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Many species have an essentially continuous distribution in space, in which there are no natural divisions
between randomly mating subpopulations. Yet, the standard approach to modelling these populations is
to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture
the important features of the population. Such indirect methods are required because of the failure of the
classical models of isolation by distance, which have been shown to have major technical flaws. A recently
introduced model of extinction and recolonisation in two dimensions solves these technical problems, and
provides a rigorous technical foundation for the study of populations evolving in a spatial continuum.
The coalescent process for this model is simply stated, but direct simulation is very inefficient for large
neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for
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arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail.

© 2014 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

As Wright noted (1978, p. 54), many species, such as the dom-
inant plants in grasslands, have an essentially continuous and
uniform distribution in space. In these populations there are no
divisions between discrete units, within which mating occurs ran-
domly and between which migrants are exchanged. Despite this
obvious observation, the majority of methods available to simu-
late the history of such populations require this arbitrary struc-
ture to be imposed. The typical approach is to use a stepping stone
model in which a user must specify a deme size and migration rates
between these demes. This approach models many evolutionary
scenarios very well, but it can hardly be described as a natural rep-
resentation of a continuously distributed population.

This arbitrary grid of demes is required because of the lack
of a well-defined model to capture the dynamics of continuously
distributed populations. The classical model of isolation by dis-
tance (Wright, 1943; Malécot, 1948) suffers from severe tech-
nical problems, most notably a lack of local density regulation
leading to clumps of arbitrarily high density (Felsenstein, 1975).
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The Wright-Malécot model is also inconsistent with some im-
portant biological observations such as large-scale patterns, cor-
relations across loci, and lower diversity than expected from
census numbers (Barton etal.,2010b). Etheridge (2008) introduced
a model that can describe extinction and recolonisation over a
range of scales and provides a simple and effective means of mod-
elling the evolution of a continuously distributed population. In
this model, individuals occupy a fixed location in a continuous
habitat during their lifetime. All movement, death and reproduc-
tion occur as a consequence of replacement events, which fall ran-
domly throughout the habitat. Events may span a range of scales,
from the regular process of reproduction within neighbourhoods
to large scale demographic shifts, in which substantial fractions of
the population are affected. At one extreme, the event may be the
death of a small number of individuals, followed by their replace-
ment by a random number of offspring, chosen so as to keep the
statistical distribution of the population the same. At the other,
most individuals in a wide area might die, again being replaced
by new individuals from a smaller number of randomly chosen
parents. The model solves the long-standing technical problems
mentioned above, and opens the way for mathematically rigorous
analytical and inference methods based on a true continuum.

This model of extinction and recolonisation can be viewed as
a framework for describing population models, in which different
realisations of the framework share a few essential characteristics.
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A variety of different replacement mechanisms may be employed
(Barton et al., 2010b, 2013b), but here we concentrate on the well-
studied ‘disc’ model, in which events are confined to a circular area
(Etheridge, 2008; Barton et al., 2010a, 2013a). Suppose that we
have a population of individuals distributed uniformly at random
on a square torus of diameter L with some density p. The evolution
of the population is driven by extinction/recolonisation events that
occur at rate A. At an event, we choose a point z uniformly at
random on the torus, and this event only affects the individuals
within distance r of z. Within this disc centred on z, a small
number of parents v are chosen uniformly, and each individual
has a probability u of dying. (The parameters r and u are often
referred to as the radius and impact of an event, respectively.) A
Poisson number of children with mean puxr? are then thrown
down uniformly within the disc, and the children choose parents
uniformly from the pool of v parents chosen earlier.

Moving to the limit of high density, we then obtain the spatial
A-Fleming-Viot process, for which many analytical results have
been derived (Barton et al., 2013b), and the coalescent process
is simple to describe. We begin with a sample of n lineages
and proceed backwards in time event-by-event until one of
these events overlaps at least one lineage. Then, this lineage
has probability u of having been born in this event (since we
are proceeding backwards in time); if it was, it jumps to the
location of a parental lineage whose location is chosen uniformly
at random from the same disc. Eventually, two lineages will
be overlapped by the same event and with probability u?/v a
coalescence event occurs and both lineages jump to the location
of their parent. We may also have many lineages descending from
a single parent in a event. This process can be formalised as an
algorithm very simply (Kelleher et al., 2013); however, such a
direct implementation is very inefficient when u is small, because
large numbers of events must be simulated. This case of small u
(as we see momentarily) corresponds to the biologically important
case of large neighbourhood size.

Wright's neighbourhood size & (1943; 1946) is widely re-
garded as the most important parameter describing populations
evolving in a two-dimensional continuum (see, e.g., Charlesworth
and Charlesworth, 2010, pg. 332), and determines the relative rates
of genetic drift and gene flow. Wright (1943) identified the approx-
imate magnitudes of the neighbourhood sizes we might expect to
observe in natural populations. Small values, with & < 100, cor-
respond to populations with short range dispersal and a high de-
gree of differentiation. Large neighbourhood sizes, with & > 104,
correspond to populations that are approximately panmictic. Em-
pirical estimates of & have supported Wright'’s analysis, with mo-
bile species such as Drosophila having neighbourhood size greater
than 10> and estimates for plant species being as little as 10 or
less (Crawford, 1984). These estimates are also consistent with the
range of observed Fsr values (Morjan and Rieseberg, 2004).

In the disc model, neighbourhood size is given very simply as
N = v/u(Barton et al., 2013a), where v is the number of potential
parents and u is the probability an individual dies in an event.
Thus, assuming a single parent and a modest neighbourhood size
of 100, we arrive at an impact of u = 1/100. Unfortunately, these
parameters present serious difficulties to a direct simulation of the
coalescent process, in which we expect to generate 1/u events that
intersect with a lineage before it jumps. For large neighbourhood
size, this represents a heavy computational burden.

In this article we develop algorithms to simulate the coalescent
process efficiently for large neighbourhood size. The key difference
between these new algorithms and previously published meth-
ods (Kelleher et al., 2013), is that we no longer explicitly simulate
all events and skip the majority of the events that do not affect the
state of the simulation. The methods are exact, and we prove that
the new algorithms simulate precisely the same stochastic process

as before. In Section 2 we begin by defining an algorithm to simu-
late the important special case of the ancestry of a sample of size
two. In this case it is simple to calculate the exact distribution of
the time that elapses between events in which a lineage jumps, al-
lowing us to simulate only these events. We then generalise these
ideas in Section 3 to allow us to simulate the history of a sample
of n lineages, and analyse the resulting algorithm to derive the op-
timal value for the spatial indexing grid size. Section 4 continues
by generalising this algorithm so that we can simulate the history
of a sample of individuals with a large number of loci. We describe
a general algorithm to distribute genetic material among ances-
tors over an arbitrary number of loci, and show that this method
is efficient when recombination is fast. In particular, we show that
the approach is much more efficient than the method used by the
classical ms program (Hudson, 2002). A Python interface to an ef-
ficient implementation of this multilocus algorithm is available at
https://pypi.python.org/pypi/discsim under the terms of the GNU
General Public License.

