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Abstract1

Short-read sequencing technologies have in principle made it feasible to draw detailed inferences about the2

recent history of any organism. In practice, however, such inferences remain challenging due to the difficulty3

of genome assembly in most organisms and the lack of statistical methods powerful enough to allow discrim-4

ination among recent, non-equilibrium histories. We address both the assembly and inference challenges.5

We develop a bioinformatic pipeline for generating outgroup-rooted alignments of orthologous sequence6

blocks from de novo low-coverage short-read data for a small number of genomes, and show how such7

sequence blocks can be used to fit explicit models of population divergence and admixture in a numerical8

likelihood framework. To illustrate our approach, we reconstruct the Pleistocene history of an oak-feeding9

insect (the oak gallwasp Biorhiza pallida) which, in common with many other taxa, was restricted during10

Pleistocene ice ages to a longitudinal series of southern refugia spanning the Western Palaearctic. Our anal-11

ysis of blocks sampled from a single genome from each of three major glacial refugia reveals support for an12

unexpected history dominated by recent admixture. Despite the fact that 80% of lineages are affected by ad-13

mixture during the last glacial cycle, we are able to infer the deeper divergence history of these populations.14

These inferences are robust to variation in block length, mutation model, and the sampling location of indi-15

vidual genomes within refugia. This combination of de novo assembly and numerical likelihood calculation16

provides a powerful framework for estimating recent population history that can be applied to any organism17

without the need for prior genetic resources.18

Introduction19

Short read sequencing technologies have made it affordable to sequence entire genomes and such data20

are now being used routinely to infer population history in humans (Gutenkunst et al., 2009; Pickrell &21
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Pritchard, 2012; Durand et al., 2011) and a small number of model species (Kulathinal et al., 2009; Pool22

et al., 2012). However, it has remained frustratingly difficult to use such data to infer population history in23

species for which no prior reference genome exists (Pool et al., 2010; McCormack et al., 2013). Historical24

inference not only matters for understanding the evolutionary past of a particular species or ecological com-25

munity (Stone et al., 2012), but is a fundamental pre-requisite for testing for past selection in sequence data26

(Sousa & Hey, 2013) and in analysing patterns of phenotypic evolution among populations (Stone et al.,27

2011).28

Short-read data pose several technical challenges for historical inference. First, we lack genomic re-29

sources for the great majority of organisms, necessitating some form of de novo assembly. Second, it is30

still not cost-effective to obtain genome-level data for many individuals – the general sampling design of31

population genomic analyses. Third, most methods available for inferring population history from genomic32

data are either based on allele frequency information (Gutenkunst et al., 2009; Pickrell & Pritchard, 2012;33

Durand et al., 2011) – which requires large samples and ignores the historical signal contained in the higher34

moments of branch length distributions – or simply do not scale up to genomic datasets (but see François35

et al., 2008). And finally, given that population history is evolutionarily recent by definition, the information36

contained even in whole genomes is fundamentally limited by the time-scales of mutation and genetic drift37

(Sousa & Hey, 2013; Hey & Machado, 2003).38

Given these difficulties, it is unsurprising that the few studies to have used high-throughput data in39

non-model organisms to date have all incorporated a "genomic reduction" step, resulting in sequencing of40

only a small proportion of the target genome (McCormack et al., 2013; Arnold et al., 2013). Restriction-41

site-associated DNA (RAD) sequencing approaches, whereby only a few hundred bases on either side of42

a particular set of restriction sites are sequenced (Davey & Blaxter, 2010), have been successfully used to43

detect population structure (Emerson et al., 2010). Similarly, McCormack et al. (2012) have developed a44
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protocol that uses restriction digest to generate a reduced representation library of longer loci. However,45

while these methods drastically simplify the assembly challenge, they involve additional wet lab protocols46

for selecting loci and/or multiplexing of genomic libraries. Furthermore, the data generated are not neces-47

sarily ideal for inferring intra-specific history. For example, RAD data typically consist of large numbers48

of unlinked SNPs and so lack the much more detailed information about population history which is con-49

tained in the distribution of genealogical branch lengths and accessible only via longer sequences that span50

multiple, linked polymorphic sites.51

An alternative strategy to "genomic reduction" is to work with whole genomes, but limit the analysis52

to just a few individuals. This has the great advantage that efficient likelihood methods able to deal with53

genome-scale data already exist (Wang & Hey, 2010; Li & Durbin, 2011; Lohse et al., 2011; Gronau et al.,54

2011). Discrete population models in particular, although less realistic than spatially continuous models55

(Barton et al., 2010), have become a standard in population genomics (Harris & Nielsen, 2013; Li & Durbin,56

2011; Green et al., 2010; Lohse & Frantz, 2013) because they are tractable and easy to interpret. Li &57

Durbin (2011) have developed a hidden Markov approach for inferring past changes in effective population58

size from just a single diploid genome. Similarly, Harris & Nielsen (2013) use the length distribution of59

homozygous tracts in pairwise alignments to fit more complex histories of divergence and admixture between60

two populations. However, these methods are currently restricted to histories involving just one or two61

populations and rely on long, phased sequence blocks and hence near-complete assemblies, which remain62

challenging to obtain for most organisms. In contrast, multi-locus methods (Hey & Nielsen, 2004; Hey,63

2010; Lohse et al., 2011), which assume a set of loci or sequence blocks each of which is short enough64

to ignore recombination within it, but long enough to contain multiple polymorphic sites, are intuitively65

appropriate for the fragmented genome assemblies available at low cost using low coverage paired-end66

sequencing data.67
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Using such de novo assemblies in a multilocus framework requires matching and aligning orthologous68

sequences both between individuals and between in- and outgroup species. Perhaps more importantly, one69

needs to show that neither the assembly itself, nor the filtering steps involved in aligning sequences across70

individuals and species, lead to systematic biases that affect the population genetic analyses. Here we present71

a pipeline for generation of outgroup-rooted sequence blocks from small numbers of low coverage genomes,72

and show the resulting data to be representative of the mosaic of genealogies in the genome. We then use73

a numerical likelihood approach to illustrate the signal inherent in such data by reconstructing the Western74

Palearctic population history of an oak feeding insect, the oak apple gallwasp Biorhiza pallida.75

A suite of detailed studies have addressed phylogeographic patterns in Western Palearctic oak gallwasp76

communities, both for the gall inducers (Stone & Sunnucks, 1993; Rokas et al., 2001, 2003; Stone et al.,77

