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Abstract 

The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar 

protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the 

endocytic pathway from the plasma membrane to the vacuole. However, the 

intracellular location at which these two pathways converge remains unclear. 

Additionally, the endocytic pathway is not completely blocked in yeast cells lacking all 

Rab5 genes, suggesting the existence of an unidentified route that bypasses the 

Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic 

and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. 

We also identify a previously unidentified endocytic pathway mediated by the AP-3 

complex. Importantly, the AP-3-mediated pathway appears mostly intact in 

Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. 

We propose that the endocytic traffic branches into two routes to reach the vacuole: a 

Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway. 
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 Endocytosis is a process in which a portion of the plasma membrane buds 

inwards towards the cytoplasm to form a clathrin-coated vesicle containing various 

cargo, such as membrane proteins and extracellular molecules. Once the endocytic 

vesicles are uncoated, they are capable of fusing with internal organelles, thereby 

delivering the cargo to the early endosome, where they are sorted to recycling 

endosomes that bring the cargo back to the plasma membrane1, 2, or to late 

endosomes/multivesicular bodies (MVBs) en route to the lysosome/vacuole for 

degradation. Genetic analyses in yeast have led to the identification of over 70 proteins 

necessary for the transport and sorting of newly synthesized proteins to the yeast 

vacuole, an organelle that shares several characteristics with the lysosomes of higher 

animals3. These proteins control two major trafficking pathways from the trans-Golgi 

network (TGN) to the vacuole, the vacuolar protein sorting (VPS) and the adaptor 

protein (AP)-3 mediated sorting pathways4-6. Proteins trafficked via the VPS pathway 

transit through late endosomes/MVBs en route to the vacuole, whereas the AP-3 

pathway mediates transport to the vacuole independently of the late endosomes/MVBs. 

Although several studies suggested that the route taken to the vacuole by proteins that 

have been endocytosed from the plasma membrane converges with the route taken by 

vacuolar proteins traversing the VPS pathway at the late endosomes/MVBs7-11, the 

intracellular location at which these pathways converge is still controversial. In addition, 

the involvement of the AP-3 pathway in the endocytic pathway has not been clear 

although several studies suggested a role for AP-3 complex at the early endocytic 

compartment12 13.   



 3 

The small GTPase, Rab5, is a key regulator of early endocytosis, being 

involved in targeting plasma-membrane-derived endocytic vesicles to endosomes, 

fusion between early endosomes, MVB biogenesis, and endosomal motility14-18. In 

addition to these traditional roles, it has recently been demonstrated that Rab5 has a role 

in maturation of the early to the late endosome19-21. Deletion of the yeast Rab5 gene, 

VPS21, results in accumulation of the vacuolar protein Vph1p delivered from the VPS 

pathway and the cell-surface receptor Ste3p delivered from the endocytic pathway in 

distinct vesicles11, suggesting that Vps21p can function at two distinct transport steps – 

vacuolar transport from the TGN and the early-to-late endosome transition, before 

convergence of the endocytic and VPS pathways. Since the specific role of mammalian 

Rab5 in trafficking from the Golgi to the lysosome has not been well defined, it is 

difficult to integrate data pertaining to the function of Vps21p in the VPS pathway in 

yeast with the established roles of mammalian Rab5 in the endocytic pathway. 

Furthermore, it remains unclear if Rab5 coordinates these two pathways individually 

and whether Rab5 is necessary for convergence of these pathways. Importantly, the 

endocytic pathway is not completely blocked in cells lacking all Rab5 genes, including 

VPS21, YPT52, and YPT53, in yeast22, suggesting the existence of an unidentified route 

that can mediate the endocytic pathway instead of the VPS pathway.  

Unlike other trafficking pathways, the endocytic pathway has an advantage in 

that the starting compartment, the plasma membrane, is accessible from the extracellular 

space, and thereby can be visualized using fluorescent molecules that are introduced to 

the cell externally. We have previously developed fluorescently labeled derivatives of 
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α-factor as novel endocytic markers that bind to the Ste2 receptor, and then become 

internalized by receptor-mediated endocytosis, finally undergoing trafficking to the 

vacuole23. These fluorescent molecules label the endocytic pathway specifically and 

time-dependently, and do not label other pathways such as the recycling pathway, 

thereby allowing visualization of the whole route taken by endocytosed cargo before 

delivery to the vacuole. In the present study, we use these markers to reveal that Vps21p 

is required for the process of endosome fusion in the Rab5-dependent endocytic 

pathway. We also identify a Rab5-independent endocytic pathway in yeast that depends 

on the AP-3 adaptor complex.  
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RESULTS 

Subcellular localization of Vps21p in the endocytic pathway 

Vps21p has been demonstrated to associate with, and regulate, membrane 

trafficking through late endosomes/MVBs that receive both newly endocytosed cargo as 

well as newly synthesized proteins that are targeted to the vacuole11, 22. However, the 

precise step or steps controlled by Vps21p remain unclear. As a first step to clarifying 

this we wished to determine its subcellular localization, using an N-terminal 

GFP-tagged protein expressed from the endogenous locus (Supplementary Fig. 1a) (see 

Methods for details). The functionality of this GFP-tagged Vps21p was confirmed by 

testing its ability to complement the growth phenotype of vps21Δ ypt52Δ cells on YPD 

plates containing 400 mM CaCl218 (Fig. 1a). GFP-Vps21p was clearly detected as 

numerous small puncta throughout the cytoplasm and prevacuolar compartments 

(PVCs) (Fig. 1b). By comparing the localization of GFP-Vps21p with mCherry-tagged 

specific markers for organelles, we detected high colocalization of GFP-Vps21p with 

mCherry-tagged Hse1p (79.7 ± 2.3%, mean ± s.d., n = 3), a marker of the ESCRT-0 

complex24, 25, partial colocalization with Vps26p (52.8 ± 10.5%, n = 3), a component of 

the retromer complex that localizes to the late endosomal/prevacuolar compartments25, 

26, and slight colocalization with Sec7p (9.5 ± 2.3%, n = 3), a trans-Golgi marker27 (Fig. 

1c, d). On the other hand, Vps21p was rarely colocalized with the mitochondria labeled 

by mitotracker (<2%) used as a negative control (Fig. 1c, d). We next utilized Alexa 

Fluor 594-α-factor (A594-α-factor), to label the receptor-mediated endocytic pathway23, 

28 and examine the localization of Vps21p in endocytic compartments. GFP-Vps21p 
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was highly colocalized with A594-α-factor-labeled endosomes at 5-10 min after 

α-factor internalization (Fig. 1e, f). In contrast, little localization of Alexa Fluor 

488-α-factor (A488-α-factor) was observed in the mitochondria (<2%) (Fig. 1e). These 

data show that the predominant localization of Vps21p is at early-to-late endosomes. 