In this article we study algorithms in much more detail than
is customary in the population genetics literature. We provide
detailed and unambiguous algorithm listings in a well established
format (Knuth, 1997a, Section 1.1), which is important for several
reasons. Firstly, it is impossible to establish the correctness of
an algorithm that is stated in an ambiguous natural language
format. Given the centrality of coalescent algorithms in modern
population genetics and the difficulty of detecting errors in
computer programs with stochastic results, it is imperative that
we are certain the underlying algorithm is correct. Secondly, since
stochastic programs are prone to subtle errors, it is important that
a diversity of implementations of a given algorithm exist. If we
are dependent on a single (possibly opaque) implementation of
a given algorithm, then it is very difficult to verify the results of
this program. With a detailed algorithm listing, implementation
is routine and allows for multiple independent implementations.
Finally, a rigorous description of an algorithm allows us to
analyse the properties of this algorithm using mathematical
techniques, allowing us to improve performance without resorting
to approximations.

2. Pairwise coalescent

Simulating the ancestry of a sample of size two is an important
special case, as we are often interested in pairwise statistics.
In the extinction/recolonisation continuum model this involves
tracing the history of two lineages as they move around the range
before meeting and, eventually, coalescing. Events fall uniformly at
random across the range, but it is only events that fall within a disc
of radius r around the location of at least one of the two lineages
that can result in a lineage jumping to a new location. Similarly,
the lineages can only coalesce in a given event if the centre of the
event falls in the intersection of the discs around these lineages:
the centre must be within distance r of both lineages or they cannot
both be born in the event.

Remark 1. A lineage is defined by a point x on the torus, as this is
the location of the ancestral individual in question. To simplify the
following discussions, however, we refer to a lineage as the disc
of radius r around this point. For example, when we refer to the
intersection of two lineages this is a shorthand for the intersection
of the discs of radius r centred on the locations of the lineages.

The idea behind the pairwise coalescent algorithm is straight-
forward—we only simulate events that result in a lineage jumping,
and calculate the distribution of the time that elapses between
these events. Since events fall in a Poisson process with rate
XA, we can ‘thin’ this process to generate only the events that
result in jumps. Specifically, if events of a particular type occur
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with probability p, we know that these events constitute an
independent process with rate pX. In the pairwise algorithm we
must thin the Poisson process twice: once to remove the events
whose centres fall outside of the union of the two lineages, and
again to remove the events that fall within this area but do not
result in a lineage jumping.

To calculate the rate at which at least one lineage jumps, we
must calculate the area covered by exactly one lineage, o1, and
the area covered by exactly two lineages, «;. These are given by
the symmetric difference and the intersection of the two lineages,
respectively. (The symmetric difference of two sets A and B is
(AU B) \ (AN B).) Let A-(x) denote the area of the intersection
of two discs of radius r with centres distance x apart, i.e.,

P P
Ar(x) = 2r? arccos (5) — =\/4r2 —x2 (1)

2
for x < 2r and A, (x) = 0 otherwise. We also define

ur=1-—(1-u (2)

in the interest of brevity.

Lemma 1. Given two lineages separated by distance x, the rate at
which at least one lineage jumps is

A
.Qz = L—z (O{]U +(X2U§)

where oy = Ar(x) and o7 = 271% — 205.

Proof. Events fall uniformly at rate A and hit the area covered by
exactly one lineage at rate Ac;/L2. A single lineage subsequently
jumps with probability u, and so the rate at which jump events
fall in the symmetric difference of the two lineages is Auo /L.
Similarly, events fall in the intersection of the two lineages at rate
Aoy /L2, Then, since there are two lineages that may jump in this
region, the probability that at least one jumpsisuj. O

Lemma 2. Conditional on at least one lineage jumping, the probabil-
ity that the centre of the event is in the intersection of the two lineages
is1— O[]/(Ol] — Olz(u — 2))

Proof. The rate at which events fall in the intersection of the
lineages and at least one lineage jumps is w, = )\azu;/Lz;
therefore, the probability that a given jump event is of this class
is a)z/Qz. O

Lemma 3. Conditional on the centre of a jump event falling in the
intersection of the two lineages, the probability that both lineages
jump and coalesce is u/(2 — u).

Proof. The probability that both lineages are hit is u?, and the
probability of at least one lineage being hit is u3. Therefore, the
probability of both being hit conditional on at least one being hit is
wv/uy=u/Q2—-u). O

To describe the algorithm concisely, we require some notation.
Let D, (z) define a disc of radius r centred at z on a two-dimensional
torus of diameter L, and let || x]|| be the Euclidean norm of the vector
x on such a torus (we suppress the dependence on L for simplicity).
We also require notation to describe sampling values from random
variables drawn from a variety of distributions. Let R4 (&1, . . ., &)
define a single independent sample from a random variable
with distribution A and parameters &1, ..., &. (Note that each
instance of R4 (&1, ..., &) within an algorithm listing represents
an independent random sample from the specified distribution.)
Using this notation, we define Ry (A) to be an element of the set
A chosen uniformly at random, and Rg(A) as a sample from an
exponentially distributed random variable with rate A.

Algorithm P (Pairwise Coalescent). Simulate the coalescence time
t of two lineages sampled at distance x under a model in which
events with radius r and impact u occur at rate A on a two-
dimensional torus of diameter L.

P1. [Initialisation.] Sety; < (0,0),y, < (0,x) and t < O.

P2. [Event.] Set oy <« A (|ly1 — ¥2I) and o <« 2nr? — 20s.
Then, set 2 < A(aju + oul)/L? and t <« ¢ + Re(2). If
Ru([0,1)) < 1/2,setj < 1; otherwise set j < 2. Finally, if
Ruy([0,1)) < 1—o1/(1 —az(u — 2)), go to P4.

P3. [Symmetric difference.] Set k <— (j mod 2) + 1. Then set
z < Ry(D:(yj) \ D (y1)) and go to P5.

P4. [Intersection.] Setz < Ry (D, (y1)ND;(y2)).Thenif Ry ([0, 1))
< u/(2 — u), terminate the algorithm.

P5. [Jump.] Sety; <~ Ry(D-(z)) andgotoP2. ®

The algorithm sets up two lineages on the torus separated by
distance x and simulates their history jump-by-jump until the
lineages coalesce, returning their coalescence time t. In step P2
we first determine the distance between the two lineages and
compute ¢ and a,. We then calculate the rate at which jumps
occur using Lemma 1 and increment t accordingly.

After this, we choose a lineage j to jump, and decide if the centre
of the event z is in the symmetric difference of the two lineages or
their intersection according to Lemma 2. If the centre falls in the
symmetric difference of the two lineages, we generate z uniformly
in D (y;) \ D, (yi) in P3 and then proceed immediately to step P5.

If, on the other hand, z falls in the intersection of the two
lineages we proceed to step P4, where we throw z down uniformly
within this area. Then, according to Lemma 3, both lineages jump
with probability u/(2 — u) and so a coalescence occurs and we
terminate the algorithm. Otherwise, lineage j jumps to a new
location in the disc centred on z, and we return to P2.

Given Lemmas 1-3 it is straightforward to show that Algo-
rithm P simulates the coalescent process correctly. In Fig. 2 we
compare the results of calculating the probability of identity in
state using Algorithm P with numerical estimates (outlined in the
Appendix). Under the infinitely many alleles model, the probabil-
ity of identity in state for two genes, F, is the probability that no
mutations have occurred since the lineages diverged. We therefore
have F = exp(—2ut) for mutation rate u and coalescence time t.
By taking many replicates we can estimate F from simulations, and
we see an excellent agreement between the results of Algorithm P
and numerical methods in Fig. 2.

