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Abstract

Understanding the evolution of dispersal is essential for understanding and pre-

dicting the dynamics of natural populations. Two main factors are known to

influence dispersal evolution: spatio-temporal variation in the environment and

relatedness between individuals. However, the relation between these factors is

still poorly understood, and they are usually treated separately. In this article, I

present a theoretical framework that contains and connects effects of both envi-

ronmental variation and relatedness, and reproduces and extends their known

features. Spatial habitat variation selects for balanced dispersal strategies, whereby

the population is kept at an ideal free distribution. Within this class of dispersal

strategies, I explain how increased dispersal is promoted by perturbations to the

dispersal type frequencies. An explicit formula shows the magnitude of the selec-

tive advantage of increased dispersal in terms of the spatial variability in the fre-

quencies of the different dispersal strategies present. These variances are capable

of capturing various sources of stochasticity and hence establish a common scale

for their effects on the evolution of dispersal. The results furthermore indicate an

alternative approach to identifying effects of relatedness on dispersal evolution.

Introduction

The dispersal of individuals is a ubiquitous trait of any spe-

cies. It embeds natural populations into their environment

by setting a scale for geographic distance, and it dictates to

what extent habitat heterogeneities are experienced as such

or are averaged out. Furthermore, it determines the degree

of admixture of a spatially structured population by provid-

ing an estimate of how many individuals interact locally.

Understanding the evolution of dispersal is therefore crucial

for understanding the dynamics of spatially structured pop-

ulations, speciation, and the evolution of many other life-

history traits. Furthermore, it helps us predict the impact of

environmental change or invasions of alien species.

The propensity to disperse is variable and heritable, and

hence subject to natural selection. The evolution of dis-

persal has attracted much interest in the past few decades,

see the reviews by Bowler and Benton (2005); Dieckmann

et al. (1999); Johnson and Gaines (1990); Ronce (2007).

Positive dispersal must entail significant benefits, as sub-

stantial costs are associated with dispersal (Bonte et al.

2012). These costs come from the time and energy needed

for dispersal, as well as from increased mortality during

the dispersal phase (Johnson and Gaines 1990; Ronce

2007). In addition, local adaptation causes indirect costs

for dispersers, as they are less likely to carry alleles locally

favored at their destination and thus have a disadvantage

in new environments (Billiard and Lenormand 2005).

Two main driving forces of dispersal evolution have

been identified (Bowler and Benton 2005; Ronce 2007).

First, dispersal can be seen as a mechanism to avoid com-

petition between relatives. By reducing the relatedness, dis-

persal alleviates kin competition, as first proposed by

Hamilton and May (1977) and studied in more detail in

subsequent articles, for example, Gandon and Michalakis

(1999); Rousset and Gandon (2002); Taylor (1988). Also,

inbreeding depression is ameliorated by increased dispersal

(Gandon 1999; Roze and Rousset 2005; Szulkin and Shel-

don 2008). In practice, however, the relative impacts of

inbreeding and kin competition on the evolution of

ª 2014 The Author. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

4589



dispersal are difficult to separate as both are based on

the relatedness between individuals (Perrin and Goudet

2001).

Second, spatio-temporal variation of the environment

interacts strongly with dispersal. If local extinction events

occur, dispersal is necessary to recolonize empty habitat,

and thus is maintained even if it is costly (Van Valen

1971). This is an extreme form of temporal habitat vari-

ability, which has been shown to promote dispersal

(Mathias et al. 2001; Cadet et al. 2003; Bach et al. 2007;

Jansen and Vitalis 2007; Blanquart and Gandon 2011;

Parvinen et al. 2012). By spatial habitat heterogeneity, I

refer to spatial differences in habitat quality, expressed by

variable resource availability or carrying capacity, for

example. In particular, I do not consider spatial hetero-

geneity in selection (Balkau and Feldman 1973). How-

ever, the effects of these two types of habitat

heterogeneity on the evolution of dispersal are very simi-

lar: Conversely to temporal habitat variability, spatial

habitat heterogeneities select against dispersal (Holt 1985;

