
Liquid Surface Tracking with Error Compensation

Morten Bojsen-Hansen∗

IST Austria
Chris Wojtan∗

IST Austria

(a) Original simulation (b) Smoothed (c) Our smoothing (d) Our dynamics

Figure 1: Our method permits high-resolution tracking of a low-resolution fluid simulation, without any visual or topological artifacts. The
original simulation (a) exhibits sharp details and low-resolution banding artifacts. Smoothing the surface tracker (b) hides the artifacts but
corrodes important surface features. We propose a smoothing technique (c) that preserves sharp details while selectively removing surface
tracking artifacts, and a force generation method (d) that removes visual artifacts with strategically placed surface waves. Our algorithms
are general and apply to both level sets as well as mesh-based surface tracking techniques.

Abstract

Our work concerns the combination of an Eulerian liquid simu-
lation with a high-resolution surface tracker (e.g. the level set
method or a Lagrangian triangle mesh). The naive application of
a high-resolution surface tracker to a low-resolution velocity field
can produce many visually disturbing physical and topological ar-
tifacts that limit their use in practice. We address these problems
by defining an error function which compares the current state of
the surface tracker to the set of physically valid surface states. By
reducing this error with a gradient descent technique, we introduce
a novel physics-based surface fairing method. Similarly, by treat-
ing this error function as a potential energy, we derive a new sur-
face correction force that mimics the vortex sheet equations. We
demonstrate our results with both level set and mesh-based surface
trackers.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: liquid simulation, surface tracking, surface fairing,
vortex sheets, level set method, triangle mesh

Links: DL PDF

∗(mortenbh|wojtan)@ist.ac.at

1 Detailed surface tracking

This paper addresses the problem of tracking a liquid surface in an
Eulerian fluid simulation. Within the field of computer graphics,
Eulerian fluid simulation has become commonplace, with standard
methods relying on a rectilinear grid or tetrahedral mesh for solving
the Navier-Stokes equations [Bridson 2008]. The problem becomes
significantly more complicated when we wish to simulate a free sur-
face, such as when animating liquid. Correct treatment of this free
surface requires special boundary conditions as well as some ad-
ditional computational machinery called a surface tracker, such as
the level set method [Osher and Fedkiw 2003] or a moving triangle
mesh [Wojtan et al. 2011].

When animating a free surface, almost all of the visual detail is
directly dependent on this surface tracker, because the surface is of-
ten the only visible part of the resulting fluid simulation. In order to
make a simulation as detailed and visually rich as possible, we must
add detail to the surface tracker. The computational cost of solving
the Navier-Stokes equations scales with the volume of the simula-
tion. Therefore, adding details to the surface by simply increasing
the number of computational elements quickly becomes intractable.
The problem can be somewhat alleviated by speeding up computa-
tional bottlenecks like the pressure projection step [Lentine et al.
2010; McAdams et al. 2010], but ultimately the volumetric com-
plexity remains an obstacle. On the other hand, the costs of surface
tracking only scales with the surface area, so the immediate temp-
tation here is to increase the resolution of the surface tracker while
keeping the fluid simulation resolution fixed. This strategy of only
increasing the surface resolution has produced some beautiful re-
sults in the past [Goktekin et al. 2004; Bargteil et al. 2006; Heo and
Ko 2010; Kim et al. 2009; Wojtan et al. 2009], but it introduces vi-
sual and topological errors that limit its usefulness with extremely
detailed surfaces (Figure 2).

To see where these errors come from, we consider the relationship
between the surface tracker and the fluid simulation. While the sur-
face tracker certainly acts as the source of visual detail, it is also
responsible for communicating the location of the free surface to

http://doi.acm.org/10.1145/2461912.2461991
http://portal.acm.org/ft_gateway.cfm?id=2461991&type=pdf


the fluid simulation. The fluid simulation then converts the shape
of this free surface into Dirichlet boundary conditions for a Poisson
equation. After solving this Poisson equation, the fluid simulation
then adds pressure forces to ensure that any subtle variations near
the free surface are accounted for in a manner consistent with the
Navier-Stokes equations. However, a problem occurs if we lose
information when conveying the free surface shape from the sur-
face tracker to the fluid simulation; if the surface tracker is sig-
nificantly more detailed than the fluid simulation, then there is no
way to adequately encode all of the subtleties of the free surface
into the boundary conditions. As a result of these mismatched lev-
els of detail, the fluid simulation cannot recognize highly detailed
surface features, and it cannot supply the necessary high-resolution
pressure forces. Consequently, high resolution surface structures
will clearly violate natural fluid motion, because they ignore the
pressure term of the Navier-Stokes equations — the fluid simula-
tion simply does not have enough degrees of freedom to prevent
unphysical states in the surface tracker.

Previous methods have either ignored these errors, applied surface
smoothing, or added additional detail to the fluid simulation in or-
der to address these problems. While surface smoothing eventually
removes unphysical high-resolution details, it also removes impor-
tant physically valid motions, and it has no physical basis (or is
based on unphysically strong and over-damped surface tension).
Refining the fluid simulation detail near the surface is certainly a
valid strategy, but perfectly matching the resolution of a detailed
surface tracker often comes with significant extra implementation
effort and computational overhead.

Our paper presents a fundamentally different approach for recon-
ciling the difference between a high resolution surface tracker and
a low resolution velocity field. We first propose a novel error met-
ric that identifies and quantifies any unphysical surface behaviors
by contrasting the current state of the surface tracker with the set
of physically valid surface states. Once we have this information,
we can use the gradient of this error function in a couple of dif-
ferent ways. We first introduce a novel physics-based surface fair-
ing method that quickly removes surface artifacts while preserv-
ing physically-valid surface details. Next, we derive a novel sur-
face correction force that removes artifacts with strategically placed
gravity and surface tension waves. We show that this approach con-
veniently mimics the vortex sheet form of the Navier-Stokes equa-
tions while seamlessly integrating into an Eulerian simulation.

