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Abstract

We describe arrangements of three-dimensional spheres from a geometrical and topo-

logical point of view. Real data (fitting this setup) often consist of soft spheres which

show certain degree of deformation while strongly packing against each other. In this

context, we answer the following questions: If we model a soft packing of spheres by

hard spheres that are allowed to overlap, can we measure the volume in the over-

lapped areas? Can we be more specific about the overlap volume, i.e. quantify how

much volume is there covered exactly twice, three times, or k times? What would be

a good optimization criteria that rule the arrangement of soft spheres while making

a good use of the available space? Fixing a particular criterion, what would be the

optimal sphere configuration?

The first result of this thesis are short formulas for the computation of volumes cov-

ered by at least k of the balls. The formulas exploit information contained in the order-k

Voronoi diagrams and its closely related Level-k complex. The used complexes lead to

a natural generalization into poset diagrams, a theoretical formalism that contains the

order-k and degree-k diagrams as special cases. In parallel, we define different crite-

ria to determine what could be considered an optimal arrangement from a geometrical

point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and

3D where the ball centers lie on a lattice. As a last step, we use tools from computa-

tional topology on real physical data, to show the potentials of higher-order diagrams

in the description of melting crystals. The results of the experiments leaves us with an

open window to apply the theories developed in this thesis in real applications.
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1

1 Introduction

The motivation of this thesis comes from modeling in the biological sciences. High-

resolution microscopic observations of the DNA organization inside the nucleus of a hu-

man cell support the Spherical Mega-base-pairs Chromatin Domain model (SCD) [Cre-

mer et al., 2000; Kreth et al., 2001]. It proposes that inside the chromosome territories

of eukaryotic cells, DNA is compartmentalized into sequences of highly interacting seg-

ments of about the same length [Dixon et al., 2012]. Each segment consists of roughly

a million base pairs and is rolled up to resemble a round ball. The balls are tightly

arranged within the available space, tighter than a packing since the balls deform when

pressed against each other, and less tight than a covering so that protein machines can

find access to the DNA needed for gene expression and replication. These models re-

sult in overlapping spheres which do not fill the whole space. Other examples are the

spatial organization of chromosomes in the cell nucleus [Cremer and Cremer, 2010;

Uhler and Wright., 2013], the spatial organization of neurons [Raj and Chen, 2011;

Rivera-Alba et al., 2011], or the arrangement of ganglion cell receptive fields on the

retinal surface [DeVries and Baylor, 1997; Karklin and Simoncelli, 2011].

The density of an arrangement of balls can be computed as the sum of its vol-

umes divided by the volume of the container. The traditional packing problem aims

for an arrangement of equal size balls that maximizes its density while no overlap is

allowed. On the other hand, the covering problem aims for an arrangement of over-

lapping balls that covers the whole space while minimizing its density. We refer to the

book by Conway and Sloane [Conway and Sloane, 1999], for a representative text in

the rich mathematical literature on the traditional packings and coverings with balls. In

this thesis we consider configurations that lie between these two extremes: the balls

are allowed to overlap and they do not necessarily cover the entire space; see also
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[Schürmann and Vallentin, 2006]. The mentioned models in biology lie in this relaxed

packing or soft packing category. The wide applicability is also based on the fact that

soft spheres can be modeled as hard spheres with limited overlap.

Given a soft packing configuration, we are interested in quantifications. For pack-

ings and coverings, it is customary to compute the density, which is the expected

number of balls that contain a random point. This measure can also be used for more

general configurations. Alternatively, we may be interested in the set of points each

covered by exactly one ball; its volume is the difference between the volume of the

union and of the 2-fold cover of the balls. It requires the ability to measure the set of

points covered by at least two balls, which is a special case of the question addressed

in Chapter 2 of this thesis. In short, we provide formulas to compute the volume cov-

ered by at least k of the balls.

Closely related to this question are the concepts of order-k and degree-k Voronoi

diagrams, as well as its dual structures. Consider a set of sites or ball centers in

Rn. Intuitively, the order-k Voronoi diagram partitions the space into regions such that

every point inside one region has the same k closest neighbors. The degree-k diagram

can be obtained by subdividing the order-k regions depending on which of its k balls

maximizes the distance. In Chapter 3, we introduce a generalization to poset diagrams

and poset complexes, which contain such diagrams as special cases. Extending a

result of Aurenhammer from 1990 [Aurenhammer, 1990], we show how to construct

them as weighted Voronoi diagrams of average balls.

In Chapter 4, we address the soft packing problem considering a couple of the many

possible optimality approaches. First, we maximize the density while using a threshold

to control the amount of allowed overlap in Section 4.2. Next, we expand on a non-

parameterized setting by maximizing the area covered exactly once in Section 4.3.

The previous measure can be understood as the probability of a random point to be

covered exactly once. Maximizing given probability naturally favors configurations lying

between the traditional packing and covering problems. In Section 4.4 we extend to 3D

but using a variation of the previous measure. The optimal lattice is found to maximize

a soft density function which penalizes multiple overlaps. Additionally, in Chapter 5

we use experimental tools from Computational Topology and data from physics to test

the potential uses of the theories developed in this thesis. Final considerations are
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summarized in Chapter 6.

Main contributions. A summary of the main contributions of the thesis is listed here.

1. Two short inclusion-exclusion formulas for the volume in Rn covered by at least k

balls in a finite set [Edelsbrunner and Iglesias-Ham, 2018a].

2. A generalization of Voronoi diagrams to poset diagrams, which contain order-k

and degree-k Voronoi diagrams as special cases [Edelsbrunner and Iglesias-

Ham, 2016].

3. Proposal of two overlap measures to find within the 1-parameter family of lat-

tices, the optimal soft packings while limiting the amount of overlap by a thresh-

old [Iglesias-Ham et al., 2014].

4. Proof that among all lattice configurations in R2, the regular hexagonal grid max-

imizes the probability that a random point lies in exactly one disc [Edelsbrunner

et al., 2015] .

5. Proof that within the 1-parameter family of lattices in R3, the FCC lattice maxi-

mizes a soft density measure, which penalizes multiple overlaps [Edelsbrunner

and Iglesias-Ham, 2018b].

6. First steps in the description of relevant information stored in higher-order Voronoi

diagrams using Persistence Homology.
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2 Inclusion-Exclusion

Inclusion-exclusion is an effective method for computing the volume of a union of mea-

surable sets. In this chapter we present its extension to multiple coverings, proving

short inclusion-exclusion formulas for the subset of Rn covered by at least k balls in a

finite set. We implement two of the formulas in dimension n = 3 and report on results

obtained with our software.

2.1 Prior work and results

An effective method for computing the volume of a union of balls, or possibly more

general sets, is the principle of inclusion-exclusion. It has a long history in mathematics

and is attributed to Abraham de Moivre (1667–1754) but appeared first in writings of

Daniel da Silva (1854) and of James Joseph Sylvester (1883). Given a finite collection

of measurable sets, X , in Rn, it asserts that the volume of the union is the alternating

sum of the volumes of the common intersections of the sets in all subcollectionsQ ⊆ X .

The formula can be generalized to k-fold covers, which we define as the set Xk of points

in Rn that belong to at least k of the sets:

vol[Xk] =
∑
i≥k

(−1)i−k
(
i− 1

k − 1

) ∑
Q∈(Xi )

vol[
⋂

Q]; (2.1)

in which
(X
i

)
denotes the collection of subsets of size i, see for example Chapter IV

of Feller’s textbook on probability [Feller, 1968, page 110]. Since we need (2.1) in

the proofs of the short inclusion-exclusion formulas, we give our own proof using the

Pascal triangle and its alternating form. If the measurable sets are balls, we write B for

the collection, and Bk for the k-fold cover. Using the power distance of a point to a ball,

the order-k Voronoi diagram identifies all collections Q ⊆ B of size k for which there
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are points so that the balls in Q are the k closest; see e.g. [Shamos and Hoey, 1975].

Restricting (2.1) to terms that correspond to cells of the order-k Voronoi diagram, we

get a short inclusion-exclusion formula:

vol[Bk] =
∑
σ∈Vk

(−1)codim γ(σ)vol[
⋂

Qγ(σ)], (2.2)

see the Order-k Pie Theorem in Section 2.4 for details. Every γ is a cell of the order-k

Voronoi diagram, with at least k and at most k + n balls in the corresponding collec-

tion Qγ ⊆ B. Relation (2.2) generalizes the inclusion-exclusion formula of Naiman and

Wynn [Naiman and Wynn, 1992] from the union to more general k-fold covers. We

also prove a slightly stronger version of (2.2) in which the sum ranges over the subcol-

lection of cells that have a non-empty common intersection with the balls that define

them. It generalizes the inclusion-exclusion formula based on alpha shapes given in

[Edelsbrunner, 1995b]. To reduce the size of the terms, we use levels in hyperplane ar-

rangements in Rn+1 and inclusion-exclusion formulas for general polyhedra; see [Chen,

1996; Edelsbrunner, 1995a], and obtain another short inclusion-exclusion formula for

the n-dimensional volume of the k-fold cover:

vol[Bk] =
∑
Q∈Lk

LQ · vol[
⋂

Q]; (2.3)

see the Level-k Pie Theorem in Section 2.5 for details. The collections Q ⊆ B corre-

spond to affine subspaces of the arrangement, with size between 1 and n+1. For k = 1,

the formulas (2.2) and (2.3) are the same. Importantly, we have a slightly stronger ver-

sion of (2.3) in which all collections of balls are independent. Among other advantages,

this additional property eliminates an otherwise necessary case analysis and thus sim-

plifies computer implementations. As mentioned above, the short inclusion-exclusion

formulas in (2.2) and (2.3) have applications in the study of the spatial organization of

chromosomes. We have implemented the formulas in dimension n = 3, using software

supporting exact arithmetic [CGAL; MAPLE] and volume formulas for the common in-

tersection of 3-dimensional balls [Edelsbrunner and Fu, 1994].

Outline. Section 2.2 extends the principle of inclusion-exclusion from unions to k-

fold covers. Section 2.3 provides background on Voronoi diagrams and hyperplane

arrangements. Sections 2.4 and 2.5 prove short inclusion-exclusion formulas for k-fold

covers with balls in Rn. Section 2.6 presents results of computational experiments.

Section 2.7 concludes the chapter.
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2.2 Combinatorial formula

In this section, we explain how the inclusion-exclusion formula for the volume of a

union of measurable sets can be extended to k-fold covers. In the context of probability

theory, the same extension can be found in [Feller, 1968, page 110]. We begin with a

combinatorial result on Pascal triangles.

Pascal triangles. Recall that the Pascal triangle is a 2-dimensional organization of

the binomial coefficients, and the alternating Pascal triangle is the same except that

the coefficients are listed with alternating sign; see Figure 2.1. We think of them as

1

1

1

1

1

1

1

1

2

5

3

4

6

6

3

10

15

1

10

1

4

20

5

1

15

1

6

−1
1

−1
1

−1

1

1

5

1

−2
3

−4

−6

1

−3

6

−10

15 −20

10

1

−4
−5
1

15

1

−61 1

Figure 2.1: The first few non-zero rows of the Pascal triangle on the left, and of the

alternating Pascal triangle on the right.