Notably, within 5 min after A594-α-factor internalization, we often observed 

endosomes, colabeled with A594-α-factor and GFP-Vps21p, fusing with each other and 

resulting in the formation of enlarged endosomes (Fig. 1g and Supplementary Movie 1). 

These observations suggest that Vps21p is localized to maturing endosomes and might 

mediate fusion of these compartments. 

 

Fusion of early endosomes is impaired in vps21Δ  ypt52Δ  cells 

To clarify the step(s) of endocytic transport that require the function of 

Vps21p, we examined the effect of deleting VPS21 family genes on the endocytic 

pathway. We first confirmed that deletion of the VPS21 gene had little effect on 

35S-labeled α-factor internalization even when combined with ypt52Δ, suggesting that 

Vps21p and Ypt52p are not required for the formation and internalization of endocytic 

vesicles22 (Supplementary Fig. 1b). We next labeled wild-type and VPS21 family 

mutant cells with A594-α-factor and followed the localization at several time points 

after α-factor internalization. Aberrant accumulation of A594-α-factor in multiple 

endosomal compartments was observed in vps21Δ cells, resulting in a delay of α-factor 

transport to the vacuole (Fig. 2a). In contrast, single mutants for YPT52 or YPT53, 

another paralog of VPS21, showed only a negligible defect in A594-α-factor transport 
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(Fig. 2b), consistent with a prior study22. Quantitative analysis categorizing 

A594-α-factor localization as vacuole only, endosome and vacuole, or endosome only, 

revealed that the combination of the vps21Δ and ypt52Δ mutations had a more severe 

effect than the vps21Δ single mutants (Fig. 2a, b). No further additional effect was 

observed in vps21Δ  ypt52Δ  ypt53Δ  triple mutants. We next analyzed temporal changes 

in the number of A594-α-factor-positive endosomes. A594-α-factor began to 

accumulate in the early endocytic compartments, resulting in an increased number of 

A594-α-factor-labeled endosomes, by 5 min in both wild-type and vps21Δ ypt52Δ cells 

(Fig. 2c, d). In wild-type cells, after reaching a maximum, the number of 

A594-α-factor-labeled endosomes decreased until most A594-α-factor had been 

transported to the vacuole (Fig. 2c, d). In contrast, the number of endosomes in 

vps21Δ ypt52Δ cells increased continuously until 10 min after α-factor internalization, 

and reached about a 3-fold higher level than that seen in wild-type cells (Fig. 2 c, d). 

The behaviors of A594-α-factor-labeled endosomes in vps21Δ ypt52Δ cells were not 

affected by expressing GFP-fused proteins used in this study (Supplementary Fig. 2 and 

Movie 2). These observations suggest that progression beyond the early endocytic stage 

is impaired in vps21Δ ypt52Δ cells. Next, using electron microscopy, we explored the 

ultrastructure of endosomal compartments where α-factor had accumulated. Various 

sizes of accumulated vesicles (~40-150 nm) were observed in vps21Δ ypt52Δ cells, 

whereas in wild-type cells such structures were rarely detected (Fig. 2e). The range of 

vesicle diameters was relatively greater than that of vesicles identified previously 

(~40-60 nm)22. To identify the endosomal compartment in which α-factor had 



 8 

accumulated at a higher level of resolution, we used immuno-EM. When applied to 

wild-type cells, the anti-Alexa Fluor 488 antibody predominantly labeled the vacuole 

(Fig. 2f). In contrast, vps21Δ ypt52Δ cells showed several clusters of gold particles over 

vesicles of different sizes (Fig. 2f). Their diameter of ~40-150 nm supported the 

conclusion that these are endosomes rather than endocytic vesicles. Thus our analysis 

supports the idea that transport of α-factor is inhibited at the early endosome stage in 

vps21Δ ypt52Δ cells due to a block in endosomal fusion and maturation.  

 

Convergence of the endocytic pathway with the VPS pathway 

We next wished to investigate if VPS21 and YPT52 were required before or 

after the convergence of the VPS pathway with the endocytic one. We used GFP-tagged 

Vph1p, a vacuolar ATPase, as a marker for the VPS pathway29-31. In agreement with 

previous observations22, Vph1p was ectopically localized to multiple punctate 

compartments in vps21Δ ypt52Δ cells (Fig. 3a, b). We again used A594-α-factor to mark 

the endocytic pathway. We found that ~70% of the Vph1-GFP in vps21Δ ypt52Δ cells 

was colocalized with A594-α-factor (Fig. 3c, d and Supplementary Movie 3), 

supporting the conclusion that Vps21p and Ypt52p act after the convergence of the two 

pathways. Our results differed from previous observations that the cell-surface receptor, 

Ste3p, and Vph1p accumulate in different transport intermediates in these cells11. In 

order to resolve this issue, we examined the localization of mCherry-fused Ste3p and 

Vph1-GFP in vps21Δ ypt52Δ cells. In wild-type cells, both Ste3p and Vph1p are 

transported to, and colocalize at, the vacuole (Fig. 3e). Unexpectedly, we observed that 



 9 

~58.1% of the Vph1-GFP in vps21Δ ypt52Δ cells colocalized with Ste3-mCherry, in the 

same manner as A594-α-factor. This observation further supports the idea that the 

endocytic pathway intersects the VPS pathway at an early stage of endocytosis, 

independently of yeast Rab5s. 

Similarly to the effect on A594-α-factor (Fig. 2a, b), Vph1-GFP localized 

normally to the vacuole in ypt52Δ mutants, whereas the combination of the vps21Δ and 

ypt52Δ mutations showed a more severe phenotype, blocking Vph1p transport beyond 

the endosome (Fig. 3a, b) with ~85% of cells now showing localization only to the 

endosome and not the vacuole. These data suggested that convergence of the endocytic 

pathway with the VPS pathway is not impaired in vps21Δ ypt52Δ cells and that they 

work together to permit transport from the endosome to the vacuole. To confirm this 

finding we also used another marker for the VPS pathway, Vps10p, which is reported to 

cycle between the TGN and prevacuolar/late endosomal compartments through the 

early endosome3, 32, 33. Similarly to Vph1p, Vps10p accumulated in prevalent punctate 

compartments labeled with A594-α-factor in vps21Δ ypt52Δ cells (Fig. 3f, g). In 

contrast, we found that A594-α-factor rarely colocalized with the late 

endosomal/prevacuolar compartment marker Vps26p in vps21Δ ypt52Δ cells (Fig. 3h)25, 

26. Since most of the A594-α-factor was transported to the vacuole through 

Vps26p-positive compartments that were highly colocalized with Vps21p in wild-type 

cells (Fig. 1e and 3h), it seems that A594-α-factor was unable to reach the late 

endosomal/prevacuolar compartments in vps21Δ ypt52Δ cells. Collectively, our results 

suggest that Vps21p and Ypt52p are not required for the fusion of endocytic vesicles 
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with TGN-derived transport vesicles utilizing the VPS pathway, but are essential for 

progression of cargo beyond early endosomes.  