The contributions of our paper are as follows:

• Theoretical insight into the problem of coupling a high reso-
lution surface tracker to a low resolution fluid simulation.

• A novel error metric for quantifying the physical validity of a
fluid surface tracker.

Figure 2: If the surface tracker (orange) is much more detailed
than the simulation grid (black squares), then the simulation can
only work with a rough approximation of the surface (blue). The
mismatch between the orange and blue surfaces can create visual
artifacts like permanent surface kinks and floating droplets.

• A surface fairing algorithm for fluid-like surfaces that clearly
out-performs standard smoothing techniques.

• A surface correction force that removes high-resolution arti-
facts while preserving physically-valid details.

• Applications to both level set and mesh-based surface track-
ers.

2 Previous Work

Our algorithm concerns the combination of an Eulerian discretiza-
tion of the Navier-Stokes equations with free-surface boundary
conditions. The book by Bridson [2008] provides an excellent
overview of the common fluid simulation methods in the field of
computer animation. In order to simulate a free surface (for ex-
ample, at the boundary of a liquid), Dirichlet boundary conditions
must be enforced by specifying an exact value for the fluid pressure.
First order boundary conditions simply set the pressure at the center
of a boundary cell, but this strategy leads to aliasing artifacts due to
the assumption that the fluid boundary precisely lines up with the
simulation grid. Significantly higher accuracy can be achieved by
using second order “ghost fluid” boundary conditions [Enright et al.
2003], which use linear extrapolation to set the surface pressure.

Several methods exist for representing and tracking a moving liquid
surface. The most common Eulerian surface tracking method for
fluid simulation is the level set method [Osher and Fedkiw 2003],
which maintains a signed distance function and implicitly repre-
sents the surface wherever the function is equal to zero. The vol-
ume of fluid method [Hirt and Nichols 1981] also uses an Eule-
rian strategy to track the surface; by explicitly tracking the amount
of fluid in each cell, the boundary can be observed by locating
fractionally-filled fluid cells. Lagrangian surface tracking methods
use particles or meshes [Wojtan et al. 2011] to explicitly represent
the surface. Whereas topology changes are implicit for Eulerian
surface tracking routines, they must be carefully computed for La-
grangian mesh-based methods [Brochu and Bridson 2009; Wojtan
et al. 2009]. Hybrid surface tracking techniques, like the particle
level set method [Enright et al. 2002] attempt to combine the merits
of both Lagrangian and Eulerian surface tracking techniques.

High resolution surface, low resolution grid. As mentioned
above, many researchers seek to extract additional richness from a
simulation by significantly increasing the amount of detail in the
surface tracker while fixing the resolution of the underlying fluid
simulation. Goktekin et al. [2004] used a high-resolution particle
level set to track a low-resolution viscoelastic fluid simulator. Sim-
ilarly, Wojtan et al. [2008; 2009] used a Lagrangian mesh to retain
detail at a much higher resolution than a viscoelastic simulation.
Bargteil et al. [2006] used an octree and Heo et al. [2010] used a
pseudo-spectral method to maximize the resolution of an Eulerian
surface tracker for a fixed fluid simulation.

The main drawback with intentionally mismatching the surface and
simulator resolutions is that the surface tracker tends to retain de-
tails that are invisible to the simulation [Brochu et al. 2010]. This is
less of a problem for a viscoelastic motion, because unphysically-
retained surface features may resemble rigid and elastic behavior.
Eulerian surface representations, particularly with semi-Lagrangian
advection, will naturally lose detail over time; so an overly-detailed
tracker can help make up for this loss in detail, although they will
preserve visual artifacts if they are too successful. See Figure 5 for
an example of these visual artifacts.

Removing artifacts. One strategy for eliminating the artifacts
caused by a high-resolution surface tracker is to adaptively in-



crease the fluid simulation resolution near the boundary. Losasso
et al. [2004], Hong et al. [2005] and Kim et al. [2007] used an oc-
tree to adapt a fluid simulation to a high-resolution level set. Brochu
et al. [2010] introduced a simulator based on an adaptive Voronoi
diagram in order to match the resolution of a high resolution mesh
surface. The general strategy of adding detail to the fluid simulation
will naturally remove artifacts due to mismatched resolutions, but
it can be computationally expensive and handling spatial adaptivity
may introduce further simulation artifacts.

Instead of adapting the fluid simulation to the surface tracker, sev-
eral methods try to make the high-resolution surface conform to
the low-resolution physics. Wojtan and Turk [2008], and Kim et
al. [2009] attempt to remove high-frequency visual artifacts using
smoothing algorithms, while Yu and Turk [2010] use anisotropic
smoothing kernels to bias the loss of surface detail. Williams [2008]
and Thürey et al. [2010] attempt to make up for volume-loss ar-
tifacts with bi-Laplacian smoothing. While such smoothing ap-
proaches may be effective in small doses, they will destroy many
interesting surface details when applied with too much enthusi-
asm, and they do not produce physically correct surface motions.
Smoothing in this manner is related to over-damped surface ten-
sion, which may be appropriate for small-scale viscous flows but is
inaccurate for inviscid liquid phenomena.

In an attempt to make up for the lack of detailed surface motions
when combining a low-resolution simulation and a detailed surface,
Thürey et al. [2010], Bojsen-Hansen [2011] and Yu et al. [2012]
propose using high-resolution dynamic surface waves. These meth-
ods mask high resolution surface artifacts with rippling motions, but
they are based on inappropriate restrictions such as shallow water,
height-field, and constant wave speed assumptions. These restric-
tions also require that the surface tracker must be homeomorphic
to a low-resolution simulation boundary in order to function prop-
erly, while our method naturally removes topological inconsisten-
cies with Rayleigh-Taylor-like instabilities. The method of Woj-
tan et al. [2010] removes topological inconsistencies in the surface
tracker by re-sampling the surface, but it does not address the prob-
lem of removing surface noise.