Dockery et al. 1998). Hastings (1983) argued that zero

dispersal is the only evolutionarily stable dispersal strat-

egy if the habitat is heterogeneous in space but tempo-

rally stable (see e.g., Waddell et al. (2010) for a

weighting between these two kinds of variability). This is

because high-quality habitat contains relatively many

individuals and thus, dispersal leads to a net flux of indi-

viduals into low-quality habitat. However, Hastings

pointed out that nonzero dispersal rates can be main-

tained under conditional (for example, density-depen-

dent, dispersal). This idea is confirmed by McPeek and

Holt (1992), demonstrating that spatial heterogeneity can

select for dispersal if dispersal depends on carrying

capacity. Note that at the margins of a species’ range,

additional factors govern the evolution of dispersal

(Dytham 2009). However, in this article, I do not con-

sider those but focus on a population that has become

established within its habitat.

In the context of dispersal evolution, the ideal free dis-

tribution (Kacelnik et al. 1992) has gained significant

importance. The ideal free distribution is a spatial distri-

bution of a population with the property that individuals

cannot increase their reproductive output by changing

their location. As a result, all individuals have the same

reproductive output, and the population is distributed as

if there was no dispersal. In particular, this implies that a

homogeneous population, whose growth is limited by the

abundance of a fixed resource, is at its carrying capacity.

Under reasonably general assumptions, dispersal strategies

that lead to an ideal free distribution are evolutionarily

stable (Cressman and K�rivan 2006; Cantrell et al. 2007,

2010), that is, they are the expected ultimate outcomes of

evolutionary trajectories. Zero dispersal as found by

Hastings (1983), and the positive dispersal strategy

described by McPeek and Holt (1992) are examples in

support of this theory.

The dispersive ability of a population is usually charac-

terized by its dispersal rate (migration rate) that denotes

the fraction of individuals leaving their habitat patch per

time unit. Classical discrete models, such as Wright’s

island model and the stepping stone model (Kimura and

Weiss 1964), use this description of dispersal. To describe

more detailed modes of dispersal, the notion of dispersal

distance determines how far individuals displace from

their original patch (Gandon and Rousset 1999; Murrell

et al. 2002; Rousset and Gandon 2002). More generally

and more commonly used in continuous models of dis-

persal, dispersive behavior is described by dispersal ker-

nels. They denote probability distributions for the

displacement of individuals within a time unit. A few

authors have studied the evolution of whole dispersal ker-

nels either of a fixed shape (Gros et al. 2006), or changing

their shape (Hovestadt et al. 2001), mainly using numeri-

cal simulations. In the following, I present a deterministic

diffusion model of type-dependent dispersal in which the

mean and variance of the dispersal kernel alone determine

the dispersive behavior of the population. I will denote

the mean of the dispersal kernel by the mean displace-

ment, as it describes the mean distance and direction of

individual movement. The variance of the dispersal kernel

I call diffusiveness. It can be interpreted as the extent to

which individuals spread in space or as a measure of vari-

ability in dispersal distance among individuals. In this

article, the evolution of these two determinants, mean

displacement, and variance of dispersal, is studied.

The Model

Consider a population consisting of n dispersal types

that occupy a habitat Ω in 1-dimensional space. By

Ni(x,t) denote the densities of adults of type i at loca-

tion x and time t, and by pi(x,t) their relative frequen-

cies. NT(x,t) = ∑Ni(x,t) is the total population density.

Local birth and death rates of individuals are assumed

to be identical for all types, and I collapse them into a

single per-capita growth rate r(x,NT) that depends on

the spatial variable x and the total population density

NT. Hence, there is no direct selection on any trait. For

any given position x, a zero of the growth rate function

r(x,NT) = rx(NT) determines a carrying capacity jx, that
is, rx(jx) = 0. Let this zero be unique to exclude, for

example, strong Allee effects and let rx(NT) > 0 if

NT < jx and rx(NT) < 0 if NT > jx. Given that r(x,NT)

is smooth, we can define a smooth carrying capacity

profile j(x) = jx for x 2 Ω. In the following, I require

j to be strictly positive in the interior of the habitat Ω.
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The dispersive behavior of each type in the population

is described by a dispersal kernel li(x, t; y, t + Dt), which
gives the probability that an individual of type i located

at position x at time t disperses to y within a short time

interval Dt. Let the dispersal kernels fulfill the following

three assumptions, which are standard in diffusion theory.