2007; Challis et al., 2007) and their parasitoid enemies (Hayward & Stone, 2006; Lohse et al., 2010, 2012;78

Nicholls et al., 2010a,b). Both groups show genetic structure compatible with three major Pleistocene refu-79

gial areas (Iberia; Italy and the Balkans; Asia Minor and Iran, Fig. 1) that broadly parallel those for deciduous80

oaks (Petit et al., 2003). Most species in both groups show patterns compatible with westwards range ex-81

pansion into Europe from Asia during or before the Pleistocene (the ’Out of Anatolia’ hypothesis; Rokas82

et al. (2003); Challis et al. (2007); Stone et al. (2009); see also Connord et al.), a pattern also supported by83

a recent meta-analysis of 19 parasitoid and 12 gallwasp species (Stone et al., 2012). The only exception to84

this pattern to date has been Biorhiza pallida, for which mitochondrial and ITS nuclear sequence data show85

evidence of a deep east-west divide (Rokas et al., 2001). This raises the question of how general the ’Out of86

Anatolia’ pattern is for all three trophic elements of this community (Stone et al., 2009, 2012). Here we use87

Biorhiza pallida as a case study for phylogenomic inference, and ask whether genome-level data support the88

anomalous pattern for this species within the oak gallwasp community.89

We focus on three refugial areas detailed above, referred to hereafter as the Western, Central and Eastern90
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refuge (Fig. 1). Modelling the relationship between these populations as a series of instantaneous divergence91

and admixture events (Fig. 2) enables us to test the longitudinal directionality of initial occupation of refugia92

and of admixture between them during subsequent periods of range expansion, whilst taking incomplete93

lineage sorting (which is expected) into account. Some recent studies (Stone et al., 2012; Lohse et al., 2010)94

have explicitly fitted a model of (E(C,W)) population divergence. However, given the recent timescale and95

the limited number of sequenced loci available in most species, it has so far rarely been possible to quantify96

the relative contributions of incomplete lineage sorting, divergence and admixture to genetic diversity cur-97

rently present in refugial populations. We show that this can be achieved using low coverage data for only98

one individual from each refugial region.99

An inherent feature of model-based analyses is that it is necessary to limit the space of models to be100

explored. For example, it has been possible to fit a very specific divergence and admixture model in which101

admixture occurs only from the most anciently diverged population and after the most recent population102

split (see Fig. 2) to human and Neandertal genomic data (Green et al., 2010; Durand et al., 2011; Lohse &103

Frantz, 2013) because, in this case, the order of population divergence was known a priori. However, such104

prior information does not exist for B. pallida or indeed most species. Importantly, we have no reason to105

assume that population relationships are dominated by divergence (so are tree-like) rather than admixture in106

the first place (Pickrell & Pritchard, 2012). Thus, to be able to fit divergence and admixture in general, one107

needs to search model space more broadly. To this end, we have extended existing coalescent theory for the108

"Neandertal model" developed by Lohse & Frantz (2013) to all possible histories involving unidirectional109

admixture of a fraction f of lineages to or from the most anciently diverged population (Fig. 2). We feel110

our model set balances biologically realistic scenarios with computational tractability. It is important to note111

that unlike D statistics (Green et al., 2010), which are defined relative to the majority topology (assumed to112

reflect population divergence), our framework can deal with histories that are dominated by admixture (i.e.113
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f > 0.5). This allowed us to use the B. pallida genomic data to compare the support for a large number of114

models (n = 32) and make detailed inferences about the history of this species. In particular we investigate115

i) how well the B. pallida data can be explained by an (E,(C,W)) divergence history as inferred previously116

for many species in the Western Palearctic, and ii) whether its history is dominated by deep population117

divergence or recent admixture.118

Given that our likelihood scheme is restricted to minimal samples of individuals, it is crucial to test how119

representative individual genomes are of the long-term population relationships captured by discrete popu-120

lation models. Clearly, in spatially continuous populations, local genetic structure emerges as a consequence121

of the limited dispersal ability of individuals (Barton et al., 2010), and so any model that approximates a122

population occupying a large area as a panmictic unit must break down over recent time-scales. To address123

this, we repeated our analyses using two different individuals from each refugium.124

Materials and Methods125

Sequencing and sampling126

DNA was extracted from individual wasps using the Qiagen DNeasy kit. Like most Hymenoptera, Biorhiza127

pallida has haploid males and diploid females; haploid males were selected for genome sequencing because128

there is no need to phase alleles and SNP calling and estimation of sequencing error rates are greatly sim-129

plified. However, we stress that our method does not rely on haploid genomes and can easily be applied to130

unphased diploid data (Lohse & Frantz, 2013) (see Discussion). Illumina 50 and 100 base-pair paired-end131

libraries (Table S2) were prepared using the Illumina paired-end DNA sample preparation kit, the DNA132

sheared was using the Covaris S2 instrument and size selection was carried out on a 2% agarose TAE gel133

(fragments with an average insert size of 300bp were excised). These were then sequenced on the GAII,134
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GAIIX and HiSeq2000 platforms at the NERC GenePool facility in Edinburgh (CONFIRM THIS). Note135

that the different read lengths used are simply a result of technological improvements during the course of136

this work and not a necessary part of our sequencing strategy. Short read data are deposited at the ENA137

Sequence Read Archive (http://www.ebi.ac.uk/ena/data/view/ERP002280).138

Each of five male in-group individuals (2 West, 2 Central and 1 Eastern see Table S1 and S2 and Fig.139

1) was sequenced to a modal coverage of 1.5 fold per individual, yielding a total modal coverage of 7.45140

for the B. pallida genome across all individuals. In each of the West and Central refuges we sampled141

replicate individuals (referred to as Wa/Wb and Ca/Cb respectively, see Fig. 1) from sites 400km apart.142

This separation is well above the dispersal ability of an individual gallwasp (Stone & Sunnucks, 1993) and143

was intended to incorporate any impact of within-refuge population genetic structure. Sampling of replicate144

individuals was not possible in Iran. To polarize mutations as ancestral or derived, we sequenced two diploid145

female individuals from a closely related outgroup species Belizinella gibbera (to a total coverage of 5.76146

fold across individuals). A breakdown of reads per individual is given in tables S2 and S3.147