(infinitely large) matrices that can be multiplied. To talk about the product, we introduce

notation for the u-th row of the Pascal triangle and the v-th column of the alternating

Pascal triangle, Ru, Cv : Z→ Z defined by

Ru(v) =

(
u

v

)
, (2.4)

Cv(u) = (−1)u−v
(
u

v

)
, (2.5)

where
(
u
v

)
= 0 whenever v < 0 or u < v. In the Pascal triangle, each entry in the u-th

row is obtained by adding two entries in the (u−1)-st row: Ru(v) = Ru−1(v−1)+Ru−1(v),

unless u = v = 0 in which case R0(0) = 1. Similarly, in the alternating Pascal triangle,

each entry of the v-th column is obtained by adding two entries in the (v+1)-st column:

Cv(u) = Cv+1(u) + Cv+1(u + 1), unless u = v = −1 in which case C−1(−1) = 0. Both

rules can be reversed, generating a row from the next row and a column from the
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previous column:

Ru−1(v) =
∑
j≥0

(−1)jRu(v − j), (2.6)

Cv+1(u) =
∑
j≥0

(−1)jCv(u− j − 1). (2.7)

It is easy to prove both relations by induction, but note that (2.6) requires u 6= 0 or v < 0

and (2.7) requires v 6= −1 or u < 0. Observe that the rows of the Pascal triangle are

symmetric: Ru(v) = Ru(u− v) for all u and v. Accordingly, we can reverse the direction

of the summation in (2.6), while the same cannot be done in (2.7).

Shifted multiplication. As usual in matrix multiplication, we define the product as the

matrix whose entry in row u and column v is the scalar product of the u-th row on the

left and the v-th column on the right. More generally, we introduce a shift parameter,

d ∈ Z, and define

Md(u, v) =
∞∑

j=−∞

Ru+d(j) · Cv(j − d). (2.8)

For d = 0, this is the usual matrix product, and more generally, it is the product in which

the rows of the first matrix are shifted up by d positions and the rows of the second

matrix are shifted down by d positions. To get a feeling for the shifted matrix product,

we fix a row u0 in the left matrix and compute scalar products with shifted versions of

all columns in the right matrix:

Nu0(u, v) =
∞∑

j=−∞

Ru0(j) · Cv(j − u0 + u); (2.9)

see Figure 2.2 which shows the result for u0 = 4. Note that row Ru0 has u0 + 1 non-

zero elements which implies that the first non-zero row of Nu0 is obtained with shift

parameter u0. More generally, row u is obtained with d = u0 − u, implying that Nu0

shares row u0 − d with Md. We are particularly interested in row u0 − 1, which Nu0

shares with M1. It is obtained by multiplying row u0 with all columns shifted down by 1

position.

Lemma 1 (Shift Lemma). With a shift by d = 1 position, we have

M1(u, v) =

 1 if 0 ≤ v ≤ u,

0 otherwise,
(2.10)

for all u and v.
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1

3

3

1

1

1

2

1 1

1

1

−1

1

1

1

−2

Figure 2.2: The first few non-zero rows of the matrix N4.

Proof. We note that row u of M1 is equal to row u of Nu+1. It thus suffices to show that

Nu0(u, v) =

 1 if 0 ≤ v ≤ u,

0 otherwise,
(2.11)

for u0 = u + 1. To see this, we construct the columns of Nu0 from left to right. Column

0 is obtained by multiplying Ru0 with shifted copies of C0. Writing d = u0 − u, we get

Nu0(u, 0) =
∞∑

j=−∞

Ru0(j) · C0(j − d) (2.12)

=
∑
j≥d

(−1)j−dRu0(j) (2.13)

=
∑
j≥0

(−1)jRu0(d+ j) (2.14)

=
∑
j≥0

(−1)jRu0(u− j). (2.15)

We get (2.13) because the non-zero entries of C0 alternate between 1 and −1, we get

(2.14) with an index transformation, and we get (2.15) using Ru0(v) = Ru0(u0−v). Note

that (2.15) is the same as the right hand side of (2.6) after substituting u0 for u and u

for v. We conclude that column 0 of Nu0 is the transpose of Ru0−1. Next we show that

column v + 1 of Nu0 can be obtained from column v:

Nu0(u, v + 1) =
∞∑

j=−∞

Ru0(j) · Cv+1(j − d) (2.16)

=
∑

j≥d+v+1

Ru0(j) ·
∑
i≥0

(−1)iCv(i
′) (2.17)

=
∑
i≥0

(−1)i
∑

j≥d+v+1

Ru0(j) · Cv(i′) (2.18)

=
∑
i≥0

(−1)iNu0(u− i− 1, v), (2.19)
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where i′ = j − d− i− 1. We get (2.17) using (2.7), we get (2.18) by exchanging sums,

and we get (2.19) using (2.9) and noting that j−u0 +(u−i−1) = i′. Observe that (2.19)

is but a rewriting of (2.7) for the columns of Nu0. Applying (2.19) to column 0, which

is Ru0−1 transposed, thus gives Ru0−2 transposed and shifted down by one position.

Repeating the argument, we get transposed copies of Ru0−1 down to R0, progressively

shifting down so that their respective last non-zero entries populate row u0 − 1 of Nu0.

We thus have Nu0(u0 − 1, v) = 1 for 0 ≤ v ≤ u0 − 1, while the other entries in this row

are trivially 0. This implies (2.11) and therefore the claimed relation.

Long inclusion-exclusion. We use the insight gained into the Pascal triangles to

generalize the principle of inclusion-exclusion from unions to k-fold covers. To make

this precise, let X be a finite collection of sets in Rn. Let k be an integer, and write Xk

for the set of points contained in k or more of the sets in X . We write X = X1. Standard

inclusion-exclusion implies that the indicator function of the union is the alternating sum

of the indicator functions of the common intersections:

1X(x) =
∞∑
i=1

(−1)i−1
∑
Q∈(Xi )

1⋂Q(x). (2.20)

To generalize (2.20) to k-fold covers, we introduce integer coefficients that depend on

the size of the subcollections.

Theorem 1 (k-fold Pie Theorem). Let X be a finite collection of measurable sets in Rn,

and k a positive integer. Then

vol[Xk] =
∞∑
i=k

(−1)i−k
(
i− 1

k − 1

) ∑
Q∈(Xi )

vol[
⋂

Q]. (2.21)

Proof. We prove that the indicator function of the k-fold cover satisfies

1Xk(x) =
∞∑
i=k

(−1)i−k
(
i− 1

k − 1

) ∑
Q∈(Xi )

1⋂Q(x). (2.22)

The claimed volume formula follows by integration. Let x be a point in Rn, and let ` be

the number of sets in X that contain x. Then x belongs to
(
`
i

)
common intersections

of i sets, for every i ≥ 1. Each such common intersection is counted (−1)i−k
(
i−1
k−1

)
=

Ck−1(i− 1) times in (2.22). Hence, x is counted(
`

i

)
(−1)i−k

(
i− 1

k − 1

)
= R`(i) · Ck−1(i− 1) (2.23)
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times as a member of the common intersection of i sets. To have a correct indicator

function, we need x to be counted once if 1 ≤ k ≤ ` and zero times otherwise. Indeed,
∞∑

i=−∞

R`(i) · Ck−1(i− 1) = M1(`− 1, k − 1), (2.24)

which by the Shift Lemma is 1 if 1 ≤ k ≤ ` and 0 otherwise, as required.

2.3 Geometric background

This section provides background on Voronoi diagrams and hyperplane arrangements;

see de Berg, van Kreveld, Overmars and Schwarzkopf [de Berg et al., 1997] for com-

putational aspects of these concepts.

Covers. Let B(x, r) be the closed ball with center x ∈ Rn and radius r ≥ 0. Writing

Bi = B(xi, ri), we let B = {B1, B2, . . . , Bm} be a finite set of balls in Rn. For each point

x ∈ Rn, let #B(x) be the number of balls in B that contain x. For every integer k, the

k-fold cover of B is

Bk = {x ∈ Rn | #B(x) ≥ k}, (2.25)

the set of points contained in at least k of the balls; see Figure 2.3. We write B = B1

for the union of the balls. Note that Bk = Rn for all k ≤ 0, Bk+1 ⊆ Bk for all integers k,

and Bk = ∅ for all k > m.

Figure 2.3: The ten disks have non-empty 1-fold, 2-fold, 3-fold, and 4-fold covers, while

the 5-fold cover is empty.

Voronoi diagrams. The weighted distance from the ball Bi is defined by the function

πi : Rn → R that maps a point x ∈ Rn to πi(x) = ‖x− xi‖2 − r2
i . For example if ri = 0,
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then πi(x) is the squared Euclidean distance from the center of Bi. Following [Shamos

and Hoey, 1975], we define the Voronoi domain of a subset Q ⊆ B as the set of points

x ∈ Rn for which πq(x) ≤ π`(x) for all Bq ∈ Q and all B` ∈ B \ Q. Given an integer k,

the order-k Voronoi diagram of B is the collection of Voronoi domains of sets Q of size

k. As an example, the solid edges in Figure 2.4 show the order-2 Voronoi diagram of

the disks in Figure 2.3. We find it convenient to generalize the concept by allowing for

two parameters, j < k. The Voronoi domain of a pair P ⊂ Q ⊆ B is the set of points x

whose weighted distance to the balls in Q is at least that to the balls in P and at most

that to the other balls in B:

Vor(P,Q) = {x ∈ Rn | πp(x) ≤ πq(x) ≤ π`(x)}, (2.26)

for all Bp ∈ P , all Bq ∈ Q \ P , and all B` ∈ B \ Q. Note that Vor(Q) = Vor(∅, Q) is the

Voronoi domain of Q as defined above. Being the intersection of finitely many closed

half-spaces, Vor(P,Q) is a possibly empty convex polyhedron. Collecting all Voronoi

domains for pairs of sizes j < k, we get the (j, k)-Voronoi diagram:

Vj,k(B) = {Vor(P,Q) | P ⊂ Q ⊆ B}, (2.27)

where cardP = j and cardQ = k; see Figure 2.4. We are primarily interested in the

case j = 0, which is the order-k Voronoi diagram, and the case j = k − 1, which is

the degree-k Voronoi diagram as defined in [Edelsbrunner, 1987, page 207]. We write

Vk(B) = V0,k(B) and V (B) = V1(B) = V0,1(B).

Figure 2.4: The solid lines show the (0, 2)-Voronoi diagram, and the solid together with

the dotted lines show the (1, 2)-Voronoi diagram of the disks in Figure 2.3.

A cell, γ, of the (j, k)-Voronoi diagram is a non-empty common intersection of a

collection of Voronoi domains. We call it an i-cell if its dimension is dim γ = i or,
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equivalently, codim γ = n − i. For example, the n-cells are the Voronoi domains, and

the 0-cells are the vertices. The cells form a complex in the usual sense of the term: the

cells have pairwise disjoint interiors and the boundary of every cell is a union of lower-

dimensional cells. As a word of caution, we mention that this complex is not necessarily

simple, not even if the balls in B satisfy reasonable general position requirements. For

example, many vertices in the (1, 2)-Voronoi diagram shown in Figure 2.4 belong to six

rather than three domains as required for a simple complex in R2.

Affine functions. Important aspects of the Voronoi diagrams are easier to explain by

first mapping the balls in Rn to non-vertical hyperplanes in Rn+1. We therefore introduce

the affine functions Ai : Rn → R defined by Ai(x) = 2〈x, xi〉 − ‖xi‖2 + r2
i for 1 ≤ i ≤ m,

writing A = A(B) for the set of these functions. At each point x ∈ Rn, we may sort

the values of the m functions and form new functions by selecting the pieces where a

single function is the k-largest. More formally, we introduce functions fk : Rn → R, for

1 ≤ k ≤ m, defined by fk(x) = ξ such that Ai(x) > ξ for at most k − 1 indices, and

Ai(x) < ξ for at most m− k indices. To explain the connection to the Voronoi diagrams

of B, we introduce $ : Rn → R defined by $(x) = ‖x‖2. For each x ∈ Rn, the difference

between the values of Ai and $ at x is the weighted distance of x from Bi:

$(x)− Ai(x) = ‖x‖2 − 2〈x, xi〉+ ‖xi‖2 − r2
i = ‖x− xi‖2 − r2

i , (2.28)

for 1 ≤ i ≤ m. We can therefore express the k-fold cover as well as the (k − 1, k)-

Voronoi diagram in terms of the arrangement.