First, individuals must not move at infinite speed, that is,

no finite distances can be covered in infinitesimally small

time. Hence, for ɛ > 0 we postulate

lim
D t! 0

1

Dt

Z
jy� xj\ e

liðx; t; y; t þ DtÞdy ¼ 0: (1a)

Moreover, let the li have (truncated) means and vari-

ances, Mi(x,t) and Vi(x,t), that is,

Miðx; tÞ ¼ lim
D t! 0

1

Dt

Z
jy� xj\e

ðy � xÞliðx; t; y; t
þ DtÞ dy\1; (1b)

Viðx; tÞ ¼ lim
D t! 0

1

Dt

Z
jy� xj\e

ðy � xÞ2liðx; t; y; t
þ DtÞ dy\1: (1c)

The expected directional movement (mean displace-

ment) and the diffusive effect of dispersal (diffusiveness)

of type i are captured by Mi(x,t) and Vi(x,t), as defined in

equations (1b) and (1c). If mean displacement Mi and dif-

fusiveness Vi are constant, I speak of unconditional dis-

persal. Conversely, with conditional dispersal, individuals

base their dispersal decisions on environmental cues such

that Mi and Vi may vary in space and time. This depen-

dence can be explicit or emerge implicitly from condition-

ing on, for example, the current population density or

resource abundance. To indicate this – possibly indirect –
spatio-temporal dependence of mean displacement and

diffusiveness, I will write Mi(�) and Vi(�) in the case of con-

ditional dispersal (rather than Mi(x,t) and Vi(x,t)).

Under the assumption that we can approximate the life

cycle of reproduction followed by dispersal by a diffusion

equation – namely that the population can be character-

ized in terms of densities, the local influences r(x,NT) are

weak, and the li satisfy (1), details in Appendix S1 – the

dynamics of population density NT and dispersal type fre-

quencies pi are given by

@tNT ¼ �@xJT þ NTr; (2a)

@tpi ¼ 1

NT
ð�@xJi þ pi@xJTÞ; i ¼ 1; . . .; n; (2b)

where

Ji ¼ MiNi � 1

2
@xðViNiÞ (3)

is the flux of individuals of type i, and JT = ∑iJi is

the total flux of individuals. For the ease of notation, I

dropped the arguments x and t throughout. Similar

models have been employed by, for example, Dockery

et al. (1998); Pigolotti and Benzi (2014).

The equations (2) are reaction-diffusion equations. The

population disperses according to the gradient of its flux,

�oxJT, and is locally regulated by the per-capita growth

rate r. I do not impose any particular regulation mecha-

nism on population density; population regulation arises

from the specification of density dependence of the

growth rate r = r(x,NT). Similarly, spatial heterogeneity

comes from the dependence of the growth rate on the

spatial variable x. Interestingly, the reaction terms in the

equations for the type frequencies pi are determined by

the total flux of individuals, oxJT. Hence, oxJT represents a

force selecting on dispersal that is detailed below. If dis-

persal were type-independent and unconditional (i.e.,

Mi(�) � M and Vi(�) � V for all i, and M and V con-

stant), and r = r(NT) spatially homogeneous, equation

(2b) simplifies to the standard diffusion equation,

otpi = (V/2)oxxpi. Note that from the dispersal kernels li,
only Mi and Vi enter equation (2). Hence, we do not

restrict to any particular shape of dispersal kernel; a dis-

persal strategy is characterized solely by Mi(�) and Vi(�).
For the equations (2), we need to specify boundary con-

ditions. Throughout this article, I require that the habitat

Ω is closed, for example, a bounded interval or a circular

habitat. In the first case, no individuals must enter or leave

the habitat, such that all fluxes vanish at the interval’s end-

points. In the latter case, we can imagine an interval glued

together at its endpoints, such that the values of all expres-

sions, and their derivatives coincide there.