The algorithm is clearly very efficient, since each lineage jump
requires a constant number of algorithm steps, and each of these
steps is straightforward. Indeed, other than generating points
uniformly within the symmetric difference and intersection of the
lineages, which can be achieved via standard methods (Knuth,
1997Db, Section 3.4), the time required for each jump is constant.

It is not difficult to generalise Algorithm P to simulate several
classes of event occurring at different rates. Suppose we have k
classes of event, occurring at rate A; with radius r; and impact u;. To
do this, we must modify step P2. In this new step, we first calculate
the rate at which successful events are happening for all of these
classes by setting @; <« Aj(ej1u; + oq,zuj’fz)/L2 for1 <j <k
where o, = A (ly: — y2ll) and o1 = 2717 — 205, as before.
Having calculated the rates at which each of these classes of event
are occurring, we increment time by setting £2 < w;+- - -+wy and
t < t + Re(£2). We then choose an event class j with probability
wj/$2, and set r <— rjand u < u;. After this, we can proceed
with P2 as before, choosing the location of the event in either the
intersection or symmetric difference of the lineages. The remaining
steps of the algorithm are unchanged.
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3. Single locus coalescent

Algorithm P provides a satisfactory method to simulate the
history of two genes. The basic idea of the algorithm is to partition
the torus into regions in which zero, one or two lineages intersect,
which can be done quite simply. Although we can generalise the
Lemmas 1-3 to n lineages easily, it is not so simple to actually
calculate the areas involved. Specifically, calculating the area in
which k out of a given n discs intersect is not a trivial problem.
We approach the problem instead by calculating these areas
approximately using a tessellation of the torus into square pixels
and then correct for the errors introduced precisely using rejection
sampling.

The output of the algorithm is the simulated history of the
sample (7, t), where 7 is an oriented tree and t the corresponding
node times. An oriented tree (Knuth, 2011, p. 461) is a sequence
w7, . . ., such that zr; is the parent of node j andjis a root if 7; = 0.
For example, the oriented trees

correspond to the sequences 44 550, 4440 and 54 450, respectively.
Oriented trees provide an elegant means of describing genealogies,
since only parent—child relationships are encoded and the order
of children at a node is not important. Oriented trees also have
several advantages over more traditional approaches such as
nested parentheses. The principal advantage for our purposes here
is that we can describe coalescent algorithms in terms of oriented
trees concisely and without ambiguity.

3.1. Algorithm N

The pairwise coalescent, Algorithm P, is almost entirely defined
by Lemmas 1-3. Although we cannot generalise the algorithm in
a direct way because of geometric difficulty, we still require the
corresponding results for a sample of n lineages. The following
results generalise the pairwise results, and form the basis of the
subsequent algorithm.

Lemma 4. Given asample of n lineages, the rate at which at least one
lineage jumps is

Al n
Ql’l = ﬁ Zakuz
k=1

where «y is the area covered by the intersection of exactly k lineages.

Proof. The centre of an event z causing a lineage to jump must
fall in the intersection of one or more lineages, and an event falls
in the intersection of k lineages with probability /L. If z falls
in the intersection of k lineages, then at least one lineage jumps
with probability u;. Summing over all the possible intersections
of lineages, we obtain an overall jump rate of A Y ;_, oqeut /L% as
required. O

Lemma 5. Conditional on at least one lineage jumping, the probabil-
ity that the centre of the event is in the intersection of exactly k lineages

is ot / Y1y Ut

Proof. The rate at which an event falls in the intersection of
k lineages and at least one lineage jumps is w, = ka,<u;§/L2;
therefore, the probability that a given jump event is of this class
iswr/2,. O

Lemma 6. Given that z falls in the intersection of k lineages and that
at least one of them jumps, the probability that exactly j jump is

k\ (1 — w7
Blk.j) = <;) wa-we

Uy

Proof. Exactly j lineages jump with probability /(1 — u)*,
and there are (2‘) ways this can happen. Then, since we have

conditioned on at least one lineage jumping, we divide by 1 — (1 —
wk, to give us B(k, j) as required. O

Calculating the area in which k lineages intersect is nontrivial,
but we can use Lemmas 4-6 to derive an efficient simulation
algorithm. In this algorithm we proceed by dividing our torus
into pixels of edge s, and then use this tessellation to quickly
calculate an over-estimate of the area in which k lineages intersect.
The errors introduced by this over-estimate can then be precisely
cancelled out by discarding potential jump events with a certain
probability using rejection sampling.

The key idea of Algorithm N is to divide the range into pixels
of edge s; we assume that L/s is an integer so that pixels do not
overlap. Let a pixel v € {1, ..., L/s}? define an s x s square on the
torus such that a point x is in the pixel vif 0 < sv; — x; < sand
0 < sv, — X, < s(i.e., the top-right corner of pixel v is sv in torus
coordinates). Let D} (z) be the set of pixels that intersect with D, (z),
ie.

D;(2) = {([X1/s1, [X2/s1) | x € Dr (D)}

We also require some further notation to describe sampling from
random variables. Firstly, we extend the notation Ry(A) for
sampling an element of a set A uniformly, by letting Ry (A, k) be
a k-subset of A chosen uniformly at random (that is, Ry (A, k) is a
random sample of k elements chosen from A without replacement).
Secondly, we let Rp(p) be a random sample from a discrete
distribution with probability mass function defined by the vector
p, such that if we setj < Rp(p), thenj = k with probability py.
Also, let @ be the null point.

Algorithm N (Single Locus Coalescent). Simulate the ancestry
(r, ) ofindividuals sampled at locations X, . . . , X, under a model
in which events with radius r and impact u occur at rate A on a
two-dimensional torus of diameter L using pixel size s, such that
L/seN.

N1. [Initialisation.] Setr; <— 0,7j <— Oandy; < @for1 <j < 2n
and thensetk < n,n < n+ 1,t < 0and h* <« 0. Set
P, < @forve{l,...,L/s}?>andsetQ < @ for1 <k < n.
Then, for 1 < j < nsety; < X; and for each v € Dj(x;), set
Py < Py U {j}, h < |Py|, Qn < Qu U {v}, h* < max(h*, h),
and, if h > 1,set Qq—1 < Qu_1 \ {v}.

N2. [Rate.] While |Qu«| = O, set h* <— h* — 1. Then, set w <— 0 and
for 1 <j < h* setp; < |Q|uf and w < w + p;. Afterwards,
setp; < pj/wfor1 <j <h*.

N3. [Location.] Set t <— t + Rp(wAs?/I?),h <« Rp(p),v <«
Ru(Qy) and z < s(v — Ry([0, 1)?)). Then set S < @ and,
foreachj € Py, ifz € D,(y;) set S <« S U {j}. Finally, if
Ry([0,1) <1-— u"gl/u;‘, return to N3.

N4. [Choose children.] Set b; < B(|S],j) for 1 < j < |S|, then set
j < Rp(b) and C < Ry(S,j). Then, if |C| = 1, set k < Cq;
otherwise, set k < n.