Lemma 2 (Level Projection Lemma). Let B be a set of m balls in Rn, and A the corre-

sponding set of affine functions from Rn to R. Then

(i) x ∈ Bk iff fk(x) ≥ $(x), and

(ii) fk is affine on every domain of the (k − 1, k)-Voronoi diagram of B.

Instead of giving a proof, which is not difficult, we illustrate the result in dimension

n = 1; see Figure 2.5.

Hyperplane arrangements. The graphs of the Ai are n-planes that partition Rn+1 into

open convex cells of dimension 0 to n+ 1. We call this partition the arrangement of the

n-planes. Each cell is characterized by a partitionA = A+tA0tA−, and consists of all
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Figure 2.5: Three intervals in R1 and the corresponding lines in R2. The 2-nd level of

the arrangement projects to the (1, 2)-Voronoi diagram. The points of the parabola that

lie on or below the 2-nd level project to the points of the 2-fold cover.

points (x, ξ) ∈ Rn × R such that ξ is smaller than, equal to, larger than Ai(x) whenever

Ai ∈ A+,A0,A−. The cells of dimension n + 1 are referred to as chambers. Note that

the graph of fk is a union of cells of dimension 0 to n in the arrangement and does not

include any chambers. We call this the k-th level of the arrangement. To simplify the

exposition, we assume the n-planes are in general position. By this we mean that the

common intersection of any p of the n-planes inA is a q-plane with p+q = n+1 in Rn+1.

In particular, if p > n + 1, then the common intersection is empty. Assuming general

position, the subset A0 ⊆ A in the partition that characterizes a q-cell has cardinality p.

It follows that the q-cell belongs to exactly p levels of the arrangement.

It is perhaps surprising but not difficult to see that the number of q-cells in an ar-

rangement of m n-planes in general position can be written as a function of m, n, and

q and thus does not depend on the n-planes themselves:

#Cellsn+1
q (m) =

(
m

p

)
·

q∑
i=0

(
m− p
i

)
, (2.29)

where p + q = n + 1, as usual; see e.g. [Edelsbrunner, 1987, page 10]. For example,

the number of chambers is #Cellsn+1
n+1(m) =

∑n+1
i=0

(
m
i

)
. For other values of q, we get the

number of q-cells by counting the (q-dimensional) chambers in the arrangements within

the q-planes defined by the n-planes. We have
(
m
p

)
such q-planes, with #Cellsqq(m− p)

chambers each, which implies (2.29).

Cubes. In the analysis of local structures within the hyperplane arrangement, we will

need a few combinatorial facts about the (n + 1)-dimensional unit cube, [0, 1]n+1. For
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100

101

Figure 2.6: Left : the 3-dimensional unit cube with edges indicating the partial order on

the vertices. Right : the dual vertex star in a 3-dimensional arrangement. The direction

we call vertical downward in the text is given by the vector from vertex 000 to vertex

111.

0 ≤ p ≤ n+ 1, its number of p-faces is

#Facesn+1
p =

(
n+ 1

p

)
· 2n+1−p. (2.30)

To see (2.30), we select q = n + 1 − p coordinate directions and intersect the (n + 1)-

cube with a q-plane parallel to these directions. There are
(
n+1
q

)
=
(
n+1
p

)
choices, each

producing a q-cube with 2q = 2n+1−p vertices. Each of these vertices lies on a p-face of

the (n+ 1)-cube.

Each of the n + 1 coordinates of a vertex u of the (n + 1)-cube is either 0 or 1, and

we write #u for the number of coordinates that are equal to 1. Directing the edges of

the cube from smaller to larger numbers of 1s, we get a partial order of the vertices;

see Figure 2.6. There is a bijection between the faces and the pairs u � v of the partial

order, and we call u the lower and v the upper bound of the face. The dimension of

the face is of course p = #v − #u. As noted in the proof of (2.30), the p-faces of

the (n + 1)-cube can be organized in
(
n+1
p

)
sets, each the product of a p-face with the

vertices of a q-cube. The number of vertices of the q-cube with #u = k is
(
q
k

)
. It follows

that the number of p-faces of the (n + 1)-cube whose lower and upper bounds satisfy

#u = k and #v = k + p is

#Facesn+1
p,k =

(
n+ 1

p

)(
q

k

)
=

(n+ 1)!

p! · k! · (q − k)!
. (2.31)

Note that #Facesn+1
p,k = 0 whenever p 6∈ [0, n+ 1] or k 6∈ [0, q].
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2.4 Order-k formulas

In this section, we use the geometry of the problem to derive a first set of short

inclusion-exclusion formulas that generalize the formulas in [Naiman and Wynn, 1992;

Edelsbrunner, 1995b] from the union to the k-fold cover.

Star-convexity. As before, we let B be a finite set of balls in Rn, and we write Bk for

the set of points in Rn that are contained in at least k of the balls. Writing Vk = V0,k(B)

for the order-k Voronoi diagram, we note that its domains decompose the k-fold cover

into convex sets; see Figure 2.7. We need a structural property of the Voronoi domains

Figure 2.7: The 2-fold cover of the ten disks in Figure 2.3. The order-2 Voronoi diagram

decomposes the cover into convex sets, each the intersection of a Voronoi domain with

two disks.

and their restrictions to the k-fold cover. To state it, we recall that Vor(Q) is the Voronoi

domain of Q, and we write Res(Q) =
⋂
Q ∩ Vor(Q) for its restriction to the common

intersection of the balls. Given a point x ∈ Rn, we letQk(x) be the system of collections

Q ⊆ B of size k that satisfy x ∈
⋂
Q and Vor(Q) 6= ∅. Clearly, if x 6∈ Bk, then Qk(x) is

empty. If x ∈ Bk, then Qk(x) is necessarily non-empty as it contains all collections Q of

size k with x ∈ Vor(Q), but there may be additional collections in the system. We are

interested in the union of the restricted and unrestricted Voronoi domains whose balls

contain the point x:

Vk(x) =
⋃

Q∈Qk(x)

Vor(Q), (2.32)

Rk(x) =
⋃

Q∈Qk(x)

Res(Q). (2.33)



17

To prepare the analysis of these sets, we recall a basic property of the weighted dis-

tance functions. If Bi and Bj are balls in Rn, then f : Rn → R defined by f(x) =

πi(x)− πj(x) is an affine function:

f(x) = ‖x− xi‖2 − r2
i − ‖x− xj‖

2 + r2
j

= 2〈x, xj − xi〉+ ‖xi‖2 − ‖xj‖2 − r2
i + r2

j .
(2.34)

It follows that the restriction of f to any line, L, in Rn is an affine function that is constant

iff L is normal to xj − xi. The main property of interest is the star-convexity of Vk(x)

and Rk(x). In particular, we will show that for every point y in Vk(x) or Rk(x), the entire

line segment connecting x with y is contained in this set.

Lemma 3 (Star-convexity Lemma). Let B be a finite set of balls in Rn, k an integer, and

x a point in Rn. Then Vk(x) is either empty or star-convex, and so is Rk(x).

Proof. We first consider Vk(x). Assuming x ∈ Bk, we let y be a point in Vk(x), and

we let Q be a collection of k balls in B such that y ∈ Vor(Q). By construction, the

balls in Q minimize the weighted distance for y, and the weighted distance of x to any

of these balls is non-positive. Let L be the line that passes through x and y, and let

u ∈ L be strictly between x and y. To derive a contradiction, assume u 6∈ Vk(x). Then

there exists a ball B0 ∈ B that is among the k closest for u such that π0(x) > 0. It can

therefore not be in Q. Hence, there is a ball B1 ∈ Q with π0(u) ≤ π1(u). But we also

have π1(y) ≤ π0(y) and π1(x) < π0(x), which contradicts that π1−π0 restricts to an affine

function on L. We conclude that u ∈ Vk(x), which implies that Vk(x) is star-convex, as

claimed.

The argument for the restricted Voronoi domains is similar, implying that Rk(x) is

star-convex as well.

Short inclusion-exclusion. The formulas we prove have at most one term for each

cell in the order-k Voronoi diagram. For constant dimension, the number of such cells

is bounded from above by a polynomial in the number of balls, which is much smaller

than the number of subsets of the balls. This is our justification for calling the formulas

short. To state them, we associate each cell γ of Vk with the subset Qγ ⊆ B of balls
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that are among the k closest for at least one Voronoi domain containing γ. Assuming

general position, we have

k ≤ cardQγ ≤ k + n. (2.35)

To prove these inequalities, we set q = n−dim γ and observe that k = cardQγ iff q = 0.

To prove the upper bound, we assume q > 0 and let x be an interior point of γ. By

assumption of general position, x has equal weighted distance to q + 1 balls. Let ` be

the number of balls to which x has smaller weighted distance than to these q + 1 balls.

We have ` < k, else γ would not be a face of the Voronoi domains. The k balls defining

a Voronoi domain that contains γ include the ` balls as well as k − ` of the q + 1 balls.

It follows that Qγ contains the ` balls together with the q + 1 balls. But ` < k and q ≤ n,

which implies cardQγ ≤ `+ q + 1 ≤ k + n, as claimed.

To state the main result of this section, we introduce two subsystems of the nerve of

Vk(B), which is an abstract simplicial complex. Recall that every simplex in the nerve is

a collection of Voronoi domains that intersect in a non-empty cell of the order-k Voronoi

diagram. We call a simplex maximal if it is not a proper face of a simplex whose

domains intersect in the same cell. The first subsystem, Vk, consists of all maximal

simplices in the nerve of Vk(B). Making use of the bijection between the simplices in Vk
and the cells in Vk we write γ(σ) for the common intersection of the Voronoi domains

in σ ∈ Vk. The second subsystem, Rk, is defined similarly, except that it is limited to

simplices whose corresponding cells have non-empty intersection with Bk. As before,

we pick only maximal simplices from this smaller system.

Theorem 2 (Order-k Pie Theorem). Let B be a finite set of balls in Rn, and k an integer.

Then the volume of the k-fold cover is

vol[Bk] =
∑
σ∈Vk

(−1)codim γ(σ)vol[
⋂

Qγ(σ)], (2.36)

=
∑
σ∈Rk

(−1)codim γ(σ)vol[
⋂

Qγ(σ)]. (2.37)

Proof. We first prove (2.36). Recall that Vk(x) is the union of the order-k Voronoi

domains, Vor(Q), such that x ∈
⋂
Q. Each such domain is a vertex in Vk, and we write

Vk(x) ⊆ Vk for the simplices these vertices span. We introduce χ : Rn → R defined

by mapping x to the Euler characteristic of Vk(x). To avoid any ambiguity arising for
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unbounded sets, we clip Rn to within a sufficiently large n-dimensional box and take

the Euler characteristic of Vk(x) intersected with this box. Recall that Vk(x) is either

empty or star-convex. In the former case, the Euler characteristic is 0, and in the latter

case, it is 1. Hence, χ is the indicator function of the k-fold cover:

χ(x) =

 1 if x ∈ Bk,

0 if x 6∈ Bk.
(2.38)

It follows that vol[Bk] =
∫
x∈Rn χ(x) dx. By the Nerve Theorem[Leray, 1945; Borsuk,

1948], χ(x) is the alternating sum of simplices in the nerve of the Voronoi domains

whose union is Vk(x). If the Voronoi diagram is simple, then Vk(x) contains all and

exactly these simplices and we are done. In the general case however, Vk(x) may

contain fewer simplices, and our task is to show that they suffice to compute the Euler

characteristic of Vk(x).