Vortex methods. Our method results in equations that resem-
ble the vortex sheet equations. Several researchers have used vor-
tex particle methods [Selle et al. 2005; Park and Kim 2005; Pfaff
et al. 2009; Kim et al. 2012] and vortex sheet methods [Pfaff et al.
2012; Brochu et al. 2012] to add details and generate turbulence
in fluid simulations, though these methods do not directly address
the difficulties of simulating high-resolution motion with a free-
surface. The method of Kim et al. [2009] uses a high-resolution
surface tracker coupled with the vortex sheet equations to drive a
low-resolution vorticity confinement force. This strategy serves to
add interesting low-resolution turbulence to the simulation, but it
also enhances high-resolution surface noise. Our method only adds
turbulence in areas that exhibit unphysical behavior and uses it to
remove surface noise artifacts.

3 Method

As mentioned in Section 1, our main source of unphysical behav-
ior is the conversion from the detailed surface tracker into pressure
boundary conditions. We first aim to quantify these errors.

3.1 In the absence of Surface Tension

We observe that, in an analytical solution to the Navier-Stokes
equations in the absence of surface tension, the pressure at the free
surface is equal to that of the surrounding air. Following standard

Figure 3: This instructive example inserts a high-resolution cut
in the surface of a low-resolution simulation. The cut is smaller
than a grid cell, so the original fluid simulation (top left) ignores it.
Smoothing the surface tracker (top right) leads to extreme loss of
volume and surface details. Our smoothing algorithm (bottom left)
quickly fills in the gap, and our dynamics algorithm (bottom right)
converts the artifact into fluid energy.

practices for simulating liquids, we assume that the air pressure is a
constant zero along the interface [Bridson 2008]. Next, we note that
the zero level set of pressure perfectly coincides with the location
of the free surface. Because the gradient of a function is always or-
thogonal to its level sets, we infer that the pressure gradient should
be perpendicular to the free surface. Accounting for the fact that
the pressure is positive inside the liquid, we can further state that
the pressure gradient must be anti-parallel to the surface normal in
order for a flow to be consistent with the Navier-Stokes equations
(Figure 4(a)). We use this information to define an energy function:

E0 =

∫
∂Ω

n · ∇p dA (1)

where n is the surface normal at a point on the surface, ∇p is the
pressure gradient, dA is the area of a surface tracking element, and
∂Ω is the entire free surface according to the high resolution surface
tracker. Intuitively, the energy is minimized when the free surface
is physically valid (when the normal is anti-parallel with the pres-
sure gradient). We evaluate the surface normal from the surface
tracker and the pressure gradient from the fluid simulation, so any
deviation from the minimum energy state encodes an unphysical
disagreement between the surface tracker and the fluid simulation.

We propose to reduce this error by following the direction of steep-
est descent of the energy function. The energy gradient is the
derivative of Equation 1 with respect to its free variables. In our
case, the surface tracker is overly-detailed and under-constrained,
so we will only adjust the control variables of the surface tracker.
We approximate divergence-free motion by constraining our sur-
face tracker adjustments to be local rotations; thus, our degrees of
freedom are the orientations of the surface tracker normals n.

Taking the partial derivative of Equation 1 with respect to n, the
direction of steepest descent for surface normal is:

−∂E0

∂n
= −∇p dA. (2)

However, the normals must remain unit length, so we reformulate
the energy gradient as a local rotation and arrive at the equation:

n× (−∂E0

∂n
) = ∇p× ndA, (3)

which encodes the area-weighted rotational velocity and axis of ro-
tation as a vector magnitude and direction respectively. This equa-
tion tells us that we should rotate the normal away from the pressure



(a) without surface tension (b) with surface tension

Figure 4: A schematic of the simulated liquid (blue) and its level
sets of constant pressure (white lines). The surface normal n is
perpendicular to the fluid surface, while the pressure gradient∇p is
perpendicular to the surfaces of constant pressure. In the presence
of surface tension, the tangential component of ∇p is proportional
to the gradient of mean curvature.

gradient, with a strength proportional to the magnitude of the pres-
sure force, if we wish to decrease the surface error.

3.2 Including Surface Tension

For large scale flows, surface tension forces are practically negli-
gible, and the above analysis is sufficient. For smaller scale flows,
however, we must incorporate effects due to surface tension.

In the presence of surface tension, the pressure at the free surface
is p = σH , where σ is the surface tension coefficient and H is the
mean curvature of the free surface at that point. This pressure can
vary along the surface, so the pressure gradient will have a tangen-
tial component (Figure 4(b)). As a result, we can no longer assume
that the pressure gradient is normal to the free surface. However,
the tangential variation of the pressure is fully defined by our free
surface boundary conditions, so the tangential component of the
pressure gradient is equal to the gradient of the surface pressure:
∇ptangent = σ∇H . We decompose the pressure gradient into nor-
mal and tangential parts and solve for the normal component:

∇pnormal = ∇p− σ∇H (4)

Using the same reasoning as in the previous section, the normal
component of this pressure gradient should be anti-parallel to the
surface normal in a fully resolved fluid simulation. Our surface
tracker is more detailed than the fluid simulation and the surface
normals will vary, so we introduce the following energy function:

EST =

∫
∂Ω

n · (∇p− σ∇H) dA (5)

which is again minimized when the surface tracker represents a
physically valid configuration. We compute the partial derivative
of Equation 5 with respect to the surface normals:

−∂EST

∂n
= (−∇p+ 2σ∇H) dA (6)

This derivative is slightly more complicated, because H depends
on n, as explained in the Appendix. We then encode the result as a
rotation

n× (−∂EST

∂n
) = ∇p× n dA+ 2σn×∇HdA (7)

The first term of this update rule is identical to the case without
surface tension. The second term indicates that we should rotate
the surface normal towards the direction of increasing curvature if
we want surface tension to smooth out the surface.