N5. [Remove children.] For each j € C, and for each v € I} (y;) set
h < |Py|,Py < Py \ {j},Qn < Qu\ {v}and,ifh > 1, set
Qn1 < Qu1 U (v}

N6. [Insert parent.] Sety, < Ry(D;(z)) and then for each v €
D5 (yi) set Py <— Py U {k}, h <= [Py|, Qn < Qu U {v}, h* <
max(h*, h) and, if h > 1, set Q1 < Qu_1 \ {v}. Finally, if
|C| = 1go back to N2.
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Fig. 1. Illustration of the indexing structures used in Algorithm N. The torus is
divided into pixels of edge s. P is a square array of sets, where each set contains
the set of lineages that intersect with the pixel in question. Q; is the set of pixels
with occupancy j.

10° — : ; .

— N=8
— N=80
QO C Algorithm P
+ 4+ Algorithm N

Probability of identity
=
o
T
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1075 2 7 6 8 10

Sampling distance

Fig. 2. Comparison of identity in state as calculated using simulations and
numerical methods for L = 100,s = 2,A = 1,r = 1 and two neighbourhood
sizes corresponding to u = 1/8 and u = 1/80. The mutation rate to new alleles
1 = 107°. In Algorithm P, we take 10° replicates for every sampling distance
x, and in Algorithm N we take 10° replicates of a simulation in which we sample
individuals at 100 regularly spaced locations (of which a subset is shown).

N7. [Coalesce.] For each j € C, set 7; < n. Then, set 7, < ¢,
n < n+ land k < « — |C| + 1. Finally, if « > 1 go back
to N2.

As illustrated in Fig. 1, Algorithm N maintains a spatial index via
the matrix P. Each entry in P corresponds to a pixel, and is the set
of lineages that intersect with that pixel. The list Q is used to keep
track of the pixels with a given occupancy (defined as the number
of lineages that intersect with it), such that Qy is the set of pixels
with occupancy h. These data structures serve several purposes.
Firstly, Q allows us to quickly determine the number of pixels with
a given occupancy when we calculate the rate at which events fall
in N2, and then gain access to these pixels when we choose one
uniformly. We then choose the centre of the event z uniformly
within the pixel v, and we know that all lineages that can possibly
be affected by this event are in the set P,.

Step N1 initialises the simulation, by first setting up the
required data structures and then adding each location x; into the
spatial indexes P and Q, updating the maximum occupancy h* as
necessary. Once this initialisation is complete, we calculate the rate
at which events fall based on the current state of the sample in N2,
after first adjusting h* downwards, if necessary. Once we know the
current rate at which jump events may occur, we then increment
time according to this rate and choose an occupancy value h. We

then select a pixel uniformly from those with occupancy h and
choose a point z uniformly within this pixel. After this we find S, the
set of lineages that z intersects with, and calculate the probability
of jumping based on the size of this set. With probability ul*s‘/uﬁ
we move on to step N4; otherwise, we return to the start of N3 and
generate a new event according to the same rates and probabilities.
It is this process of rejection sampling that ensures we simulate
precisely the correct process, even though the areas we calculate
are approximate.

In step N4, we know that at least one lineage of the set S
was born in this event and so we choose the exact number born
according to Lemma 6. The variable k is used represent the the
parental lineage. If exactly one child is born in the event, then there
is no coalescence, and the lineage simply jumps; thus, we set k to
be the child lineage (through a slight abuse of notation, where we
refer to the first element in the set C as C;). Otherwise, when more
than one child is born in the event, a coalescence occurs, and k is
set to the new lineage .

Step N5 then removes the child lineages from P and Q.
Afterwards, in step N6 we choose the location of the parent lineage,
and then update P and Q to reflect the insertion of this new lineage,
revising the maximum occupancy h* upwards, as required.

If the set of children C contains more than one lineage, we
then proceed on to step N7, where these lineages coalesce and we
update the oriented tree and node time structures to reflect this.
We set r; <— 7 for each j € C to signify that the parent of lineage
j is the new lineage 7, and also set 7, < t to record the fact that
lineage n entered the sample at time t. Finally, we calculate the
number of remaining lineages, and if this is greater than 1, return
to step N2.

In the previous section we discussed the process by which the
pairwise coalescent can be extended to multiple event classes.
Unfortunately, it is not so simple to incorporate such events into
Algorithm N. To fully generalise the algorithm we must maintain
a spatial index for each class of event, and use this to calculate
the rates at which events of the various classes are currently
happening. While this is fairly straightforward to implement, the
memory requirements and the costs of updating the indexes soon
become a burden. In the most common case that we wish to model,
however, there is a simpler and more efficient approach. If our
model consists of small frequent events interspersed with rare
large events (Barton et al., 2010a), then we can simply calculate
the probability of a large event occurring without conditioning on
at least one lineage jumping. Given that such large events are rare,
this approach is very efficient since the cost of the large events
that we simulate in which no lineages are affected is negligible
when amortised over a large number of reproduction events. This
is the approach taken in the discsim software mentioned in the
introduction.

3.2. Correctness

Unlike Algorithm P, it is not immediately obvious that Algo-
rithm N correctly simulates the coalescent process given the rates
that lineages jump. The algorithm works by over-estimating the
area covered by the intersection of k lineages and then discard-
ing potential jumps with a certain probability, chosen to precisely
cancel the error in jump rate that this introduces. The following
lemmas prove that this process of rejection sampling results in the
correct jump and coalescence rates.

Lemma 7. Lineages jump at the correct rate in Algorithm N.

Proof. The rate at which lineages jump as the result of events
falling in the intersection of k lineages is Aouj /L?. Therefore,
we must show that this rate holds for Algorithm N. Suppose we
choose a pixel v with occupancy h. Then, let o) be the area of this
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pixel covered by the intersection of k lineages and let us calculate
the rate at which jumps occur as a result of events falling in the
intersection of k lineages. We begin by calculating the value of w
based on the current occupancy of the pixels in step N2. We then
move on to step N3 and increment time with rate wAis?/L?. We
then choose an occupancy value h with probability |Qy| u}; /w, and
a pixel v with probability 1/ |Qy|. After throwing z down uniformly
within the pixel v there is a probability ozx/s2 that z falls in the
intersection of k lineages. Finally, with probability uy /uj; we move
on to step N4 and at least one lineage jumps. Taking the product of
the rates of these events we obtain

() (5%) () (D) (G2)

Cancelling terms, we see that the rate at which an event falls in
the intersection of k lineages and a lineage jumps in a pixel of
occupancy h is Aaxu:/Lz. Since pixels are disjoint, we can find the
total rate by summing over all pixels with occupancy h and over all
occupancy values. This gives us

A Zn Z 2
v *
LT o), = )\.(Xkuk/L

h=1 veQy

asrequired. O

Lemma 7 proves that the rejection sampling step of N4 correctly
adjusts the rate at which lineages jump to account for the
approximated areas, resulting in an exact algorithm to simulate
the spatial coalescent. The remainder of the algorithm can be easily
verified; for example, we can immediately see that step N4 chooses
a subset of the available lineages according to Lemma 6.