To explain this, let γ be a cell of Vk, and let ` + 1 ≥ n + 1 − dim γ be the number

of Voronoi domains that contain γ. The corresponding `-simplex in the nerve of Vk

is maximal, but if ` + 1 > n + 1 − dim γ, then this `-simplex has faces that are not

maximal. We continue the proof assuming γ is a vertex. Indeed, if dim γ > 0 then

we may intersect the local configuration with an orthogonal (n − dim γ)-plane, which

intersects γ in a point. The remainder of the argument would then be worded within

this (n− dim γ)-dimensional plane.

Thus assuming dim γ = 0, we distinguish between the maximal and non-maximal

faces by drawing a sufficiently small (n−1)-sphere with center at γ. Denote this sphere

as S and the n-ball bounded by S as B (Figure 2.8, left). The Voronoi domains intersect

B in ` + 1 cones and S in ` + 1 (n − 1)-dimensional caps, which are the bases of the

cones. The nerve of the cones is isomorphic to the nerve of the Voronoi domains. To

relate the nerve of the caps to the nerve of the Voronoi domains, we map each cap in

S to the corresponding cone in B. Let τ be a face of the `-simplex, and consider the

common intersection of its Voronoi domains. It is not difficult to see that this common

intersection is γ iff τ does not correspond to a simplex in the nerve of the caps in S.

Since the cones form an n-ball and the (n − 1)-caps form an (n − 1)-sphere, the Euler

characteristic of their nerves are 1 and 1 + (−1)n−1, respectively. It follows that the



20

alternating sum of the non-maximal simplices whose Voronoi domains intersect in γ is:

1− (−1)` − [1 + (−1n−1)] =


2 if ` is odd and n is even,

0 if `− n is even,

−2 if ` is even and n is odd.

(2.39)

In words, the alternating sum of the non-maximal simplices is precisely the difference

between the contribution of the vertex γ and the `-simplex:

(−1)n − (−1)` = (−1)codim γ − (−1)`. (2.40)

This proves the claimed formula for points x equal to or sufficiently close to γ. We need

additional arguments for points x that are not contained in the intersection of the k balls

for all Voronoi domains meeting at γ.

Figure 2.8: The `-simplex has non-maximal faces ad, bd, acd, . . .. On the left, with ` = 4

and n = 2, we shade the ball and draw the partition into caps as dashed arcs. On the

right, with ` = 4 and j = 3, only a proper subset of the Voronoi domains contain x.

Suppose j+1 < `+1 of the Voronoi domains meeting at γ contain x in the intersec-

tion of their balls. The nerve of the corresponding j + 1 cones in B is a j-simplex with

Euler characteristic equal to 1 (Figure 2.8, right). We will prove shortly that the Euler

characteristic of the corresponding j + 1 caps is also equal to 1. The alternating sum

of the non-maximal faces of the j-simplex is the difference, which vanishes as desired.

It remains to prove that the Euler characteristic of the union of the j + 1 caps is 1. It

suffices to prove that this union is homologically trivial, with β0 = 1 the only non-zero

Betti number. Suppose it is not (Figure 2.9, left). Then there is a non-bounding cycle,

Z, in the union of caps. By construction Z ⊆ Vk(x), and since Vk(x) is star-convex we

can draw straight line segments from x to all points of Z and thus form a chain, C, with
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boundary Z (Figure 2.9, middle). Since we can locally perturb x, we may assume that

the point γ does not belong to C. We can therefore centrally project C from γ to S. By

construction, the image of this projection is a chain in the union of caps (Figure 2.9,

right). Its boundary is Z, which contradicts the assumption that the union of caps is

homologically non-trivial.

Figure 2.9: Hypothetical example in which the union of caps is homologically non-

trivial, as indicated by the shaded Voronoi domains in Vk(x). Such configuration leads

to a contradiction.

To make the step to the claimed equation, we repackage the contributions of the

points x to the integral. Specifically, we focus on a cell γ of the order-k Voronoi dia-

gram. The contribution of γ to the integral is ±1 times the integral of 1 over all points

in
⋂
Qγ. The sign alternates with the codimension, which gives (−1)codim γ, and the

integral evaluates to the volume of the common intersection. This implies (2.36). The

proof of (2.37) is the same, using again that the sets Rk(x) are star-convex.

For k = 1, (2.36) specializes to the formula for the volume of the union of balls

given in [Naiman and Wynn, 1992], and (2.37) specializes to the smaller formula given

in [Edelsbrunner, 1995b]. We note that the terms in the difference between the two

formulas are not necessarily zero. Even for k = 1, the first formula may contain non-

zero terms that cancel with others and do not belong to the second formula.
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2.5 Level-k formulas

In this section, we present an alternative approach to deriving short inclusion-exclusion

formulas for the k-fold cover. Importantly, it leads to formulas whose terms are limited

to common intersections of at most n+ 1 balls.

Indicator function for polyhedra. Letting B be a set of m balls in Rn, we write A for

the corresponding set of m affine functions from Rn to R, as introduced in Section 2.3.

For an integer k, let Uk be the set of points y ∈ Rn+1 that lie on or above the k-th level

of A, and let Lk be the set of points on or below the k-th level; see Figure 2.5, which

shows L2 for three intervals in R1.

To derive the formulas, we begin with Uk and then move to Lk. Because Uk is a not

necessarily convex polyhedron, its indicator function can be assembled from simple

components, each the indicator function of a face and its immediate neighborhood;

see [Edelsbrunner, 1995a]. To explain how this works, we refer to the faces of Uk as

sides. For 0 ≤ q ≤ n, the q-sides of Uk are the closures of the q-cells in the arrangement

that belong to the k-th level. Clearly, all these cells are convex. The only (n + 1)-side

of Uk is Uk itself, which is not necessarily convex but contractible. The star of a side,

ψ, is the set of sides that contain ψ. Let y be a point in the interior of ψ, and let ε > 0

be small enough such that the sphere, S, with center y and radius ε in Rn+1 intersects

only sides that belong to the star of ψ. The negative face figure of ψ is the union of

all half-lines that emanate from y whose central reflections pass through points of the

intersection of this sphere with the polyhedron:

Fψ = {(1− λ)y + λu | u ∈ S ∩ Uk, λ ≤ 0}. (2.41)

Intuitively, it is the central reflection of the local view of the polyhedron as seen from y

(Figure 2.10). Note that Fψ does not depend on the choice of the point y in the interior

of ψ. The main theorem in [Edelsbrunner, 1995a] implies that indicator function of Uk

can be written as an alternating sum of indicator functions of interiors of negative face

figures: 1Uk(y) =
∑

ψ(−1)codimψ · 1int Fψ(y), in which the sum ranges over all sides of

Uk, including Uk itself for which the negative face figure is the entire Rn+1. Substituting

the closed for the open negative face figures, the indicator function changes from Uk to
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Figure 2.10: The region U2 above the second level is white and its complement, L2,

is shaded. For each side ψ of U2, we draw a sphere centered in the interior of ψ and

shade the portion of its inside that points in the direction of its negative face figure.

intUk, and subtracting it from 1, it changes to the complement, which is closed:

1Lk(y) = 1− 1intUk(y) =
∑
ψ

(−1)n−dimψ · 1Fψ(y), (2.42)

in which the sum now ranges over all sides of dimension 0 to n, which are the same for

Uk and Lk.

Negative face figures. To further decompose the indicator function given in (2.42), we

need to understand the negative face figures. It suffices to study a vertex, since the

negative face figure of a q-side is that of a vertex in an arrangement of (n− q)-planes in

Rn+1−q, extruded along q additional dimensions. Assuming general position, a vertex w

is the intersection of n+ 1 n-planes in Rn+1, and its star is dual to a cube of dimension

n + 1; see Figure 2.6. The n-planes are non-vertical so we can order the chambers

accordingly, which corresponds to directing the edges of the cube from top to bottom.

To make this concrete, we sort the n-planes, and we assign to each chamber a string

of n+1 labels in which the p-th label is 0 if the chamber lies above the p-th n-plane, and

it is 1 if the chamber lies below the p-th n-plane. It should be clear that the assigned

labels are the coordinates of the corresponding vertices of the dual (n + 1)-cube. Let

k0 + `0 = m− (n+ 1) such that w lies below k0 and above `0 of the n-planes. It follows

that w belongs to the k-th level of A iff k0 < k ≤ m − `0. Which cells around w belong

to the k-th level and are therefore sides Lk depends solely on j = j(w) = k− k0, which

we call the index of w. Specifically, the q-cells that belong to the k-th level are dual to

p-faces of the (n+ 1)-cube whose lower and upper bounds satisfy #u < j ≤ #v. Using
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(2.31), we see that the number of such q-cells is

#Sidesn+1
q,j =

j−1∑
i=j−p

#Facesn+1
p,i . (2.43)

Depending on the index of w, different cells in its neighborhood contribute to the indi-

cator function of its negative face figure. For example in 3 dimensions, we have three

indicator functions:

j = 1 : abc, (2.44)

j = 2 : ab+ ac+ bc− 2abc, (2.45)

j = 3 : a+ b+ c− ab− ac− bc+ abc, (2.46)

where we write a, b, c for the indicator functions of the half-spaces bounded from above

by the graphs of the three affine functions. In dimension n + 1, there are n + 1 indices

and n + 1 different indicator functions of the negative face figures. To express them

formally, we write 1A for the indicator function of the half-space bounded from above

by the affine function A.

Lemma 4 (Face Figure Lemma). Let A be a set of n + 1 affine functions from Rn to R

whose graphs form an arrangement with a single vertex w in Rn+1. For 1 ≤ j ≤ n + 1,

the indicator function of the negative face figure of w with index j satisfies

1Fw(y) =
n+1∑

i=n+2−j

(−1)i−n+j

(
i− 1

n− j + 1

) ∑
A′∈(Ai )

∏
A∈A′

1A(y). (2.47)

Proof. Since we have only n+ 1 affine functions in Rn, we cannot gain from the geom-

etry of the situation and use the general inclusion-exclusion formula (2.1). Specifically,

we use the indicator function from which (2.1) follows by integration:

1Xk(y) =
∑
i≥k

(−1)i−k
(
i− 1

k − 1

) ∑
Q∈(Xi )

1⋂Q(y), (2.48)

where X denotes a finite collection of measurable sets in Rn+1, and Xk is the k-fold

cover. To specialize this result to our situation, we note that the negative face figure

of w is the (n + 2 − j)-fold cover of the n + 1 closed half-spaces bounded from above

by the graphs of the Ai ∈ A. Substituting n + 2 − j for k and A for X , and writing the

indicator function of the intersection as a product, we get the claimed relation.
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Short inclusion-exclusion. Combining (2.42) and (2.47), we get the indicator function

of Lk with terms that are products of at most n + 1 indicator functions of half-spaces.

To state it formally, we write Lk for the abstract simplicial complex whose abstract

simplices are the collections Q ⊆ B such that the graphs of the corresponding affine

functions contain a common side of Lk. For each Q ∈ Lk, we write 1Q : Rn+1 → {0, 1}

for the indicator function of the intersection of half-spaces bounded from above by the

graphs of the corresponding affine functions. Combining the mentioned relations, we

get 1Lk(y) =
∑

Q∈Lk LQ · 1Q(y), in which LQ is sum of coefficients of 1Q(y) contributed

by the various negative face figures. We can now compute the n-dimensional volume

of the k-fold cover of the set of balls in B by integration:

vol[Bk] =

∫
x∈Rn

1Lk(x, ‖x‖
2) dx =

∑
Q∈Lk

LQ

∫
x∈Rn

1Q(x, ‖x‖2) dx. (2.49)

Note that the last integral is the volume of the intersection of the balls. This gives the

first inclusion-exclusion formula for the volume of Bk derived in this section. However,

there are redundant terms that can be removed to obtain an even shorter formula. To

identify them, we call a collection of balls, Q, independent if for every P ⊆ Q there is

a point x ∈ Rn such that every ball in P contains x and every ball in Q \ P does not

contain x; that is:
⋂
P \

⋃
(Q \ P ) 6= ∅. Let Ik be the system of collections Q ∈ Lk

such that Q is independent. We claim there are integer coefficients IQ not necessarily

equal to LQ such that the weighted sum over Ik gives the volume of the k-fold cover.