Multi-locus inference methods (Hey & Nielsen, 2004; Lohse et al., 2011) assume a large number of148

sequence blocks that are i) sampled at random from the genome, ii) short enough to ignore recombina-149

tion within them and iii) in linkage equilibrium within populations. We developed a simple bioinformatic150

pipeline (Fig. 3) that generates out-group-rooted alignments meeting the above criteria for a small number151

of individuals. In short, the pipeline consists of three steps:152

i) Assembly153

Initial read quality was assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).154

Reads were quality trimmed at Q20 using sickle and adapter-trimmed using scythe and cutadapt. After155

quality filtering, reads from all individuals in each species were combined to create species-specific meta-156
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assemblies using the CLC de novo assembler v4.06 (Dryad repository doi: XXX). These were used as a157

reference for downstream bioinformatics processing (Table 1). For B. pallida we included a small amount of158

50-base read data from a pool of six related (sib or half-sib) females that were sequenced as part of another159

project (Table S2).160

Reads from each B. pallida individual were mapped back to the meta-assembly using Stampy (run with161

a substitution rate of 0.0025 and the -baq and -sensitive options) to create BAM files. Although a high162

proportion (92 – 97 % depending on the individual) of read-pairs mapped to the reference meta-assemblies,163

the percentage of "properly paired mappings", in which both read pairs align to the same contig, was much164

lower (37%) (see Table S3). This is expected, given the low coverage per individual and the short read165

length. Many read-mapping failures with Stampy are known to be due to reads that overlap the ends of166

contigs. This is related to assembly coverage, specifically of the reads used to generate the initial contigs167

(and contig trimming/minimum coverage filtering implemented by assemblers) rather than the reads used to168

call SNPs.169

ii) Filtering170

RepeatScout and RepeatMasker were used to de novo predict and mask repeat regions in both the B. pal-171

lida and B. gibbera meta-assemblies. This removed 51% and 34% of the B. pallida and B. gibbera meta-172

assemblies respectively. The data were further filtered according to the following three criteria. First, we173

searched for orthologous regions shared amongst in- and outgroup meta-assemblies using a discontiguous,174

reciprocal megaBlast search with an e-value cut-off of 10−20 to match contigs between the in- and outgroup175

meta-assemblies (Altschul et al., 1990). We only kept the reciprocally-best hit if it was at least 100 bit176

scores better than the next best overlapping hit. To avoid penalising good unique hits with short overlaps,177

we allowed for 15-base overhangs between best hits. The coordinates of the retained reciprocal blast hits178
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were used to create a BED file for each species and reads for each individual overlapping these regions179

were extracted from the BAM alignments (Quinlan & Hall, 2010). VCF files were created for the ingroup180

and outgroup using the sub-sampled BAM files. Second, any contigs in these VCF files that matched puta-181

tive contaminant (bacteria, fungi) or mitochondrial DNA were removed. Finally, we removed contigs with182

excessive coverage (>75 fold coverage for B. pallida and > 30 fold for B. gibbera, see Fig. S1) as they183

were likely to indicate remaining unfiltered collapsed repeats whose sequences had been amalgamated dur-184

ing assembly (Nagarajan & Pop, 2013). Together, these filtering steps reduced the number of contigs by185

80.1% corresponding to 14.1% of the original B. pallida meta-assembly size (Table 1). Note that we are not186

attempting to distinguish between coding and non-coding sequence at this stage (see Sensitivity analyses).187

Raw variants (excluding indels) were called across individuals using samtools mpileup (Li et al., 2009).188

iii) Generating individual consensus sequences and triplet alignments189

Consensus sequences were generated for each individual from the VCF files using a custom perl script190

(available on Dryad XXX). For the in-group; (1) the reference base was called if no variant was present or191

the variant did not reach a particular quality threshold, (2) an ’N’ was coded if an individual had 0 coverage192

at that position or was called heterozygous by samtools (indicating a sequencing error because we know the193

individual to be haploid), or more than two alleles were present, violating the assumption of the infinite sites194

model assumed in our likelihood analysis; (3) a SNP was called for sites that differed from the reference.195

The script used to create consensus sequences from the VCF file has the option of specifying a quality score196

filter for SNP calling. We explored Q0, Q10, Q20, and Q30 to assess differences in SNP frequencies at197

different quality thresholds and selected Q0, as the frequencies did not change (see Fig. S2).198

Because the outgroup was represented by two diploid individuals, ’0/1’ genotypes at a position could be199

true heterozygotes. To avoid any impact of ancestral polymorphisms between in- and outgroup, positions200
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that were variable between the outgroup individuals (0/0 versus 1/1) were coded ’N’. We generated a single201

outgroup consensus sequence, thus taking advantage of deeper sequencing by combining data from two202

individuals. Finally, we generated outgroup-rooted triplet alignments consisting of a single individual from203

each of the East (E), Center (Ca or Cb) and Western (Wa or Wb) refugia using muscle (Edgar, 2004). To204

avoid including linked sequences as separate blocks and to increase the size of blocks, non-overlapping205

alignments that mapped to the same contig in the B. pallida meta-assembly were concatenated into the206

same block. Alignments were generated for all four possible West/Center/East combinations of B. pallida207

individuals and the outgroup consensus sequence (Dryad repository doi: XXX).208

For simplicity, the following analyses focus on two such triplet sets. One, referred to hereafter as dataset209

a, comprised individuals Wa, Ca and E (Table S1 and Fig. 1). The other, referred to hereafter as dataset b,210

comprised individuals Wb, Cb and E.211

Counting mutation types212

Given outgroup-rooting and assuming an infinite sites mutation model with only two allelic states per site,213

each mutation can be unambiguously placed onto a genealogical branch. This means that the polymorphism214

information can be condensed into a vector of mutation counts on branches (Patterson et al., 2006). While215

these counts of mutation types within sequence blocks constitute the input for the likelihood analyses (see216

section below), their relative frequencies across all sites reveal the distribution of alternative genealogies217

across the genome and hence the types of history that are plausible. As a check, we counted the three types218

of shared derived mutations and the three singleton mutations before and after filtering alignments to contigs219

> 2kb. Note also that the current implementation of our model does not allow for back mutations; given220

the recent timescale of divergence the chance of a backmutation within the ingroup is slim. Back mutations221

on the outgroup branch remain a possibility, and if present would perhaps slightly the estimated divergence222
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times.223