In Appendix S2, I argue that the two equations (2a)

and (2b) can be separated by separating their time scales,

given that the dispersal patterns of all types are suffi-

ciently similar. Then, population density equilibrates in a

rapid initial phase and can be assumed to be constant,

hence oxJT = NT, as type frequencies evolve on a slower

time scale. In the following, I consider a resident popula-

tion with a dispersal strategy characterized by mean dis-

placement M0(�) and diffusiveness V0(�). This population

is invaded by a dispersal modifier with frequency pI(x,t)

that changes the dispersal strategy to MI(�) = M0(�) +
m(�) and VI(�) = V0(�) + v(�), where m(�) and v(�) are

sufficiently small. The invasion corresponds to a perturba-

tion of the dispersal type frequencies around pI(x,t) = 0;

the exact pattern of the perturbation (for example, local

or global) is irrelevant for the long-term outcome in our

continuous model. As all types at location x have the

same growth rate r(x,NT), changes in modifier frequencies

will be due to dispersal effects rather than different
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growth rates. In my study, dispersal hence does not incur

any explicit cost, which could be added to the model in a

straightforward way by introducing distinct growth rates

ri(x, t) for different types, see Appendix S1, in particular

equation (A7a).

Results

I use the terminology introduced in the previous section.

In addition, I denote by NI the number of dispersal mod-

ifiers (invaders), and by JI their flux. For the sake of

improved readability, I will often omit the spatial and

temporal dependence of these and similar quantities in

the following. Generally, however, they will not be con-

stant unless stated explicitly.

Temporal change of modifier abundance

The total number of modifiers in the habitat is obtained

by integrating NI = pINT over the habitat Ω. Using (2),

this yields

@t

Z
X
NIdx ¼

Z
X
pI@xJTdx; (4)

as NTr = oxJT at equilibrium of NT. Note that integration

of the flux term in (2) gives �JI|Ω, which vanishes as the

habitat is closed. Equation (4) shows that the modifier

will not increase in total numbers if either the total flux

of individuals, JT, or, after partial integration, if its fre-

quency pI is constant throughout the habitat. Thus, inva-

sion stops if the modifier’s frequency spreads out evenly,

but note that spatial heterogeneities in dispersal patterns

or population density profiles can deform initially con-

stant frequency profiles. Furthermore, a modifier increases

if it invades regions where oxJT is positive. As NT is at

equilibrium, these areas coincide with those where the

growth rate r is positive. Thus, this finding is very natural

and, in particular, does not depend on the dispersal pat-

tern of the invading type. In general, the invader increases

in numbers if the change of flux weighted by its fre-

quency is positive. Thus, heuristically, the dispersal pat-

tern must have the effect of keeping the invader’s

frequency above average in areas of positive growth rates

to ensure its continuing spread.

Ideal free distributions and stability of
balanced dispersal

In the modeling section, I defined the carrying capacity

profile j(x). I call a dispersal strategy balanced (Doncaster

et al. 1997) if NT = j is a stable solution for the dynam-

ics of a population entirely adopting this strategy. Recall-

ing the definition of the ideal free distribution (Kacelnik

et al. 1992), a population using a balanced dispersal strat-

egy is hence maintained at an ideal free distribution

under perturbations of NT. From equation (2a), together

with (3), we see that a dispersal strategy given by V(�)
and M(�) is balanced if the change in total flux, oxJT, van-
ishes if the population (entirely adopting it) is at carrying

capacity j; that is if

U ¼ 1

2
@xðVjÞ �Mj � C; (5)

where C 2 R is, in particular, constant with respect to

space – see also Cantrell et al. (2010). Note that an inho-

mogeneous composition of two or more balanced dis-

persal strategies at carrying capacity generally does not

imply vanishing oxJT.
In Appendix S3, I prove mathematically that the class

of balanced dispersal strategies is protected against inva-

sion by (sufficiently similar) nonbalanced dispersal strate-

gies. In this sense, balanced dispersal strategies that

produce an ideal free distribution are evolutionarily stable

outcomes of dispersal evolution. Evolutionary stability of

balanced dispersal strategies has been shown for similar

models of dispersal evolution, e.g., Cantrell et al. (2007);

Cressman and K�rivan (2006).