We state both results.

Theorem 3 (Level-k Pie Theorem). Let B be a finite set of balls in Rn, and k an integer.

Then the volume of the k-fold cover is

vol[Bk] =
∑
Q∈Lk

LQ · vol[
⋂

Q] (2.50)

=
∑
Q∈Ik

IQ · vol[
⋂

Q]. (2.51)

Proof. The proof of (2.50) has been given above. To prove (2.51), we show that when-

ever Q ∈ Lk is not independent, then vol[
⋂
Q] can be written as an integer combination

of the vol[
⋂
P ] in which the P are proper subsets of Q. Repeated substitution of de-

pendent terms in (2.50) eventually gives (2.51). To prove that the substitution is always

possible, we consider the system of linear equations that relates the volumes of the
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common intersections with the volumes of the cells that appear in the definition of in-

dependence. Writing

µ =
[
vol[
⋂

P ]
]
∅6=P⊆Q

, ν =
[
vol[
⋂

P \
⋃

(Q \ P )]
]
∅6=P⊆Q

(2.52)

for the vectors of volumes, we get µ = Mν, in which M is a 0-1 matrix. Writing

q = cardQ, M is a 2q − 1 times 2q − 1 matrix. It has the regular structure reflecting

the incidences between the linear spaces spanned by the non-empty subsets of q in-

dependent vectors; see Figure 2.11 for an example. In particular, all entries in the

diagonal are 1, and all entries above the diagonal are 0. Furthermore, the number of

non-zero entries in each row is a power of 2.

uv

uvw

uw

vw

u

v

w

u
v
w

u
w

v
w

u
v

u v w
1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1 1

Figure 2.11: The matrix relating the vectors µ and ν for a collection of size cardQ = 3.

Assume now that Q is not independent. Then at least one component of ν is zero.

Equivalently, we may set the corresponding column of M to zero, without violating the

correctness of µ = Mν. This creates dependences between the linear equations. We

use the special structure of M to prove that in this case, we can write the volume of⋂
Q as an integer combination of the vol[

⋂
P ], in which P ⊆ Q but P 6= Q. Fixing

2 ≤ r ≤ 2q − 1, we can reduce the r-th row until its only non-zero entry is in the

diagonal of M . To do this, we work from the diagonal element backward, adding an

integer multiple of a row above for every non-zero entry. Since r ≥ 2, the r-th row

contains an even number of 1s before reduction. Adding an integer multiple of any

row other than the first changes the sum of non-zero entries by an even number, and

since the sum in the end is odd, we conclude that the first row has been added with a

non-zero coefficient. If we now set the r-th column to zero, we have a zero r-th row.

But this implies that the first row is an integer combination of the r-th row and all rows

used in its reduction, other than the first row of course.
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2.6 Computation

In this section, we comment on the main challenges in implementing the inclusion-

exclusion formulas for the k-fold cover of balls proved in the preceding sections. Our

main concern is the correctness of the formulas, leaving considerations of size and

speed to future research. We begin with experimental results for a small 3-dimensional

example.

Example. As explained shortly, we implemented two formulas in n = 3 dimensions:

the order-k formula (2.36) and the level-k formula (2.50), both after reduction. The

reduced formulas are readily evaluated without further case analysis. The input for our

example is generated by sampling 10 points uniformly at random from the unit cube in

R3. Centering balls of radius 0.25 at these points gives the first set, B1, and increasing

the radius to 0.875 gives the second set, B2, see Figure 2.12.

Figure 2.12: Two sets of ten random balls with centers in the unit cube and radii 0.25

on the left and radii 0.875 on the right.

Computing the volume of the k-fold cover of B1 and B2, for k = 1, 2, . . . , 10, we

show the volume as well as the number of terms and the average number of balls

per term in Table 2.1. In every case, the reduced order-k formula is identical to the

reduced level-k formula, so we show only three integers per case: the number of terms

of the order-k formula (2.36), of the level-k formula (2.50), and of the reduced formula.

While the number of terms in the level-k formulas tend to be smaller than in the order-

k formulas, the difference is neither significant nor consistent. We also note that for

B1, most redundant terms have zero volume, while for B2, all redundant terms have

non-zero volume.
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B1, radius = 0.25 B2, radius = 0.875

k order-k level-k reduced vol order-k level-k reduced vol

1 103× 2.7 103× 2.7 34× 2.0 0.523 103× 2.7 103× 2.7 95× 2.6 7.842

2 166× 3.4 166× 3.1 29× 2.4 0.106 166× 3.4 166× 3.1 149× 3.0 5.176

3 220× 4.3 219× 3.4 14× 2.9 0.023 220× 4.3 219× 3.4 186× 3.4 4.137

4 221× 5.1 228× 3.6 4× 3.3 0.001 221× 5.1 228× 3.6 191× 3.5 3.118

5 190× 6.0 238× 3.6 0× 0.0 0.000 190× 6.0 238× 3.6 189× 3.6 2.450

6 140× 6.8 203× 3.7 156× 3.7 1.857

7 80× 7.6 184× 3.6 128× 3.6 1.417

8 34× 8.3 127× 3.5 80× 3.5 1.024

9 9× 9.1 65× 3.4 32× 3.5 0.704

10 1× 10.0 17× 3.3 11× 3.4 0.332

Table 2.1: The volume of the k-fold covers of B1 and B2, together with the number of

terms in the inclusion-exclusion formulas and the average number of balls per term.

Algorithm. Without going into details, we sketch the main steps in constructing and

evaluating an inclusion-exclusion formula for the k-fold cover of a set B of m balls in

R3. For the order-k formula (2.36), we construct the order-k Voronoi diagram of B as

the order-1 (weighted) Voronoi diagram of the k-fold averages, as explained in [Auren-

hammer and Schwarzkopf, 1992]. The latter diagram is then computed with the 3D

CGAL weighted Delaunay triangulation software [CGAL]. For the level-k formula (2.50),

we construct in addition the order-(k − 1) Voronoi diagram and we obtain Vk−1,k(B) by

superimposing Vk−1(B) and Vk(B). While there are standard procedures, we mention

that superimposing the two diagrams was perhaps the most laborious task in imple-

menting the algorithm. An important aspect of the above computations is the use of

exact arithmetic in making final decisions on the connectivity of the diagrams. Without

it, there is little hope to get correct inclusion-exclusion formulas. CGAL offers the exact

computation paradigm [Yap and Dubé, 1995] as part of the package, which is the main

reason we decided to use CGAL and not one of the many available alternatives. To

illustrate the need for exact arithmetic, we mention that already for k = 2, the order-k

Voronoi diagram is not simple even if the balls are in general position. Taking m = 4

points not in a plane, the order-2 Voronoi diagram has six domains that meet at the

center of the circumsphere. This is in contrast to the at most four domains that are

allowed to meet in a simple diagram in R3.
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Assuming we have Vk(B) or Vk−1,k(B), we construct the formula by translating each

cell into a term or a small number of terms. This is straightforward for the order-k for-

mula but can be confusing for the level-k formula, for which we give some more details.

Iterating over all cells ψ of Vk−1,k(B), we write j(ψ) for its index in the corresponding

arrangement, as defined in Section 2.5. We begin with an initially empty formula.

CASE 1: dimψ = 3. Add the volume of the corresponding ball to the formula.

CASE 2: dimψ = 2. Set i = 3− j(ψ) and subtract the volume of the i-fold cover of the

two corresponding balls.

CASE 3: dimψ = 1. Set i = 4−j(ψ) and add the volume of the i-fold cover of the three

corresponding balls.

CASE 4: dimψ = 0. Set i = 5− j(ψ) and subtract the volume of the i-fold cover of the

four corresponding balls.

Once we have the complete formula, we evaluate it, translating each i-fold cover to

an alternating sum of intersections among the balls. But even this is not an easy

task as the balls we intersect are not in any particular geometric configuration. We

therefore first reduce the formula until all terms are independent, as explained shortly.

In the reduced formula, we have only four different cases: one, two, three, and four

independent balls. Analytic formulas for computing the volume of the intersection in

each case can be found in [Edelsbrunner and Fu, 1994].

Reduction. Assume we have an inclusion-exclusion formula for the volume of the

k-fold cover of m balls in R3. Each term is a common intersection of balls, but the col-

lections are not necessarily independent. We now explain how to reduce this formula

into a form in which all collections are independent. We proceed one term at a time,

starting with one whose collection has a maximum number of balls.

Let Q be the balls that appear in the considered term, and write q + 1 = cardQ. If

q > 3, then we can be sure that Q is not independent, and we can replace this term

using a relation computed as described in the proof of the Level-k Pie Theorem. To

get started, we need a subset P of Q whose common intersection is contained in the

union of Q \ P , and to find it, we use the affine functions from R3 → R, writing Ai for

the ones that correspond to balls in P , and Aj for the ones that correspond to balls in
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Q \ P . A point x ∈ R3 belongs to
⋂
P iff ‖x‖2 ≤ Ai(x) for all Ai, and x does not belong

to
⋃

(Q \ P ) iff ‖x‖2 > Aj(x) for all Aj. Hence, for
⋂
P \

⋃
(Q \ P ) to be non-empty, it

is necessary that the chamber below the hyperplanes defined by the Ai and above the

hyperplanes defined by theAj exists. Recalling the formula for the number of chambers

in n + 1 = 4 dimensions (2.29), we see that for q + 1 > 4 hyperplanes their number

is less than 2q+1. It follows that there is at least one subset P whose corresponding

chamber is empty. This subset witnesses the non-independence of Q and can be used

to start the procedure outlined in the proof of the Level-k Pie Theorem. A drawback of

this procedure is the exponential size of the matrix, but it suffices to run it on a subset

Q′ ⊆ Q of 5 ≤ q + 1 balls, and to use the relation for Q′ to get a relation for Q.

The above method for finding P does not work for sets Q with cardinality q + 1 ≤ 4.

But here we can use the fact that Q is independent iff the nerve of the Voronoi domains

restricted to the balls is the full q-simplex spanned by the centers of the q+ 1 balls. If Q

is not independent, then the simplices missing from the nerve give the desired relation.

To see this, we note that the full q-simplex and the mentioned nerve give two different

inclusion-exclusion formulas for the union of the q+ 1 balls [Edelsbrunner, 1995b]. The

difference of the two evaluates to zero and contains the intersection of the q + 1 balls

as a term.

2.7 Discussion

The main results of this chapter are short inclusion-exclusion formulas for the k-fold

cover of a finite set of balls in Rn, one based on the order-k Voronoi (or power) diagram,

and the other on the k-th level in the lifted hyperplane arrangement. In addition, we

have formalized the reduction to independent terms, which is essential to get effective

implementations of the formulas. This work raises a number of questions we have not

been able to answer.

• How big are the formulas, in terms of k,m, n, and how fast can they be computed?

For constant dimension, the level-k formula gives a polynomial upper bound, but

we do not know an asymptotically tight bound.
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The same claim is probably not true for the order-k formula for which the reduction may

take a large number of steps. Another advantage of the level-k approach is it extends

to computing the volume of weighted multiple covers: assigning a real weight to every

ball, we ask for the volume of the set of points covered by balls whose sum of weights

exceeds a given threshold. What about shapes that are more general than balls?

• Following a general reduction argument, we see that families of simple shapes,

such as ellipsoids and axes-aligned boxes, also have short inclusion-exclusion

formulas for the k-fold cover. Are there polynomial-time methods to compute

them?

