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Abstract. NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a
variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular
and widely deployed message authentication code (MAC). Security proofs and attacks for NMAC can
typically be lifted to HMAC.
NMAC was introduced by Bellare, Canetti and Krawczyk [Crypto’96], who proved it to be a secure
pseudorandom function (PRF), and thus also a MAC, assuming that (1) f is a PRF and (2) the function
we get when cascading f is weakly collision-resistant. Unfortunately, HMAC is typically instantiated
with cryptographic hash functions like MD5 or SHA-1 for which (2) has been found to be wrong. To
restore the provable guarantees for NMAC, Bellare [Crypto’06] showed its security based solely on the
assumption that f is a PRF, albeit via a non-uniform reduction.
– Our first contribution is a simpler and uniform proof: If f is an ε-secure PRF (against q queries)

and a δ-non-adaptively secure PRF (against q queries), then NMACf is an (ε + `qδ)-secure PRF
against q queries of length at most ` blocks each.

– We then show that this ε+`qδ bound is basically tight. For the most interesting case where `qδ ≥ ε
we prove this by constructing an f for which an attack with advantage `qδ exists. This also violates
the bound O(`ε) on the PRF-security of NMAC recently claimed by Koblitz and Menezes.

– Finally, we analyze the PRF-security of a modification of NMAC called NI [An and Bellare,
Crypto’99] that differs mainly by using a compression function with an additional keying input.
This avoids the constant rekeying on multi-block messages in NMAC and allows for a security proof
starting by the standard switch from a PRF to a random function, followed by an information-
theoretic analysis. We carry out such an analysis, obtaining a tight `q2/2c bound for this step,
improving over the trivial bound of `2q2/2c. The proof borrows combinatorial techniques originally
developed for proving the security of CBC-MAC [Bellare et al., Crypto’05]. We also analyze a
variant of NI that does not include the message length in the last call to the compression function,
proving a `1+o(1)q2/2c bound in this case.

Keywords: Message authentication codes, pseudorandom functions, NMAC, HMAC, NI.

1 Introduction

NMAC is a mode of operation which transforms a keyed fixed input-length function f : {0, 1}c ×
{0, 1}b → {0, 1}c (with b ≥ c) into a keyed variable input-length function NMACf : {0, 1}2c ×
{0, 1}b∗ → {0, 1}c (where {0, 1}b∗ denotes all bit strings whose length is a multiple of b) as

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

where Cascf : {0, 1}c×{0, 1}b∗ → {0, 1}c is the cascade (also known as Merkle-Damg̊ard) construc-
tion

Cascf(K1,m1‖ . . . ‖m`) := f(. . . f(f(K1,m1),m2) . . .m`) .

HMAC is a variant of NMAC (we postpone its exact definition to Section 2.2) tweaked for applicabil-
ity in practice. As security proofs for NMAC can typically be lifted to HMAC, it is usually sufficient

? A preliminary version of this paper appears in the proceedings of CRYPTO 2014, this is the full version. This
work was partly funded by the European Research Council under an ERC Starting Grant (259668-PSPC).



to analyse the security of the cleaner NMAC construction, we will discuss this point further in
Section 1.2.

NMAC and HMAC were introduced by Bellare, Canetti and Krawczyk in 1996 [4] and later
standardized [19]. HMAC has also become very popular and widely used, being implemented in
SSL, SSH, IPsec and TLS amongst other places. Although originally designed as a MAC, it is also
often employed more broadly, as a pseudorandom function (PRF). This is the case for example
when used for key-derivation in TLS and IKE (the Internet Key Exchange protocol of IPsec).
This proliferation into practice motivates the need for a good understanding of the exact security
guarantees provided by NMAC and HMAC when used as a PRF.

PRF-Security of NMAC. Bellare et al. [4] prove that NMAC is a secure PRF if (1) f is a PRF
and (2) Cascf is weakly collision-resistant (WCR). This is a relaxed notion of collision resistance,
where one requires that it is hard to find a pair of messages M 6= M ′ such that Cascf(K,M) =
Cascf(K,M ′) under a random key K, given oracle access to Cascf(K, .) (but not K, as in the
standard definition of collision resistance).

HMAC is typically instantiated with cryptographic hash functions like MD5 or SHA-1 playing
the role of Cascf . However, both of these have been found not to satisfy the WCR notion [32,33],
which renders the security proof from [4] irrelevant for this case. Despite that, no attacks (better
than standard birthday attacks) are known for NMAC or HMAC when instantiated with MD5 or
SHA-1 (though attacks on reduced round versions exist [17]).

Security without Collision-Resistance. To restore the provable security of NMAC, Bellare
[3] investigates the security of NMAC dropping assumption (2), that is, assuming only that f is a
secure PRF. The exact security statement from [3] is a bit technical, but it roughly states that if
f is an ε-secure PRF (against an adversary running in time t and asking q queries) and a γ-secure
PRF (against time O(`) and 2 queries), then NMACf is an (ε+ `q2γ)-secure PRF against time t
and q queries of length at most ` (in b-bit blocks). The security reduction is non-uniform, which
means one has to be careful when deducing what this bound exactly means when instantiated in
practice, we will discuss this further in Section 1.2.1

1.1 Our Contributions

PRF-Security Proof for NMAC. Our first contribution is a simpler, uniform, and as we will
show, basically tight proof for the PRF-security of NMACf assuming only that f is a PRF: If f is
an ε-secure PRF against q queries, then NMACf is roughly `qε-secure against q queries of length at
most ` blocks each.

Our actual result is more fine-grained, and expresses the security in terms of both the adaptive
and non-adaptive security of f. Let δ denote the PRF-security of f against q non-adaptive queries.
Then our Theorem 1 states that NMACf is roughly (ε+ `qδ)-secure (against q queries, each at most
` blocks). As non-adaptive adversaries are a subset of adaptive ones we have δ ≤ ε, and if δ � ε,
then our fine-grained bound is much better than the simpler `qε bound. The reduction works in
the best running time one could hope for, its overhead being Õ(`q).

The main technical part of our proof closely follows a proof by Bellare et al. [5] who show that if
f is a secure fixed input-length PRF, then Cascf is a secure PRF if queried on prefix-free queries. We
first observe that their proof also holds in the non-adaptive setting. Then we reduce the security of
NMACf against arbitrary adaptive queries to the security of Cascf against non-adaptive prefix-free
queries.

1 We note that in a very recent update of the ePrint version of [3], Bellare observes that the proof in [3] can also
give a uniform reduction, differing from the non-uniform case only in the running time of the 2-query adversary
which then becomes t. The uniform bound given in this paper is better for most reasonable parameters.
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Matching Attack for NMAC. In Section 3.2 we prove that the above lower bound is basically
tight. From any PRF, we construct another PRF f for which NMACf can be broken with advantage
Θ(`qδ). This shows that our bound is tight for the practically most important case when `qδ is
larger (or at least comparable) to ε.

We also consider the case where ε� `qδ, that is, when the PRF has much better security against
non-adaptive than adaptive distinguishers. We observe that for any ε, we can use a result due to
Pietrzak [29] who shows that cascading non-adaptively secure PRFs does not give an adaptively
secure PRF in general, to construct an ε-secure f where NMACf can be broken with advantage
Θ(ε2). This only shows the ε term is necessary if ε is constant as then Θ(ε) = Θ(ε2) = Θ(1). We
conjecture that Θ(ε2) is the correct value, and the ε term in the lower bound can be improved to
Θ(ε2) using security amplification techniques along the lines of [25,31].

PRF-Security Proof for NI. The main difficulty in security analyses of NMACf and HMACf

based on the PRF-security of the underlying compression function f is that both these constructions
are constantly rekeying f during the evaluation of Cascf , using the output from the last invocation
as the key for the next one. This prevents the proof approach typically applied to constructions
that use a PRF f under a fixed random secret key, where the analysis starts by replacing the PRF
with an ideal random function (introducing an error that is upper-bounded by the PRF-security of
f) and proceeds by a fully information-theoretic argument.

To circumvent this issue, as our third contribution we investigate the PRF-security of the nested
iterated (NI) construction introduced in [2]. The construction NIh is very similar to NMACf , but is
based on a compression function h that (compared to f) takes an additional k-bit input which is
used for keying instead of the chaining input: NIh uses h under the same key throughout the whole
cascade. Additionally, it includes the length of the message in the input to the final, outer h-call. The
modified keying allows for the simple switching argument from PRF to a random function. We focus
on enhancing the information-theoretic analysis that follows this switch and prove an essentially
tight `q2/2c bound for this step, improving significantly over the trivial bound of `2q2/2c. For
completeness, we also consider the modification of NI that does not include the message length
in the last h-call and show a security bound of `d′(`)q2/2c for this case, where d′(`) ≈ `1/ ln ln `

denotes the maximum number of divisors of any positive integer not greater than `. Our proofs
employ combinatorial techniques originally developed for proving the security of CBC-MAC [7],
considerably adapted for our setting.