Maximum likelihood analyses of historical models224

To conduct a broad search of model space, we took a strict divergence model between three populations225

as a starting point and considered all histories that involve a single unidirectional admixture event either to226

or from the oldest population. We did not include models with bidirectional or multiple admixture events227

because the additional parameters make the corresponding generating functions computationally intractable,228

but also because these models are biologically unexpected: expansion out of refugia is expected to be a229

unidirectional process. For a given order of population divergence, there are six possible models (Fig. 1),230

each with five parameters: the time of the older split (T2); the time of the more recent split (T1); the time231

of admixture, or gene flow, (Tgf ) (all measured from the present); the admixture proportion (f ) and the232

effective population size (Ne). Again, for the sake of computational tractability, we assumed a single Ne233

for both ancestral populations as well as the population receiving migrants. We assessed the support for all234

six admixture scenarios as well as simpler, nested models that assume no admixture and divergence between235

either three or two populations for each of the three possible orderings of population divergence (a total of 24236

divergence and admixture models). We also quantified the support for a basal polytomy, a single panmictic237

population and for distinct ancestral Ne values in the strict divergence models (to test whether the additional238

parameter substantially improved model fit without the need to invoke admixture), giving 32 models in total.239

The general method for calculating likelihoods is described in detail elsewhere (Lohse et al., 2011; Lohse240

& Frantz, 2013). In short, the probability of observing a particular mutational configuration in a sequence241

block (which can be interpreted as the likelihood of the model) can be expressed in terms of a higher order242

derivative of the generating function (GF) of genealogical branch lengths (Lohse et al., 2011, eq. 1). Thus,243

given the GF for a model, it is straightforward to tabulate the logarithm of the likelihood, lnL, given all244
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observed mutational configurations. Assuming that loci are unlinked and hence statistically independent,245

the joint lnL across loci is simply the sum of lnL. We used Mathematica v.8 (Wolfram Research, 2010)246

to tabulate lnL values and maximise the joint likelihood numerically (Supporting Mathematica notebook).247

The GF conditional on a topology of a triplet genealogy has been previously derived for a divergence model248

with recent admixture from the population involved in the older divergence event (scenarios D and E in249

Fig. 2) (Lohse & Frantz, 2013). We used the general recursion for the GF (Lohse et al., 2011, eq. 4)250

(and Mathematica to solve equations) to find analogous expressions for the other four admixture scenarios251

depicted in figure 1. Although their derivation is relatively straightforward, the resulting expressions are252

cumbersome and given in the Supporting Mathematica notebook.253

The accuracy of the likelihood method to estimate particular model parameters can be quantified using254

the Fisher information (I), a measure of the sharpness of the lnL curve near the maximum (Edwards, 1972;255

Lohse & Frantz, 2013). The average information about a parameter contained in a sequence block is given256

by summing I over all possible mutational configurations weighted by their probability ((Lohse & Frantz,257

2013), eqn. 3/6 check?). The expected information in a data set consisting of n sequence blocks is simply n258

x E[I].259

Sampling blocks260

For each of the six models, we numerically computed the parameter values that maximized lnL across a261

large number of sequence blocks of fixed length.262

Because this calculation ignores statistical associations between blocks due to linkage and we lack infor-263

mation about the relative position of contigs in the B. pallida genome, the number of blocks must be chosen264

such that the probability that two blocks are physically linked by chance can be ignored. Assuming a genome265

size of 1.75Gb for B. pallida (the average measured in oak gall wasps (Lima, 2012)) and sampling of blocks266
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by chance alone, the distance between neighbouring blocks is exponentially distributed with rate n/1.75Gb267

(where n is the number of blocks). This implies that if we classify blocks separated from their nearest neigh-268

bour by 20kb or more as being in linkage equilibrium and want to ensure that less than 5% of all blocks fall269

below this threshold, we could in theory sample a maximum of −(1.75Gb×Log[0.95])/20kb ≈ 4500 blocks.270

We chose a miminum length of 2kb for the inclusion of contigs in maximum likelihood analyses as this271

length represented a good trade-off for obtaining blocks long enough to include enough polymorphic sites272

for inference and short enough not to worry about linkage among contigs. Sub-sampling from the full set273

of contigs with this length cut-off gave between 2231 and 2640 blocks (depending on the combination of274

W/C/E individuals), roughly 10% of the contigs meeting the initial filtering requirements (Table 1). To be275

able to compare likelihoods across datasets, we fixed the number of blocks to 2231 in all analyses.276

We initially used the first 1kb of sequence from each aligned contig in the 2kb-filtered data and explored277

the impact of block length by repeating the analysis with shorter (500bp) and longer (2kb) blocks.278

We estimated the proportion of coding sequence in the filtered data by Blast-searching all aligned contigs279

against a preliminary B. pallida transcriptome assembly (Dryad repository doi XXX). To incorporate mu-280

tation rate heterogeneity, sequence blocks were partitioned according their predicted proportion of coding281

sequences into 10 equally spaced bins. We used the average divergence between B. pallida and B. gibbera282

to calibrate a relative mutation rate for blocks in each bin.283

Results284

Below, we first examine the counts of mutation types to draw qualitative inferences about the history of B.285

pallida. We then describe how maximum likelihood can be used to distinguish quantitatively between alter-286

native historical scenarios. Finally, we assess the sensitivity of these inferences to the mutation model, length287

of sequence blocks, sampling location of individuals and our assumption of no intra-locus recombination.288
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Counting mutation types289

The full a datasets comprised 84,822 aligned contigs > 300 bases long with an N50 value of 803 bases (see290

Table 1). We recovered a total of 171,694 polymorphic sites in the in-group, corresponding to an average291

per site diversity (as measured by Watterson’s θW ) of 0.188 % (Table 2). Average divergence between292

the outgroup and the Eastern individual was 4%. If population divergence were to take place in the order293

(E,(C,W)) without admixture, we expect derived sites shared by Central and Western individuals (C/W ) to294

be more common than both derived sites shared by Central and Eastern individuals (C/E) and sites shared295

by Western and Eastern individuals (W/E). Likewise C/E and W/E sites, which correspond to internal296

branches of genealogies that are incongruent with the population history, are expected to occur at equal297

frequency (Hudson, 1983; Tajima, 1983). Analogously, under null models of a polytomic split or a single298

panmictic population, all three types of shared derived sites are equally likely. Contrary to these simple299

models, we found that C/E sites were more frequent (9.6 %) than W/E sites (5.1%), which in turn were300

more frequent than W/C sites (2.8 %) (see top two rows of Table 2, CHECK THESE FIGURES!). This301

double asymmetry suggests that simple divergence models without gene flow provide a poor fit to the data.302