Dynamics at ideal free distribution

Between two balanced dispersal strategies, the previous

stability analysis does not provide a definite statement.

In the following, I investigate dispersal evolution within

the class of balanced dispersal strategies, that is, the evo-

lution of dispersal at ideal free distribution. Assume that

both the original and the modified dispersal strategies

are balanced, that is, they satisfy (5). In particular, this

implies that 1/2oxv(x)j(x) � m(x)j(x) is constant.

Replacing for the total flux JT, we obtain from equation

(4)

@t

Z
X
NIdx ¼ �

Z
X
pI@x ðM þ pImÞj� 1

2
@xðV þ pIvÞj

� �
dx

¼ �
Z
X
pI@x pIC þ vj

2
@xpI

� �

¼ �C
p2I
2

����
X

�
Z
X

vj
2
pI@xxpIdx

¼�
Z
X

vj
2
pI@xxpIdx:

(6)

This expression is independent of the modification to

mean displacement m. Therefore, the mean displacement

does not contribute to the success or failure of the modi-

fier as long as it adjusts a potential mismatch in diffusive-

ness to retain a balanced dispersal strategy.

4592 ª 2014 The Author. Ecology and Evolution published by John Wiley & Sons Ltd.

Driving forces of dispersal evolution S. Novak



It is remarkable that changes in diffusiveness (nonzero

v) lead to changes in the number of modifiers as long as

their frequency profile, pI, is not spatially constant. In full

generality, the sign of this change depends on the shape

of pI. However, if vj is constant, equation (7) can be par-

tially integrated to yield

@t

Z
X
NIdx ¼ vj

2

Z
X
@xpIð Þ2dx: (7)

The second term from the partial integration vanishes

due to the boundary conditions. This equation is analo-

gous to equation (5) of Pigolotti and Benzi (2014), who

analyzed stochastic noise in a finite population. The

occurrence of equation (7) here, however, demonstrates

its relevance more broadly. It shows that a growth rate of

the modifier abundance proportional to vj is induced if

the modifier changes its diffusiveness such that dispersal

stays balanced. This change is fueled by heterogeneities in

the modifier’s frequency, oxpI 6¼ 0. Consequently, it is

only transient if the dispersal type frequency profile dif-

fuses out over time. Thus, under a purely deterministic

model without explicit costs of dispersal, or selection on

a genetic background, balanced dispersal strategies are

neutral with respect to each other.

However, the flattening-out of the frequency profile

can be counteracted by factors not yet considered in the

model, tipping the balance between the competing types.

If these factors generate or maintain spatial differences

in the frequency profile, they thereby make the transient

effect of a variant dispersal strategy permanent. For

example, selection on linked traits takes a complex role

in dispersal evolution. While local adaptation is known

to select against dispersal, equation (7) indicates that

selective processes on a genetic background that perturb

the frequency profile of dispersal modifiers, thereby can

favor increased dispersal. First, selection against hetero-

zygotes can maintain frequency heterogeneities in the

form of clines (Barton 1979) in which type-dependent

dispersal can operate. Note that these clines do not

require spatial heterogeneity in selection but emerge, for

example, after secondary contact between differentiated

species. Second, transient selection patterns on a selective

background linked to the dispersal modifier can directly

perturb modifier frequencies away from uniformity.

Third, if beneficial mutations appear on the selective

background, they sweep to fixation. As recombination

gradually breaks down linkage between the beneficial

mutation and the dispersal modifier, the sweep has an

impact on the latter’s frequency profile (Barton 2000).

Even though, on average, the direct effect of such

sweeps – often termed "draft" (Lenormand et al. 2009) –
cancels out, it hence leads to a systematic increase of

modifiers that enhance dispersal.

Finally, genetic drift in finite populations perturbs type

frequencies away from spatial uniformity. It has been

observed that relatedness may emerge from genetic drift

in a structured population (Lenormand et al. 2009).

Accordingly, the variability in type frequencies due to

genetic drift constitutes a measure of relatedness between

individuals in the population (Barton and Clark 1990).

Hence, equation (7) relates to the body of literature that

dates back to Hamilton and May (1977) and predicts the

promotion of positive dispersal to escape from kin

competition.