1.2 More Related Work

Indifferentiability. In practice, the HMAC construction is sometimes used in a setting where
stronger guarantees than PRF-security are needed. Motivated by this, recent work [12] investigates
the indifferentiability [24,10] of HMAC from a (keyed) random oracle. This result is incomparable
to ours: While the stronger notion of indifferentiability covers the settings where HMAC is not used
as a PRF, the bound achieved in [12] is understandably much weaker, being Θ(`2q2/2c).

Generic Attacks.There is also a recent line of work investigating generic attacks against iterated
hash-based MACs [27,20,26,28]. These works present various attacks against MACs (e.g. related-
key attack, universal forgeries, state recovery) that do not exploit the inner structure and potential
weaknesses of the compression function, instead they rely solely on the iterative structure of the
MACs.

Another look at [18]. As already mentioned, Bellare [3] proved that NMACf is an (ε + `q2γ)-
secure PRF against q queries if f is ε-secure against q queries, and γ-secure against 2 queries. In
a recent paper [18], Koblitz and Menezes present a criticism of the way [3] discusses the practical

3



implications of this result. In a nutshell, Bellare estimates that for a well-designed PRF the γ term
is roughly t/2c (for a 2-query adversary running in time t), but as this γ is derived in a non-uniform
way, it is in the order of 2−c/2 already for constant t.

At the time when [3] appeared, the fact that non-uniform attacks can distinguish any pseudo-
random object generated using a c-bit key with advantage 2−c/2 in constant time was not widely
known in the crypto community2 and overoptimistic estimates for the exact security implied by
non-uniform reductions have appeared in numerous papers.3 This changed at the latest with the
Crypto 2010 paper [11], who discuss this issue in detail and attribute such generic non-uniform
attacks to the 1992 paper by Alon et al. [1].

The paper [18] also claimed that HMAC is an ε`-secure PRF, a bound that is falsified by an
attack given in this paper. In response, [18] was updated to take account of this by employing a
non-standard definition of a PRF for the underlying compression function. We believe that the
updated claim can be obtained via a simpler proof from [5].

HMAC vs NMAC. The proofs in this paper consider NMAC. There is a standard reduction of
HMAC-to-NMAC PRF-security given by Bellare [3], albeit under some additional requirements on
the underlying compression function f. Informally, one needs to assume that f is a PRF even
when keyed through the b-bit data input, as opposed to being keyed by the c-bit chaining variable.
Moreover, security of the single-key version of HMAC requires the PRF to be secure under a specific
class of related-key attacks. Formally, the reductions are given in Lemmas 5.1 and 5.2 in the full
version of [3] for the case of double- and single-keyed HMAC, respectively. Since these reductions
only relate to NMAC via its PRF-security, they apply to our result in a blackbox way, thus giving
clear statements also for HMAC.

2 Preliminaries

Basic Definitions. We reserve the letter λ do denote the empty string. We use {0, 1}b∗ :=⋃
z≥0{0, 1}bz to denote the set of all bitstrings whose length is a multiple of b. F(b, c) (resp. F(b∗, c))

denotes the sets of all functions from {0, 1}b to {0, 1}c (resp. from {0, 1}b∗ to {0, 1}c). We denote
by Pow(S) the power set of the set S. For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its
positive divisors and

d′(n) := max
n′∈{1,...,n}

∣∣{d ∈ N : d | n′}
∣∣ ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divisors of n′. More
precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [13]. All logarithms considered in the
paper are base 2 unless indicated otherwise.

Random Variables and Experiments.Random variables and concrete values they can take are
usually denoted by upper-case letters X,Y, . . . and lower-case letters x, y, . . ., respectively. If M
is a distribution (respectively, a set), then we denote by X ← M sampling the random variable
X according to M (respectively, choosing it uniformly at random from M). For events A and
B and random variables U and V with ranges U and V, respectively, we denote by PUA|V B the

2 Let us stress that this only holds for pseudorandom objects which do not require additional public randomness,
such as PRFs. This does not extend to weak PRFs, which are defined like PRFs but the adversary only sees the
output on random inputs.

3 This should not be confused with the (less trivial, but in the crypto community long well-known) fact that non-
uniform generic attacks beating simple brute-force key search exist for “large” running times, as shown in a classical
result by Hellman [14]. Hellman’s result for example implies that there almost certainly exist key-recovery attacks
against AES with a k bit key (k being 128, 192 or 256) which succeed with probability at least 1/2 and run in
time ≈ 22k/3, and in particular much less than 2k required for brute-force key search.
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corresponding conditional probability distribution, seen as a (partial) function U ×V → [0, 1]. The
value PUA|V B(u, v) = P[U = u ∧ A|V = v ∧ B] is well-defined for all u ∈ U and v ∈ V such that
PV B(v) > 0 and undefined otherwise. Two probability distributions PU and PU ′ on the same set U
are equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional probability distributions
are equal if the equality holds for all arguments for which both of them are defined. To emphasize
the random experiment E in consideration, we sometimes write it in the superscript, e.g. PEU |V (u, v).

If the distribution of a random variable U is clear from the context, we also sometimes write PU to
refer to the random experiment where U is chosen according to its distribution.

2.1 Random Systems

To present our results we make use of Maurer’s random systems framework [23], which we now
introduce in a self-contained exposition sufficient to follow the rest of the paper. This choice is a
matter of authors’ taste, we believe that the results could also be obtained using the game-playing
framework [8].

We start by observing that the input-output behavior of any kind of reactive discrete system
with inputs in X and outputs in Y can be described by an infinite family of functions specifying, for
each i ≥ 1, the probability distribution of the system’s i-th output Yi ∈ Y, given the values of the
first i inputs Xi ∈ X i and the previous i−1 outputs Y i−1 ∈ Y i−1. Using this viewpoint, we say that
an (X ,Y)-(random) system F is an infinite sequence of functions pF

Yi|XiY i−1 : Y×X i×Y i−1 → [0, 1]

such that
∑

yi
pF
Yi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1, xi ∈ X i and yi−1 ∈ Y i−1. Note that

pF
Yi|XiY i−1 by itself does not represent a (conditional) probability distribution in any particular

random experiment with well-defined random variables Yi, X
i, Y i−1 until the system is connected

to a distinguisher (see below), in which case these random variables will exist and take the role of
the transcript. We shall typically define discrete systems by a high level description, as long as the
resulting conditional probability distributions could be derived easily from this description. Two
systems F and G are called equivalent (denoted F ≡ G) if their input-output behaviors are the
same, i.e., pF

Yi|XiY i−1 = pG
Yi|XiY i−1 for all i ≥ 1.

A system F might often be used as a component (subsystem) in a construction C(·), resulting
in the composed system CF. F .G denotes the serial composition of systems: every input to F .G
is fed to F, its output is fed to G and the output of G is used as the output of F .G. In case G
takes as inputs longer bitstrings than F outputs (as will be the case in the definition of NMAC),
the construction F .G pads the outputs of F with trailing zeroes before passing them to G.

Examples. We denote by R a system that provides access to a function chosen uniformly at
random from the set of all functions with domain {0, 1}b∗ and range {0, 1}c. (This unusual domain
slightly deviates from the standard definition of R in the random-systems literature, but will be
advantageous for our exposition.) Similarly, for a finite domain {0, 1}b we denote by r a system
realizing a function chosen uniformly from F(b, c). Finally, we also consider a system f realizing a
function chosen uniformly from F(c+ b, c). We refer to R, r and f as a uniformly random function
(URF), a fixed input-length URF, and an ideal compression function, respectively. In each case the
parameters b and c will be clear from the context.

Distinguishers and Adversaries. A distinguisher D for an (X ,Y)-random system asking q
queries is a (Y,X )-random system which is “one query ahead:” its input-output behavior is defined
by the conditional probability distributions of its queries pD

Xi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first

query is determined by pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D, we denote by DF
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the random experiment where D interacts with F, with the distributions of the transcript (Xq, Y q)
and of the bit Wq being uniquely defined by their conditional probability distributions. For two
(X ,Y)-random systems F and G, the distinguishing advantage of D in distinguishing systems F
and G by q queries is the quantity ∆D(F,G) = |PDF

Wq
(1)−PDG

Wq
(1)| and the maximal distinguishing

advantage over all distinguishers asking q queries is denoted by ∆q(F,G) = maxD∆
D(F,G) (with

D ranging over all such distinguishers).
As opposed to the information-theoretic notion of a distinguisher, we often need to consider an

attacker with restricted computational resources. Although such an attacker also participates in a
distinguishing experiment, to emphasize this restriction we call it an adversary and denote using a
sans-serif symbol (e.g. A). Note that a computationally restricted adversary implicitly defines a ran-
dom system by its input-output behavior and hence any notation defined for information-theoretic
distinguishers is also well-defined for such an adversary. We often restrict the computational power
of an adversary by its running time, for this we assume some reasonable fixed model of computation.