 

Involvement of the AP-3 pathway in the endocytic pathway 

Transport of A594-α-factor to the vacuole was retarded but not completely 

blocked in vps21Δ ypt52Δ and vps21Δ ypt52Δ ypt53Δ mutants (Fig. 2b and 4a, b). 

Therefore, we speculated that α-factor might bypass the transport defect in these 

mutants by utilizing other intracellular trafficking pathway(s) en route to the vacuole. 

The AP-3 complex-mediated pathway is known to be another pathway for transporting 

biosynthetic cargo from the TGN to the vacuole in most eukaryotic cells34. We first 

examined if the AP-3 pathway was still intact upon deletion of VPS21 family genes, 

using the chimeric protein GFP–Nyv1–Snc1-TMD (GNS), which accumulates at the 

plasma membrane if the AP-3 pathway is defective35. While GNS was missorted to the 

plasma membrane in cells depleted of Apm3p, it was transported normally in vps21Δ 

ypt52Δ or vps21Δ ypt52Δ ypt53Δ mutants (Fig. 4c), indicating the presence of a 

functional AP-3 pathway capable of transporting cargos from the TGN to the vacuole. 

To examine the involvement of the AP-3 pathway in α-factor transport in 

Rab5-disrupted cells, we further deleted the APM3 gene in vps21Δ 

ypt52Δ ypt53Δ mutants. Since the vacuoles in the vps21Δ ypt52Δ  ypt53Δ  apm3Δ 

quadruple mutant appeared to be smaller than those in other mutants, we assessed the 

integrity of the vacuoles in each mutant. As reported previously, vps21Δ ypt52Δ and 

vps21Δ ypt52Δ  ypt53Δ cells exhibited a class D-like vps phenotype, characterized by 
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vacuolar enlargement, similar to that reported for vps21Δ cells (Supplementary Fig. 

3a)22, 31. By using different interference contrast (DIC) microscopy, we observed that 

most of the wild-type, vps21Δ, vps21Δ ypt52Δ, or vps21Δ ypt52Δ  ypt53Δ cells contained 

single or multiple vacuoles (Supplementary Fig. 3a, b).  In contrast, the proportion of 

quadruple mutant cells containing visible vacuoles was decreased to ~78.8% 

(Supplementary Fig. 3a, b). These results suggest that the AP-3-mediated pathway 

might be required for transporting membrane lipids, as well as cargo proteins, to the 

vacuole from the Golgi in Rab5-disrupted cells. We next examined A594-α-factor 

transport to the vacuole in these mutants in the majority of cells that contained visible 

vacuole(s). Intriguingly, we found that α-factor transport was little affected by the 

apm3Δ mutant but severely affected in the quadruple mutant (Fig. 4a, b). We also found 

that α-factor transport in vps21Δ apm3Δ cells is slightly delayed, compared to that in 

vps21Δ single mutant cells (Supplementary Fig. 3c), suggesting that α-factor is 

transported to the vacuole via the AP-3-mediated pathway in Rab5-disrupted cells. 

We next sought direct evidence that A594-α-factor could be transported to the 

vacuole via the AP-3 pathway, independently of the VPS pathway. We utilized 

A594-α-factor and GFP-fused Apl5p, an AP-3 complex subunit localizing at the TGN 

and transport vesicles36. Apl5-GFP was observed in the cytoplasm as multiple small 

puncta, and the localization and number of Apl5-GFP puncta were not affected by 

deleting yeast Rab5s or expressing mCherry-tagged Abp1p (Supplementary Fig. 4 and 

Movie 4). We found that a proportion of the A594-α-factor became transiently 

colocalized with Alp5p-residing vesicles and was then translocated to the vacuole, in 
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both wild-type and vps21Δ ypt52Δ cells, although the trafficking was retarded in vps21Δ 

ypt52Δ cells relative to wild-type cells (Fig. 4d, e). ~80% of Apl5p appeared to reside 

on vesicles that do not include Vph1p in vps21Δ ypt52Δ cells (Supplementary Fig. 5a) 

supporting the idea that the VPS and AP-3 pathway are separate. About 20% of each of 

the Vph1p and Apl5p localization also colocalized with Sec7p, suggesting that 

colocalization of Apl5p and Vph1p occurred predominantly at the TGN in vps21Δ 

ypt52Δ cell (Supplementary Fig. 5a-c). Again, neither Vph1p nor Apl5p colocalized 

with the mitochondria labeled by mitotracker (<2%) used as a negative control 

(Supplementary Fig. 5d). Furthermore, triple staining of vps21Δ ypt52Δ cells with 

Vph1-GFP, Apl5-mCherry, and Alexa Fluor 647-labeled α-factor (A647-α-factor) 

demonstrated that ~65.3% and ~26.6% of α-factor resided in the VPS pathway and the 

AP-3 pathway, respectively, on different endosomes (Fig. 4f, g). Although triple color 

imaging causes a ~2.5 sec time lag for acquiring three different color images, we 

detected remarkable colocalization of α-factor with Vph1p or Apl5p in distinct 

endosomes in vps21∆ ypt52∆ cell. This could be due to the relatively slow motility of 

endosomes accumulated in vps21∆ ypt52∆ cell. As shown in Supplementary Movie 3, 

endosomes containing both α-factor and Vph1p at 20 min after α-factor internalization 

often stay around more than several seconds and therefore made it easy to observe 

colocalization. We hypothesize that the motility of endosomes might decrease in 

vps21∆ ypt52∆ cells because the fusion or maturation of these endosomes is suppressed. 

 

The AP-3-mediated endocytic pathway exists in wild-type cells 
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We next investigated the AP-3-mediated endocytic pathway in wild-type cells. 