As before, we evaluate the pressure gradient from the fluid simu-
lation and we evaluate the normals from the surface tracker. We

are left with a choice of whether to evaluate the mean curvature H
using the fluid simulation or the surface tracker. We first note that
small values of H will be computed correctly regardless of where
we evaluate it, because low curvatures are easily represented on
low-resolution fluid grids. However, large values of H cannot be
accurately computed on the low-resolution simulation grid and will
be clamped to some maximum value related to its Nyquist limit. As
a result, high-resolution surface tension motions will be ignored if
we compute H using the low resolution fluid simulation. On the
other hand, computing H from the surface tracker will allow high-
resolution motions, but it will not necessarily give us the same value
of ∇pnormal. However, the second term of Equation 7 will always
act to reduce the surface curvature, so we can be confident that it
will at least move in the right direction until H is reduced and its
computation becomes consistent with the fluid simulation. For this
reason, we choose to evaluate H on the surface tracker.

4 Applications

Now that we have defined error functions and their gradients, we
propose a few different strategies for reducing unphysical behaviors
in the surface tracker.

4.1 Physics-based surface fairing

Our first application uses the above analysis to derive a gradient-
descent technique for reducing unphysical behavior. The gradients
derived in the previous section are weighted by area, so we first
divide the equation by the area of the surface element to get a local
rotational motion. Then, by assigning local rotations to each point
on the surface, we present a physically-based surface fairing rule
for fluid simulations:

ω = α(∇p× n + 2σn×∇H) (8)

where ω represents the angular velocity at a point on the surface
tracker and α is a user-tunable smoothing parameter. In our imple-
mentation, we convert this rotational velocity ω into a local high-
resolution velocity field using a finite-kernel approximation to the
Biot-Savart law. We provide implementation details in Section 5.

When applied steadily throughout the progress of the fluid simula-
tion, this procedure has the remarkable effect that it filters the sur-

Figure 5: The original simulation (top left) cannot remove high
resolution noise. After many iterations, Laplacian smoothing (top
right) slowly diffuses errors across the surface. Our smoothing
method (bottom left) immediately targets and flattens artifacts,
and our dynamics algorithm (bottom right) converts artifacts into
waves.



face at a rate proportional to the magnitude of the pressure gradient
— nearly static liquid surfaces are quickly smoothed out while bal-
listic motions are left untouched (Figure 8). Note that this update
has no effect if the surface tracker is the same resolution as the fluid
simulation; in this case, the normal component of the pressure gra-
dient will precisely line up with the surface normal and the effect
of our update rule will disappear. This procedure only acts to cor-
rect errors due to a mis-match between the surface tracker and the
boundary conditions of the fluid simulation, and the effect smoothly
fades away as the fluid simulation accuracy increases.

4.2 Fluid simulation on the surface tracker

Another option is to utilize Equation 5 as a physical potential en-
ergy. We derive surface forces from the gradient of this energy and
factor out the per-element area to get an equation for angular accel-
eration. The result is essentially the time derivative of our surface
fairing algorithm:

ω̇ = β(∇p× n + 2σn×∇H) (9)

where ω̇ is the angular acceleration at some point on the surface
tracker, and β is a user-tunable parameter analogous to a spring
constant or squared wave speed. Instead of simply smoothing out
errors in the surface tracker, this approach transforms surface arti-
facts into water waves (Figure 5).

We note that our error correction forces are remarkably similar to
the buoyancy and surface tension terms of the vortex sheet equa-
tions [Pozrikidis 2000], hinting that a good choice for our tuning
parameter β is a value of twice the Atwood ratio:

β ≈ 2(ρliquid − ρair)/(ρliquid + ρair) = 2

The main differences between our method and previous vortex
sheet discretizations [Kim et al. 2009; Pfaff et al. 2012; Brochu
et al. 2012] are that we omit the Boussinesq approximation, and
we use a low-resolution pressure gradient from the fluid simula-
tion instead of the total acceleration of the surface. By tying the
low-resolution simulation into our dynamics, our surface tracker is
guaranteed to oscillate about a low-resolution surface representa-
tion. In contrast, a high-resolution vortex sheet discretization may
easily drift from the simulation and become arbitrarily complicated.
The derivation of our method also indicates that the vortex stretch-
ing and dilation terms of the vortex sheet equations are unrelated to
the reduction of surface tracking errors; omitting these terms will
only affect wave propagation speeds.

Because Equation 9 is based on the inadequacy of a low-resolution
pressure gradient, the resulting dynamics are allowed to gracefully
interact with an Eulerian fluid simulation without double-counting
forces. As the resolution of the fluid simulation increases relative to
that of the surface tracker, the effect of these additional fluid dynam-
ics diminishes, until they disappear when the resolutions are equal.
We found this approach to be an effective strategy for adding high-
resolution dynamics to a low-resolution fluid simulation without re-
quiring much computational overhead. Again our implementation
uses an approximation to the Biot-Savart law to convert our angular
acceleration into a velocity field, with details given in Section 5.

5 Implementation Details

In our fluid simulation implementation, we use a regular MAC grid
fluid simulation with second order ghost fluid boundary conditions
at the free surface [Bridson 2008]. We use the liquid-biased filter of
Kim et al. [2009] to represent thin liquid features on the coarse fluid
grid. We convert the rotational velocities in Section 4 into a velocity

field using using the Biot-Savart Law with a finite kernel size, as in
[Pfaff et al. 2012]. Because any size kernel will create a local rota-
tion and will thus reduce the errors in the surface tracker, the kernel
size is irrelevant when considering error minimization. Larger ker-
nel sizes simply allow for lower-frequency surface rotations, which
may have visual importance depending on the application. Both
the first-order smoothing (Section 4.1) and second-order dynamics
(Section 4.2) are integrated with a symplectic Euler method.