Indeed, it is not difficult to generalize the reduction outlined in the proof of the Level-

k Pie Theorem to shapes for which the cardinality of an independent collection is

bounded. Starting from the exponential size formula (2.1), we can reduce the terms

until they are all independent, but this approach takes exponential time. Finally, there is

the less specific connection of the work in this chapter to optimal sphere arrangements

that neither pack nor cover. We mention one such question:

• What is the best way to arrange equal-size balls in Rn if the objective is to maxi-

mize the probability that a random point is covered by exactly one ball?

Based on the application of our work and software to the SCD model of the eukaryotic

cell nucleus, another different optimization criteria may be defined where the volume

of the k-fold covering can be used as a primitive tool.
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3 Weighted Averages

Voronoi diagrams and Delaunay triangulations have been extensively used to represent

and compute geometric features of point configurations. We introduce a generalization

to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi

diagrams and their duals as special cases. Extending a result of Aurenhammer from

1990, we show how to construct poset diagrams as weighted Voronoi diagrams of

average balls.

3.1 Prior work and results

As documented by Aurenhammer [Aurenhammer, 1991], Voronoi diagrams have found

applications in diverse areas of science. This includes biology, where they assist in

the study of proteins in atomic resolution [Richards, 1974] as well as cell cultures on

much coarser level of organization [Bock et al., 2010]. Returning to atomic resolution,

Voronoi diagrams have been used to derive inclusion-exclusion formulas for the volume

of a union of balls; see [Kratky, 1978] in physics and [Naiman and Wynn, 1992] in

statistics. In chapter 2 [Edelsbrunner and Iglesias-Ham, 2018a], we have extended

these formulas to the space of points covered by at least k of the balls using order-k

Voronoi diagrams [Shamos and Hoey, 1975; Tóth, 1976; Tóth, 1979] or, alternatively,

degree-k Voronoi diagrams [Edelsbrunner, 1987, page 207].

In this chapter, we define cotransitive posets and use them to introduce a family

of Euclidean Voronoi diagrams that includes the order-k and degree-k diagrams as

special cases. A subset of the family corresponds to generalized permutahedra, as

studied within algebraic geometry [A.P̃OSTNIKOV., 2009]. A second contribution is the

construction of the diagrams in this family from weighted averages of the given points or
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balls. This construction is a generalization of a result of Aurenhammer [Aurenhammer,

1990], who constructs an order-k Voronoi diagram from the k-fold averages of the given

points.

Outline. Section 3.2 provides background on Voronoi diagrams and its generalization

to poset diagrams. Section 3.3 studies averages of balls in the construction of poset

diagrams. Section 3.4 concludes the chapter.

3.2 Poset diagrams

This section introduces a common generalization of order-k and degree-k Voronoi di-

agrams. We begin by recalling the definitions of these diagrams, which we give for

weighted points or balls. We allow ourselves a bit of repetition from the background

section in Chapter 2 for a matter of self-containment.

Voronoi diagrams. Let B(x, r) be the closed ball with center x ∈ Rn and radius r ≥ 0.

Writing Bi = B(xi, ri), we let B = {B1, B2, . . . , Bm} be a finite set of balls in Rn. The

weighted distance from Bi is defined by the function πi : Rn → R that maps a point x

to πi(x) = ‖x− xi‖2 − r2
i . For example, if ri = 0, then πi(x) is the squared Euclidean

distance from the center of Bi.

The Voronoi domain of Bi is the set of points for which Bi minimizes this distance:

Vor(Bi) = {x ∈ Rn | πi(x) ≤ πj(x),∀j}. (3.1)

The (ordinary) Voronoi diagram, denoted as V (B), is the collection of such domains.

In the literature, these diagrams are known under several names, including power di-

agrams, Dirichlet tessellations, Thiessen polygons, and Wigner-Seitz zones; see also

[Aurenhammer, 1991].

Let now Q be a subset of B. Its Voronoi domain consists of all points that satisfy

πq(x) ≤ π`(x) whenever Bq ∈ Q and B` ∈ B \Q. For an integer 1 ≤ k ≤ m, the order-k

Voronoi diagram of B is the collection of Voronoi domains of all subsets of k balls in

B [Shamos and Hoey, 1975; Tóth, 1976; Tóth, 1979]. See Figure 3.1 for an example

in which all radii vanish. Note that k = 1 gives the ordinary Voronoi diagram. We can

further subdivide the Voronoi domain of Q depending on which of its balls maximizes
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Figure 3.1: The solid lines show the order-2 Voronoi diagram, and the solid together

with the dotted lines show the degree-2 Voronoi diagram of the points.

the weighted distance. If we do this for all domains in the order-k diagram, we get

the degree-k Voronoi diagram studied for example in [Edelsbrunner, 1987, Exercise

13.27]; see again Figure 3.1. It decomposes Rn into regions within which the same

ball realizes the k-smallest weighted distance.

Cotransitive posets. We further generalize the notion of Voronoi diagram using posets.

Let U = {u1, u2, . . . , um} be a finite set of nodes and recall that a partial order is a re-

lation on U determined by a set of pairs, �U⊆ U × U , that is reflexive, antisymmetric,

and transitive, this means:

(i) ui � ui for every ui ∈ U ;

(ii) ui � uj and uj � ui implies i = j;

(iii) ui � uj and uj � uk implies ui � uk.

We write ui � uj whenever (ui, uj) is an ordered pair in �U and ui ≺ uj if ui � uj and

ui 6= uj. Nodes ui and uj are comparable if ui � uj or uj � ui. Otherwise, they are

incomparable, which we denote as ui 6∼ uj. A chain of a partially ordered set, (U,�U),

is a subset of U in which any two nodes are comparable, and an antichain is a subset

of U in which any two nodes are incomparable. We say �U is cotransitive if:

(iv) ui 6∼ uj and uj 6∼ uk implies ui 6∼ uk.

If two antichains in a cotransitive partial order have a non-empty intersection, then

their union is also an antichain. It follows that the maximal antichains partition U . It is
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therefore possible to order the maximal antichains as

U = C1 t C2 t . . . t Cs, (3.2)

such that �U=
⋃
i<j Ci × Cj. Indeed, the existence of such a partition characterizes

cotransitive partial orders.

Domains and diagrams. Let B be a set of m balls in Rn and �U⊆ U × U the partial

order of a cotransitive poset of m nodes, as before. The poset domain of a permutation

γ : [m]→ [m] is the set of points x ∈ Rn such that the weighted distances of x from the

balls is consistent with the partial order:

Vor�U(γ) = {x ∈ Rn | ui � uj ⇒ πγ(i)(x) ≤ πγ(j)(x)}. (3.3)

The poset diagram of B and �U , denoted as V�U(B), is the set of poset domains. This

diagram shares the fundamental properties with the Voronoi diagram of the balls.

Lemma 5 (Structure Lemma). Let B be a set of m balls in Rn and �U a cotransitive

partial order on m nodes.

(i) The Vor�U of a permutation γ : [m] → [m] is either empty or a closed convex

polyhedron.

(ii) The Vor�U domains for two different permutations have pairwise disjoint interiors.

(iii) Every point x ∈ Rn belongs to the Vor�U of at least one permutation.

Proof. (i) is clear from the definition since every inequality of the form πγ(i)(x) ≤ πγ(j)(x)

defines a closed half-space.

(ii) holds because �U is transitive as well as cotransitive, which implies that two

different permutations either define the same set of inequalities, or at least one in-

equality is reversed. In the latter case, the two domains lie on different sides of the

corresponding bisector.

(iii) follows from the fact that every ordering of the m balls is consistent with the

partial order for at least one permutation.
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Examples. Fix an integer 1 ≤ k ≤ m and consider the following four cotransitive partial

orders on m nodes:

�1 = {u1 � uj | 1 ≤ j ≤ m}; (3.4)

�2 = {ui � uj | 1 ≤ i ≤ k < j ≤ m}; (3.5)

�3 = {ui � uk � uj | 1 ≤ i ≤ k ≤ j ≤ m}; (3.6)

�4 = {ui � uj | 1 ≤ i ≤ j ≤ m}. (3.7)

We note that V�1(B) is the ordinary Voronoi diagram, V�2(B) is the order-k Voronoi

diagram, and V�3(B) is the degree-k Voronoi diagram, see Figure 3.2. The fourth

poset consists of a single chain, in which case V�4(B) is the collection of chambers

in the arrangement formed by all bisectors of the balls. It is the finest of all poset

Figure 3.2: The transitive reductions of two cotransitive posets giving rise to the order-2

Voronoi diagram of seven balls on the left and to the degree-2 Voronoi diagram of the

same number of balls on the right.

diagrams. Indeed, every poset diagram of B can be obtained by coarsening V�4(B).

Referring to the decomposition into maximal antichains in (3.2), we can describe the

poset diagram in general as follows. Letting ki be the cardinality of the i-th antichain,

the diagram decomposes Rn into the order-k1 Voronoi domains of the m balls, it refines

each domain into the order-k2 Voronoi domains of the remaining m − k1 balls, and

repeats until refining the domain into the order-ki−1 Voronoi domains of the remaining

ki−1 + ki balls.

3.3 Average balls

In this section, we construct the poset diagrams by taking averages of the balls in

B. We begin with the introduction of a vector space structure of the set of all balls,
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including those with negative squared radii.

Vector space of balls. We follow Pedoe [Pedoe, 1988, Chapter IV], who introduced

the vector space to study the geometry of circles in the plane or spheres in higher-

dimensions. In particular, we represent the ball B(x, r) by the point b(x, r) = (x, ‖x‖2 −

r2) in Rn+1. To have a bijection between the set of balls in Rn and the set of points

in Rn+1, we let r2 range over all real numbers or, equivalently, we let r range over all

non-negative real numbers and all positive multiples of the imaginary unit, a set we

denote as
√
R. Borrowing the vector space structure of Rn+1, we have a vector space

of balls in which addition and multiplication with scalars make sense. More formally, if

B1, B2 are two balls with corresponding points b1, b2, and λ1, λ2 are real numbers, then

B0 = λ1B1 +λ2B2 is defined such that the corresponding point satisfies b0 = λ1b1 +λ2b2

in Rn+1. From the centers x1, x2 and squared radii r2
1, r

2
2 of B1, B2, we can compute the

center and squared radius of B0 as:

x0 = λ1x1 + λ2x2, (3.8)

r2
0 = ‖x0‖2− λ1

(
‖x1‖2− r2

1

)
− λ2

(
‖x2‖2− r2

2

)
. (3.9)

Assuming λ1 + λ2 = 1, we can plug these expressions of the center and the squared

radius into the formula for the weighted distance of a point x ∈ Rn from B0 and get

π0(x) = λ1π1(x) + λ2π2(x). (3.10)

Affine combinations. This is an interesting conclusion worth generalizing. For this

purpose, we recall that a linear combination is a ball B0 =
∑k

i=1 λiBi. It is an affine

combination if
∑

i λi = 1, and it is a convex combination if, in addition, 0 ≤ λi for all

i. For affine combinations, the weighted distance satisfies a relation that generalizes

(3.10):

Lemma 6 (Weighted Distance Lemma). Let B0 =
∑k

i=1 λiBi with
∑k

i=1 λi = 1. Then

π0(x) =
∑k

i=1 λiπi(x), for every point x ∈ Rn.

Proof. For k = 2, the claimed relation is the same as (3.10). For k > 2, we decompose

the affine combination into two affine combinations of fewer than k balls each:

B′0 = 1
λ2+...+λk

(λ2B2 + . . .+ λkBk) , (3.11)

B0 = λ1B1 + (λ2 + . . .+ λk)B
′
0. (3.12)
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Inductively, we get the claimed relation for the weighted distance from B′0, and combin-

ing it with (3.10), we get the claimed relation for the weighted distance from B0.