As shown in Fig. 5a and 5b, Vps21p colocalized little with Apl5p (~5.4%), and 

A647-α-factor was located in distinct Apl5p- or Vps21p-labeled endosomes in 

wild-type cells, supporting the idea that the AP-3-mediated endocytic pathway is 

independent of Rab5. Although colocalization of α-factor with Apl5p or Vps21p was 

detected by triple staining (Fig. 5b), since some of the endosomes in which α-factor 

resides in wild-type cells move actively and fuse with each other at 5-10 min after 

α-factor internalization (Fig. 1g and Supplementary Movie 1), it was a little inaccurate 

to quantify colocalization between these molecules by using triple staining which has a 

~2.5 sec lag for acquisition of all three channels. To assess with high precision what % 

of α-factor is transported via the Rab5-independent AP-3 pathway in wild-type cell, we 

analyzed colocalization between A594-α-factor and Vps21p or Apl5p by simultaneous 

double color time-lapse imaging. Live-cell imaging of Apl5-GFP and A594-α-factor 

demonstrated that appreciable localization of A594-α-factor was observed in several 

Apl5-GFP-labeled endosomes in wild-type cells (Fig. 5c, d and Supplementary Movie 

5). To quantify the colocalization accurately, we defined the colocalization by the 

presence of two fluorescence molecules at the same endosome for at least 5 sec in the 

time-lapse imaging. These analyses demonstrated that ~11.1% or ~82.6% of 

A594-α-factor resides in and moves together with Apl5-GFP or GFP-Vps21p 

(Supplementary Movie 1), respectively (Fig. 5e). These results, taken together, suggest 

the presence of a novel AP-3-mediated endocytic pathway en route to the vacuole in 

wild-type cells. 
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Association of endocytic vesicles with AP-3-coated vesicles 

 The unexpected connection between endocytic trafficking and the AP-3 

pathway motivated us to further examine the dynamics of endocytic vesicles and 

Apl5p-residing endosomes in vps21Δ ypt52Δ cells. Abp1p is a marker used for 

visualizing the formation and internalization of endocytic vesicles37, and we previously 

showed that after binding to α-factor, the Ste2p receptor is recruited to and endocytosed 

via Abp1p-labeled clathrin-coated vesicles23, 28. Accordingly, we considered 

Abp1-mCherry patches to be endocytic vesicles in which α-factor and its receptor 

would be incorporated, and analyzed their dynamics in vps21Δ ypt52Δ cells. The 

lifetime of Abp1-mCherry patches in vps21Δ ypt52Δ cells (14.7 ± 2.9 s, mean ± s.d., n = 

50 patches) was almost the same as that in wild-type cells (14.2 ± 2.1 s, n = 50 patches) 

(Fig. 6a). The fluorescence intensity and inward movement of Abp1-mCherry patches in 

vps21Δ ypt52Δ cells were also similar to those in wild-type cells (Fig. 6b, c), indicating 

that formation and internalization of endocytic vesicles at the plasma membrane 

appeared to be normal. Interestingly, by colabeling with Abp1p and Apl5p, we observed 

that some endocytic vesicles, moving in a directed manner toward Apl5p-positive 

endosomes, become transiently colocalized and move with Apl5p-positive endosomes 

before disappearing in vps21Δ ypt52Δ cells (Fig. 6d, e and Supplementary Movie 6).  

Quantitative analyses revealed that ~30% of Abp1p-labeled endocytic vesicles showed 

such dynamics both in wild-type and vps21Δ ypt52Δ cells (Fig. 6f). Thus, in yeast, 

endocytic vesicles appear to associate directly with TGN-derived transport vesicles in 
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the AP-3 pathway, independently of Rab5. To exclude the possibility that α-factor is 

first transported to the early or late Golgi and then exits via the VPS or AP-3 pathway, 

we examined whether A594-α-factor passes through the early/late Golgi en route to the 

vacuole. Vrg4p, an early Golgi marker, and Sec7p, a late Golgi marker, showed distinct 

distribution patterns, and less than 5% of these proteins were colocalized 

(Supplementary Fig. 6a). As shown in Supplementary Fig. 6b-d, A594-α-factor 

colocalized with neither Sec7p nor Vrg4p in wild-type cells at any of the time points 

examined. This suggests that transport of α-factor from the plasma membrane to the 

vacuole is not mediated via the Golgi compartments.  

 

DISCUSSION 

On the basis of the data presented above and in previous studies, we propose 

that the endocytic pathway separately intersects with two vacuolar targeting pathways: 

the Rab5-dependent VPS pathway and the Rab5-independent AP-3-mediated direct 

trafficking pathway (Fig. 6g). We also demonstrate that convergence of the endocytic 

and VPS pathways can occur at an early stage of endocytosis, independently of Rab5. 

Several studies based on FM4-64 uptake experiments and colocalization with TGN 

markers in higher plants and yeast have indicated that the TGN itself, or an intermediate 

TGN derivative, acts as an early endosome, receiving endocytosed material from the 

plasma membrane38-41.  In previous studies using tobacco BY-2 cells, Jiang and his 

colleagues demonstrated that FM4-64 internalized from the plasma membrane reaches 

early/recycling endosomes, which are characteristic clathrin-coated TGN compartments 
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defined by SCAMP1 and V-ATPase, before reaching the PVC/MVB39, 42. This finding 

suggests that a trafficking pathway exists that is conserved between yeast and plants 

although whether the TGN compartment serves as an early/recycling endosome remains 

unclear. FM4-64 is an excellent marker of the endocytic pathway in a broad range of 

organisms, but there is still some debate about the precise pathways of intracellular 

transport it follows, as FM4-64 is known to be distributed to different organelle 

membranes after endocytic internalization. In plant cells, FM4-64 becomes localized to 

the Golgi, PVC, and vacuolar membrane after 30 min of staining, and to many 

organelles involved in the secretory and recycling pathways, as well as the endocytic 

pathway, by 60 min43. In yeast, secretion of endocytosed FM4-64 via the recycling 

pathway is more rapid, and around half of the endocytosed FM4-64 is secreted within 

10 min via the recycling pathway44, probably through the TGN compartments. These 

observations suggest that it would be difficult to determine whether the FM4-64 

fluorescence at the TGN seen by Jiang et al is directly derived from the plasma 

membrane via the endocytic pathway or from the early/recycling endosome via the 

recycling pathway. In contrast, fluorescence labeling of α-factor labels the endocytic 

pathway specifically and time-dependently, and does not label other pathways such as 

the recycling pathway, thereby allowing visualization of the whole route taken by 

endocytosed cargo before delivery to the vacuole. In this study, we demonstrated that 

A594-α-factor-containing endosomes intersect the VPS pathway at post-TGN vesicles, 

not the TGN, since endocytosed A594-α-factor was not accessible to Sec7p-residing 

TGN (Supplementary Fig. 6b). Thus, in yeast, endocytic compartments that converge on 
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the VPS pathway are likely to be neither TGN nor PVC/MVB. 

In contrast to a previous observation11, we demonstrated that Ste3p and 

Vph1p reside in the same intracellular compartments in vps21Δ ypt52Δ cells.  Gerrard 

et al. separated the P13 membrane fraction of vps21Δ mutants by sucrose density 

gradient fractionation, and observed that Vph1p and Ste3p were separated in different 

subcellular fractions, suggesting that Ste3p and Vph1p do not accumulate in the same 

trafficking intermediates in vps21Δ cells11. However, they also showed that both Ste3p 

and Vph1p separated in the P100 fraction, which includes Golgi membranes and 

transport vesicles, although they did not examine the P100 fraction itself11. Thus, Ste3p 

and Vph1p might accumulate in the same transport vesicles that are included in the 

P100 fraction. 