Fig. 2 shows the probability of identity in state calculated via
an implementation of Algorithm N and via numerical methods
outlined in the Appendix. There is an excellent agreement between
the results. Although identity in state is a pairwise measure,
numerical methods still provide a good means of verifying the
correctness of the implementation. We begin with a sample of
regularly spaced locations X1, X3, ..., X,, simulate the history of
the sample, and then calculate the probability of identity between
the pairs (X1, X2), (X1, X3), ..., (X1, Xp). These probabilities are
then aggregated over many replicates to obtain an estimate of the
mean probability of identity in state over these distances.

3.3. Analysis

The previous subsection assures us that Algorithm N simulates
the coalescent process correctly for any pixel size s, but does not
give us any indication of what the value of this parameter should
be. It is clear that s has an important part to play in the amount
of computational effort that is required to simulate the coalescent.
If s is too large we will generate many events that miss all of the
lineages, and so spend a great deal of time looping around step N3.
On the other hand, if s is too small, we spend our time in steps N5
and N6 updating the indexing structures P and Q.

One approach to choosing the value of s is to simply run
Algorithm N for a variety of s values and make a choice based on the
value which minimises the running time. While this is an effective
method, it is unsatisfactory for several reasons. The most obvious
problem is that there is no indication of the generality of the
results obtained: the optimum value of s may depend on the model
parameters, and a great deal of computer time might be invested
to explore the effects of L, u and r. A more subtle problem is that
this approach can only find the optimum value of s for a given
implementation of the algorithm. Ideally, each implementation
should repeat this time consuming process to determine its own
optimal pixel sizes for varying model parameters.
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Fig. 3. The catchment area of a pixel is s> + 4rs + 72, For a disc of radius r to
intersect with the shaded pixel, its centre must fall within the illustrated region.

A much more satisfactory method is to analyse the algorithm,
using theoretical methods to estimate the optimum value of s
and assess the effects of model parameters on this optimum.
In principle, the analysis of an algorithm involves counting the
number of primitive operations (such as assignments, arithmetic
operations, etc.) incurred during its execution. Using this detailed
model of the computational cost in terms of its input parameters,
we can then derive the value of s that minimises this function. In
practice, however, we are almost never interested in such detailed
information, and an approximate broad-brush stroke model of the
running time of the algorithm provides all the information that we
need.

In this section we apply this methodology to analyse Al-
gorithm N. We derive a simple approximation to quantify the
expected computational cost of the algorithm as a function of the
pixel size s, which provides us with a useful prediction for its op-
timum value. The analysis of the algorithm is slightly complicated
by the stochastic nature of the coalescent process. The most com-
mon means of analysing an algorithm is to derive an expression
to approximate its total running time as a function of the input
parameters. This would be very difficult in this case, as it would
first involve deriving the coalescence time of a sample of size n in
the extinction/recolonisation model. We are not interested in the
overall running time however, just minimising the cost of simu-
lating the process. Since the basic unit of work in the process is a
single lineage jump, we are therefore interested in the value of s
that minimises the average computational effort required to effect
one lineage jump. Coalescence can be ignored in this analysis, as
there are at most n — 1 coalescences, and the number of lineage
jumps is much, much larger than the sample size.

Throughout this analysis we assume a moderately sized sample
of n lineages on a large torus of diameter L > r, and this torus is
tessellated into pixels of edge s < L such that L/s is an integer.
We also assume a large neighbourhood size, so u <« 1. These
assumptions are reasonable, since they reflect the biological reality
that we wish to model. The following lemmas provide us with the
key quantities for our analysis.

Lemma 8. Let z be a point chosen uniformly at random on a torus of
diameter L tessellated into pixels of edge s. Let o,(s) be the expected
number of pixels that a disc of radius r centred at z intersects with.
Then,

s2 + 4rs + mr?
s2 '

(3)

or(s) =

Proof. Let N = (L/s)?, and consider the disc of radius r centred
on z. The area in which z can fall such that it intersects with a
given pixel is s> + 4rs + 712, as shown in Fig. 3. Therefore, the
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probability that the disc intersects with a given pixel is (s* + 4rs +
1?)/(Ns?) since the total area of the torus is Ns?. Then, summing
this probability over all N pixels gives us the expected number of
pixels the disc intersects with, and the required result. O

Lemma 9. Let z be a point chosen uniformly at random on a torus
of diameter L tessellated into pixels of edge s, and let V be the set of
pixels that a disc of radius r centred at z intersects with. Then, let v
be a pixel chosen uniformly from V and X be a point chosen uniformly
from the pixel v. Let . (s) be the probability that X is within the disc
D, (z). Then,

r?

S — 4
s2 4 4rs + 72 )

Yr(s) >

Proof. The expected number of covered pixels is o:(s), and
therefore the area of these pixels is s?o,(s). The area of the disc
is w2, and therefore the probability that a point falling uniformly
at random in a covered pixel is within the disc is >nr?/(s%0,(s))
by Jensen’s inequality. O

We analyse Algorithm N by counting the approximate number
of basic operations required per lineage jump over a large num-
ber of jumps. This gives us an expression Ty(s) that should be pro-
portional to the time required by an implementation to simulate a
single jump when averaged over a large number of lineage jumps.

Lemma 10. Over a large number of lineage jumps, the expected
computational cost of a single jump in Algorithm N is

Tn(s, n) o< log, (noy(s)) <2Ur () + %1(5)) . (5)

Proof. We proceed by considering the expected contribution of
each algorithm step when averaged over a large number of lineage
jumps. Over long timescales, lineages are uniformly distributed
over the torus, regardless of the initial state of the sample (Barton
et al., 2010a, Lemma 6.9). Therefore, the probability that two
lineages occupy the same pixel in a given event is negligible and we
therefore know that the expectation of the maximum occupancy h*
is equal to 1.

Step N2 is executed once for each jump, and since E[h*] = 1,
the total contribution of this step is constant.

Step N3 loops a certain number of times, and involves non-
constant time operations. Since E[h*] = 1, we know that E[|Q;|] =
no,(s), since there are n lineages covering o,(s) pixels each.
Assuming a balanced tree data structure (Knuth, 1998, Section
6.2.3) for Qp, each pass through N3 requires log,(no,(s)) time.
Since the expected occupancy of a pixel is 1, we therefore have
|S| = 1 with probability i (s), and consequently expect to repeat
this step 1/, (s) times for each lineage jump. Therefore, we have
a contribution of log, (no; (s)) /¥ (s) per jump for this step.

Upon reaching N4, the expected value of |S| = 1, and this step
therefore requires a constant amount of time per lineage jump. In
step N5 we remove each lineage in C from the o, (s) pixels that it
covers. Since E[h*] = 1, the time required to update P, is constant,
and the time required to update Qy is log, (no,(s)) as before. Then,
since E[|C|] = 1, the contribution of this step is o, (s) log, (no;(s)).
Similarly, step N6 adds the parental lineage to o, (s) pixels, and
therefore also requires o, (s) log, (no, (s)) time.

Step N7 is executed at most n — 1 times, and requires a constant
number of operations. It does not contribute significantly to the
running time over a large number of jumps.

Summing the significant contributions from the steps above
gives us (5), as required. O
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Fig. 4. Comparison of the predicted computational cost of a lineage jump in
Algorithm N and the observed cost in a C implementation of the algorithm for
varying pixel size s. The cost of a single jump is found by taking the mean CPU
time required over 10% jumps, using parameters r = 1, u = 1/800 and L = s10*.
To facilitate comparison, the costs reported are relative to the minimum cost; for
example, the predicted value is obtained by calculating Ty (s)/Tn(2.24).