To understand the effect of a scalar multiplication on the weighted distance, we

consider Borg = (0, 0), and note that µBorg = Borg for all µ ∈ R. Setting B0 = λB1, we

note that B0 = λB1 + (1− λ)Borg. Using (3.10), we therefore get

π0(x) = λπ1(x) + (1− λ)‖x‖2 (3.13)

because πorg(x) = ‖x‖2. Any linear combination can be written as a scalar multiple of

an affine combination, so we can get the weighted distance function from (3.13) applied

to the relation given in the Weighted Distance Lemma.

Weighted averages. As proved in [Aurenhammer, 1990], the order-k Voronoi diagram

of a finite set of points is the ordinary Voronoi diagram of the k-fold averages. We

generalize this result, showing that every poset diagram is an ordinary Voronoi diagram,

of course of a different set of balls. To construct this set, we say a function λ : [m]→ R

is anti-parallel to a cotransitive partial order if
∑
λ(i) = 1 and λ(i) > λ(j) iff ui ≺ uj.

Hence, λ is constant on the nodes in an antichain, and using the ordered partition into

maximal antichains (3.2), there are values λ1 > λ2 > . . . > λs, such that λ(i) = λp iff

ui ∈ Cp. Given B and �U , the weighted average ball of a permutation γ : [m]→ [m] is

Bγ =
m∑
i=1

λ(i)Bγ(i), (3.14)

and we write B = B(B,�U) for the set of all such weighted averages. Noting that

Bγ = Bγ′ iff γ and γ′ define the same domain, we see that the number of balls in B is

cardB =
m!∏s

p=1(cardCp)!
. (3.15)

The Voronoi domain generated by a weighted point may or may not be empty, which

implies that the left-hand side of (3.15) is an upper bound on the number of non-empty

domains in V�U(B).

Main result. Importantly, the poset diagram of B and �U is equal to the ordinary

Voronoi diagram of B.

Theorem 4 (Poset Diagram Theorem). Let B be a finite set of balls in Rn, let �U be a

cotransitive partial order on the same number of nodes, and set B = B(B,�U). Then

V�U(B) = V (B).
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Proof. Fixing a permutation γ, we prove that a point x belongs to the Voronoi domain of

γ, Vor�U(γ), iff x belongs to the Voronoi domain of the weighted average ball, Vor(Bγ).

To see Vor�U(γ) ⊆ Vor(Bγ), we recall that the weighted distance of x from B0 = Bγ

satisfies π0(x) =
∑m

i=1 λ(i)πγ(i)(x) by Lemma 6. Assuming x ∈ Vor�U(γ), we have

πγ(i)(x) ≤ πγ(j)(x) as well as λ(i) > λ(j) whenever ui ≺ uj. It follows that the weighted

distance to any other weighted average ball is larger. Indeed, this other weighted

distance is obtained by switching some of the λ(i). We thus go away from the global

minimum, which we get by sorting the πγ(i)(x) and the λ(i) in anti-parallel fashion.

Since both the Vor�U(γ) and the Vor(Bγ) domains are interior-disjoint closed convex

polyhedra that cover Rn, we have Vor�U(γ) = Vor(Bγ) for every γ. Indeed, if Vor�U(γ)

domains were a strict subset of Vor(Bγ), then there would be points in the interior of

the Voronoi domain that are not covered by any Vor�U domain.

Geometric dual. Recall that V (B) has a geometric dual, namely the Delaunay triangu-

lation of B, D(B). We call this Delaunay triangulation the poset complex of B and �U ,

D�U(B). As shown in Figure 3.3, it has cells that are not necessarily simplicial even

Figure 3.3: The Delaunay complex superimposed on the dotted degree-2 Voronoi dia-

gram. Only the edges and faces corresponding to Voronoi cells visible in the window

are drawn.

for generic sets B. Specifically, a Delaunay cell is the convex hull of the centers of a

maximal collection of average balls whose corresponding Voronoi regions have a given

non-empty common intersection. As usual, the dimension of the common intersection

of Voronoi domains and of the dual Delaunay cell are complementary, that is: they add

to n.
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3.4 Discussion

In this chapter, we introduce the concept of cotransitive posets to generalize Voronoi

diagrams to poset diagrams and their dual Delaunay triangulations to poset complexes.

This provides a general setting that includes order-k and degree-k Voronoi diagrams

as well as arrangements of bisectors as special cases. Generalizing a result of Auren-

hammer [Aurenhammer, 1990], we prove that each poset diagram is also the weighted

Voronoi diagram of a finite set of points with real weights. Starting from lattice con-

figurations, the sets of weighted averages often form fascinating patterns that may be

worth studying independently (See Figures 3.4 and 3.5).

Figure 3.4: Shaded is the k-fold area for balls centered in a subset of a lattice. On

top we plot the graphs of the order-k Delaunay triangulation with different size vertices

representing the weight of the corresponding average points. Transparent vertices

represent negative radii. On the left the 4-fold and on the right the 5-fold, both for the

integer lattice.

In closing this chapter, we point out a connection between the poset diagrams and

the generalized permutahedra studied in [Feichtner and Sturmfels, 2005; A.P̃OSTNIKOV.,

2009]. Recall V�4(B), which is defined by the total order. It is formed by drawing the

perpendicular bisector of every pair of balls. Interpreting the resulting arrangement

projectively, every chamber corresponds to a permutation as well as its reverse. For

m = n + 2 balls, we can check that the arrangement has m!
2

chambers and thus cov-
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Figure 3.5: 5-fold (left) and 6-fold (right) for the hexagonal lattice.

ers all permutations. This arrangement corresponds to the permutahedron, which is

a convex polytope with m! vertices in Rn+1. Poset diagrams obtained by coarsening

Figure 3.6: The arrangement of 6 bisectors of 4 points in the plane, and the corre-

sponding decomposition of the unit sphere into 4! = 24 regions1.

the arrangement of bisectors correspond to generalized permutahedra as defined in

the mentioned papers. Referring to Figure 3.6, we briefly describe the construction in

n = 2 dimensions. Starting with 4 points in R2, we draw 6 lines, each the perpendicular

bisector of two points. Identifying R2 with the plane x3 = −1 in R3, we extend each

lines to a plane passing through the origin. The 6 planes cut the unit sphere into 24

regions, each corresponding to a unique permutation of the 4 points. To get a poly-

1Special thanks to Hubert Wagner for his help in creating the 3D plot using the 3DsMax software.
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tope with the combinatorial structure of the 3-dimensional permutahedron, we take the

Minkowski sum of 6 line segments, each normal to one of the planes. We feel that this

geometric view sheds new light on the family of generalized permutahedra. It would be

useful to recast our main result – the Poset Diagram Theorem – in terms of generalized

permutahedra and generalizations of them.
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4 Relaxed packing

In this chapter we find optimal configurations of balls lying between the traditional pack-

ing and covering settings. The results are accompanied with extensive computations

realized in the support software Maple [MAPLE]. We provide the relevant details in

appendices at the end of the thesis.

4.1 Prior work and results

Looking for optimal arrangement of balls in the relaxed packing setting we have con-

sider three main approaches. First, in Section 4.2, we allow configurations of spheres

where the overlap is limited by a parameter, and the quality of the configuration is mea-

sured by its density, which is the expected number of balls that contain a randomly

selected point. The overlap is measured in two different ways: by the distance-based

overlap, which is simply a linear function of the distance between two sphere centers

and has been used for the analysis in [Uhler and Wright., 2013], and the more intu-

itive volume-based overlap, which is based on the volume in the intersection of balls.

Using the distance-based overlap, we show that the FCC lattice results in the densest

arrangement regardless of the amount of allowed overlap. Computational experiments

using the volume-based overlap show that for small values of the parameter, the high-

est density is attained for the FCC lattice, and that for large values, the highest density

is attained for the BCC lattice. These experiments are limited to a 1-parameter family of

lattices (see [Edelsbrunner and Kerber, 2011]) — the same considered in Section 4.4

of this chapter — and it is remarkable that there is a sharp transition, with none of

the other lattices challenging the dominance of FCC and BCC. This family of lattices

is particularly interesting, since it contains the optimal packing lattices in dimensions 2



46

and 3 and the optimal covering lattices in dimensions 2–5.

A similar setting was considered in [Bezdek and Lángi, 2015] but for different rea-

sons. To study the packing of balls, the authors give upper bounds on the volume of

the union in which every ball is thickened by a parameter. Equivalently, the (thickened)

balls are packed softly, allowing for a limited overlap controlled by the parameter. The

bounds are proved for packings in Rn and are not limited to lattices. Soft packing is

also the natural setting for modeling physical processes at the nanoscale. For exam-

ple, Radin [C.R̃ADIN., 1981] considers finitely many interacting particles governed by

a potential function defined for pairs that penalizes distances below a threshold while

giving preference to particles in close contact but above the distance threshold. In

two dimensions, the optimal configuration was found to be a subset of the hexagonal

lattice.

As a second approach, we introduce a new measure that favors configurations be-

tween packing and covering without explicit constraints on the allowed overlap. Specif-

ically, we measure a configuration by the probability of a randomly selected point to

belong to exactly one ball. Since empty space and overlap between disks are both

discouraged, the optimum lies necessarily between packing and covering. We restrict

our attention to equal-sized disks in R2, whose centers form a lattice, leaving three

and higher dimensions as well as nonlattice configurations as open problems. The

main result is the non-surprising fact, that this measure attains its maximum for the

hexagonal grid [Balázs, 1973], and even nonlattice configurations cannot increase the

measure [Blind and Blind., 1986]. In the optimal configuration each disk overlaps the

six neighboring circles in 30◦ arcs. For obvious reasons, we call this the 12-hour clock

configuration. While preparing the final version of the paper containing this result, we

have learnt that László Fejes Tóth in his book on Regular Figures introduced the same

measure and conjectured that the 12-hour clock configuration is optimal among all con-

figurations in the plane. He mentions that J. Balázs proved the conjecture for lattices

[Tóth., 1964, page 195] and therefore acknowledge their result as a reference here. We

have found later the publication in german, and we are unsure whether we rediscover

Balázs’ proof or we give a different proof for the same result.

In a third approach we extend the previous result to 3D (Section 4.4) restricting our

attention to equal balls centered at points of a lattice. Writing ϕi for the probability that
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a randomly selected point lies in at least i balls, the density is δ =
∑

i≥1 ϕi. Departing

from the previous results and also [Bezdek and Lángi, 2015], we introduce the soft den-

sity, δ1 = ϕ1 −
∑

i≥2 ϕi, which penalizes for gaps in the coverage but also for overlaps

among the balls. Following [Edelsbrunner and Kerber, 2011], we focus on the men-

tioned 1-parameter diagonal family of lattices obtained by compressing or stretching

the integer lattice along the diagonal direction. We use the unimodality of the measure

to prove that in R3 the FCC lattice with balls of radius 1.090 . . . times the packing radius

maximizes the soft density at δ1 = 0.844 . . .. The proof is a detailed study of all lattices

in the diagonal family, giving analytic expressions for the maximum soft density over

distortion intervals that cover the entire family. Crucial ingredients to the proof are the

use of Brillouin zones, a new result about their long-range behavior in lattices, and the

unimodality of the soft density.

The interested reader can find a wealth of further information and references on

packing and covering in [Conway and Sloane, 1999; Tóth, 1953]. To avoid ambiguity,

we mention that in the mathematical literature, a packing refers to a configuration of

balls (hard spheres) with disjoint interiors, while a covering is one in which the balls

cover the entire space without gaps. The traditional measure of quality is the density

as defined above.

Outline. In Section 4.2 we study two natural choices of overlap measures and obtain

the optimal soft-lattice packings restricting the overlap by a threshold. In Section 4.3 we

study relaxed packing configurations of equal-sized disks in the Euclidean plane that

neither pack nor cover. Measuring the quality by the probability that a random point

lies in exactly one disk, we show that the regular hexagonal grid gives the maximum

among lattice configurations. We then extend this unparameterized setting to 3D in

Section 4.4, and conclude the chapter with the discussion in Section 4.5.