The location where AP3 function is required has been unclear. Similarly to 

what is seen for the yeast AP-3 complex, loss of a functional AP-3 complex in 

mammalian cells leads to defects in the trafficking of several lysosomal membrane 

proteins, such as LAMPs and CD63, to the plasma membrane45, 46. A previous electron 

microscopy analysis in NRK cells demonstrated that AP-3 labeling is mainly associated 

within the TGN47, indicating the similar role of AP-3 in the intracellular transport from 

the TGN to lysosome. By contrast, several studies demonstrate the role of AP-3 

complex at early endosomal compartments. A quantitative study of AP-3 localization in 

HepG2 cells has revealed that AP-3-positive buds reside on the tubular recycling 

endosomes evolving from early endosomes that contain internalized transferrin and 

cation-independent mannose 6-phosphate receptor, markers of the endocytic recycling 
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pathway12. It is also reported that endocytosed VAMP7, a SNARE involved in the 

fusion of late endosomes and lysosomes, binds the δ-adaptin subunit of the AP-3 

complex at the early endosome, and then is transported to the late endosome/lysosomal 

compartment13. Whether AP-3 functions at early endosomal compartments, as shown in 

mammalian cells, or at the TGN, as originally proposed for yeast, is still under debate. 

Our findings provide an answer for this issue. AP-3 complex is first recruited to the 

TGN and forms vesicles containing lysosomal proteins. The AP-3-coated vesicle then 

fuses to endocytic vesicles, resulting in the formation of the early endocytic 

compartment (Fig. 6g). Thus, the AP-3 complex can function both at TGN and early 

endocytic compartment.
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METHODS 

Yeast strains and plasmids. The yeast strains used in this study are listed in 

Supplementary Table 1. All strains were grown in standard rich medium (YPD) or 

synthetic medium (SM) supplemented with 2% glucose and appropriate amino acids. 

The N-terminal GFP tag was integrated at the endogenous locus of the VPS21 gene as 

follows: The GFP (S65T) fragment whose stop codon was replaced with BglII site was 

subcloned into BamHI- and NotI-digested pBlueScript II SK (pBS-GFP), and the 

NotI-SacII fragment, which contains the S. cerevisiae ADH1 terminator and the 

His3MX6 module, was amplified by PCR using pFA6a-GFP (S65T)-HIS3MX6 as a 

template, and inserted into NotI- and SacII-digested pBS-GFP (pBS-GFP-HIS3). To 

create an integration plasmid, 245-bp 5' UTR of VPS21 gene and the N-terminal 

fragment of the VPS21 ORF (nt 1-476) were generated by PCR and cloned into the 

BamHI or BglII site of pBS-GFP-HIS3 (see Supplementary Fig. 1a). To integrate GFP 

at the N terminus of the VPS21 gene, the integration plasmid was linearized by EcoRV 

and transformed into yeast. The extra region generated by insertion of the integration 

plasmid was removed by PCR-based homologous recombination as shown in 

Supplementary Fig. 1a. The C-terminal GFP or mCherry tagging of proteins was 

performed by PCR-based homologus recombination using pFA6a-GFP(S65T) or 

pFA6a-mCherry, respectively, as a template48. 

 

Fluorescence microscopy. Fluorescence microscopy was performed using an Olympus 

IX81 microscope equipped with a x100/NA 1.40 (Olympus) objective and Orca-AG 
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cooled CCD camera (Hamamatsu), using Metamorph software (Universal Imaging). 

Simultaneous imaging of red and green fluorescence was performed using an Olympus 

IX81 microscope, described above, and an image splitter (Dual-View; Optical Insights) 

that divided the red and green components of the images with a 565-nm dichroic mirror 

and passed the red component through a 630/50 nm filter and the green component 

through a 530/30 nm filter. These split signals were taken simultaneously with one CCD 

camera, described above. To show what % of colocalization using the method is seen 

with a marker that is really in a distinct compartment, mitotracker (Life technologies), a 

marker for mitochondria, was used as a negative control. Triple color imaging of GFP, 

mCherry and Alexa Fluor 647 was performed using an Olympus IX81 microscope 

equipped with a high speed filter changer (Lambda 10-3; Shutter Instruments) that can 

change filter sets within 40 ms.  

 

Fluorescence labeling of α-factor and endocytosis assays. 3-Thiopropionyl-G3 was 

appended to the free ε-amine of K7 in otherwise fully-protected α-factor by standard 

DCC/HOBT FMOC solid phase chemistry, and Alexa-594 maleimide (Life 

technologies) was coupled to the purified peptide in NMM-HOAc buffer, pH 8.0. 

Peptides were purified by reversed-phase HPLC; structure and purity (>97 %) were 

assessed by ESI-FTICR mass spectrometry (Bruker, 9.4T). For endocytosis assays, cells 

were grown to an OD600 of ~0.5 in 0.5 ml YPD, briefly centrifuged, and resuspended in 

20 µl SM with 5 µM Alexa Fluor-labeled α-factor. After incubation on ice for 2 h, the 

cells were washed with ice-cold SM. Internalization was initiated by addition of SM 
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containing 4% glucose and amino acids at 25oC. 

 

Electron Microscopy. For morphological observation, chemically fixed specimens 

were embedded in Epoxy resin, and ultrathin sections were contrasted with 2% uranyl 

acetate in 70% methanol and Reynolds’ lead citrate. For immunoelectron microscopy, 

ultrathin sections of Lowicryl K4M-embedded specimens were treated with 5% 

NHS/1% BSA in PBS for 10 min to block non-specific binding, and then incubated 

with polyclonal rabbit anti-Alexa 488 (Invitrogen) at 4oC overnight. After washing with 

PBS, the sections were incubated with biotinylated goat anti-rabbit IgG (Vector 

Laboratories) at RT for 40 min. After washing with PBS, the sections were incubated 

with goat anti-biotin IgG conjugated with 8 nm colloidal gold at RT for 30 min. After 

washing with distilled water and drying, the sections were contrasted and observed in a 

transmission electron microscope (1200EX; JEOL) operating at 80 kV. 
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FIGURE LEGENDS  

Figure 1. Localization of GFP-tagged Vps21p expressed from its endogenous 

promoter in the endocytic pathway. (a) GFP-Vps21p complemented the growth 

phenotype of vps21Δ ypt52Δ cells. A dilution series of cells was plated on YPD plates 

containing 400mM CaCl2 and incubated at 25oC. (b) The endogenous localization of 

GFP-Vps21p in living cells. Cells expressing GFP-Vps21p were grown to early to 

mid-logarithmic phase in YPD medium at 25oC and observed by fluorescence 

microscopy and different interference contrast (DIC). (c) Localization of GFP-Vps21p 

and mCherry-tagged organellar markers in wild-type cells. Each image pair was 

acquired simultaneously using dual-channel two-dimensional (2D) imaging system (see 

Methods for details). Merged images of GFP and mCherry channels are shown in the 

lower panel. Arrowheads indicate examples of colocalization. (d) Quantification of 

colocalization of GFP-Vps21p and mCherry-tagged organelle markers. Colocalization 

was defined by the presence of two fluorescence molecules at the same location in 

single focal plane images. The percentages of colocalization were calculated as the ratio 

of GFP-Vps21p labeled endosomes (n = 100) colocalizing with each marker in each 

experiment. Error bars indicate the standard deviation (SD) from at least three 

independent experiments. (e) Localization of GFP-Vps21p in endocytic compartments. 