Monotone Conditions. For a random system F, we often consider an internal monotone con-
dition defined on it. Such a condition is initially satisfied (true), but once it gets violated, it
cannot become true again (hence the name monotone). We use such conditions to capture whether
the behavior of the system meets some additional requirement (e.g. distinct outputs, consistent
outputs) or this was already violated during the interaction that occurred so far. A monotone
condition is formalized by a sequence of events A = A0, A1, . . . such that A0 always holds, and
Ai holds if the condition holds after answering the i-th query. The probability that a distin-
guisher D issuing q queries to F makes a monotone condition A fail in the random experiment DF
is denoted by νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted by
ν(F, Aq) = maxD ν

D(F, Aq). We also define µ(F, Aq) = maxxq P
F
Aq |Xq(xq) to be the maximal prob-

ability of violating the condition A by a sequence of q non-adaptive queries.
For a random system F with a monotone condition A = A0, A1, . . . and a random system G,

we say that F conditioned on A is equivalent to G, denoted F|A ≡ G, if pF
Yi|XiY i−1Ai

= pG
Yi|XiY i−1

for i ≥ 1, for all arguments for which pF
Yi|XiY i−1Ai

is defined. Intuitively, this captures the fact that

as long as the condition A holds in F, it behaves the same as G. The following useful claims were
given in [23], see also [16] for the proof of claim (ii) and [22] for further discussion.

Lemma 1. Let F and G be random systems, let A be a monotone condition defined on F, let D
be a distinguisher asking q queries. Then:

(i) [23, Lemma 7] If F|A ≡ G then ∆D(F,G) ≤ νD(F, Aq).
(ii) [23, Theorem 2] If pF

Ai|XiY i−1Ai−1
= pF

Ai|XiAi−1
for all i ≥ 1, then ν(F, Aq) = µ(F, Aq).

2.2 Message Authentication Codes and PRFs

The standard security requirement for a MAC is unforgeability under chosen-message attack. How-
ever, it is well-known that any PRF attains this property [6], hence in this paper we focus on
PRF-security of the analyzed constructions.

If the first component of the input to a function f is to be seen as a key, we sometimes call f a
keyed function to emphasize this. For a keyed function f : K×D → R under a key k ∈ K we often
write fk(·) instead of f(k, ·). A variable input-length keyed function G : {0, 1}c×{0, 1}b∗ → {0, 1}c
is an:

– (ε, t, q, `)-secure PRF, if for any adversary A running in time t and making at most q queries,
each of length at most ` (in b-bit blocks), a URF R : {0, 1}b∗ → {0, 1}c and a uniformly random
key K ← {0, 1}c, we have ∆A(GK ,R) ≤ ε.
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f f fK1 f

m1 m2 m3 m`

fK2
NMACf

K1,K2
(m1‖ · · · ‖m`)

Fig. 1. The construction NMACf
K1,K2

.

– (ε, t, q, `)-NA-secure PRF, if the above is true for all adversaries A that choose their queries
non-adaptively (i.e., A has to choose its q queries before seeing any of the outputs).

– (ε, t, q, `)-PF-secure PRF, if the above is true for all adversaries A that choose their queries to
be prefix-free (i.e., no query is a prefix of another query).

– (ε, t, q, `)-NA-PF-secure PRF, if the above is true for all adversaries A that choose queries both
non-adaptively and prefix-free.

For fixed input-length functions, we define analogous notions by omitting the parameter ` and
distinguishing from r instead of R. Moreover, we refer to an adversary A as an (ε, t, q, `)-PRF
adversary against G if it runs in time t, asks at most q queries each consisting of at most ` blocks,
and achieves the advantage ∆A(GK ,R) = ε. We refer analogously to adversaries for the other
PRF-notions defined above.

For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote with Cascf : {0, 1}c × {0, 1}b∗ →
{0, 1}c the cascade construction (also known as Merkle-Damg̊ard) built from f as

Cascf(K,m1‖ . . . ‖m`) := y` where y0 := K and for i ≥ 1 : yi := f(yi−1,mi) ,

in particular Cascf(K,λ) := K.
The construction NMACf : ({0, 1}c)2 × {0, 1}b∗ → {0, 1}c is derived from Cascf by adding an

additional, independently keyed application of f at the end. It assumes that the domain sizes of f
satisfy b ≥ c and the output of the cascade is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

or NMACf
K1,K2

:= CascfK1
. fK2 , see Figure 1. Note that practical MD-based hash functions take as

input arbitrary-length bitstrings and then pad them to a multiple of the block length, often including
the message length in the so-called MD-strengthening. This padding then also appears in NMAC
(and HMAC) but since it does not affect any of our arguments, we take the customary shortcut
and our definition of NMAC above (resp. HMAC below) actually corresponds to the generalized
constructions denoted as GNMAC (resp. GHMAC) in [3] where this step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2) are derived from
a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings ipad and opad. In addition,
the keys are not given through the key-input of the compression function f, but are prepended to
the message instead. This allows for the usage of existing implementations of hash functions that
contain a hard-coded initialization vector IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)

where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b − c)-bit padding not affecting the security analysis. (Technically, [19] allows
for arbitrary length of the key K: a key shorter than b bits is padded with zeroes before applying
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h h h0c h

K1

m1

K1

m2

K1

m3

K1

m`

h

|m|

NIhK1,K2
(m1‖ · · · ‖m`)

K2

Fig. 2. The construction NIhK1,K2
.

the xor transformations, a longer key is first hashed.) As discussed in Section 1.2, we can focus on
the PRF-security of NMAC as it translates to analogous results for HMAC under the assumptions
stated in [3].

Finally, we also introduce the nested iterated (NI) construction defined in [2]. For this, we
consider a keyed compression function h : {0, 1}k × {0, 1}c × {0, 1}b → {0, 1}c. When such h is
used in a cascading construction, its c-bit and b-bit inputs are used for the chaining value and
the next block, respectively. In contrast to the function f considered above, h has an additional
k-bit input that is used for keying. Formally, for such h we define the nested iterated construction
NIh : ({0, 1}k)2 × {0, 1}b∗ → {0, 1}c as

NIhK1,K2
(m) := hK2(Casc

hK1
0 (m), |m|)

where 0 denotes the all zero bitstring 0c and |m| is the length of m encoded as a b-bit string.
Alternatively, for a function f : {0, 1}c×{0, 1}b → {0, 1}c and a key K we will denote by LenCascfK
a system that given a message m outputs the pair (CascfK(m), |m|). This allows us to describe NI

equivalently as NIhK1,K2
:= LenCasc

hK1
0 . hK2 , see also Figure 2. For a detailed discussion of the

relationship of NI to NMAC, see [2]. For completeness, we also consider the modified version of NI
that replaces the message length |m| in the last (outer) call of the compression function by the
constant bitstring 0b, we denote this variant as NI2. Formally, we have

NI2hK1,K2
(m) := hK2(Casc

hK1
0 (m), 0b)

or NI2hK1,K2
:= ZCasc

hK1
0 . hK2 , where ZCascfK a system that given a message m outputs the pair

(CascfK(m), 0b).

3 PRF-Security of NMAC

In this section we analyze the PRF security of NMACf in terms of the PRF-security of the underlying
function f.

3.1 Security Lower Bound

Before moving to the NMACf construction, we start by stating a lower bound on the security of
the cascade Cascf when queried on prefix-free inputs. A similar statement has already been proven
in [5], and we follow their proof, modifying it where necessary to obtain security against non-
adaptive adversaries, assuming only non-adaptive security of the underlying compression function
f. The proof of Proposition 1 is given in Appendix A.
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Proposition 1 (Cascf as a NA-PF-PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a compression
function. There exists an explicit reduction T (described in the proof) such that for any (ε′, t′, q, `)-
NA-PF-PRF adversary A against Cascf , TA is an (εna, t, q)-NA-PRF adversary against f such that

ε′ ≤ `qεna and t = t′ + Õ(`q) .

This allows us to present our main result in this section, which relates the adaptive PRF-security
of the construction NMACf to both the adaptive and non-adaptive PRF-security of f.

Theorem 1 (NMACf as a PRF). If f : {0, 1}c × {0, 1}b → {0, 1}c is an (ε, t, q)-secure PRF and
an (εna, t, q)-NA-secure PRF, then NMACf is an (ε′, t′, q, `)-secure PRF with

ε′ = ε+ (`+ 1)qεna +
q2

2c
and t = t′ + Õ(`q) . (1)

The reduction is uniform. Concretely, there exist explicit reductions T1 and T2 (described in the
proof) such that for any (ε′, t′, q, `)-PRF adversary A against NMACf ,

1. TA
1 is an (ε, t, q)-PRF adversary against f,

2. TA
2 is an (εna, t, q)-NA-PRF adversary against f,

and their parameters satisfy equations (1).

Proof. Let A be a PRF-adversary running in time t′ and asking q queries, each of length at most `
blocks. Let r : {0, 1}b → {0, 1}c, R : {0, 1}b∗ → {0, 1}c and K = (K1,K2)← {0, 1}c×{0, 1}c denote
a fixed input-length URF, a URF and a key pair chosen independently at random, respectively.

We turn A into an adversary TA
1 against the PRF-security of fK as follows: Given access to g

(which is either fK or r), sample some key K1 at random, and then invoke A, answering its queries
with CascfK1

.g. Finally, output the decision bit of A. Clearly we have ∆A(CascfK1
. fK2 ,Casc

f
K1
.r) =

∆TA
1 (fK , r) and if we denote ∆TA

1 (fK , r) by ε then using triangle inequality we get

∆A(NMACf
K ,R) = ∆A(CascfK1

. fK2 ,R) ≤ ε+∆A(CascfK1
. r,R) .