Discussion

As dispersal evolves, different dispersal strategies in a

population compete against each other in a selective pro-

cess. The two main factors of influence are known to be

the relatedness between individuals and spatio-temporal

variability of the environment. Here, by spatial heteroge-

neity, I referred to local differences in resource availability

or carrying capacity. Other types of spatial habitat vari-

ability require additional information put into the model.

For example, selection for a spatially shifting optimum

requires to link dispersal to a second trait under direct

selection. However, the consequences for dispersal are

analogous to a variable carrying capacity: Gene flow

causes individuals to be locally maladapted and hence

induces a dispersal load (Kirkpatrick and Barton 1997)

that enhances the pressure for lower dispersal. Histori-

cally, investigations have focused on either effects of relat-

edness or spatio-temporal variability of different kinds

rather separately – but see, for example, Gandon and

Michalakis (1999); Leturque and Rousset (2002); Morris

et al. (2001); Blanquart and Gandon (2014). In this study

of the evolution of dispersal, I demonstrated how the

effects of environmental heterogeneity and type frequency

variances, for example due to genetic drift and related-

ness, can be linked within the same model.

Throughout this article, I assumed that population

density is temporally constant. This can be justified if the

differences in dispersal behavior between types are small.

Then, population density will quickly equilibrate, and we

recover a fast–slow dichotomy in which the ecological

dynamics of population density can be decoupled from

the dynamics of dispersal type frequencies. The assump-

tion of small differences in dispersal strategies is reason-

able if we accept that dispersal evolution proceeds in

small steps. It allows us to treat population density as

given while type frequencies evolve. Simulations confirm

that the approximation is robust; as long as the deviations

between dispersal patterns are small, simulations of the

full system (2) and of (2b) with population density NT

fixed produce virtually identical outcomes. In particular,
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however, the assumption of temporally constant popula-

tion density precludes most aspects of environmental sto-

chasticity, which is not considered in this article.

Intuitively, dispersal strategies that let the population

more efficiently exploit the resources that are present in

the habitat should be successful. That is, strategies that

minimize the spatial discrepancies in growth rates and

hence the experienced differences in habitat quality can

be expected to be selectively favored. This intuition is

confirmed by equation (4), which gives an analytical

expression for the change of the total abundance of dis-

persal strategies present in the habitat. The number of

individuals of a specific dispersal strategy increases if

the mean derivative of the total flux, oxJT, weighted by

the type’s frequency, is positive. As oxJT is proportional

to the local growth rate, this result simply states that a

successful type must be overrepresented in regions of

positive growth rate. It follows that an evolutionarily

stable dispersal strategy homogenizes the total flux JT, and

hence equalizes local growth rates. That is, it causes the

population to attain an ideal free distribution (Kacelnik

et al. 1992).

In principle, this can be achieved in two ways. Zero

dispersal trivially homogenizes the total flux JT. One of

the first contributions to this aspect of dispersal evolution

was by Hastings (1983), who showed that a heteroge-

neous environment leads to zero dispersal if dispersal is

unconditional. This is because positive unconditional dis-

persal leads to a net flux of individuals from regions of

positive growth rates (high carrying capacity) into regions

of negative growth rates (low carrying capacity) and is

thus to the disadvantage of the population. Accordingly,

dispersal types with reduced diffusiveness exploit their

environment more efficiently and therefore out-compete

more mobile types. This statement is a special case of the

present analysis, restricting to unconditional dispersal

strategies. It has been proved earlier by Dockery et al.

(1998) for a specific choice of local growth function

r(x,NT). An illustrative description of the mechanism in a

discrete setting is given by Holt (1985).

More generally, balanced dispersal strategies take the

population to an ideal free distribution by matching dis-

persal behavior to the spatial carrying capacity profile.

This class of strategies has been shown to be evolution-

arily stable in previous studies, for example by Cantrell

et al. (2010); McPeek and Holt (1992). If the population

is at an ideal free distribution, any nonbalanced dispersal

strategy changes the flux JT to its own disadvantage.