Cells expressing GFP-Vps21p were labeled with A594-α-factor as described in 

Methods. The images were acquired simultaneously at 5, 10, and 20 min after washing 

out unbound A594-α-factor and warming the cells to 25oC. Right panels show 

localization of A488-α-factor and mitotracker in wild-type cell. (f) Quantification of the 



 28 

colocalization of GFP-Vps21p with A594-α-factor at each time point. Colocalization 

was defined as described in (d). The percentages of colocalization were calculated as 

the ratio of A594-α-factor localized in Vps21p positive compartments (n = 50) in each 

experiment. Error bars represent the SD from at least three experiments. (g) Fusion of 

endosomes containing GFP-Vps21p and A594-α-factor (Supplementary Movie 1). 

Endosomes labeled with GFP-Vps21p and A594-α-factor were imaged in wild-type 

cells. Boxed areas denote the sites where two independent endosomes co-labeled with 

GFP-Vps21p and A594-α-factor were fused with each other, resulting in the formation 

of enlarged endosome. Time to acquire one image pair was 3.0 s. Scale bars, 2.5 µm. 

 

Figure 2. Accumulation of A594-α-factor in increased and enlarged endosomes in 

vps21Δ  ypt52Δ   cells. (a) Defective transport of A594-α-factor in vps21Δ cells. 

Wild-type, vps21Δ or vps21Δ ypt52Δ cells were treated with A594-α-factor, and the 

images were acquired 1, 20 and 40 min after washing out unbound A594-α-factor and 

warming the cell to 25oC. Scale bars, 5 µm. (b) Quantification of localization of 

A594-α-factor in wild-type and mutant cells at 20 min after internalization. Localization 

of A594-α-factor was categorized into three classes; vacuole only (red), endosome and 

vacuole (green), and endosome only (blue). Data show mean ± standard deviation (SD) 

from at least three experiments, with >100 cells counted for each strain per experiment. 

(c) Time-dependent changes of A594-α-factor localization in wild-type and vps21Δ 

ypt52Δ cells. Wild-type and vps21Δ ypt52Δ cells were labeled with A594-α-factor and 

imaged at indicated times. Scale bars, 2.5 µm. (d) Quantification of the number of 
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A594-α-factor positive endosomes displayed in (c). Data show the mean ± SD of three 

experiments, with 50 cells counted at each time point per experiment. (e) Ultrastructure 

of endosomal compartments observed in wild-type and vps21Δ ypt52Δ cells. Wild-type 

and vps21Δ ypt52Δ cells were grown at 25oC, and fixed with 2% formaldehyde and 

2.5% glutaraldehyde in phosphate buffer. Arrowheads point to various sizes of vesicles 

that accumulate in vps21Δ ypt52Δ cells. V, vacuole; N, nucleus. Scale bars, 1 µm. (f) 

Immunoelectron microscopic localization of A488-α-factor in wild-type and vps21Δ 

ypt52Δ cells. Wild-type and vps21Δ ypt52Δ cells were incubated with A488-α-factor 

and internalization was induced 20 min before 4% formaldehyde/0.05% glutaraldehyde 

fixation. Internalized A488-α-factor was labeled with rabbit anti-Alexa Fluor 488 

antibody followed by biotinylated goat anti-rabbit IgG and then goat anti-biotin IgG-CG 

(8 nm) conjugate. The bottom panel in vps21Δ ypt52Δ cell shows a high-magnification 

view of the boxed area. Arrowheads point to vesicular structures including 

A488-α-factor. Scale bars, 500 nm. 

 

Figure 3. Convergence of the endocytic pathway with the VPS pathway in vps21Δ  

ypt52Δ  cells. (a) Defective transport of Vph1p in vps21Δ ypt52Δ cells. Indicated 

genotypes expressing Vph1-GFP were grown to early to mid-logarithmic phase in YPD 

medium at 25oC and observed by fluorescence microscopy and DIC. (b) Quantification 

of Vph1-GFP localization in cells displayed in (a). The bar graphs represent the 

percentages of cells exhibiting Vph1-GFP localized at the vacuole only (red), endosome 

and vacuole (green), and endosome only (blue). Data show mean ± SD from at least 
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three experiments, with 50 cells counted for each strain per experiment. (c) 

Colocalization of A594-α-factor with Vph1-GFP in vps21Δ ypt52Δ cells. A594-α-factor 

was added to vps21Δ ypt52Δ cells and followed through the endocytic pathway for the 

indicated times. Each image pair was acquired simultaneously at indicated time using 

dual-channel 2D imaging system. Arrowheads indicate examples of co-localization. (d) 

Quantification of colocalization of A594-α-factor and Vph1-GFP in vps21Δ ypt52Δ 

cells. The percentages of colocalization were calculated as the ratio of Vph1-GFP 

labeled endosomes colocalizing with A594-α-factor in single focal plane images at each 

time point. 50 Vph1-GFP labeled endosomes were counted per experiment. Error bars 

represent the SD from at least three experiments. (e) Localization of Vph1-GFP and 

Ste3-mCH (mCherry) in wild-type and vps21Δ ypt52Δ cells. Cells expressing 

Vph1-GFP and Ste3-mCH were grown to early to mid-logarithmic phase and observed 

by dual-channel 2D fluorescence microscopy. (f) Colocalization of A594-α-factor with 

Vps10-GFP in wild-type and vps21Δ ypt52Δ cells. Cells expressing Vps10-GFP were 

labeled with A594-α-factor and imaged at 10 min after internalization as described in 

(c). Arrowheads indicate examples of colocalization. (g) Increase in the number of 

Vps10p positive compartments in vps21Δ ypt52Δ cells. Cells expressing Vps10-GFP or 

Sec7-mCherry were grown to early to mid-logarithmic phase in YPD medium at 25oC 

and observed by fluorescence microscopy. Data show mean ± SD from at least three 

experiments, with 50 cells counted for each strain per experiment. Error bars represent 

the SD from at least three experiments. *, p value < 0.001, unpaired t-test. (h) 

Simultaneous imaging of Vps26-GFP with A594-α-factor. Each image pair was 
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acquired simultaneously at the indicated time. Arrowheads indicate examples of 

colocalization. Scale bars, 2.5 µm. 