In the experiment where A interacts with CascfK1
. r, let Ci denote the event that during

the first i queries to CascfK1
. r, for any two distinct queries M and M ′ the values CascfK1

(M)

and CascfK1
(M ′) (inputs to the final r-call) are also distinct. As long as the monotone condition

C = C0, C1, . . . remains satisfied, the responses of CascfK1
. r to distinct queries are equivalent

to outputs of r on distinct inputs, and thus independent, uniformly random values, in particular
(CascfK1

. r)|C ≡ R. We can therefore apply Lemma 1(i) to conclude that distinguishing Cascf . r
from a URF R is at least as hard as making the condition C fail, i.e.,

∆A(CascfK1
. r,R) ≤ νA(CascfK1

. r, Cq) .

Below we explain how to use the adversary A to construct4 a non-adaptive adversary Ana such
that

νA(CascfK1
. r, Cq) = νAna(CascfK1

. r, Cq) . (2)

Ana simply runs A and responds to all its fresh queries by fresh random values, while answering
repeated queries consistently. In the end, Ana (non-adaptively) asks all the queries that A asked

4 One could use a lemma from the random system framework [23] in the spirit of Lemma 1(ii) to switch to non-
adaptivity. We prefer to spell out the actual construction to emphasize the uniformity of our reduction.

9



during this simulated interaction. The equation (2) follows from the fact that the simulation for A is
perfect as long as its queries do not violate C. Since C is defined on CascfK1

and Ana is non-adaptive,
we additionally have

νAna(CascfK1
. r, Cq) = νAna(CascfK1

, Cq) .

Next, for Ana we can construct another non-adaptive adversary Apf that violates the condition
C (i.e., creates a collision in the outputs of CascfK1

) with at least the same probability as Ana, but all
its queries are prefix-free. This can be done, for example, by simply appending an additional block
to all queries asked by Ana, such that this block does not appear in the original queries. Hence we
have

νAna(CascfK1
, Cq) ≤ νApf (CascfK1

, Cq)

for a non-adaptive adversary Apf asking prefix-free queries of length at most `+ 1.

Finally, consider the non-adaptive adversary A∗ that simply asks the same prefix-free queries
as Apf and then outputs 1 if and only if the responses to these queries contain a collision. Then A∗

interacting with CascfK1
outputs 1 with probability νApf (CascfK1

, Cq), while in an interaction with
R it outputs 1 with probability at most q2/2c via the well-known birthday bound. Hence, by the
definition of ∆A∗(CascfK1

,R), we have

νApf (CascfK1
, Cq) ≤ ∆A∗(CascfK1

,R) +
q2

2c
.

Since A∗ is non-adaptive and prefix-free, we can now employ the reduction T guaranteed by Propo-
sition 1 to obtain an NA-PRF adversary TA∗ against f such that

∆A∗(CascfK1
,R) ≤ (`+ 1)q ·∆TA∗

(f, r) .

Putting TA
2 := TA∗ hence concludes the proof of Theorem 1. ut

3.2 Matching Attacks

We now argue that the bound obtained in Theorem 1 is essentially tight. First, we show that the
term `qεna is unavoidable (up to a constant factor) by constructing a particular compression function
f, which is an (εna, t, q)-NA-secure PRF, yet there is a simple attack against the PRF-security of
NMACf achieving advantage roughly `qεna.

Proposition 2. Let b, c, ` be positive integers such that b ≥ c, let εna ∈ (0, 1), and moreover, assume
that pseudo-random functions exist. Then there exists a function f : {0, 1}c × {0, 1}b → {0, 1}c and
an adversary A against NMACf such that for any q that satisfies εna = ω(q22−b, 2−c), we have:

– f is (εna, t, q)-NA-secure PRF;

– the adversary A, when asking q queries of length ` blocks each, runs in time Õ(`q) and achieves
distinguishing advantage

∆A(NMACf
K ,R) = Θ(`qεna) .

In particular, NMACf is not an (o(`qεna), Õ(`q), q, `)-secure PRF.

Proof (sketch). Here we only describe the high-level idea for constructing f and A and defer the
discussion of the technical obstacles in implementing this idea to Appendix B.

Roughly speaking, we construct an (εna, t, q)-NA-secure PRF f that behaves pseudo-randomly
for all keys except for a small, εna/2-fraction of them. We denote the set of these keys by K and
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refer to them as the weak keys. Under any weak key k, the function f(k, ·) outputs some constant
value w ∈ K irrespective of its input.

To attack the NA-PRF security of NMACf
K=(K1,K2)

, consider a pair of messages M1,M2 chosen

by sampling M ← {0, 1}b(`−1) at random and then setting M1 = M‖x1 and M2 = M‖x2 for some
distinct blocks x1, x2 ∈ {0, 1}b. If some of the `−1 intermediate values in the evaluation of the inner
function Cascf(K1,M) is in K, then all following intermediate values are w, and in particular we have
Cascf(K1,Mi) = w for both i ∈ {1, 2}, and hence also NMACf(K,M1) = NMACf(K,M2) = fK2(w).
This implies that it is much more likely to get a collision for a pair of messages as described above
for NMACf

K than for R. Our adversary A simply choses q/2 message pairs at random as above, and
it outputs 1 if it observes a collision for at least one of those pairs. As there are q/2 message pairs,
each of length `, we have a total of `q/2 possibilities to “hit” a weak key, each having probability
εna. By the union bound this gives us a total probability of Θ(`qεna) for observing a collision when
querying NMACf

K . On the other hand the probability of observing a colliding pair in R is only
O(q/2c). ut

We emphasize that the above attack only uses messages of one particular length and hence
works equally well also if the hash function applies some length-dependent padding such as the
MD-strengthening.

We now consider the tightness of the bound in Theorem 1 when ε � `qεna is the dominating
term. This is the case when the best adaptive attack against f is by more than a factor `q better
than any non-adaptive attack.

In [29] a pair g1, g2 of PRFs is constructed such that g1 and g2 are εna-secure non-adaptive PRFs
for some negligible εna, and the serial composition g1 . g2 with independent keys can be broken by
an adaptive attack (in a constant number of queries) with advantage almost 1.5 From such g1, g2 we
can get a single PRF f which is an εna-secure NA-PRF for a negligible εna, an ε-secure PRF for any
ε of our choice, and where f . f is not Θ(ε2)-secure, by setting f := g1 and f := g2 with probability
ε/2, respectively, and some strong standard PRF with probability 1−ε (over the choice of the key).
We now observe that NMACf

K computed on single-block messages is simply a cascade of two f’s
with independent keys. Thus, when using the above ε-secure PRF f, we can break NMACf

K with
advantage Θ(ε2). This shows that the ε term in Theorem 1 is necessary if ε is constant as then
Θ(ε) = Θ(ε2) = Θ(1). We conjecture that Θ(ε2) is the correct value, and the ε term in the lower
bound can be improved to Θ(ε2) using security amplification techniques along the lines of [25,31].

4 PRF-Security of the NI Construction

In this section we analyze the PRF-security of the constructions NIh and NI2h under the assumption
that the keyed compression function h is a PRF (when keyed via its k-bit input).

Recall that d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number of
positive divisors of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|.

Theorem 2. If h : {0, 1}k×{0, 1}c×{0, 1}b → {0, 1}c is an (ε1, t, q)-secure PRF and an (ε2, t, `q)-
secure PRF, then NIh is an (ε′, t′, q, `)-secure PRF with

ε′ = ε1 + ε2 +
q2

2c
·
(
`+

64`4

2c

)
and t = t′ + Õ(`q) ,

5 The NA-PRF security of this construction relies on the DDH assumption, [9] construct such a PRF under the
weaker assumption that “uniform transcript key-agreement” exists, and this assumption is necessary [30].
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and NI2h is an (ε′′, t′′, q, `)-secure PRF with

ε′′ = ε1 + ε2 +
q2

2c
·
(
` · d′(`) +

64`4

2c

)
and t = t′′ + Õ(`q) .

Proof. We first prove Theorem 2 for the case of NI2h and then derive the simpler case NIh from
it. The proof proceeds in four consecutive steps. First, we use the PRF-security of h to replace it
by an ideal compression function, making the rest of our analysis information-theoretic. Second,
we observe that the resulting system behaves identically to R as long as no non-trivial collision
occurs in the outputs of the initial cascade. Third, we reduce estimating the probability of such a
collision to a counting problem of upper-bounding the number of graphs satisfying certain properties
(modeling the computation of the cascade). Finally, we give a bound on the number of these graphs,
hence concluding the argument.

From a PRF to a Random Function.Let A be a PRF-adversary against NI2h running in time
t and asking q queries, each of length at most ` blocks. To simplify the notation let 0 := 0c. By a
standard argument as in the proof of Theorem 1, we have

∆A(NI2hK ,R) = ∆A
(
ZCasc

hK1
0 . hK2 ,R

)
≤ ε1 + ε2 +∆A

(
ZCascf10 . f2,R

)
(3)

where K = (K1,K2) ← ({0, 1}k)2 is a uniformly random key and f1 and f2 are two independent
ideal compression functions. Interestingly, the system ZCascf10 . f2 is very similar to NMAC with an
ideal compression function and keys fixed to zeroes.