Once a pressure field has been computed in the fluid simulation, we
compute its gradient and extrapolate both quantities past the free
surface using the usual constant extrapolation in the normal direc-
tion. Subsequently, we use tri-linear interpolation when evaluating
either quantity at points on the free surface. In some of our smooth-
ing experiments, we found it useful to re-scale the pressure gradient
by the difference between the extrapolated pressure evaluated at the
interface and the outside air pressure instead of directly using the
low-resolution pressure gradient. This adjustment has no effect in
most cases near the fluid surface, but it causes bubbles and air pock-
ets deep below the liquid surface to smooth out more quickly.

5.1 Solid boundaries

Our high resolution surface tracker can cause kinks and bubbles
along solid boundaries as well as along the free surface. When the
surface pushes up against a solid obstacle, its surface normal should
be anti-parallel that of the boundary (Figure 7). Using similar rea-
soning to Section 3, we arrive at the following update rule:

nsurface × (−∂Eboundary

∂n
) = nboundary × nsurfacedA (10)

We can also multiply the strength of this motion by the fluid pres-
sure if we wish to create more drastic behaviors in high pressure re-
gions. However, we declined this option in order to reduce sources
of potential instability.

In practice, we switch from the free surface update rules in Section
4 to the solid boundary update rule for each point on the surface
tracker that is within a given distance of the boundary. In this paper,
we use a distance of three times the size of the minimum resolvable
detail in the surface tracker.

Figure 6: The technique in Section 4.2 can create detailed surface
tension dynamics of a cube (top) and a bunny (bottom), even with a
low simulation resolution.



We create a special case along corners where the low-resolution free
surface borders a solid boundary, because we do not want a small
change in position to result in a drastic change in motion. To re-
move the potential for such discontinuous gradients in the corners,
we only allow rotations about an axis parallel to the boundary nor-
mal. We further add a small amount of Laplacian smoothing at the
corners to compensate for errors that we ignore with this restriction.

We have tested our methods on both high resolution level set sur-
face trackers as well as Lagrangian triangle mesh surface track-
ers. While the overall principles for integrating our error correction
mechanism are independent of the tracker, we discuss some specific
implementation details below.

5.2 Level set surface tracker

We use the sparse level set implementation OpenVDB [Museth
2013] with an adaptive WENO5 scheme for level set advection,
because it minimizes artificial diffusion artifacts. We used a narrow
band the size of one fluid cell, and we evaluate the surface normal
by taking the gradient of the signed distance function using cen-
tral differencing. We compute free surface boundary conditions by
down-sampling the level set function onto the fluid grid and then
performing the ghost fluid method on the low-resolution distance
function. We typically set the level set resolution four to eight times
higher than that of the fluid simulation.

We compute our energy gradients (Equations 8 and 9) on a high-
resolution sparse grid, and we use a smeared delta function with a
radius of 1.5 level set cells to confine them to the surface, similar to
Kim et al. [2009]. We then use a Biot-Savart kernel with a diameter
of five level set grid cells to convert local rotations into detailed
velocities, and we store the resulting velocities on a grid co-located
with the level set samples. We up-sample the low-resolution fluid
velocity field and add it to this high resolution velocity field in order
to advect the level set. For computing dynamics, we also store,
extrapolate, and advect the angular velocities on a grid co-located
with the level set.

5.3 Mesh surface tracker

We use a Lagrangian triangle mesh surface tracker with a
voxelization-based method for computing topology changes, as in
Wojtan et al. [2010]. We create a low-resolution signed distance
function from the triangle mesh as part of the topology-changing
procedure, which we use for the ghost fluid method. We keep the
topology change grid at the same resolution as the fluid simulation,
and we maintain an average mesh resolution 4 to 5 times higher
than that of the simulation grid.

We evaluate our energy gradients at the centroid of each triangle
face using the geometric normal of each triangle. We follow Pfaff
et al. [Pfaff et al. 2012] to compute a regularized Biot-Savart ker-
nel with a diameter of four fluid simulation grid cells, and we store

Figure 7: When the surface of a liquid (blue) contacts a solid ob-
stacle (orange), the two normals should be anti-parallel.

Figure 8: Our mesh-based smoothing method (left) preserves de-
tails in low-pressure regions, unlike mean curvature flow (right).

the resulting velocities on the mesh vertices. We also store and
transport angular velocities by converting them to circulations on
triangle faces, in the way of Stock et al. [2008]. We advect the
mesh through the low-resolution velocity field of the fluid simu-
lation with a fourth order Runge-Kutta method, and we advect the
mesh through the high-resolution mesh velocity field using an Euler
method.

5.4 Stability

We use symplectic Euler time integration for our surface fairing and
dynamics algorithms, so we inherit the expected stability criteria.
For instance, this means that our gravity waves should obey a stan-
dard CFL condition and that the surface tension time step should
shrink with the spatial resolution to the power of 1.5. Although
we are currently unable to provide a formula for the stability of
our smoothing algorithm, we believe it has similar stability behav-
ior to other volume-preserving fairing algorithms like bi-Laplacian
smoothing.

Nevertheless, we noticed the level set implementation was remark-
ably stable in practice. In particular, we were able to take much
larger time steps with our surface tension dynamics than with stan-
dard ghost fluid-based surface tension. Additionally, while exces-
sively large correction forces caused high frequency oscillations,
the method is able to recover quickly from short periods of instabil-
ity.

Our mesh-based implementation is a bit more delicate to instabil-
ities. While a grid-based level set has a guaranteed minimum dis-
tance between any two samples, centroids on a triangle mesh can
be arbitrarily close together when folded into a thin sheet. The reg-
ularizer in the Biot-Savart kernel mentioned above helps to limit
large velocities for close particles, and we also found it convenient
to artificially limit the size of the error gradients by multiplying by
a constant slightly less than one. For large α and β parameters,
we used sub-cycling to integrate the surface tracker through several
small time steps in between large fluid simulation time steps.

