured as
described in Delbarre et al. [44] and Petrasek et al. [53]. We
used cells cultivated for 24 h from the beginning of the
subcultivation period unless stated otherwise. At the beginning
of the accumulation assay, [*H] NAA (20 Ci mmol'; American
Radiolabeled Chemicals, Inc., St Louis, MO, USA) was added
to the equilibrated cell suspension to a final concentration of 2
nM. Measured values were expressed as percentages of
controls at 25 min after the addition of the labelled auxin. NPA
was added at the beginning of the accumulation assay from
100 mM stock solution in DMSO to a final concentration of 10
UM. Corresponding volumes of DMSO alone were added as
negative controls. Cells transformed with empty vectors were
checked for auxin accumulation and showed no significant
reaction to DEX (Figure 11).

Statistical analysis

Data analysis of cell length differences was performed using
two sample t-test assuming unequal variances on several
independent biological replicates. Data analysis for
accumulation assays was performed using SPSS. The One-
Sample Kolmogorov-Smirnoff test was used to check data for
normality, and The Paired samples t-test was used to test for
statistical differences between means. In cases where the data
did not show convincingly normal distribution, we used the
Related samples Wilcoxon signed rank to confirm the results.
Data analysis for FRAP experiments was performed using
SPSS and the One-sample Kolmogorov-Smirnoff test to
confirm data normality. An Independent samples t-test was
used to test for statistical differences between the means.

Accession Numbers

The Arabidopsis Genome Initiative locus identifiers for genes
used in this study are as follows: ABP1, At4g02980; PIN?7,
At1923080; PIN1, At1g73590. The National Center for
Biotechnology Information accession number for NtABP1 is
P33490.
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