Bound via Collision Probability.Let CColl(`) denote the probability that a random choice of
the compression function f1 results in a collision in Cascf10 , maximized over the choice of the two
distinct inputs to the cascade m1,m2 consisting of at most ` blocks each. (Note that this implies a
collision also for ZCascf10 .) Formally, for uniformly random f1 ← F(c+ b, c) we define

CColl(`) := max
m1 6=m2

|m1|,|m2|≤`b

Pf1
[
Cascf10 (m1) = Cascf10 (m2)

]
. (4)

In the experiment where A interacts with ZCascf10 . f2, let Ei denote the event that during the first i
queries to ZCascf10 .f2, for any two distinct queriesM andM ′ the values ZCascf10 (M) and ZCascf10 (M ′)
(inputs to the final f2-call) were also distinct. As long as the monotone condition E = E0, E1, . . .
remains satisfied, the responses of ZCascf10 . f2 to distinct queries are clearly independent, uniformly

random values thanks to f2. Hence, we have (ZCascf10 . f2)|E ≡ R and p
ZCasc

f1
0 .f2

Ei|XiY i−1Ei−1
= p

ZCasc
f1
0 .f2

Ei|XiEi−1

and can therefore consecutively apply Lemma 1(i), Lemma 1(ii), and finally the union bound to
get

∆A(ZCascf10 . f2,R) ≤ ν(ZCascf10 . f2, Eq) ≤ µ(ZCascf10 . f2, Eq) ≤ q2 · CColl(`) . (5)

Graph-Based Representation of Casc. The probability CColl(`) could trivially be upper-
bounded by O(`2/2c) using a union-bound argument, achieving a non-trivial and significantly better
bound on CColl(`) is the central part of our proof. To this end, we use an approach inspired by [7]
and represent the computation of Cascf10 on various inputs by directed graphs.

Letm1 andm2 be two distinct messages that can be parsed into b-bit blocks asmi = m1
i ‖ · · · ‖m

`i
i

for some `1, `2 ≤ `, and let Λ := `1 + `2. For convenience, we use the notation m(i) as a reference
to the block mi

1 if i ≤ `1, otherwise it denotes the block mi−`1
2 . For any fixed compression function

f ∈ F(c + b, c) and a pair of such messages M = (m1,m2), we define the structure graph GMf to

be the triple GMf = (V, E ,L), such that:
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– (V, E) is a directed graph. To describe it, let

si :=


0 for i = 0
f(si−1,m

i
1) for 1 ≤ i ≤ `1

f(0,m1
2) for i = `1 + 1

f(si−1,m
i−`1
2 ) for `1 + 2 ≤ i ≤ Λ

(6)

and consider the mappings [·]G and [·]′G defined on {0, . . . , Λ} such that [i]G := min{j : si = sj}
(so [i]G = i if and only if si is “fresh”) and [i]′G := [i]G for i 6= `1, while [`1]

′
G := 0. Now we let

V := {[i]G : 0 ≤ i ≤ Λ} and E := {([i− 1]′G, [i]G) : 1 ≤ i ≤ Λ} .

– L : V2 → Pow({0, 1}b) is a labeling function that labels every edge (u, v) ∈ E with the set
{m(i) : [i − 1]′G = u ∧ [i]G = v} and every pair of vertices that do not form an edge with the
empty set ∅ (to simplify our notation later).

Intuitively, if all the values si are distinct, GMf simply consists of two directed paths starting in

the root vertex 0, representing the evaluation of Cascf10 on the messages m1 and m2 (the edges
are labeled by the corresponding blocks). If some collisions among the values si occur, one can
obtain the graph GMf by collapsing every pair of vertices i, j where si = sj into one vertex labeled
min{i, j}, as well as merging the edge labels in the natural way.

Let G(M) := {GMf : f ∈ F(c + b, c)} denote the set of all structure graphs associated with
the message pair M. Note that the uniformly distributed random variable F ← F(c + b, c) also
induces a distribution on G(M), therefore we denote by GMF the resulting random variable (taking
on structure graphs as values). Similarly, F also induces a distribution on the values si defined
above and we denote the resulting random variables Si.

For a fixed structure graph G = GMf we denote by Gi = (Vi, Ei,Li) the graph that is obtained

after processing only the first i out of Λ blocks of M. More formally, Gi := GM
′

f where M′ :=

(m1
1‖ · · · ‖mi

1, λ) if i ≤ `1 and M′ := (m1,m
1
2‖ · · · ‖m

i−`1
2 ) otherwise. Building on this notion, we

call fColl(G) the set of f -collisions that occurred in G:

fColl(G) :=
{

(i, [i]G) : [i]G < i ∧m(i) 6∈ Li−1([i− 1]′G, [i]G)
}
. (7)

Informally, imagine we reveal the structure graph G step by step, i.e., by a sequence of transitions
from Gi−1 to Gi, for i = 1, . . . , Λ. The pair (i, [i]G) belongs to fColl(G) (and we say that the i-th
step caused an f -collision), if during this step, instead of adding a new vertex, we arrive at a vertex
already visited, while not following an existing edge already labeled with m(i) (i.e., not repeating a
step we have made before).

Properties of Structure Graphs.We first upper-bound the probability of GMF taking the form
of any particular fixed structure graph g ∈ G(M). The following result and its proof is inspired by
Lemma 8 from [7].

Lemma 2. Let F ← F(c + b, c) be chosen uniformly at random. For a fixed graph g ∈ G(M) we
have

PF
[
GMF = g

]
≤ 2−c·|fColl(g)| .

Proof (of Lemma 2). Let M = {m1,m2}, Λ = `1 + `2 and let m(i) denote the i-th block of m1‖m2

as before. First, we introduce the notion of consistency. Assume we sample F ← F(c + b, c) and
the values S1, . . . , SΛ belonging to G = GMF are revealed to us stepwise. (Recall that Si is the
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Fig. 3. Illustration of the three cases from Lemma 2.

M = {m1,m2}, |m1| = |m2| = 4b
m(4) 6= m(1),m(6) = m(3),m(7) 6= m(4)

- m1

- m2

- fresh
- collision
- determined

random variable representing the chaining variable of the cascade defined in (6) and determined
by the choice of F . In turn, the values S1, . . . , SΛ completely determine the shape of the structure
graph G.) We say that G is consistent with the given graph g after step i ≤ Λ, denoted Consi, if
the structure graphs Gi and gi are equal as triples (V, E ,L) (as before, Gi denotes the part of graph
G obtained after the first i blocks are processed, and gi is defined analogously from g).

Let us assume that Consi is true for some i and then bound the probability P[Consi+1|Consi].
To this end, we inspect the (i+ 1)-th step in g where there are the following 3 possibilities how the
next edge corresponding to m(i+1) might look (see also Fig. 3):

Fresh: It arrives at a new vertex not present in gi (i.e., [i+ 1]g = i+ 1).
Determined: It follows an already existing edge (i.e., [i+ 1]g ≤ i and m(i+1) is already in the label

set of the edge ([i]g, [i+ 1]g) in gi).
Collision: It causes an f -collision (i.e., [i + 1]g ≤ i and m(i+1) is not in the label set of the edge

([i]g, [i + 1]g) in gi). In this case, Gi+1 will stay consistent if and only if its (i + 1)-th edge
lands on precisely the same vertex as in gi+1, in other words, if Si+1 = si+1. The probability
of this event (conditioned on Consi) is 2−c, as Si+1 is uniformly random over {0, 1}n and not
determined in the first i steps.

Since the third case occurs exactly |fColl(g)| times, if we trivially upper-bound the probabilities
P[Consi+1|Consi] in the other two cases by 1, we obtain the final bound P[G = g] = P[ConsΛ] ≤
2−c·|fColl(g)| as desired. ut

Using Lemma 2, it is easy to see that the event that at least two f -collisions occur in G is highly
unlikely.

Lemma 3. Let F ← F(c+ b, c) be chosen uniformly at random. Then

PF
[∣∣fColl (GMF )∣∣ ≥ 2

]
≤ 4Λ4

22c
.

Proof (of Lemma 3). Denote by Gr(M) := {G ∈ G(M) : |fColl(G)| = r} the set of all structure
graphs for M containing exactly r f -collisions. Then (using Lemma 2 in the last step) we have

P
[∣∣fColl (GMF )∣∣ ≥ 2

]
=
∞∑
r=2

P
[∣∣fColl (GMF )∣∣ = r

]
=
∞∑
r=2

∑
g∈Gr(M)

P
[
GMF = g

]
≤
∞∑
r=2

|Gr(M)|
(2c)r

.

Since one can verify that any G ∈ G(M) is completely determined by the set of its f -collisions
fColl(G) ⊆ {(i, j) : 0 ≤ j < i ≤ Λ} and the latter set has Λ(Λ+ 1)/2 elements, we have |Gr(M)| ≤
(Λ(Λ+ 1)/2)r and hence

P
[∣∣fColl (GMF )∣∣ ≥ 2

]
≤
∞∑
r=2

(
Λ(Λ+ 1)

2 · 2c

)r
≤ 4Λ4

22c
.