If we assume that the majority class of informative sites corresponds to the order of population divergence,303

then these results imply that the Western population diverged from the common ancestor of the Central and304

Eastern populations before these in turn diverged. Under this model, the observed excess of W/E sites305

relative to W/C sites could arise as a consequence of gene flow between Western and Eastern refugia (Fig.306

1) after the more recent C/E split (Durand et al., 2011; Lohse & Frantz, 2013).307

Maximum likelihood analyses of historical models308

Comparing the three possible histories of strict divergence, a population tree topology (W,(C,E)) had highest309

support (lnL), as expected from the frequencies of shared derived sites. Allowing for different values of Ne310
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in the two ancestral populations did improve the fit of the strict divergence model. However, 8-9 of the 18311

models involving admixture (depending on which of the a or b datasets is considered) had greater support312

than models of strict divergence (Table 3). The best supported history assumes a (W,(C,E)) population tree313

topology with substantial admixture (f = 0.76 − 0.83 across a and b datasets) (Table 4) from the Eastern314

into the Western refuge shortly after the split between Center and East populations (model B in Fig. 2). The315

observed number of blocks showing each mutational configuration fits the number expected (Table S4) under316

this best model well. Reassuringly, the alignments for the two sets of individuals a and b yielded the same317

ranking of models and gave very similar parameter estimates with broadly overlapping 95 % C.I. (see Tables318

4 and S5). Interestingly, however, the estimated admixture proportion f was slightly higher in both triplet319

analyses involving the individual from southern rather than northern Spain (Wb, Fig. 1) (see Discussion).320

Because our models are not nested, we cannot use likelihood ratio tests to test for significance. Each321

admixture model also contains the same number of parameters, so comparisons based on Akaike information322

criterion (AIC) reduce to comparisons based on change in log likelihood (∆lnL). To assess our confidence in323

our ability to identify the best model, we conducted a simulation study to quantify the power of our method.324

Briefly, we simulated 100 replicate 2231 loci datasets using Hudson’s ms program (Hudson, 2002) and the325

ML parameter estimates for our 1kb WaCaE data (Table 4). Ninety-nine out of 100 replicates identified the326

same best model as obtained for our observed data (see Table 3). The second best models were 61% model327

A, 32% model C and 6% model E (Fig. 2, all (W,(C,E)) topology). Furthermore, the parameter estimates328

for the intervals between Tgf and T1 were tiny, such that none predicted the observed asymmetry in the329

number of blocks specifying (C,(E,W)) or (E,(C,W)) topologies. This result underlines the fact that support330

for model B comes from both mutation counts and configurations.331

To provide an order of magnitude calibration for the inferred history, we applied a direct, genome-332

wide estimate of the effective neutral mutation rate of 3.5 × 10−9 per site and generation as measured in333
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Drosophila melanogaster (Keightley et al., 2009). To account for the bias towards conserved sequence in334

our 2kb filtered data, we scaled the D. melanogaster rate by the ratio of per site diversity in the filtered and335

unfiltered data (0.47 and 0.54 for a and b data respectively, see θW in Table 2). Assuming that B. pallida has336

two generations per year (Csóka et al., 2005; Atkinson et al., 2003) this calibration gives effective population337

sizes between 39,000 – 52,000 (Table 4). The time of admixture and the more recent split (tgf , t1) both date338

to the last glacial period (Weichselian, 12-110kya), whereas the maximum likelihood estimate for the oldest339

split (t2) falls in the previous (Saalian, 130-200kya) glacial period (Table 4).340

We also calculated ∆lnL as parameters move away from their maximum likelihood estimates (Fig. 4).341

and used Fisher Information to quantify how informative our data are about a particular model parameter,342

and hence how accurate one can expect parameter estimates to be. We found that, for our best supported343

model and the 1kb WaCaE dataset there is less information associated with T2 than with the other three344

parameters (Table S6). With 2231 loci, we expect a standard deviation (SD) of 0.143 in estimates of T2 but345

0.0274 in estimates of T1 (see also Table 4).346

SNPs vs. blocks347

To assess what information, if any, is gained by using sequence blocks instead of SNPs for inference, for348

each parameter we calculated the expected Fisher information in a single block as a function of θ (setting all349

other parameters to their maximum likelihood estimates from the best supported model for the 1kb WaCaE350

dataset). We also calculated the expected information in a single SNP for each parameter for the same model.351

We found that even blocks containing only one SNP on average (θ = 0.266) are more informative across all352

parameters than a single SNP (Fig. S3).353

One can use the generating function framework to obtain expected branch lengths, the sum of which gives354

the expected total tree length. Our likelihood approach can then be used with the observed SNP frequencies355
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(Table 2, third row) to find maximum likelihood parameter values without recourse to any blocking scheme.356

Reassuringly, when applied to the generating function for model B, very similar parameter estimates are357

obtained, namely: Tgf = 1.095, T1 = 1.095 and T2 = 3.34. Note, that the interval between Tgf and T1 is358

estimated at zero.359

Sensitivity analyses360

i) Length filtering361

Filtering contigs by length could result in various biases that might affect inference. For example, more362

conserved and/or structurally complex regions of the genome are expected to assemble better and align with363

fewer errors, and so should be represented by longer contigs. To quantify this effect, we correlated contig364

length against per site divergence. As expected, longer contigs were on average less diverged between365

ingroup and outgroup (Fig. S4) (Kendall’s τ = −0.0419, p < 10−6). Consistent with this, the average366

per site diversity (θW ) in the 2kb filtered a data was about half of that in the unfiltered data (Table 2).367