6 Results

We generated several didactic animations to illustrate the behavior
of our method, which can be seen in the accompanying video. For
illustrative purposes, these examples were computed with an exag-
gerated low resolution of 323 for the fluid simulation and 2563 for
the level set surface tracker. One obvious benefit of our method is
that it can selectively remove high-resolution surface noise from a
low-resolution simulation (Figure 5). The method also addresses



Figure 9: The original simulation (top) is enhanced by our wave
dynamics (bottom). Notice how the detailed motion creates numer-
ous topological artifacts holes and crevices in the right side of the
original simulation while exhibiting unnatural jagged edges on the
left. Our method cleanly removes these topological artifacts while
significantly enhancing the liquid motions.

the important problem of removing topological noise, such as high-
resolution cavities and droplets. Figure 3 shows how a thin slot can
persist in a fluid simulation as long as the gap is smaller than the
width of a fluid cell. Simply smoothing the surface could eventually
fix the problem, but not before first removing details from the entire
simulation. In contrast, our method specifically targets the unphys-
ical topological structure and rectifies it using either smoothing or
splashes.

We found it difficult to directly compare our method with a Lapla-
cian smoothing approach, because the methods behave quite dif-
ferently and their parameters are not analogous. Qualitatively, we
noticed that Laplacian smoothing erodes high curvature regions first
and progressively smoothes away larger bumps over time, remov-
ing both surface artifacts and surface details without prejudice. Our
smoothing method instead selectively erodes artifacts and ignores
physically plausible surface features. In addition, our method has
a convenient upper limit to the amount of surface smoothing: upon
convergence it simply forces the surface tracker to exactly conform
to the low-resolution fluid boundary conditions. The limit behavior
of Laplacian smoothing, on the other hand, has nothing to do with
natural fluid motion.

Figure 6 shows how our method can be used to supplement surface
tension dynamics with a level set surface tracker. By computing
surface tension waves on the surface tracker instead of the fluid

grid, we were able to create surprisingly stable dynamics with good
volume conservation properties.

Figure 8 shows how our surface fairing algorithm removes artifacts
from a mesh-based surface tracker. The fluid simulation and all
simple mesh operations (including our smoothing algorithm) were
implemented in parallel, while our topology change code is a se-
rial implementation. Consequently, the topology changes were the
most computationally expensive part of this simulation, and the
fluid pressure solve was the second most expensive. Our algorithm
has negligible overhead for our mesh-based implementation. While
our smoothing algorithm successfully removes artifacts from mesh-
based simulations, the topology change algorithm of [Wojtan et al.
2010] conflicts with the subtle ripples generated by our wave dy-
namics algorithm. This is because it identifies high-resolution sur-
face concavities as topological mistakes that must be re-sampled.
In the future, we wish to modify this topology change algorithm or
switch to a different one (e.g. [Brochu and Bridson 2009]).

Figure 1 shows a highly detailed object interacting with a fluid sim-
ulation. Using a high resolution level set without any smoothing
successfully preserves the dragon’s detailed surface features, but it
also preserves many unphysical gashes and interpolation artifacts
in the fluid surface. We found it impossible to remove these vi-
sual artifacts with Laplacian smoothing unless we also smoothed
out the surface details of the dragon. In contrast, our method per-
fectly preserves the dragon’s surface features while it is falling and
only smooths them out when they splash around in areas of high
pressure. By adding our error-reducing surface waves, we intro-
duce highly detailed surface ripples and Kelvin-Helmholz instabili-
ties while still avoiding unphysical artifacts. Similarly, the original
simulation in Figure 9 exhibits several thin sheets and subsequent
surface artifacts. As seen in our accompanying video, our method
preserves details better than traditional smoothing while simultane-
ously removing unsightly errors and greatly enhancing the motion.

The most computationally expensive part of each of our level set
simulations was the surface advection. The detail in our surface dy-
namics tends to create a more complicated velocity field, which
slows down the conditionally-stable adaptive WENO advection.
Biot-Savart calculation was not the bottleneck in our simulations,
but it was a significant expense. This is because the velocity has to
be evaluated at all cells in the high-resolution narrow band, instead
of exactly on the surface. Our employment of relatively small ker-
nel sizes disables lower frequency surface rotations, but it allows
for reasonably efficient surface updates. These simulations were
dominated by the surface tracker, and our method’s complexity in-
creases with surface tracker resolution. Consequently, the level set
simulations augmented with our method took about 2.5 longer to
simulate than an analogous high-resolution level set without any
high-resolution dynamics (though sub-stepping makes our simula-
tion proportionally slower). We believe this computational over-
head is acceptable for our goals of removing surface artifacts while
adding convincing dynamic details.

Detailed information about our simulations is listed in Table 1.
Most of our simulations were run on a standard desktop computer
with 8-cores and 64GB of RAM, while the Dragon (LS) and 4-way
(LS) simulations were run on a 64-core server with 256GB of RAM.

7 Discussion

Our method solves the problem of removing high-frequency arti-
facts from a liquid surface tracker by identifying inconsistencies
and explicitly removing them. Minimizing all unphysical surface
behaviors in one step will not only remove all visual artifacts, but it
will also reduce the effective resolution of the surface tracker to ex-
actly match that of the fluid simulation. By spreading out this min-



Sim Tracker Base Smth Wave

Dragon (LS) 1283 5123 71 200 201
4-way (LS) 1283 5123 103 217 220
4-way (LS) 1283 10243 594 — ?3260
4-way (Mesh) 963 4803 106 106 —
Armadillo (Mesh) 963 3603 74 85 —
Cube (LS) 643 643 50 — 6
Bunny (LS) 1283 1283 — — 98