In the last step we used that 1 ≤ Λ ≤ 2c/2 and c ≥ 2 which can be safely assumed, since otherwise
the statement of the lemma is trivially true (as 1 upper-bounds any probability). ut
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p [j∗]G `1 = [`1 + `2]G

Fig. 4. A sample graph from the set H1 in the proof of Lemma 4, with p = 2 and j∗ = 16.

From Collision Probability to Counting Graphs.We can now proceed to upper-bounding
the value CColl(`). LetM := (m1,m2) be the two distinct messages of length at most ` blocks that
maximize the probability CColl(`) := maxm1 6=m2 P

F
[
CascF0 (m1) = CascF0 (m2)

]
. For j ∈ {1, 2} let V i

j

be the random variable denoting the i-th vertex (counting from 0) in the path corresponding to mj

in GMF (randomness taken over the uniform choice of F ). Formally, V i
1 := [i]G and V i

2 := [`1 + i]′G.

We also refer to the path V 0
j , . . . , V

`j
j as the mj-path. Using this notation, we have CColl(`) =

P[V `1
1 = V `2

2 ]. Since m1 6= m2, V
`1
1 = V `2

2 cannot occur without any f -collision, hence we can split
CColl(`) into

P
[
V `1
1 = V `2

2 ∧ |fColl(G
M
F )| = 1

]
+ P

[
V `1
1 = V `2

2 ∧ |fColl(G
M
F )| ≥ 2

]
. (8)

The latter probability can be readily upper-bounded by 4Λ4/22c using Lemma 3. As for the former,
let us denote by H(M) the set

H(M) :=
{
G ∈ G1(M) : V `1

1 = V `2
2

}
of structure graphs for M that contain exactly one f -collision and where the vertices V `1

1 and V `2
2

coincide. The first term in (8) can then be upper-bounded by |H(M)|/2c using Lemma 2, hence it
remains to bound the size of the set H(M).

Counting the Structure Graphs. We give such a bound in the following lemma. Recall that
d′(n) denotes the maximum, over all positive integers n′ ≤ n, of the number of positive divisors
of n′; i.e., d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|.

Lemma 4. For two distinct messages M = {m1,m2} each of length at most ` blocks we have
|H(M)| ≤ `d′(`). If the messages in M are of the same length then we have |H(M)| ≤ `.

Proof (of Lemma 4). Let us first consider the general case where we allow the messages m1 and
m2 to have different lengths, let us denote them by `1 and `2 as before. Without loss of generality
let us assume that `1 ≥ `2. We split the set H(M) into two partitions: Let H1 contain all the
structure graphs from H(M) such that the m1-path does not contain a loop, and let H2 contain
all the rest. Formally, H1 := {G ∈ H(M);∀i ∈ {1, . . . , `1} : [i]G = i} and H2 := H(M) \ H1. We
now upper-bound the size of both partitions in two separate claims, which together conclude the
proof of the first part of Lemma 4.

Claim 1: |H1| ≤ `.
Towards bounding |H1|, note that if m2 is a prefix of m1 then clearly |H1| = 0, therefore we
assume that this is not the case. Let m1

1‖ · · · ‖m
p
1 be the blocks forming the longest common prefix

of m1 and m2; i.e., let p ∈ N be the smallest index such that mp+1
1 6= mp+1

2 (for illustration
see Fig. 4). Since f is a function, we clearly have V i

1 = V i
2 for all i ≤ p. Let us now consider

j∗ := min{j > `1 + p : [j]G ≤ `1}. Such a j∗ is well-defined, since at least the value `1 + `2 belongs
to the considered set (we have `1 + `2 > `1 + p and [`1 + `2]G = `1).
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Fig. 5. A sample graph from the set H2 in the proof of Lemma 4, with i∗ = 2 and j∗ = 8.

We now prove that the j∗-th edge ([j∗ − 1]′G, [j
∗]G) in G must create an f -collision, i.e., that

(j∗, [j∗]G) ∈ fColl(G). We have [j∗]G ∈ Vj∗−1 by definition of j∗ and to also see that m(j∗) 6∈
Lj∗−1([j∗ − 1]′G, [j

∗]G) we consider two cases:

1. If [j∗]G ≥ 1 and [j∗]G − 1 = [j∗ − 1]′G (the vertices directly preceding the vertex V
[j∗]G
1 on

m1-path and m2-path coincide), then we must have j∗ = p+ 1, otherwise this would contradict
the minimality of j∗. However, this implies that m([j∗]G) 6= m(j∗) (as otherwise the common
prefix would be longer than p blocks) and hence m(j∗) 6∈ Lj∗−1([j∗ − 1]′G, [j

∗]G) = {m([j∗]G)}.
2. On the other hand, if [j∗]G−1 6= [j∗−1]′G, then we claim that there was no edge ([j∗−1]′G, [j

∗]G)
in Gj∗−1 and hence m(j∗) 6∈ Lj∗−1([j∗ − 1]′G, [j

∗]G) = ∅. Indeed, the only edge leading into the
vertex [j∗]G in Gj∗−1 can be from [j∗]G−1, as anything else would contradict either the absence
of cycles within the m1-path, or the minimality of j∗.

Given the j∗-th edge causes an f -collision and |fColl(G)| = 1, no f -collision in G occurs beyond the
j∗-th edge. However, we have [`1]G = [`1 + `2]G and to achieve this without any additional collision,
clearly, we need that m([j∗]G+1)‖ · · · ‖m(`1) = m(j∗+1)‖ · · · ‖m(`1+`2), i.e., the suffixes of m1 and m2

after the collision are the same. This, however, implies that the value j∗ completely determines the
structure graph within H1 and hence we arrive at |H1| ≤ `.
Claim 2: |H2| ≤ ` · d′(`).
For this part, let j∗ := min{j : [j]G < j} and i∗ := [j∗]G, where such a j∗ ≤ `1 exists by definition
of H2. Moreover, it creates an f -collision (i.e., (j∗, i∗) ∈ fColl(G)) by an argument similar to the

one from Claim 1. We now split m1 into x := m1
1‖ · · · ‖mi∗

1 , y := mi∗+1
1 ‖ · · · ‖mj∗

1 and some z that
is chosen to be the shortest string possible such that m1 = x‖yk‖z holds for some k ≥ 1 (note that
such z always exists and is unique, possibly empty). This situation is illustrated in Fig. 5.

We claim that in any G ∈ H2 the m2-path is a subgraph of the m1-path (ignoring the labels
for now). Indeed, if the m2-path contained any edges not contained in the m1-path, then (since
V `1
1 = V `2

2 ) the last such “outlying” edge would create an f -collision. To see this, observe that
since this is the last edge not in the path of m1 its end vertex will be contained in the path of
both messages, which causes an f -collision when this edge is added (see (7)). However, the m1-
path already created one f -collision and hence creating another one would violate the definition of
H(M).

Moreover, for the same reason the m2-path cannot introduce new labels to the edges in m1-path,
as this would cause another f -collision. This implies that m2 has to be of the form m2 = x‖yk′‖z
for some k′ < k. To achieve this, the number of blocks in y (i.e., j∗ − i∗) must divide `1 − `2.

For any fixed M, a structure graph in H2 is fully determined by the choice of j∗ ∈ {1, . . . , `1}
and i∗ ∈ {0, . . . , j∗ − 1}, such that (j∗ − i∗) | `1 − `2. There are at most ` ways to choose such a
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j∗ and at most d′(`) ways to choose a consistent i∗. Consequently, we obtain |H2| ≤ ` · d′(`), which
concludes the proof for the case of distinct-length messages.

For the second part of the claim it now suffices to observe that if |m1| = |m2| then |H2| = 0. This
is because in H2 the m1-path already contains an f -collision, and since only one such f -collision
is allowed to occur, the only way to achieve V `1

1 = V `2
2 would hence be if m1 = m2. This however

contradicts the assumption that the messages are distinct. ut

In Appendix C we also show that Lemma 4 is tight, and discuss the implications for the tightness
of Theorem 2.

Finally, combining the equations (3), (5), (8), and the bounds obtained in Lemma 3 and
Lemma 4, we get

∆A(NI2hK ,R) ≤ ε1 + ε2 + q2 ·
(
` · d′(`)

2c
+

4Λ4

22c

)
≤ ε1 + ε2 +

q2

2c
·
(
` · d′(`) +

64`4

2c

)
and conclude the proof of Theorem 2 for NI2h.

The case of NI is handled in the same way as NI2, with the only difference being that it contains
LenCasc instead of ZCasc. Hence, to imply a collision for LenCasc, we require the messages m1 and
m2 in the definition of CColl(`) to be of the same length. This leads to the use of the second part
of Lemma 4 that assumes equal-length messages, arriving at the claimed bound. ut
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and suggestions.
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A Non-Adaptive Security of the Cascade

Here we prove Proposition 1 that states the PRF-security of the construction Cascf against non-
adaptive prefix-free adversaries, assuming that f itself is a non-adaptively secure PRF. Our argu-
ment follows the proof for the adaptive case in [5] with minor modifications and we include it here
for completeness.