This confirms that length filtering does indeed enrich for conserved sequences. However, for the purpose of368

estimating population history, any overall bias in absolute diversity can be incorporated by a simple rescaling369

of the mutation rate (see below). In contrast, in order to justify treating the 2kb-filtered data as a random370

sample of genealogies, we need to show that length filtering does not affect the relative frequencies of371

mutational types (i.e. the polarized allele frequency spectrum normalized by the proportion of polymorphic372

sites). To test this, we obtained a random sample of putatively unlinked SNPs before and after filtering the373

a data for contigs > 2kb by selecting one SNP at random from each sequence block. In the length-filtered374

data, all 2231 blocks were included. In the full data, SNPs were drawn from a random sample of 4500375

sequence blocks to minimize linkage effects. Reassuringly, we found no significant difference between the376

filtered and unfiltered data in the relative frequencies of the three types of shared derived mutations (the377
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most informative site types) (Table 2) (χ2 = 1.96, p = 0.38). However, there was a significant (but slight)378

excess of singleton mutations compared to shared derived sites in the 2kb data (χ2 = 9.3, p = 0.0023). This379

may be either due to assembly or alignment bias or purifying selection (which is likely to be stronger in the380

2kb-filtered data) (Charlesworth et al., 1993).381

ii) Mutational heterogeneity382

The likelihood method ignores mutational heterogeneity between blocks. This assumption may be problem-383

atic given that the B. pallida data consists of a mix of coding and non-coding sequence. There was no hit to384

the transcriptome of B. pallida for 50% of all contigs and, across all sites, the proportion of coding sequence385

was 70%. This, together with the increased GC content in the filtered a data (Table 1), clearly showed that386

our filtering strategy enriched for coding sequence. To incorporate mutational heterogeneity, we partitioned387

blocks by their predicted proportion of coding sequence (see Methods) and scaled the effective neutral muta-388

tion rate of each bin using the within bin divergence (per site) relative to the total divergence across all sites.389

This drastically improved model fit (i.e. increased lnL) (see Table 4), but had no impact on the ranking390

of alternative models or parameter estimates under the best supported model. However, we did find that391

incorporating mutational heterogeneity led to a slight reduction in both divergence time and Ne estimates392

(see Table 4).393

iii) Intra-locus recombination394

To investigate the robustness of the maximum likelihood estimates to the assumption of no recombination395

within blocks, we repeated the analysis with shorter (500b) and longer (2kb) blocks, both sub-sampled396

from each contig in the 2kb-filtered data. In both cases, the relative ranking of models was unaffected and397

parameter estimates were similar to those obtained in the initial 1kb analysis (Tables S7 and S8). This398

suggests that undetected recombination within blocks has a minor effect on our results.399
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To investigate this further, we also conducted a simulation study to assess whether ignoring intra-locus400

recombination biases model choice or parameter values. As starting points, we took the ML parame-401

ter estimates from the 1kb WaCaE dataset (Table 4) and the estimated recombination rate for Nasonia402

of 1.5 cM/Mb (or crossovers/generation/bp x 10−8) from Niehuis (2010). Using Hudson’s ms (Hudson,403

2002), we simulated triplet datasets using seven recombination rates (0, 0.015, 0.15, 0.3, 0.33, 1.5, 3.3, 7.5404

crossovers/generation/bp x 10−8). If the Keightley et al. (2009) mutation rate calibration is assumed, these405

correspond to r/µ ratios of 0, 0.0454, 0.454, 0.907, 1, 4.5, 10 and 22.7. For each parameter combination, we406

simulated 1,000,000 loci in order to obtain expected mutational configurations. We removed any loci that407

failed the four gamete test (removing between 0.0338 and 3.47 % of loci), although the remaining loci will408

still include undetected recombination events. We then parsed the polymorphism information into vectors of409

mutation counts. We found that across all r/µ ratios, the best supported model matches that recovered from410

the observed data. ∆lnL values between this and the second, third and fourth-ranked models are similar to411

that for the observed data (Fig. S6). As the r/µ ratio increases, parameter estimates become more biased: θ412

and f decrease, while the splitting and admixture times increase (Fig. S6).413

Discussion414

We show how outgroup-rooted alignments of thousands of orthologous sequence blocks can be generated415

for multiple individuals using low-coverage (< 2 fold per individual) genomic data and standard de novo416

assembly tools. Although the requirement for orthologous sequences in in- and outgroup, the filtering against417

repetitive sequences and short contigs enrich for coding and otherwise selectively constrained sequence –418

in the case of B. pallida – the allele frequency spectrum is little affected. This suggests that the resulting419

data provide a representative sample of neutral variation in the genome which, if analysed in a multi-locus420

framework, is highly informative about recent history.421
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Admixture dominates the history of Biorhiza pallida422

The model we fit to B. pallida of (W,(C,E)) population divergence with strong East to West admixture differs423

qualitatively from previous population genomic inferences of divergence with admixture (Green et al., 2010;424

Lohse & Frantz, 2013) in two ways. Firstly, admixture is from the more recently diverged population (E) into425

the older population (W), and hence in the opposite direction to that observed in three-population analyses426

of our own Neandertal ancestry (Green et al., 2010; Durand et al., 2011). Secondly, the history of B. pallida427

is dominated by admixture rather than by divergence. Despite this, the majority class of shared derived428

sites is still C/E, and so concordant with the order of population divergence (W,(E,C)). This is a peculiar429

consequence of the direction of admixture: going backwards in time, W lineages that trace back to the E430

population via admixture only spend a short time in the E population before they trace back to the ancestral431

C/E population.432

Both the order of population divergence and the direction of admixture are unexpected. First, our infer-433

ence of initial divergence of the Western refuge contrasts with a previous meta-analysis of 12 oak gallwasps434

(including B. pallida) and 19 associated parasitoid species (Stone et al., 2012), as well as a multi-locus435

study that compared the history of four oak gall parasitoid species (Lohse et al., 2012). Both studies found436

a general signature of (E,(C,W)) divergence on a community scale, but had insufficient power to resolve437

the order of population divergence in individual species (or to fit additional admixture parameters). Inter-438

estingly, however, the deep split of the Iberian population from other refugia we infer here for B. pallida439

is compatible with the mitochondrial genealogy reconstructed by Rokas et al. (2001). Second, the history440

of B. pallida involves substantial admixture from the Middle East into Iberia without affecting the Balkans.441

One plausible route for such admixture that would not pass through the central refuge is westwards migra-442

tion into Iberia across North Africa, possibly via southern Italy and Sicily. Striking floristic links between443