Table 1: Summary of timings (in minutes) for our simulations.
“Sim” and “Tracker” indicate the simulation and effective surface
tracker resolution, respectively. “Base” indicates the high resolu-
tion surface tracker with no additional dynamics, “Smth” indicates
our smoothing algorithm, and “Wave” corresponds to our wave
dynamics. Dashes indicate simulations that were not run. A star
indicates that four time steps were used per frame to ensure sta-
bility. Effective mesh resolution is based on the ratio between the
average mesh edge length and the width of the computational do-
main. Timings exclude file I/O operations.

imization process over time, we introduce a physics-based smooth-
ing process. Similarly, by using the errors as a potential energy, we
gain surface wave behaviors that specifically remove artifacts. Our
method aggressively removes high-frequency surface noise wher-
ever the pressure gradient is large, and it only gradually removes
them in regions where the internal fluid forces are smaller. Intu-
itively, this means that our method will preserve surface details and
thin sheets while splashing around in the air, but it will quickly
remove noise from standing water. Our wave dynamics will physi-
cally over-compensate for sudden changes in the pressure gradient
during collisions, which tends to add even more detail to splashes
and thin sheets.

The tuning parameter α in our surface fairing intuitively controls
how much we will allow the surface to diverge from the low-
resolution simulation. Large values ensure consistency between
surface and simulation but prohibit details that fall below the sim-
ulation grid, such as thin sheets, from developing. Smoothing with
too small of an α value may not remove artifacts quickly enough for
a high-quality simulation. We set α = 20 in all of our examples.

As mentioned in Section 4.2, the vortex sheet equations give us a
useful guide for tuning the β parameter. We found that using this
setting of β = 2 usually creates extremely subtle waves that only
fill in the gaps of the low-resolution fluid simulation. On the other
hand, we are free to artistically tune high-frequency details because
our method is not restricted to faithfully reproduce any physical
equation. We found that increasing β effectively boosts the sub-grid
wave speed, leading to the creation of convincing (though techni-
cally unphysical) rolling motions as waves crash down. We used a
value of β = 2 or β = 6 in all dynamics examples.

Our method is directly guided by the pressure gradient of a fluid
simulation. On one hand, this constraint limits the guiding force
field to a low resolution. On the other hand, simplified pressure
gradients enhance the stability of rotational motion (see the Boussi-
nesq approximation, for example), and our second-order dynamics
allow for interesting turbulent motions even with a constant pres-
sure gradient. In addition, allowing our method to be guided by
a full fluid simulation causes many of the difficulties in handling
solid boundaries to disappear.

We implemented our method in both level set and mesh surface
tracking frameworks, and each of these discretizations has its own
drawbacks. The level set method is quite robust, but it smooths out
desirable details and currently requires a narrow band of at least one
fluid cell in thickness to perform the liquid-biased filter. The mesh

tracker uses less memory but is more delicate — samples can come
very close together during fold-overs and thin sheet formation, re-
sampling the surface is more involved (we use edge subdivisions
and collapses as described in [Wojtan et al. 2011]), and robust and
efficient handling of topological changes is still an open problem.

One inconsistency between our method and the underlying fluid
simulation is that our local rotations enforce incompressibility for
both air and water phases, while the fluid simulation ignores con-
servation of the air’s volume. The large scale fluid simulation will
freely allow large air pockets to collapse beneath the weight of the
liquid, but our surface tracker dynamics preserve the volume of air
bubbles smaller than a fluid cell. These air bubbles still experience
buoyancy forces though, which cause them to rise up and break
through the fluid surface. We found this behavior quite beautiful
for the sub-grid fluid dynamics (Section 4.2), but the motion may
be undesirable when performing surface smoothing (Section 4.1).
We should be able to quickly detect and remove such small bubbles
if the behavior is objectionable.

The memory complexity of standard grid-based fluid simulation
techniques is proportional to the volume of the simulation, while
our algorithm scales only with the surface area. As a result, we
were able to achieve very high resolution simulations on a single
computer without experiencing memory problems. With our dy-
namic wave method, we were also able to increase the apparent
resolution of a simulation by factors of 43 or 83 while only requir-
ing a constant factor more computation from the surface tracker.
Nevertheless, we would like to further speed up these operations.
The stability of the method may be improved by replacing the ex-
plicit Euler integration scheme with an implicit one. We may also
be able to speed up or sidestep Biot-Savart summations by refor-
mulating our energy gradient in terms of different control variables.

Additionally, we would like to investigate boundary handling in
more detail. We are open to new strategies for handling fluid cells
that exhibit both free-surface and solid boundary conditions, and
we plan to experiment with higher resolution solid boundaries in
the future.

Acknowledgments

The authors would like to thank Keenan Crane for helpful discus-
sions about energy gradients, as well as the anonymous reviewers
for their helpful feedback on our work.

References

BARGTEIL, A. W., GOKTEKIN, T. G., O’BRIEN, J. F., AND
STRAIN, J. A. 2006. A semi-lagrangian contouring method
for fluid simulation. ACM Transactions on Graphics (TOG) 25,
1, 19–38.

BOJSEN-HANSEN, M. 2011. A Hybrid Mesh-Grid Approach for
Efficient Large Body Water Simulation. Master’s thesis, Aarhus
University.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. AK
Peters.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological oper-
ations for dynamic explicit surfaces. SIAM Journal on Scientific
Computing 31, 4, 2472–2493.

BROCHU, T., BATTY, C., AND BRIDSON, R. 2010. Matching fluid
simulation elements to surface geometry and topology. ACM
Transactions on Graphics (SIGGRAPH) 29, 4, 47:1–47:9.



BROCHU, T., KEELER, T., AND BRIDSON, R. 2012. Linear-
time smoke animation with vortex sheet meshes. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), 87–95.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Anima-
tion and rendering of complex water surfaces. ACM Transactions
on Graphics (SIGGRAPH) 21, 3, 736–744.

ENRIGHT, D., NGUYEN, D., GIBOU, F., AND FEDKIW, R. 2003.
Using the particle level set method and a second order accurate
pressure boundary condition for free surface flows. In Proceed-
ings of FEDSM, vol. 3, 4th.