Given a compression function f : {0, 1}c × {0, 1}b → {0, 1}c and a tuple of independent random
keys K = (K1, . . . ,Kq) ∈ ({0, 1}c)q, let qfK = (fK1 , . . . , fKq) denote the q-tuple of oracles providing
access to q copies of f, each one being assigned a different key fromK. Moreover, let qr = (r1, . . . , rq)
denote the q-tuple of independent, uniformly random functions ri : {0, 1}b → {0, 1}c. Following [5],
we say that f is (ε, t, q)-NA-PRFq-secure, if for any non-adaptive adversary A running in time t and
asking at most q queries, we have ∆A(qfK ,qr) ≤ ε.

Proposition 1 (restated). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a compression function. There
exists an explicit reduction T (described in the proof) such that for any (ε′, t′, q, `)-NA-PF-PRF
adversary A against Cascf , TA is an (εna, t, q)-NA-PRF adversary against f such that

ε′ ≤ `qεna and t = t′ + Õ(`q) .

Proof. The proof consists of two consecutive reductions. First, out of an assumed attacker against
the NA-PF-PRF security of Cascf we construct an attacker against the NA-PRFq security of f.
Second, we use the latter to construct an attacker against the NA-PRF-security of f. In each of
these two steps the success probabilities of the two attackers are related by a hybrid argument. We
describe and analyze each of these two steps in a separate lemma below.

Lemma 5. There exists an explicit reduction T1 (described in the proof) such that for any non-
adaptive adversary A1 against the NA-PF-PRF security of Cascf , running in time t′ and asking q
prefix-free queries of length at most ` blocks each, A2 := TA1

1 is a non-adaptive adversary against
the NA-PRFq-security of f running in time t′ + O(`q) and asking at most q queries, such that
∆A1(CascfK ,R) ≤ ` ·∆A2(qfK ,qr).

Proof (of Lemma 5). We start by describing a sequence of adversaries A
(i)
2 for i ∈ {1, . . . , `}. Given

access to oracles (g1, . . . , gq) which are either qfK = (fK1 , . . . , fKq) (for independent random keys

K1, . . . ,Kq), or q independent random functions qr = (r1, . . . , rq), A
(i)
2 works as follows:

1. It runs A1 to obtain its q non-adaptive prefix-free queries x1, . . . , xq, each of length at most `
blocks (without loss of generality we assume that x1, . . . , xq ∈ {0, 1}b∗ are distinct). Each query

xj is parsed into blocks as xj = x1j‖ · · · ‖x
`j
j , where each xzj ∈ {0, 1}b.

2. The response rj to each query xj is determined: If `j < i, then rj is chosen independently and
uniformly at random. Otherwise, an index cj ∈ {1, . . . , q} is determined consecutively for all
queries of length at least i in an arbitrary way, given that two queries xj and xj′ share the
same index (i.e., cj = cj′) if and only if their first i− 1 blocks are identical (i.e., x1j‖ · · · ‖x

i−1
j =

x1j′‖ · · · ‖x
i−1
j′ ). The response rj is then computed as

rj ← Cascf
gcj (x

i
j)

(
xi+1
j ‖ · · · ‖x

`j
j

)
.
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All g-values required for this computation are obtained by querying the g-oracles; note that this
can be done non-adaptively. The tuple of responses (r1, . . . , rq) is given to A1.

3. A
(i)
2 outputs the same bit that A1 does.

A straightforward analysis using the definition of A
(i)
2 allows one to establish the following three

facts:

(i) A1(Casc
f
K) = A

(1)
2 (qfK),

(ii) A1(R) = A
(`)
2 (qr),

(iii) A
(i+1)
2 (qfK) = A

(i)
2 (qr) for all i ∈ {1, . . . , `},

where the equalities represent equal distributions of the output bits. Combining these facts, we get

∆A1(CascfK ,R) =
∣∣∣P[A1(Casc

f
K) = 1]− P[A1(R) = 1]

∣∣∣ (i),(ii)=
∣∣∣P[A

(1)
2 (qfK) = 1]− P[A

(`)
2 (qr) = 1]

∣∣∣
(iii)

≤
∑̀
i=1

∣∣∣P[A
(i)
2 (qfK) = 1]− P[A

(i)
2 (qr) = 1]

∣∣∣ =
∑̀
i=1

∆A
(i)
2 (qfK ,qr) . (9)

Now we define A2 to initially choose an index i ∈ {1, . . . , `} uniformly at random and then act as

A
(i)
2 . This implies

∆A2(qfK ,qr) =
1

`
·
∑̀
i=1

∆A
(i)
2 (qfK ,qr)

and hence concludes the proof of Lemma 5. ut

Lemma 6. There exists an explicit reduction T2 (described in the proof) such that for any non-
adaptive adversary A2 against the NA-PRFq-security of f, running in time t′+O(`q) and asking at
most q queries, A3 := TA2

2 is a non-adaptive adversary against the NA-PRF-security of f running
in time t′ +O(`q) and asking at most q queries, such that ∆A2(qfK ,qr) ≤ q ·∆A3(fK , r).

Proof (of Lemma 6). Let us again describe a sequence of adversaries A
(i)
3 for i ∈ {1, . . . , q}. Given

access to an oracle g, which is either fK (for an independent random key K), or an independent

random function r, A
(i)
3 works as follows:

1. It runs A2 to obtain its q non-adaptive queries (o1, x1), . . . , (oq, xq), each consisting of a pair
(o, x) representing a query x to A2’s o-th oracle.

2. A
(i)
3 chooses i − 1 independent random keys K1, . . . ,Ki−1 ∈ {0, 1}c. Then, it determines the

response rj to each query (oj , xj) as

rj ←


fKoj

(xj) if oj < i

g(xj) if oj = i
roj (xj) if oj > i,

where ri+1, . . . , rq are independent uniformly random functions, sampled internally by A
(i)
3 (us-

ing lazy sampling to maintain efficiency). All g-values required for this computation are obtained
by querying the g-oracle and once again this can be done non-adaptively. The tuple of responses
(r1, . . . , rq) is given to A2.

3. A
(i)
3 outputs the same bit that A2 does.

This time it is easy to observe that we have
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(iv) A2(qfK) = A
(q)
3 (fK)

(v) A2(qr) = A
(1)
3 (r)

(vi) A
(i)
3 (fK) = A

(i+1)
3 (r) for all i ∈ {1, . . . , q}

and hence, similarly as in (9), we get

∆A2(qfK ,qr)
(iv),(v)

=
∣∣∣P[A

(q)
3 (fK) = 1]− P[A

(1)
3 (r) = 1]

∣∣∣ (vi)≤ q∑
i=1

∆A
(i)
3 (fK , r) . (10)

Again, letting A3 be an adversary that chooses a random index i ∈ {1, . . . , q} and then simulates

A
(i)
3 gives us

∆A3(fK , r) =
1

q
·

q∑
i=1

∆A
(i)
3 (fK , r) ,

thus proving Lemma 6. ut

The proof of Proposition 1 is now concluded by combining the two reductions described above.

For any (ε′, t′, q, `)-NA-PF-PRF adversary A against Cascf , we let TA := T
TA
1

2 and observe that

∆A(CascfK ,R) ≤ `q · ∆TA
(fK , r) while TA runs in time t′ + Õ(`q) and asks at most q queries as

desired. ut

B Proof of Proposition 2

In this appendix we fill in the details omitted in the sketch of the proof of Proposition 2 in Sec-
tion 3.2.

Proposition 2 (restated). Let b, c, ` be positive integers such that b ≥ c, let εna ∈ (0, 1), and
moreover, assume that pseudo-random functions exist. Then there exists a function f : {0, 1}c ×
{0, 1}b → {0, 1}c and an adversary A against NMACf such that for any q that satisfies εna =
ω(q22−b, 2−c), we have:

– f is (εna, t, q)-NA-secure PRF;
– the adversary A, when asking q queries of length ` blocks each, runs in time Õ(`q) and achieves

distinguishing advantage
∆A(NMACf

K ,R) = Θ(`qεna) .

In particular, NMACf is not an (o(`qεna), Õ(`q), q, `)-secure PRF.

Proof. We start by showing how to construct the (εna, t, q)-NA-secure PRF f. To simplify our
technical arguments later, we design f in such a way that besides having weak keys as sketched
in Section 3, it also satisfies the additional property that for any key k ∈ {0, 1}c and a uniformly
distributed input U ∈ {0, 1}b, the value f(k, U) is also uniformly distributed. Having this goal in
mind, we construct f starting from a pseudo-random permutation (which exists by our assumption
and the result [21]). Consider any (εna/4, t, q)-NA-secure PRP π : {0, 1}c × {0, 1}b → {0, 1}b and a
set of “weak keys” K ⊆ {0, 1}c of size 2c(εna/2), defined as K := 01−log εna‖{0, 1}c+log εna−1 (the set
of keys where the first 1− log εna bits are 0). Let [·]c represent the truncation of a longer bitstring
to its first c bits. We fix a value w ∈ K (say w = 0c) and define f as

f(k, x) :=

{
w for k ∈ K,
[π(k, x)]c for k 6∈ K.
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Hence, f behaves as a truncated version of π except when a weak key from K is used, in this case
f(k, ·) always outputs w. By the well-known PRF/PRP switching lemma [15] we obtain that π is
also an (εna/4 + q2/2b, t, q)-NA-secure PRF and by assumption εna/4 + q2/2b ≤ εna/2. It is easy to
see that this implies that also [π(·)]c is an (εna/2, t, q)-NA-secure PRF. By redefining [π(·)]c on an
εna/2-fraction of the keys at most an εna/2 term in the PRF-distinguishing advantage is lost, hence
the function f is an (εna, t, q)-NA-secure PRF.