Iberia and Asia Minor have been found across a range of plant taxa (Davis & Hedge, 1971), including oaks444
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(Lumaret et al., 2002), and there is genetic evidence that Iberia was colonised from North Africa during445

the Pleistocene by some animal taxa (Griswold & Baker, 2002; Habel et al., 2008). This scenario is also446

compatible with our finding of a higher admixture fraction for the sample from Southern Iberia (Wb) com-447

pared to Central (Wa) Iberia, since the Wb sample would be closer to the putative origin of North African448

immigrants. Similarly, the genetic similarity of extant populations of oak gallwasps (Rokas et al., 2003) and449

their parasitoids (Nicholls et al., 2010b) in Morocco and Spain suggests that the Strait of Gibraltar presents450

little or no barrier to gene flow. Given that we lack molecular calibrations for Hymenoptera in general and451

gallwasps in particular, our absolute time estimates are tentative at best. Nevertheless, it is clear that the452

divergence and admixture between refugial populations of B. pallida is recent, encompassing no more than453

two or three glacial cycles.454

Sampling the genome and the limits of power455

While in the past, most statistical analyses of phylogeographic scenarios were limited in power by the num-456

ber of available loci (Carstens et al., 2009; Lohse et al., 2012), the massive replication of sequence blocks457

afforded by short-read sequencing overcomes this and – in the case of B. pallida – allowed us to reliably458

identify the best fitting history among a set of alternative divergence and admixture scenarios.459

However, despite increasing the number of loci by several orders of magnitude, the difference in support460

we find for some alternative models (Table 3) is still relatively modest, suggesting that the power to dis-461

tinguish more complex models is limited. For example, it would be hard to distinguish multiple admixture462

events from a single event or a model of continuous migration (Hey & Nielsen, 2004). It is worth reiter-463

ating that the lack of linkage information for the B. pallida assembly imposes a limitation on the number464

of blocks we were able to include in the maximum likelihood analyses. The final analysis only included465

2.2Mb of sequence, a mere 0.13 % of the genome, and most of the assembled genome remained unused. If466
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one had complete linkage information, i.e. if the relative position of blocks was known, one could sample467

blocks at fixed intervals (Lohse & Frantz, 2013), which would increase the number of blocks that can safely468

be taken as unlinked by an order of magnitude. Alternatively, one could ignore linkage between blocks469

altogether when obtaining point estimates of parameters (which are unaffected) and use a simple scaling470

factor to adjust confidence intervals and ∆lnL (see Lohse & Frantz, 2013). However, the gain in power one471

could expect is limited. In general, increasing the number of independently segregating blocks by a factor k472

increases the accuracy of parameter estimates by ∼
√
k. Instead, it is the recent time-scale of the B. pallida473

history that sets an inherent limit to the complexity of models among which one can hope to discriminate474

using a multi-locus approach. If only a small number of mutations have occurred during the history of inter-475

est (as is the case in B. pallida where most 1kb blocks contain two or fewer mutations), there are only a few476

mutational configurations that are observed at appreciable frequency (Table S4).477

Given this mutational limitation, it is clear that increasing the number of individuals sampled from within478

each population would also only slightly improve inference: most ancestral lineages would coalesce rapidly,479

i.e. the vast majority of genealogical branches added by larger samples would be unresolved, and so would480

not give much extra information. Very large samples of a long non-recombining sequence can be informative481

(Kong et al., 2011), but mainly about even more recent population history than the timescale considered482

here. Sampling individuals a further distance apart would give extra information, but also requires more483

complex models, involving multiple parameters for separation times and admixture rates. In general, these484

considerations suggest that there will be an upper limit to the signal contained in even an extremely large485

number of short, unlinked sequence blocks. Nevertheless, even short blocks containing on average only one486

SNP contain more information than single SNPs (Fig. S4).487

In contrast, we would have far more information if we could analyse the full linear sequence and explic-488

itly use linkage information. In B. pallida, a total of 3.5% of the genome would be usable after filtering for489
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unique orthologous sequence, but allowing an arbitrary degree of linkage; ultimately, of course, we could490

use the whole genome in such an analysis. The gain does not come primarily from the sheer volume of data;491

rather, we gain extra information from the lengths of sequence blocks. For example, the length of block492

that shares the same genealogy within a population is inversely proportional to its coalescence time, and the493

length of unrecombined, introgressed blocks of genome decreases with the time since introgression. Thus,494

recombination gives an additional time-scale, beyond that provided by mutation, as used here. Barton et al.495

(2013) show that in a two-dimensional continuum, the distribution of block lengths shared between genomes496

allows inference of both dispersal rate and neighbourhood size, whereas samples of allele frequencies do not497

give information about dispersal rate. Li & Durbin (2011) use the distribution of heterozygous SNPs to infer498

ancestral population size through time, whilst Harris & Nielsen (2013) use this information to infer complex499

migration histories. However, a full statistical analysis that takes into account the linear structure of the500

genetic map not only remains extremely challenging analytically, but also requires much better assemblies501

or linkage maps than can currently be achieved for most organisms in practice. Nevertheless, even without502

such whole-genome data, correlations between linked loci can be informative and it will be interesting to see503

to what extent including this information in the present maximum likelihood framework improves inference.504

In the meanwhile, the combination of de novo assembly and numerical likelihood computation we de-505

velop here provides a level of resolution far beyond that of traditional phylogeographic analyses of a few506

loci. The fact that our bioinformatic pipeline yielded sufficient data (and resolution to distinguish between507

models) in an oak gallwasp, the group with the largest known genomes in the Hymenoptera (Lima, 2012),508

should encourage those working on other non-model species species and ecological communities (Stone509

et al., 2012). Furthermore, our sensitivity analyses suggest that population historical inferences based on510

large numbers of blocks and few individuals are robust in two fundamental ways. Firstly, and despite the511

fact that undetected recombination can bias multi-locus analyses (Strasburg & Rieseberg, 2009), neither512
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model selection nor parameter estimates are much affected by the length of sequence block. The slight bi-513

ases observed at high r/µ ratios are in line with expectations: as recombination scrambles histories across514

blocks of sequence the variance in branch lengths across loci is artificially decreased, leading to underesti-515

mations of θ and overestimations of divergence times (Wall, 2003). Incidentally, the fact that small (500bp)516

blocks with less than two mutations on average are sufficient to distinguish these models also implies that517

the unresolved phase in diploid genomes would not be an issue when applying this framework (Lohse &518

Frantz, 2013). The chance of multiple heterozygous sites within such short blocks and within an individual519

is negligible. Secondly, the fact that we recover essentially the same population history using individuals520

sampled many dispersal distances apart highlights that simple, discrete population models can be a useful521

approximation to recent, intra specific histories.522
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Figures697