 

Figure 4. Involvement of the AP-3-mediated pathway in A594-α-factor delivery to 

vacuole. (a) Defective transport of A594-α-factor in vps21Δ ypt52Δ ypt53Δ cells is 

enhanced in apm3Δ.   A594-α-factor was allowed to bind to vps21Δ ypt52Δ ypt53Δ, 

apm3Δ cells, or vps21Δ ypt52Δ ypt53Δ apm3Δ cells, and its localization was followed 

for the indicated times. (b) Quantification of A594-α-factor localization in cells 

displayed in (a). Localization of A594-α-factor was analyzed at 40 min after 

internalization, and categorized into three classes; endosome only (blue), endosome and 

vacuole (green), and vacuole only (red). Data show mean ± SD from at least three 

experiments, with >100 cells counted for each strain per experiment. (c) Analysis of the 

AP-3 pathway in wild-type and mutant cells. Cells expressing GFP–Nyv1–Snc1-TMD 

(GNS) fusion protein were grown to early to mid-logarithmic phase at 25oC and 

observed by fluorescence microscopy and DIC. (d) Partial colocalization of Apl5-GFP 

with A594-α-factor in wild-type and vps21Δ ypt52Δ cells. A594-α-factor was added to 

wild-type or vps21Δ ypt52Δ cells and followed through the endocytic pathway for the 

indicated times. Each image pair was acquired simultaneously at the indicated time 

using dual-channel 2D imaging system. Arrowheads indicate examples of 

co-localization. (e) Quantification of colocalization of A594-α-factor with Apl5-GFP in 

wild-type and vps21Δ ypt52Δ cells. The histogram shows the percentages of Apl5-GFP 

labeled endosomes colocalizing with A594-α-factor. The percentages of colocalization 
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were calculated using single focal plane images. >100 Apl5-GFP-labeled endosomes 

were counted at each time point per experiment. Error bars represent the SD from at 

least three experiments. *, p value < 0.001, unpaired t-test. (f) Internalized 

A647-α-factor resides both in the VPS and the AP-3 pathway. vps21Δ ypt52Δ cells 

expressing Vph1-GFP and Apl5-mCH were incubated with A647-α-factor and 

internalization was induced for 20 min prior to imaging. Each image pair was acquired 

using fluorescence microscopy equipped with a high speed filter changer. Time to 

acquire one image pair is 3.5 sec. Arrowheads indicate examples of colocalization 

between Vph1-GFP and A647-α-factor (yellow arrowheads) or Apl5-mCH and 

A647-α-factor (red arrowheads). (g) Quantification of colocalization of A647-α-factor 

with Vph1-GFP (green), or Apl5-mCherry (magenta) shown in Fig. 4f. The percentages 

of colocalization were calculated using single focal plane images. Data show the mean 

of three experiments, with > 50 A647-α-factor labeled endosomes counted per 

experiment. Scale bars, 2.5 µm. 

 

Figure 5. The Rab5-independent AP-3-mediated endocytic pathway in wild-type 

cell. (a) Distinct localization pattern of Apl5p and Vps21p in wild-type cells. Each 

image pair was acquired simultaneously using a dual-channel imaging system. 

Quantification of colocalization is shown on the right. Data show mean ±SD from at 

least three experiments, with 100 Apl5-GFP labeled endosomes counted per experiment. 

The percentages of colocalization were calculated using single focal plane images. (b) 

Internalized A647-α-factor resides in distinct Apl5p- or Vps21p-labeled endosomes. 
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Wild-type cells expressing mCH-Vps21 and Apl5-GFP were incubated with 

A647-α-factor and internalization was induced for 5 min prior to imaging. Each image 

pair was acquired using fluorescence microscopy equipped with a high speed filter 

changer. Arrowheads indicate examples of colocalization of Apl5-GFP and 

A647-α-factor (yellow arrowheads) or mCH-Vps21and A647-α-factor (red arrowheads). 

Time to acquire one image pair is 3.5 sec. (c, d) Dynamic behavior of endosomes on 

which both A594-α-factor and Apl5p reside in wild-type cells. (c) Single frames (frame 

13) from Supplementary Movie 5 of wild-type cells showing GFP (Apl5) and mCherry 

(α-factor) channels, and a merged image. Each image pair was simultaneously acquired 

at successive one second intervals using a dual-channel 2D imaging system. (d) Time 

series of single patches in the boxed area in (c). Upper panels (10-25 sec) correspond to 

the area boxed in blue in (c), middle panels (11-30 sec) correspond to area boxed in 

green in (c), and lower panels (4-21 sec) correspond to area boxed in red in (c), 

respectively. (e) Quantification of colocalization of A594-α-factor with GFP-Vps21p or 

Apl5-GFP in wild-type cells. The histogram shows the percentages of A594-α-factor 

labeled endosomes colocalizing with GFP-fused proteins. Colocalization was defined 

by the presence of two fluorescence molecules at the same location for at least 5 frames 

(> 5 sec) in the time-lapse imaging acquired by simultaneous dual-channel 2D imaging 

system. Data show the mean ±SD of three experiments, with > 50 A594-α-factor 

labeled endosomes counted per experiment. Scale bars, 2.5 µm. 

 

Figure 6. Dynamic behavior of endosomes and endocytic vesicles in the AP-3 
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pathway. (a) Average lifetimes of Abp1-mCH (mCherry) ± SD in wild-type and 

vps21Δ ypt52Δ cells. Data were taken from 1-min movie with a 1-s frame interval. n = 

50 patches for each strain. ns: non-statistically significance (p value > 0.5, unpaired 

t-test). (b) Localization of Abp1-mCH (mCherry) in wild-type and vps21Δ ypt52Δ cells 

(left panels).  Lines in the image mark where the kymograph in right-hand panels was 

generated.  (c) Quantification of fluorescence intensity (red) and distance from the site 

of patch formation (blue) as a function of time for Abp1-mCherry patches.  Each curve 

represents data from one patch.  Behavior of three independent patches was plotted for 

each strain.  All movies were taken with a 1 s frame interval.  (d, e) Movement of 

Abp1-mCherry patches toward Apl5p-positive endosomes.  (d) Single frames from 

movies of vps21Δ ypt52Δ cells showing the GFP and the mCherry channels, and a 

merged image. Each image pair was acquired simultaneously using dual-channel 

time-lapse imaging system. Scale bars, 2.5 µm. (e) Time series of single patches in 

boxed area in (d).  Upper panels (14-25 sec) correspond to upper boxed area in (d), 

and lower panels (20-30 sec) correspond to lower boxed area in (d), respectively. (f) 