Lemma 10 provides us with a prediction for the expected time
required to perform a single lineage jump in Algorithm N in terms
of the sample size n. It is more useful, however, to consider the limit
of large sample sizes, and to derive a prediction that is independent
of n. In general, we expect s > r, and so o,(s) is between 1
and 10; hence, for realistic sample sizes, the dominant term is
log,(n)(20,(s) + 1/v:(s)). As a result, the optimal pixel size is
approximately independent of n and can be found by minimising
20,(s) + 1/¢,(s). Performing this minimisation numerically we
find a minimum at s & 2.24r, providing us with a useful prediction
for the optimal pixel size in Algorithm N. Fig. 4 shows an excellent
agreement between the predicted and observed optimal pixel size
over a wide range of sample sizes.

4. Multilocus coalescent

There are two practical approaches to including the effects of
recombination in the coalescent algorithm. The first, pioneered by
Hudson (1983), is to track the state of m-locus individuals and
build m genealogies as we proceed backwards in time, generating
common ancestor and recombination events and applying the
effects to the ancestral population. Recombination events increase
the size of the ancestral population, but do not increase the amount
of ancestral material; common ancestor events reduce the size
of the ancestral population, and potentially reduce the amount
of ancestral material present through coalescence. Coalescence
occurs when two or more ancestors trace back to a single parent,
and both have ancestral material at one or more loci. Each time a
coalescence occurs we update the genealogy at the loci involved,
and the simulation terminates when all genealogies are complete.
This approach is the basis of the classical ms program (Hudson,
2002).

The second approach, introduced by Wiuf and Hein (1999),
involves first generating the genealogy for the left-most locus
and then moving rightwards along the sequence, generating
recombination breakpoints. At each breakpoint the current
genealogy is modified, and the algorithm terminates when the
rightmost point of the sequence has been reached. Wiuf and
Hein’s algorithm is considerably more complicated than Hudson’s,
but the time complexity of the methods is similar (Wiuf and
Hein, 1999). The approach of working along the genome from
left to right, however, has led to an approximation that makes
simulating the history of large genomic regions much more
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efficient. In the sequentially Markov coalescent (McVean and
Cardin, 2005), the coalescent with recombination is approximated
by assuming that the genealogy at a breakpoint depends only
on the immediately previous genealogy. This approximation has
been used and extended in many simulation algorithms (Marjoram
and Wall, 2006; Chen et al., 2009; Excoffier and Foll, 2011), as
the time and space requirements of simulating the history of a
sample are greatly reduced by this simplification. We do not use
the sequentially Markov coalescent here, as the necessary theory to
extend the method to a two-dimensional continuum has not been
developed.

In this section we extend the single locus coalescent algorithm
of Section 3 by adapting Hudson’s approach to the setting of a
spatial continuum. We incorporate recombination by letting each
individual in the sample consist of m linearly arranged loci, and
extending the model such that we have two parents at each event.
At an event, there is a probability p that a recombination event
occurs between locus £ and £+ 1, and a child derives from different
parents at these loci. See Etheridge and Véber (2013) and Barton
et al. (2013a) for more details on this model of recombination.

In this section we describe Algorithm M, the extension of
Algorithm N to simulate the ancestry of m-locus individuals.
The algorithms share the same overall structure, and, besides
the process of transferring ancestral material from offspring to
parents, do not differ in significant ways. Rather than writing out
a full listing of Algorithm M, which would obscure the key points
and result in needless notational complexity, we concentrate on
describing the differences between the two algorithms. The first
change we require is to generalise the data structures used to track
the history of m-locus individuals. We also require an algorithm to
transfer the ancestral material from children to parents under the
effects of recombination, recording any coalescences that occur.
The latter part is far more complex, and we therefore examine the
process in detail.

Algorithm M operates in the same manner as N, where we have
n individuals sampled on the torus and simulate until the history
of the sample is complete. Each locus ¢ has an oriented tree 7,
and list of node times t,. We also have a sequence n such that
ne is the next available node in the oriented tree m,. The state
of the ancestral population is most simply represented as set of
tuples (X, a; ...any), where X is the location of an individual and
the sequence ajy . . . a,, records the node the individual occupies in
the genealogy at each locus. If a, = 0 (i.e., the null node), then
there is no ancestral material present in this individual at locus ¢,
and so we are not interested in tracking its history. Termination of
the algorithm is controlled by letting « track the total amount of
ancestral material in the sample; initially, x = nm, and we know
that all loci have coalesced when k = n.

The same method of spatial indexing via the pixels P and
occupancy Q applies in Algorithm M, and so steps N2-N5 are
essentially unchanged. Once we have selected the set of children,
however, we must decide how the ancestral material of these
individuals is distributed among the parents of the event, taking
into account the effects of possible recombination and coalescence.
This process is described in detail in Algorithm G. Afterwards, we
have two parents with the ancestral material from the children
shared among them via their node mappings, and for each parent
that has ancestral material we insert it into the sample using
a similar method to N6. Parents without ancestral material are
discarded.

For notational convenience, we let a be a matrix of node
assignments for the children of an event, such that g; ; is the node
that the jth child occupies in the genealogy at locus £. Similarly, we
let p be the matrix of node assignments for the parents such that
Pk.¢ is the node that the kth parent occupies in the genealogy at
the ¢th locus. Initially, parents have nonancestral material at every

locus (and sopy ¢ = Oforall kand £). Then, as the node assignments
in a are distributed among the parents, taking into account the
effects of coalescence and recombination, some of these loci are
assigned ancestral material.

The purpose of Algorithm G is to provide an explicit method by
which recombination can be incorporated into the spatial coales-
cent simulation of the previous section. It is a straightforward ap-
proach and can be readily adapted to more general recombination
models (for example, allowing an arbitrary number of parents v or
a vector of per-locus recombination rates). The algorithm assumes
that the set of child individuals has already been chosen, and then
generates the parent individuals, taking into account the effects of
coalescence and recombination.

Algorithm G (Generate Parents). Given the matrix of node map-
pings of n child individuals a, generate the node mappings of two
parental individuals p, and update 7, 7,  and « to record coales-
cence events. Recombination occurs with probability p between
adjacent loci.

G1. [Initialisation.] Set pj, <- Ofor1 <j <2and1 < £ < m.
Thensetcy < Ofor1 <¢ <m,andj < 1.

G2. [Choose first parent] Set k < Ry ({1, 2}) and set £ <« 1.

G3. [Ancestral?] Set oo <— a; 4. If o = 0 go to G7.

GA4. [Inheritance.]If py ¢ = 0,setpy ¢ < o« and go to G7. Otherwise,
ifcy # 0, go to G6.

G5. [Single coalescence] Set ¢, <— 1, B < px¢ and y < n,. Then
setmypg <y, Toy < t, pre < yandn, <y + 1.

G6. [Multiple coalescence.] Setmy o <— 17y — land k <« — 1.

G7. [Nextlocus.] If Ry ([0, 1)) < p,setk < Ry ({1, 2}\ {k}). Then
setl < ¢+ 1andif¢ < mgotoG3.

G8. [Next child.] Setj <— j+ 1,and if j < n go to G2.