Figure 1: Sampling locations of the five B. pallida individuals (Wa, Wb, Ca, Cb and E, see Table S1) used
for genome sequencing and population genomic analyses. Refugial regions are colour coded as follows: W,
West, in green; C, Centre, in orange; and E, East, in blue. The green line shows the current postglacial extent
of the oak host plants (white oaks, Quercus section Quercus) exploited by B. pallida.
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Figure 2: The six possible models for divergence histories involving unidirectional admixture to or from
the older population (labelled: 1). Given the three possible orders of population divergence, there are 18
admixture models in total. Divergence times (T1 and T2) and the time of admixture (Tgf ) are measured back
in time from the present.
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Figure 3: Assembly and filtering steps used to generate population genomic datasets in B. pallida.
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Figure 4: A) ∆lnL plots for the times of divergence (T1 (black) and T2 (blue)) and admixture Tgf (red). B)
∆lnL for the admixture proportion f . Estimates from the a data are shown as solid lines, those from the
replicate data set b as dashed lines.
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Tables698

Table 1: Summary statistics for meta-assemblies and filtered datasets
Species N50 # of contigs Total bases GC %
Biorhiza pallida 1,075 1,163,314 805,102,378 32.9
Belizinella gibbera 643 817,710 443,963,639 36.1
Biorhiza pallida, post Filter 734 232,097 113,583,710 36.7
Belizinella gibbera, post Filter 508 290,379 111,785,775 35.9
a data >300 bp 803 84,822 61,012,720 38.6
b data >300 bp 768 77, 752 54,117,641 39.0
a data 2 kb 2,000 2,640 5,280,000 40.1
b data 2 kb 2,000 2,231 4,462,000 40.2

Summaries are shown for in- and outgroup meta-assemblies (first four rows) and the a and b triplet data before and
after length filtering. N50 is defined as the length N for which 50% of all sequenced bases are assembled in a contig of
length < N.

Table 2: Genetic diversity and relative frequencies of mutational types in B. pallida alignments.
Dataset θW W C E W/C W/E C/E

a data > 300 bp 0.00188 0.325 0.214 0.263 0.040 0.058 0.100
b data > 300 bp 0.00147 0.269 0.244 0.283 0.044 0.060 0.100
a data 2 kb 0.00089 0.338 0.220 0.267 0.027 0.049 0.098
b data 2 kb 0.00079 0.276 0.250 0.287 0.035 0.054 0.099

Before (>300bp) and after (>2kb) length filtering.
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Table 3: Support for alternative scenarios of divergence and admixture in the oak gall wasp B. pallida
(WaCaE, 1kb data)

Model k

Panmixia 1 -589.3
Polytomy 2 -88.7
gene flow (W1, (C2, E3)) (C1, (E2,W3)) (E1, (C2,W3))

A) 2→ 1 5 -9.1, (T1) -18.8 -18.2, (f∗)
B) 3→ 1 5 0 -88.7, (T1, T2) -88.7, (T1, f∗)
C) 2/3→ 1 5 -4.8 -88.7 (Tgf , f∗) -88.7, (Tgf , T2)
D) 1→ 2 5 -25.7, (f ) -18.2, (T1) -18.2, (f∗)
E) 1→ 3 5 -18.0 -88.7, (T1, T2) -88.7, (T1, T2)
F) 1→ 2/3 5 -25.7 (f∗) -79.4 -33.4, (Tgf )

2 pop. 2 -260.8 -404.0 -474.5
3 pop. 2 -25.7 -88.7, (T2) -88.7, (T2)
2 pop. Ne 3 -48.5 -90.1 -93.7
3 pop. Ne 4 -20.8 -88.7, (T2) -88.7, (T2)

Support (∆lnL) relative to the best model for alternative histories of refugial populations of B. pallida estimated from
the a dataset (Model B in Fig. 2 has highest support and is shown in bold). The labelling of populations (1–3) and of
models (A–F) corresponds to that in Fig. 2; all scenarios involving unidirectional admixture were assessed for each of
the three possible orders of population divergence (columns 1–3). Models of strict divergence without admixture
between two (2 pop., i.e. T1 = 0) or three (3 pop.) populations were fitted assuming either a single or two different Ne

for ancestral populations. Parameters for which the maximum likelihood estimate is 0 (i.e. the model reduces to a
simpler nested model) are indicated in brackets (f∗ refers to complete admixture, i.e. f = 1).

Table 4: Parameter estimates under the best supported model (see Table 3).
dataset µ het. lnL f θ (Ne) Tgf (tgf ) T1 (t1) T2 (t2)
a, 1kb no -9269.3 0.76 0.69 (52,000) 1.04 (54KY) 1.21 (63KY) 3.34 (173KY)

(0.72, 0.79) (51–58KY) (60 – 66 KY) (158 – 189KY)
b, 1kb no -8815.1 0.83 0.64 (43,000) 0.95 (41KY) 1.17 (50KY) 3.51 (151KY)

(0.80, 0.86) (38–44KY) (51 – 57 KY) (135 – 168KY)
a, 1kb yes -8769.7 0.76 0.61 (45,900) 1.10 (50KY) 1.26 (58KY) 3.45 (158KY)

(0.72, 0.79) (47–54KY) (55 – 60 KY) (143 – 172KY)
b, 1kb yes -8444.0 0.82 0.58 (39,100) 0.97 (38KY) 1.17 (51KY) 3.47 (136KY)

(0.79, 0.85) (35–40KY) (49 – 54 KY) (121 – 151KY)

Maximum likelihood estimates are given for different triplet combinations and analyses with and without mutational
heterogeneity (µ het.; see Methods). Both effective population size and divergence time parameters are scaled relative
to the rate of coalescence, i.e. in 2Ne generations. Absolute values are given in brackets, calibrated using a direct,
genome-wide mutation rate for Drosophila (Keightley et al., 2009) and assuming two generations per year. 95 %
confidence intervals of scaled parameter values are given in brackets below the point estimate. f is the admixture
proportion, θ is the scaled mutation rate, Ne is the effective population size, Tgf is the time ago of admixture (tgf is the
calibrated estimate), T1 and T2 are the younger and older splitting times in the population topology, with t1 and t2 the
absolute ages, respectively.
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