GOKTEKIN, T., BARGTEIL, A., AND O’BRIEN, J. 2004. A
method for animating viscoelastic fluids. ACM Transactions on
Graphics (SIGGRAPH) 23, 3, 463–468.

HEO, N., AND KO, H.-S. 2010. Detail-preserving fully-eulerian
interface tracking framework. ACM Transactions on Graphics
(SIGGRAPH Asia) 29, 6, 176:1–176:8.

HIRT, C., AND NICHOLS, B. 1981. Volume of fluid (VOF) method
for the dynamics of free boundaries. Journal of computational
physics 39, 1, 201–225.

HONG, J.-M., AND KIM, C.-H. 2005. Discontinuous fluids. ACM
Transactions on Graphics (SIGGRAPH) 24, 3, 915–920.

KIM, B., LIU, Y., LLAMAS, I., JIAO, X., AND ROSSIGNAC, J.
2007. Simulation of bubbles in foam with the volume control
method. ACM Transactions on Graphics (SIGGRAPH) 26, 3,
98:1–98:10.

KIM, D., SONG, O.-Y., AND KO, H.-S. 2009. Stretching and
wiggling liquids. ACM Transactions on Graphics (SIGGRAPH
Asia) 28, 5, 120:1–120:7.

KIM, D., LEE, S. W., YOUNG SONG, O., AND KO, H.-S.
2012. Baroclinic turbulence with varying density and tempera-
ture. IEEE Transactions on Visualization and Computer Graph-
ics 18, 1488–1495.

LENTINE, M., ZHENG, W., AND FEDKIW, R. 2010. A novel
algorithm for incompressible flow using only a coarse grid pro-
jection. ACM Transactions on Graphics (SIGGRAPH) 29, 4,
114:1–114:9.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Transactions
on Graphics (SIGGRAPH) 23, 3, 457–462.

MCADAMS, A., SIFAKIS, E., AND TERAN, J. 2010. A parallel
multigrid poisson solver for fluids simulation on large grids. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA), 65–74.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Transactions on Graphics (to appear)
32, 3.

OSHER, S., AND FEDKIW, R. 2003. Level set methods and dy-
namic implicit surfaces, vol. 153. Springer.

PARK, S. I., AND KIM, M. J. 2005. Vortex fluid for gaseous phe-
nomena. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), 261–270.

PFAFF, T., THUEREY, N., SELLE, A., AND GROSS, M. 2009.
Synthetic turbulence using artificial boundary layers. ACM
Transactions on Graphics (SIGGRAPH Asia) 28, 5, 121:1–
121:10.

PFAFF, T., THUEREY, N., AND GROSS, M. 2012. Lagrangian vor-
tex sheets for animating fluids. ACM Transactions on Graphics
(SIGGRAPH) 31, 4, 112:1–112:8.

POZRIKIDIS, C. 2000. Theoretical and computational aspects
of the self-induced motion of three-dimensional vortex sheets.
Journal of Fluid Mechanics 425, 335–366.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans-
actions on Graphics (SIGGRAPH) 24, 3, 910–914.

STOCK, M., DAHM, W., AND TRYGGVASON, G. 2008. Impact of
a vortex ring on a density interface using a regularized inviscid
vortex sheet method. Journal of Computational Physics 227, 21,
9021–9043.

THÜREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A
multiscale approach to mesh-based surface tension flows. ACM
Transactions on Graphics (SIGGRAPH) 29, 4, 48:1–48:10.

WILLIAMS, B. 2008. Fluid surface reconstruction from particles.
Master’s thesis, The University Of British Columbia.

WOJTAN, C., AND TURK, G. 2008. Fast viscoelastic behavior with
thin features. ACM Transactions on Graphics (SIGGRAPH) 27,
3, 47:1–47:8.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2009.
Deforming meshes that split and merge. ACM Transactions on
Graphics (SIGGRAPH) 28, 3, 76:1–76:10.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2010.
Physics-inspired topology changes for thin fluid features. ACM
Transactions on Graphics (SIGGRAPH) 29, 4, 50:1–50:8.

WOJTAN, C., MÜLLER-FISCHER, M., AND BROCHU, T. 2011.
Liquid simulation with mesh-based surface tracking. In ACM
SIGGRAPH 2011 Courses.

YU, J., AND TURK, G. 2010. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA), 217–225.

YU, J., WOJTAN, C., TURK, G., AND YAP, C. 2012. Explicit
mesh surfaces for particle based fluids. Computer Graphics Fo-
rum (Eurographics) 31, 2, 815–824.

Appendix: Energy gradient

We wish to compute the partial derivative of the following energy
with respect to n:

EST =

∫
∂Ω

n · ∇p dA− σn · ∇H dA

The first term is identical to Equation 1, and the gradient is com-
puted analogously. The second term is a bit more complicated be-
cause H is a function of n — specifically, the mean curvature is
equal to the divergence of the normal field. In the following deriva-
tion, 〈·, ·〉 notation denotes the inner product, and we use the fact
that 〈f,∇ · g〉 = −〈∇f, g〉 from integration by parts on a closed



manifold domain:

∂

∂n
〈n,∇H〉σdA =

(
〈 ∂
∂n

n,∇H〉+ 〈n, ∂
∂n
∇H〉

)
σdA

=

(
∇H + 〈n, ∂

∂n
∇(∇ · n)〉

)
σdA

=

(
∇H − 〈∇ · n, ∂

∂n
(∇ · n)〉

)
σdA

=

(
∇H + 〈∇(∇ · n),

∂

∂n
n〉
)
σdA

=

(
∇H + 〈∇H, ∂

∂n
n〉
)
σdA

= (∇H +∇H)σdA

= 2σ∇HdA

Therefore:
∂

∂n
EST = (∇p− 2σ∇H) dA