Accordingly, I characterized the class of balanced dispersal

strategies for the present model, equation (5), and showed

that it cannot be invaded by strategies from outside this

class. Hence, it is evolutionarily stable and an expected

long-term outcome of dispersal evolution. In practice,

however, there is little empirical evidence for dispersal

strategies of this type, reviewed by Diffendorfer (1998).

Rather, experiments with bacteria and protozoa (Donahue

et al. 2003) seem to support a source–sink dispersal

type (Pulliam 1988). However, given the complexity of

interaction of dispersal with other traits and the time it

would take to reach an evolutionarily stable state even

under controlled conditions, it is questionable if balanced

dispersal is feasible to evolve in the laboratory.

Not all balanced dispersal strategies do equally well so

that we can establish a selective hierarchy between them

whenever dispersal type frequencies are variable in space.

Analytically, this is formulated in equation (6) and, for

an important special case, in equation (7). The latter

shows that the total number of individuals with increased

diffusiveness never declines. In fact, this number increases

whenever dispersal type frequencies vary in space. In our

deterministic setting, the effect levels out as frequencies

diffuse in space and stalls once the frequency profiles are

completely flat. In practice, however, various forces (e.g.,

selection on a genetic background and different sources

of stochasticity) continuously perturb the frequency pro-

files and hence induce a variance that sustains the

increase in numbers of individuals with increased diffu-

siveness. Thus, roughly speaking, elevated dispersal is

selected for among balanced dispersal strategies.

The two forces exerted by the variability in the habitat

and the variability in dispersal type frequencies can be

seen as opposing each other. Spatial heterogeneity in the

habitat exert a selection pressure for reduced dispersal, at

least if the possibility of conditional and hence balanced

dispersal is limited, as is likely the case in many natural

populations. Once sufficiently close to an ideal free distri-

bution, the variability in the dispersal type frequency pro-

file of the population counters this force. The magnitude

of the pressure for increased dispersal will depend on the

balance between the size of the perturbations of frequen-

cies away from uniformity and the homogenizing effect of

dispersal.

A particular issue of dispersal evolution is whether dis-

persal evolves in a population that initially does not dis-

perse at all, that is, M0 = V0 = 0. My results answer this

question for the scenario studied here: Given that the

population is capable of adjusting its dispersal to the geo-

graphic heterogeneities, any nonzero balanced dispersal

strategy is selectively favored over the zero dispersal strat-

egy, as long as dispersal type frequencies are variable in

space.

Spatial heterogeneities in the type frequencies can

emerge due to many reasons. If the type frequencies fluc-

tuate because of genetic drift, the variance in type fre-

quencies constitutes a measure of relatedness (Barton and

Clark 1990). The fact that relatedness selects for dispersal
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in finite populations is well-known (Gandon and Micha-

lakis 1999; Billiard and Lenormand 2005; Roze and Rous-

set 2005). Equation (7) demonstrates an alternative

approach to identifying effects of relatedness in dispersal

evolution via type frequency variances emerging from

stochastic sampling. To illustrate how the effects of kin

competition and genetic drift relate to spatial heterogene-

ities in type frequencies, briefly consider two examples.

First, consider a simple two-patch model with different

patch sizes. In a classical paper, McPeek and Holt (1992)

showed that balanced dispersal strategies, which cause the

number of emigrants to equal the number of immigrants

in each patch, are evolutionarily stable. Extending this

model to finite populations, Leturque and Rousset (2002)

defined a fitness measure taking relatedness into account.

In this case, a single dispersal strategy is selected for,

which both is balanced and leads to panmixia, that is, the

population behaves as if mating happened randomly in a

single mating pool. Assume that the population consists

of two types of identical clones, one of which is present

at frequencies pA and pB in patches A and B. Then, the

quantity v = (pA � pB)
2 is a measure of type frequency

variability between the two patches, analogous to (oxpI)
2

in equation (7). One can easily show that v is minimized

for panmixia with v = 0, hence dispersal increases as long

as this quantity is positive and equilibrates when v = 0.

The variability of type frequencies between the patches

thus plays an interesting role and could be used as a mea-

sure for the benefit of dispersal in alleviating kin competi-

tion in this example.