Quantification of incorporation of Abp1-mCH into Apl5-GFP in wild-type and vps21Δ 

ypt52Δ cells. The histogram shows the percentages of Abp1-mCH incorporating into 

Apl5p positive puncta. >50 Abp1-mCH labeled patches were counted for each strain 

per experiment. Error bars represent the SD from at least three experiments. ns: 

non-statistically significance (p value > 0.5, unpaired t-test). (g) Model of two distinct 

endocytic pathways.  Vps21p functions in a Rab5-dependent endocytic pathway that 

intersects with the VPS pathway, but not in another endocytic pathway mediated by the 
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AP-3 adaptor complex.   
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Supplementary Table 1. Yeast strains 
Strain  Genotype          Source 

JJTY0917 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 bar1Δ::LEU2    This study 

JJTY0918 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 ypt52Δ::KanMX6 bar1Δ::LEU2                          This study 

JJTY0919 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 ypt52Δ::KanMX6 bar1Δ::LEU2 This study 

JJTY1916 Mata his3Δ0 leu2Δ0 ura3Δ0 GFP-VPS21::HIS3 ypt52Δ::KanMX6            This study 

JJTY1918 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 GFP- VPS21:: HIS3 SEC7-mCherry::URA3  This study  

JJTY1957 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 GFP- VPS21:: HIS3 VPS26-mCherry::URA3   This study 

JJTY2006 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 GFP-VPS21:: HIS3 bar1Δ::LEU2          This study  

JJTY2011 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPH1-GFP::HIS3 bar1Δ::LEU2                         This study 

JJTY2013 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPS10-GFP::HIS3 bar1Δ::LEU2   This study 

JJTY2014 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPS26-GFP::HIS3 bar1Δ::LEU2   This study 

JJTY2017        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPH1-GFP::HIS3 vps21Δ::KanMX6 bar1Δ::LEU2  This study 

JJTY2023 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPH1-GFP::HIS3 vps21Δ::KanMX6 ypt52Δ::KanMX6  
                bar1Δ::LEU2          This study 

JJTY2025 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPS10-GFP::HIS3 bar1Δ::LEU2 vps21Δ::KanMX6  
                ypt52Δ::KanMX6                                                                 This study 
JJTY2026 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPS26-GFP::HIS3 bar1Δ::LEU2 vps21Δ::KanMX6 

                ypt52Δ::KanMX6          This study 

JJTY2194        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 ypt52Δ::KanMX6 ypt53Δ:: KanMX6   
  bar1Δ:: LEU2         This study 

JJTY2361        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 ypt52Δ::KanMX6 APL5-GFP::HIS3   
bar1Δ::LEU2         This study 

JJTY2652 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 GFP-VPS21::HIS3 HSE1-mCherry::URA3   This study 



JJTY3044 Mata his3Δ0leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 APL5-GFP::HIS3 SEC7-mCherry::URA3       This study 

JJTY3046   Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6  
                APL5-GFP::HIS3 SEC7-mCherry::URA3                                               This study 

JJTY3060        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 [pRS416-GFP-GNS::URA3]  This study 

JJTY3062        Matahis3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6   
                [pRS416-GFP-GNS::URA3]                                           This study 

JJTY3063        Matahis3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6   

                ypt53Δ::KanMX6 [pRS416-GFP-GNS::URA3]                          This study              

JJTY3064 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 APL5-GFP::HIS3 bar1Δ::LEU2    This study 

JJTY3079        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 ypt52Δ::KanMX6 ypt53Δ::KanMX6  

                apm3Δ::MET15 bar1Δ::LEU2        This study 

JJTY3087        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 apm3Δ::KanMX6 [pRS416-GFP-GNS::URA3]    This study 

JJTY3181        Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 apm3Δ::KanMX6 bar1Δ::LEU2    This study 

JJTY3280 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPH1-GFP::HIS3 ypt52Δ::KanMX6 bar1Δ::LEU2  This study 

JJTY3281 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 VPH1-GFP::HIS3 SEC7-mCherry::URA3 This study 

JJTY3282 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6 
       VPH1-GFP::HIS3 SEC7-mCherry::URA3                                               This study 

JJTY3284 Mata his3Δ 0leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 VPH1-GFP::HIS3 APL5-mCherry::URA3 This study 
JJTY3285 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6 
  VPH1-GFP::HIS3 APL5-mCherry::URA3      This study 

JJTY3287 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 APL5-GFP::HIS3 ABP1-mCherry::URA3 bar1Δ::LEU2 This study 

JJTY3288 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 vps21Δ::KanMX6 ypt52Δ::KanMX6 APL5-GFP::HIS3  
                ABP1-mCherry::LEU2                                                         This study 

JJTY3793        Matα  his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 ypt52Δ::KanMX6  
  VPH1-GFP::HIS3 STE3-mCherry::URA3      This study 

JJTY3795 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 VPH1-GFP::HIS3 STE3-mCherry::URA3   This study 



JJTY3896 Mata his3Δ0leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 GFP-VRG4:HIS3 SEC7-mCherry::URA3       This study                                  

JJTY3897 Mata his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 GFP-VRG4::HIS3                          This study 

JJTY3898 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 SEC7-GFP::HIS3 bar1Δ::LEU2     This study 

JJTY3899 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 vps21Δ::KanMX6 apm3Δ::KanMX6          This study 

JJTY3900 Mata his3Δ0 leu2Δ0 ura3Δ0 lys2Δ0 bar1Δ::LEU2 APL5-GFP::HIS3 mCherry-VPS21::URA3      This study 
  



SUPPLEMENTARY MOVIES 

Note: for best viewing, movies should be played in the “loop” mode. 

 

Supplementary movie 1 

Localization of endosomes containing A594-α-factor (left; red in merge) and 

GFP-Vps21p (center; green in merge). Within the boxes, fusion between endosomes 

colabeled with A594-α-factor and GFP-Vps21p can be seen. Interval between frames is 

3 s.  

 

Supplementary movie 2 

Localization of A594-α-factor in vps21Δ ypt52Δ cells expressing several GFP-fused 

proteins. Interval between frames is 15 s.  

 

Supplementary movie 3 

Localization of Vph1-GFP (left; green in merge) and A594-α-factor (center; red in 

merge) in vps21Δ ypt52Δ cells. Arrowheads indicate examples of colocalization. 

Interval between frames is 2.4 s.  

 

Supplementary movie 4 

Localization of Apl5-GFP in wild-type and vps21Δ ypt52Δ cells. Interval between 

frames is 1.0 s.  
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Supplementary movie 5 

Localization of Apl5-GFP (left; green in merge) and A594-α-factor (center; red in 

merge) in wild-type cells. Within the boxes, appreciable localization of A594-α-factor 

was observed in Apl5-GFP-labeled endosomes. Interval between frames is 1 s. 

 

Supplementary movie 6 

Localization of Abp1-mCherry (left; red in merge) and Apl5-GFP (center; green in 

merge). Within the boxes, Abp1p positive endocytic vesicles are moving in a directed 

manner toward Apl5p-positive endosomes.   Interval between frames is 1 s.  

 
