Algorithm G proceeds by considering each child j and each locus
£ in turn. If child j has ancestral material at locus ¢ we transfer
this ancestral material to a parent. Each time such an assignment
is made we test for coalescence, which occurs when more than one
child descends from a particular parent at a given locus, and update
the data structures to record this event.

For each child j we first choose a parent uniformly at random for
the first locus in step G2. We then consider eachlocus 1 < £ <m
in turn; if aj , # O then there is ancestral material and we proceed
on to G4. In G4 we test to see if there has already been ancestral
material assigned to this parent k at locus £. If this is the case, then a
coalescence has occurred at this locus, and we must record this fact.
Because we can have more than two children in an event that have
ancestral material at a given locus, there may be several children
descending from a given parent. The first time we encounter a
coalescence at alocus, we update v, T and 1 to register this eventin
G5. For subsequent coalescence events at this locus we skip directly
to G6, where we record that the parent of node « atlocus £ is ny — 1
and decrement «, accounting for the loss of one piece of ancestral
material. Recombination between adjacent loci occurs in step G7,
where we choose a new parent for locus £ 4+ 1 with probability p.

Algorithm G is a simple and effective method of transferring
ancestral material from children to parents for small numbers of
loci (m < 10, say). It requires only one pass through the set of
children and transfers ancestral material directly from children to
parents, without requiring any intermediate data structures. It is,
however, extremely inefficient for large m, wasting large amounts
of time and space by storing and iterating over the large tracts
of non-ancestral material that enter the sample as we progress
backwards in time.

This inefficiency can be easily resolved by changing the repre-
sentation of the node mappings for an individual from the ‘dense’
sequence dj ... a, to a sequence of pairs (¢, ®) mapping loci to
nonzero nodes. The first benefit of this ‘sparse’ representation is
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that the amount of memory required to store the state of the ances-
tral population is far smaller. Using the dense representation the
amount of memory required grows with the size of the ancestral
population. Since each individual requires O(m) space to store its
node mappings and the ancestral population can grow up to a limit
of nm, we require O(nm?) space. For large m, this is prohibitive. The
sparse representation, on the other hand, requires O(nm) space,
since the amount of ancestral material in the sample is nonincreas-
ing as we proceed backwards in time.

The second benefit of storing pairs that map loci to non-
null tree nodes is that the time required to distribute ancestral
material from children to parents is greatly reduced. Algorithm G
requires O(m) time, regardless of the distribution of ancestral
material among children. This behaviour is particularly poor for
large m, since even moderate recombination rates result in a
rapidly growing ancestral population, implying that the majority
of loci in a randomly chosen individual do not contain ancestral
material. We therefore spend the majority of our time looping
between G3 and G7 doing nothing other than choosing parents
for loci with nonancestral material. This can be greatly improved
using the sparse representation, and we outline the ways to modify
Algorithm G to generate parents under this approach.

Assuming that the mapping pairs (£, ) are sorted in increasing
order of locus number, we begin by choosing the parent k to
be a uniformly distributed element of {1, 2} as before. We then
examine the first locus pair (¢, «) and assign the ancestral material
a to locus ¢ of parent k. (Note that the parent for the first locus
with ancestral material £ is still uniformly distributed, even if
¢ > 1.) We then examine the next pair (¢, «’), and calculate the
probability that a recombination event has occurred given the gap
between the two loci £/ — £. If recombination does occur, we choose
a new parent as before, and then move on to the next pair. Since
the gaps between loci with ancestral material may be arbitrarily
large, it is important that we can calculate the probability of
recombination without iterating over the intervening loci. The
following lemma allows us to accomplish this. (The lemma is
expressed in terms of a general number of parents v; we are usually
interested in the biparental case where v = 2.)

Lemma 11. Given a gap of length k between two loci with ancestral
material in a system with v parents and a probability p of recombi-
nation between adjacent loci, the probability that they descend from
different parents is

k
¢(k)=”_1(1—<1— ”’O)). (6)
v v—1

Proof. Consider the following analogue of the recombination
process over a gap of length k. Suppose we set ag < 1 and then for
each1 <j <kseta; < Ry({1, ..., v}\{agj—1}) with probability p
or set a; <— a;_; otherwise. Let ¢ (k) be the probability that a; # 1.
Clearly, ¢(1) = p. Suppose that ¢(k — 1) is the probability that
ax—1 # 1and consider ¢ (k).

Three possibilities exist in which a, # 1: gty = 1 and
recombination occurs; ax_; # 1 and recombination does not
occur; or, dx—; # 1 and we recombine to a value not equal to 1.
Writing these probabilities down, we have

¢k) =p (A —pk—1))
1
+ (- p)pk— 1)+/0<1 - ﬁ>¢(k— 1)

with ¢(1) =
required. O

p. Solving this recurrence gives us (6), as

Using Lemma 11 we can avoid looping over nonancestral
material to determine the parent of the next locus with ancestral
material. In this way we can visit each piece of ancestral material
in turn, assigning it to the correct parent and updating the
data structures to account for coalescence events, as required.
Therefore, the overall cost of the process of transferring ancestral
material from descendants to ancestors in an event is proportional
to the amount of ancestral material that the children carry. Since
this is quite small when recombination is fast, the algorithm is an
effective and efficient method of transferring ancestral material
under these conditions.

This approach may seem wasteful, however, when modelling
lower levels of recombination, where we expect to see many
adjacent loci sharing the same ancestry. In this case, storing the
ancestry for each locus in each individual and storing a tree for
each locus is unnecessary. A more compact approach is to store
a tuple holding the first and the last locus of each segment, and
to only store trees for each unique genealogy. Unfortunately, this
method has some major pitfalls. Without the use of specialised
data structures, maintaining the segments and calculating overlaps
becomes a serious burden and negates any advantages of a more
compact representation.

The ms program (Hudson, 2002) uses this segment approach. It
maintains a list of segments representing the distinct genealogies
that have been created through recombination, and each ancestor
maintains a list of segments mapping their ancestral material to
these trees. Each recombination event results in a new segment
being created, and each common ancestor event conducts a linear
scan of these segments to detect overlaps between the segments
the individuals carry and the segments defining the extant trees.

The expected number of recombination events within ancestral
material in a simulation of the standard coalescent with a sample
of size n is RH,_; (Hudson and Kaplan, 1985), where H, is
the nth Harmonic number and R = 4N,p(m — 1) is the
scaled recombination rate. (N, is the effective population size,
m the number of loci and p the between-locus recombination
probability.) Since H, &~ Inn+ y, where y is the Euler-Mascheroni
constant, the expected number of segments is approximately R for
large R and small n.

Therefore, in the worst case, each common ancestor event in
ms costs O(R) time. For large R, this represents an extremely heavy
cost. If we follow the example of Chen et al. (2009) and assume
N, = 12500 and p = 1.2 x 10~%, we have a scaled recombination
rate of R = 12000 for a 20 Mb region. Profiling ms under these
parameters with a sample of two individuals reveals that over
90% of the simulation time is spent performing common ancestor
events, compared to around 2% of the time executing recombina-
tion events. Since the number of these events is similar (otherwise
the simulation would quickly end, or never finish), this demon-
strates a major flaw in ms, at least in the case of large R and m.