Second, one could incorporate genetic drift directly

into the model (2). This has been done by Pigolotti and

Benzi (2014), who obtained equation (7) from their

resulting stochastic partial differential equation. However,

to evaluate this quantity, they had to introduce a (spatial)

cutoff e, which is hard to interpret biologically. Consider-

ing a stepping stone model (Kimura and Weiss 1964) as a

discrete version of the continuous model, (2) shows that

the expected change in the total abundance, N total
I , of a

dispersal modifier that increases the migration rate

between patches from M to M þ m is given by

E DN total
I

h i
¼ mJNr2p

�
1� q

�
; (8)

(cf. Appendix S4 for details) where J is the number of

patches the habitat consists of, and N is the number of

individuals present in each patch. Furthermore, r2p
denotes the spatial variance of type frequencies, and q is

the correlation between type frequencies in adjacent

patches. The expression r2pð1� qÞ is the discrete-space

equivalent to (oxpI)
2 in equation (7). The fact that r2p is a

measure of relatedness was already noted by Pigolotti and

Benzi (2014). Driving the analysis further (cf. Appendix

S4), one can derive a selection coefficient for dispersal

modifiers as s ¼ m=ð4NMÞ. This shows that the cutoff

in the article by Pigolotti and Benzi (2014) needs to be

chosen as e ¼ ðX=J Þ2=ðVpÞ, where V ¼ MðX=J Þ2, to
establish the correspondence between a discrete stepping

stone model and its approximation, the diffusion model

(2). Hence, a possibility for measuring the selective bene-

fit of dispersal modifiers due to relatedness is provided by

the present framework.

Overall, the spatial heterogeneities of type frequencies

take a central role in translating stochastic effects into

selective forces promoting dispersal. Previous studies

developed rather specialized models to analyze the impact

of different stochastic factors on the evolution of dis-

persal. Direct methods are crucial for understanding the

detailed process of how they influence dispersal evolution,

but make it difficult to compare their relative importance.

However, these stochastic factors are reflected in the same

variability of type frequencies. Thus, their mode of pro-

moting increased dispersal is channeled through the same

phenomenon, as noted already by Waddell et al. (2010).

Identifying their contributions to the variability of type

frequencies hence puts these stochastic factors on a single

scale.

In summary, my study shows that many of the main

factors of dispersal evolution can be brought together in a

single modeling framework. The effect of spatially varying

resource availability and the consequent spatial density

variations are phrased in terms of the fluxes JI and JT.

Environmental stochasticity is not considered in this arti-

cle, but could be implemented directly into the equation

for the total population size, equation (2a). Genetic drift

and relatedness are reflected in the variability of dispersal

type frequencies, (oxpI)
2, that exerts a selection pressure

for increased dispersal. In many cases, selection on a

genetic background can lead to heterogeneities in dis-

persal modifier frequencies, for example in hybrid zones,

if selection transiently favors a certain part of the popula-

tion, or by sweeping beneficial alleles. Indirectly, selection

on a genetic background hence can also exert a positive

selection pressure on dispersal modifiers that is channeled

through the spatial variability of type frequencies. On top

of that, dispersal evolution is limited by direct costs of

dispersal in practice, which can be added to the model

straightforwardly by introducing distinct growth rates

ri(x, t) 6¼ rj(x, t) for different types i and j. This is indi-

cated in Appendix S1, but I did not consider direct costs

of dispersal otherwise.

The results described in this article suggest that future

studies should focus on the variability of type frequencies

as a force promoting increased dispersal and establish its

connection to demographic and environmental stochastic-

ity more closely. I argued that selective pressures on traits
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linked to dispersal may maintain spatial patterns that dis-

persal differences can act on. The complexity of interac-

tions between selection and type-dependent dispersal is

hard to assess, but can be relevant in nature, in particular

if individuals base dispersal decisions on their fitness. The

correlations between fitness and dispersal are virtually

unexplored, and it is unclear to what extent the ability to

detect and interpret fitness conditions can be based on a

genetic level. In the presence of density-dependent selec-

tion, type-dependent dispersal might tip the balance by

pushing population density above thresholds and lead to

interesting phenomena.
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