Now consider two queries M1,M2 to NMACf(K = (K1,K2), ·) which are determined by first
sampling an (` − 1)-block message M = m1‖ · · · ‖m`−1 ∈ {0, 1}b(`−1) at random and then setting
M1 = M‖x1 and M2 = M‖x2 for some distinct blocks x1, x2 ∈ {0, 1}b. Let Z0 := K1 and Zi :=
f(Zi−1,mi) for i ∈ {1, . . . , `−1}. If any of the `−1 intermediate values Z1, . . . , Z`−1 in the evaluation
of the inner function Cascf(K1,M) is in K, then Cascf(K1,Mi) = w for both i ∈ {1, 2} and hence
also NMACf(K,M1) = NMACf(K,M2). We now lower-bound the probability of this event occurring.
Since M is chosen independently and uniformly at random, the construction of f from a permutation
implies that each value Zi will also be distributed uniformly at random and independently of K, as
long as Zi−1 6∈ K. Therefore, we obtain

PK,M [{Z1, . . . , Z`−1} ∩ K 6= ∅] = 1− PK,M [{Z1, . . . , Z`−1} ∩ K = ∅]

= 1−

(
PK,M [Z0 6∈ K] ·

`−1∏
i=1

PK,M [Zi 6∈ K|Zi−1 6∈ K]

)

= 1−
(

1− εna
2

)`
≥ `εna/4 .

As explained above, this also lower-bounds the probability of a collision between NMACf(K,M1)
and NMACf(K,M2).

Now, consider an adversary A that queries NMACf
K on q/2 such random and independently

sampled message pairs M1,M2 and outputs 1 if and only if it observes a collision for at least one
such pair. A interacting with NMACf

K outputs 1 with probability

1−
(

1− `εna
4

)q/2
≥ `qεna

16
= Θ(`qεna) .

However, in the interaction with the random function R, A clearly outputs 1 with probability only
O(q/2c). By our assumption on εna, we get q/2c = o(`qεna) and hence also ∆A(NMACf

K ,R) =
Ω(`qεna) as desired. ut

C Tightness of Lemma 4 and Theorem 2

In this appendix we prove a lower bound, for a particular pair of messages M = {m1,m2}, on
the number of structure graphs that contain exactly one f -collision and where the final vertices
V `1
1 and V `2

2 of their message paths coincide. As in Lemma 4 we consider both the case where the
messages are required to have the same length, and the case without this requirement. Recall that
H(M) denotes the set

H(M) :=
{
G ∈ G1(M) : V `1

1 = V `2
2

}
of such graphs and d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}|. Proposition 3 below shows that Lemma 4
is tight (up to a constant factor 4).

Proposition 3. There exist two distinct messages M = {m1,m2}, each of length at most ` blocks,

such that |H(M)| ≥ `·d′(`)
4 . Moreover, if we additionally require |m1| = |m2| then there exist two

equal-length messages M = {m1,m2} of length at most ` blocks such that |H(M)| ≥ `.
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i = [i+ d]G

` = 8, `′ = 4
m1 = 08b, m2 = 04b

i = 2, d = 4

Fig. 6. A sample graph Gi,d for the proof of Proposition 3.

Proof. Again, let us first consider the case where |m1| = |m2| is not required. Given `, let `′ ≤ `/2
be any positive integer such that d(`′) = d′(`/2) (it exists by the definition of d′(·)). We choose
m1,m2 ∈ {0, 1}b∗ to be the messages consisting of `/2 + `′ and `/2 equal blocks 0b, respectively.
Now, we describe ` · d′(`)/4 distinct structure graphs and show that they are all in H(M), thus
establishing the proof of the first part.

For every i ∈ {0, . . . , `/2} and every d that is a divisor of `′, we denote by Gi,d the structure
graph constructed as follows: Informally, the graph corresponding to m1 starts with a path of length
i + d − 1 edges, and the (i + d)-th edge returns to vertex i, hence causing a collision. Note that
now we have a ρ-shaped graph (where the cycle has length d), and the remaining edges of m1 must
follow the edges along the cycle in that graph. Since m2 is a prefix of m1, this also determines the
m2-path (see Figure 6 for a sample Gi,d). Formally, Gi,d := (V, E ,L) where

V := {0, . . . , i+ d− 1},
E := {(j − 1, j) | 1 ≤ j ≤ i+ d− 1} ∪ {(i+ d− 1, i)} and

L(u, v) := {0b} for all (u, v) ∈ E .

It is clear from the definition of Gi,d that for distinct (i, d) 6= (i′, d′) we also have Gi,d 6= Gi′,d′ .
Moreover, we claim that for each (i, d) chosen as above, Gi,d ∈ H(M). To see this, observe that
the m1-path ends in the vertex i + (`/2 + `′ − i mod d), while the m2-path ends in the vertex
i+(`/2− i mod d). Since d|`′, this is actually the same vertex and we have V `1

1 = V `2
2 , establishing

Gi,d ∈ H(M). There are (`/2 + 1) · d(`′) ways to choose a tuple (i, d) with i ∈ {0, . . . , `/2} and d
being a divisor of `′, and thus H(M) has at least (`/2 + 1) · d(`′) ≥ `/2 · d′(`/2) ≥ `d′(`)/4 distinct
elements as claimed.

For the case |m1| = |m2|, consider the messages m1 = 1b0b(`−1) and m2 = 01b−10b(`−1). These
messages are both of length ` blocks and differ in their first blocks, while the remaining `−1 blocks
consist of zeroes in both messages. We again construct ` distinct structure graphs and show that
they all belong to H(M).

For every i ∈ {1, . . . , `}, we denote by G(i) the structure graph constructed as follows: Infor-
mally, the subgraph corresponding to m1 is a path of length `, not containing any collision itself.
Since m2 differs from m1 in the first block, the m2-path will not overlap with the m1-path as long
as no f -collision occurs. In the graph G(i), we let this collision happen for the i-th edge of the
m2-path, hitting the vertex i on the m1-path. In particular, in the case i = 1 the collision occurs
by having V 1

1 = V 1
2 even though the first blocks of the messages differ. See Figure 7 for a sample
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m1 = 1b03b, m2 = 01b−103b

Fig. 7. A sample graph G(i) for the proof of Proposition 3.

G(i). Formally, G(i) := (V, E ,L) where

V := {0, . . . , `+ i− 1},

E :=

{
{(j − 1, j) | 1 ≤ j ≤ `} if i = 1
{(j − 1, j) | j ∈ {1, . . . , `+ i− 1} \ {`+ 1}} ∪ {(0, `+ 1)} ∪ {(`+ i− 1, i)} if i > 1

L(u, v) :=



{1b, 01b−1} if (u, v) = (0, 1) and i = 1
{1b} if (u, v) = (0, 1) and i > 1
{0b} if (u, v) ∈ {(j − 1, j) | j ∈ {1, . . . , `+ i− 1} \ {`+ 1}}
{0b} if (u, v) = (`+ i− 1, i) and i > 1
{01b−1} if (u, v) = (0, `+ 1) and i > 1
∅ otherwise.

Again, it is clear from the definition of G(i) that for distinct i 6= i′ we also have G(i) 6= G(i′).
Moreover, it is easy to see that for each i ∈ {1, . . . , `} we have G(i) ∈ H(M). This proves that in
this case |H(M)| ≥ ` as desired. ut

Finally, the ideas from the proof of Proposition 3 above can be used to give a simple non-
adaptive distinguishing attack achieving advantage Θ(`q2/2c) against LenCascf10 . f2, i.e., against
the system that we obtain after replacing h in NIh by a random compression function. We sketch
this attack below, hence showing that the information-theoretic analysis in Theorem 2 is tight.

The adversary simply chooses q messages m1, . . . ,mq of the form mi = xi‖0b(`−1) for arbitrary

distinct xi’s. For any 1 ≤ i < j ≤ q and any 1 ≤ p ≤ `, we will have a collision f2(LenCasc
f1
0 (mi)) =

f2(LenCasc
f1
0 (mj)) if the outputs after computing the inner cascade Cascf10 on the p-block prefixes of

mi and mj collide (as their suffixes and lengths are identical, and thus such a collision implies that
also the final values collide). The probability that for any fixed (i, j, p) this happens, conditioned
on that this collision is not predetermined (i.e., either p = 1 or Cascf10 applied to the (p − 1)-
block prefixes did not collide) is roughly 2−c as long as ` � 2c/2. We can choose triples (p, i, j) in
`q(q − 1)/2 = Θ(`q2) ways, and as just explained every such triple defines a possible event that
leads to a collision and has probability ≈ 2−c (and these events are disjoint as we required the
collisions not to be predetermined), hence this gives the claimed Θ(`q2/2c) bound.
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