A thorough analysis of the different approaches to maintaining
ancestry in coalescent simulations is beyond the scope of this
article. The comparison with ms is intended to illustrate that,
although our approach is simple, it is effective when the expected
amount of ancestral material per ancestor is small. For low levels
of recombination, the ms approach is very efficient. It is not
clear what type of approach is suitable for large genomic regions
with intermediate levels of recombination. This is an important
question for the efficiency of coalescent simulation.

Ideally, we would like to extend the analysis of Section 3.3
and derive the optimal pixel size s for a given neighbourhood size
and recombination rate. Such an analysis, however, would require
a detailed understanding of the spatial distribution of ancestors
and the ancestral material they carry. Since very little is currently
known about these distributions, we must defer a full analysis of
the multilocus algorithm to future work. Before this analysis is
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performed, we can make some basic recommendations about the
choice of pixel size for multilocus simulations. Firstly, the optimal
value for s derived for the single locus case in Section 3.3 is certainly
an upper bound on the value of s that should be used for multilocus
simulations. Any simulations in which we expect many ancestors
to be in close proximity for extended periods of time should have
s < 2.24r. On the other extreme, for s < 1 memory requirements
for maintaining the spatial indexes increase sharply. In this case,
any potential advantages of faster simulation may be overwhelmed
by excessive memory usage, preventing replication over available
CPU resources.

5. Conclusion

A central goal of the spatial A-Fleming-Viot continuum model
is to provide a means of incorporating events over different scales,
ranging from the steady process of local reproduction to large-
scale demographic shifts. Without such events, we cannot explain
the patterns that we observe in nature over large spatial scales
since the process of diffusion is too slow (Barton et al., 2010b). The
continuum model incorporates these fluctuations in a flexible and
elegant manner, by allowing events of different radii and impacts
to occur at different rates. For example, the effect of rare large
events modelling demographic shifts along with frequent small
events modelling reproduction is analysed in detail by Barton et al.
(2010a).

In the interest of simplicity we have given detailed algorithm
listings for a single class of event occurring at a fixed rate,
and outlined the changes required to generalise to an arbitrary
number of event classes from the disc model. Incorporating events
from different models, however, is not so straightforward, as
our methods here depend entirely on the geometry of the disc
model. Including events from the Gaussian replacement model
(Barton et al., 2010b), for example, would require a different
approach. This is not a major drawback, however. It is only the most
frequent reproduction events that must be from the disc model;
rarer events can have any geometry that we wish, provided we
follow the method outlined in Section 3.1 for incorporating large-
scale events. Since these events are rare with respect to regular
reproduction, there is little point in conditioning on the events
affecting individuals and is in fact more efficient to simulate their
effects directly.

We have discussed and analysed the algorithms in this article
in more detail than is customary in the literature. Given the
centrality of coalescent simulation in modern population genetics,
it is important that the algorithms used are both correct and as
efficient as possible, and this can only be achieved via detailed
algorithm listings and analyses. The consequences of hiding these
important details are well illustrated by the ms program. As our
brief analysis in Section 4 revealed, ms is very efficient for small
numbers of loci, but scales extremely poorly for large genomic
regions. However, this fact is not widely known and ms is usually
regarded as being very efficient (Carvajal-Rodriguez, 2008; Chen
et al., 2009). The performance of ms is in effect taken to be a
measure of the inherent difficulty of simulating the coalescent with
recombination. Consequently, researchers have abandoned the full
coalescent and resorted to various approximations (Liang et al.,
2007; Padhukasahasram et al., 2008; McVean and Cardin, 2005;
Chen et al., 2009) in order to simulate larger genomic regions.
An analysis of the algorithm and the use of the appropriate data
structures would make simulating the full coalescent many times
faster than is possible with ms without the need for approximation.

Substantial efforts have been made in this article to avoid
approximation and to ensure that the process that we simulate
is precisely equal to the well-defined coalescent process of the
continuum model. A sceptical reader might argue that this is

wasted effort, since some approximation to a model which is (at
best) a cartoon of reality can do little harm. However, this ignores
one of the most important applications of stochastic simulations:
assessing the accuracy of analytical methods. Without exact
simulations, it is very difficult to measure the accuracy of putative
analytical approximations; deviations from simulation results may
be due to either approximations of the model in simulations or
to errors in the approximate calculations. Exact simulations also
allow us to be confident that the data we observe are a result of
interesting phenomena arising from the underlying model, and not
some unexpected consequence of an ad-hoc approximation.
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Appendix. Calculating identity

Let A, (x, z) be the area of the intersection of three discs of radius
r, centred at (—x/2, 0), (x/2,0) and z, and let h = /1> — x2/4.If
we consider z in the upper half plane, the domain of A, (x, z) is the
union of four sets, indicated by the solid arcs:

(A1)

(—2/2,0)

(x/2,0)

(07 _h) *

If z is in the region bounded by the x-axis and the arc of radius
r centred at (0, —h), A;(x,z) is constant and equal to A,(x).
Otherwise, if z falls in the region bounded by the arc of radius r
centred on (0, h), A, (x, z) is the area of a circular triangle (Fewell,
2006). Finally, if z falls within the region bounded by the arc of
radius 2r centred on (—x/2, 0), A; (x, z) = A, (/(z1 +x/2)* + zf);
a similar rule applies to the region bounded by the arc centred on
(x/2, 0). For all z outside of these regions, A, (x, z) = 0.

Let F,(x) be the probability of identity in state of two genes
sampled at distance x, under the infinitely many alleles model with
mutation at rate u (Barton et al., 2010b, 2013a). After rephrasing
Eq. (A.8) of (Barton et al.,, 2013a) in terms of the A, functions,
converting to polar coordinates and simplifying, we obtain

2 fe']
PR = () + / K(x y)F.(y) dy (A2)
0

where ¢ (x) = 2./ A+ 2umr? —u?A, (x), the kernel K (x, y) is given
by

K(x.y) = f (3;’) (1 _ 1) A

v r

quy (7
+— | Q&y.0)—uQx,y, 0)do,
ar? J,
with
Qx,y,0) = Ar(\/x2 — 2xy cos 0 +y2)
Q(x,y.0) = Ar(x, (—x/2 + ycos 6, ysing)).




J. Kelleher et al. / Theoretical Population Biology 95 (2014) 13-23 23

Here, f(x) is the probability density function of the distance
between two points sampled independently and uniformly at
random within the unit disc (Alagar, 1976),

fx) = % (4 arccos(x/2) — /4 — xz), x € [0, 2],
with f(x) = 0 for x > 2. The value of ¢(x) is found by observing
that [, Ar(|z]) dz = (7r?)? and [, A/ (x, 2) dz = 1A (x).

Eq. (A.2) is a Fredholm equation of the second kind, and can
be solved numerically using a number of methods (Atkinson,
1997), with the Nystrom method being most convenient. Solving
the equation in this manner requires the repeated evaluation of
fO” Qi(x,y,0) — uQy(x,y,0)do, which can be time consuming
and inaccurate if not done with care. In particular, integrating
Q>(x,y, 0) can be troublesome. Performing the integration from
0 to m piecewise, however, as the arc of radius y centred at
(—x/2, 0) intersects with the arcs defining the domain of A, (x, z),
asindicated in (A.1), gives us a fast and accurate numerical method.
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