4.2 Packing with limited overlap

In this section we discuss two different measures of overlap in sphere arrangements,

the distance-based overlap (also used in [Uhler and Wright., 2013]) and the volume-

based overlap. Using the distance-based overlap we show that the FCC lattice re-
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sults in the densest arrangement in the considered family of lattices, regardless of the

amount of allowed overlap. In the case of the more complicated volume-based overlap

measure, we prove that in 2D the hexagonal lattice remains optimal for any overlap.

However, in 3D we show that the best choice depends on the allowed overlap and we

provide numerical evidence that the optimal lattice is always either the FCC or the BCC

lattice.

4.2.1 Measures of Sphere Arrangements

As before we let B(x, r) denote the closed ball of radius r and center x. In particular

we call the ball centered at the origin Borg = B(0, r). Let Λ denote a lattice; w.l.o.g.,

we assume that the origin is a lattice point. We let Vor(Borg) denote the Voronoi cell of

the origin consisting of all points that are closer to the origin than to any other lattice

point. The Voronoi cells of other lattice points are just translations of Vor(Borg) and they

tessellate Rn.

A first measure of a sphere arrangement is the density. It is defined as the number

of spheres that contain an average point and can be rephrased as

δ(Λ, r) =
vol[Borg]

vol[Vor(Borg)]
. (4.1)

We define the union of a sphere arrangement to be

U(Λ, r) =
vol[Borg ∩ Vor(Borg)]

vol[Vor(Borg)]
. (4.2)

The U denotes what fraction of the Voronoi cell is covered by the ball of radius r.

Looking at the whole space, it also denotes what fraction of Rn is covered by the union

of all balls of radius r. This follows because the Voronoi cells tessellate Rn and from

the following statement:

Proposition 5. Let p be a point that belongs to the Voronoi cell of p1. If p is covered by

a ball B(p2, r), then p is also covered by B(p1, r).

A third measure of a sphere arrangement is the overlap. We define two versions, the

distance-based overlap and the volume-based overlap. The distance-based overlap

was used to model the spatial organization of chromosomes in [Uhler and Wright.,
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2013] and is defined as the diameter of the largest sphere that can be inscribed into

the intersection of two spheres, i.e.:

Odist(Λ, r) = max

(
2r −min`∈Λ\{0}(‖`‖)

2r
, 0

)
. (4.3)

A less simplified measure of overlap is the volume-based overlap, which we define as

the fraction of a sphere that expands outside its Voronoi cell:

Ovol(Λ, r) =
vol[Borg]− vol[Borg ∩ vol[Vor(Borg)]]

vol[Vor(Borg)]
. (4.4)

This value is equivalent to the fraction of all other spheres expanding into a Voronoi

cell (i.e., the overlap with multiplicity inside a Voronoi cell).

We refer to the unnormalized version of Ovol as the excess:

E(Λ, r) = vol[Borg]− vol[Borg ∩ vol[Vor(Borg)]]. (4.5)

We observe that δ(Λ, ·), U(Λ, ·) and O(Λ, ·) (for both overlap measures) are non-

negative, monotonously increasing functions with U(Λ, ·) upper bounded by 1. The

upper bound for U is reached exactly at the covering radius, the maximal distance of

the origin to the boundary of Vor(Borg). The lower bound for O is reached exactly at the

packing radius, the minimal distance of the origin to the boundary of Vor(Borg). Also, it

holds that

Ovol(Λ, r) = δ(Λ, r)− U(Λ, r). (4.6)

Building upon these measures of sphere arrangements we can now define a relaxed

packing and covering quality when allowing overlap and uncovered space, respectively.

By fixing a threshold ω ∈ R≥0, we define the relaxed packing quality of a lattice as

Qpack(Λ, ω) = max
r≥0
{δ(Λ, r) | O(Λ, r) ≤ ω} .

The goal is to find the lattice that maximizes Qpack. Note that for ω = 0, this is

equivalent to the classical sphere packing problem: We want to cover as much space

as possible by balls without overlap. It is known that in dimension 3 the FCC lattice is

the optimal solution to this problem.

Lemma 7. The FCC lattice is not optimal w.r.t. Qpack for some value of ω when mea-

suring overlap by Ovol.
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Proof. Let ω be the overlap of the BCC lattice when choosing the radius to be its

covering radius. Note that the density of this covering is 1 + ω by (4.6). Assume that

the FCC lattice attains the same density for ω. Then, again by (4.6), the union must

be 1, so the FCC lattice yields a sphere covering with the same density as the BCC

lattice. But this is a contradiction to the well-known fact that the FCC covering density

is strictly larger than the BCC covering density.

Interestingly, we will prove in Section 4.2.2 that the FCC lattice is in fact optimal for

all values of ω when measuring overlap by Odist. Similarly, we can define a relaxed

covering quality as

Qcover(Λ, ω) = min
r≥0
{δ(Λ, r) | 1− U(Λ, r) ≤ ω} .

In words, we want as little overlap as possible while allowing only a certain amount

of uncovered space. Note that for ω = 0, this is equivalent to the classical covering

problem: We want to cover the whole space by balls minimizing the density. Similarly

as in Lemma 7 we can prove that the BCC lattice is not optimal w.r.t. Qcover for all values

of ω when measuring overlap by Ovol. However, the BCC lattice is optimal for all values

of ω when measuring overlap by Odist as we will see in Section 4.2.2. For brevity, we

concentrate on Qpack; our analysis easily extended to Qcover with minor changes.

From now on, we focus on lattices Λε given by a diagonal distortion of the integer

lattice in Rn by the distortion parameter ε > 0. The lattice Λε is defined by mapping

each unit vector ui ∈ Rn, i = 1, . . . , n, to

uεi = ui +
ε− 1

n
1. (4.7)

The parameter ε = 1 denotes no distortion. For ε from 1 to 0, every point of the

integer lattice undergoes a continuous motion towards its projection onto the plane

with normal vector (1, . . . , 1). For ε ≥ 1, each lattice point moves continuously in the

opposite direction. For n = 2, the hexagonal lattice corresponds to ε = 1/
√

3 and

ε =
√

3, and for n = 3, the FCC lattice corresponds to ε = 2 and the BCC lattice to

ε = 1/2; see [Edelsbrunner and Kerber, 2011] for more details. We will abuse notation

and identify ε and the lattice Λε in the definitions of density, overlap and packing quality:

for instance, we write δ(ε, r) instead of δ(Λε, r).
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Fixing a threshold ω for the overlap, we would like to find the best lattice in the

family such that Qpack(ε, ω) is maximized. The approach we take is to compute Qpack

for a given ε in two steps:

1. Compute the largest ball radius r(ε, ω) such that O(ε, r(ε, ω)) ≤ ω.

2. Compute Qpack(ε, ω) = δ(ε, r(ε, ω)).

4.2.2 Distance-based overlap

In [Uhler and Wright., 2013], an algorithm was developed for finding minimum overlap

configurations of N spheres (or more generally ellipsoids) packed into an ellipsoidal

container. In order to get an efficient algorithm, the simplified distance-based overlap

measure was used, which could be computed as a convex optimization problem. One

can easily check that the problem of finding minimal overlap configurations of spheres

with a certain density is equivalent to finding maximal density configurations of spheres

with a certain overlap, the problem we study in this section. It was observed in a few

examples (see Example 3.4 in [Uhler and Wright., 2013]) that the optimal configuration

of the spheres is invariant to scaling of the radii. This is in fact an important property

for the application to chromosome packing, since the exact chromatin packing density

is not known and one would hope that the positioning is robust to different scalings of

the chromosomes. In the following, we prove that this scaling-invariance holds in the

infinite space when the sphere centers are restricted to lie on the 1-parameter distortion

family defined before. In this case, the density simplifies to

δ(ε, r) =
νnr

n

ε
, (4.8)

where νn denotes the (n-dimensional) volume of the n-dimensional unit ball. The

packing radius of Λε has been computed in [Edelsbrunner and Kerber, 2011] as:

min
p∈∂Vor(Borg)

‖p‖ =


1
2
ε
√
n 0 ≤ ε ≤ 1√

n+1
,

1
2

√
1 + ε2−1

n
1√
n+1
≤ ε ≤

√
n+ 1,

1
2

√
2,

√
n+ 1 ≤ ε.

(4.9)
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Using these formulas we prove that the maximum density configuration is always

attained by ε =
√
n+ 1, regardless of the allowed overlap. This corresponds to the

optimal packing lattice in the family for all n ≥ 2 and over all lattices in dimension 2 and

3. The corresponding statement for the relaxed covering quality can be found in the

Appendix A.

Theorem 6. The lattice Λε which maximizes the relaxed packing quality w.r.t. Odist is

attained by ε =
√
n+ 1 independent of the value of ω ∈ [0, 1).

Proof. By plugging the packing radius given in (4.9) into the definition of Odist in (4.3),

we can solve for r(ε, ω) 1. Then plugging r(ε, ω) into the formula for the density given

in (4.1) we get for the ε intervals given in (4.9):

δ(ε, r(ε, ω)) =


n
n
2 νn

2n(1−ω)n
εn−1

νn
2n(1−ω)n

ε−1
(

1 + ε2−1
n

)n
2

νn

2
n
2 (1−ω)n

ε−1.

(4.10)

The function δ(ε, r(ε, ω)) for n = 3 and ω = 0.5 is shown in Figure 4.1 (left). Since

ω < 1, the constants in the function δ(ε, r(ε, ω)) in (4.10) are positive. By taking deriva-

tives w.r.t. ε we find that for 0 < ε ≤ 1/
√
n+ 1 the density is strictly increasing for all

values of ω. Similarly, for the branch 1/
√
n+ 1 ≤ ε ≤

√
n+ 1 the density is strictly

decreasing for ε < 1, achieves a minimum at ε = 1, and is strictly increasing for ε > 1,

independent of the value of ω. Finally, for ε ≥
√
n+ 1 the density is strictly decreasing

for all values of ω. As a consequence, the maxε>0 δ(ε, r(ε, ω)) is obtained in one of the

interval boundaries ε ∈ { 1√
n+1

;
√
n+ 1}.

Evaluating δ using the first and last expressions from (4.10), we get n
n
2 (n+1)−

n−1
2 ≤

2
n
2 (n + 1)−

1
2 for all n ≥ 2 with equality only for n = 2 where both lattices equal to the

hexagonal lattice. Hence, the maximum is attained by ε =
√
n+ 1.

This proves that the sphere configuration which maximizes the density when al-

lowing a certain overlap (measured by the distance-based overlap) is identical to the

optimal packing configuration independent of the allowed overlap.

1Note that min`∈Λ\{0}(‖`‖) = 2 ·minp∈∂Vor(Borg) ‖p‖
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Figure 4.1: Qpack (left) and Qcover (right) as a function of the distortion parameter ε for

n = 3 and ω = 0.5.

4.2.3 Volume-based overlap

We next analyze Qpack for the volume-based overlap measure in dimension 2 and 3.

Because of Lemma 7, we cannot expect the same behavior as for the distance-based

overlap measure from the previous section because the FCC lattice becomes worse

than the BCC lattice for some value of ω. However, this does not rule out the possibility

of other lattices being optimal. We perform a deeper investigation of the optimal lattice

configurations, starting with the two-dimensional case.

Dimension 2

First of all, note that in dimension 2, the lattice for ε is a scaled version of the lattice for
1
ε
. Because of this symmetry, it suffices to study all lattices with 0 < ε ≤ 1.

Analyzing the volume-based overlap measure requires the investigation of Vor(Borg) =

Vor(Borg)ε, the Voronoi cell of the origin in Λε, in some detail. Vor(Borg) is bounded by

six bisectors: four of them with the lattice points ±u(ε)
1 ,±u(ε)

2 , and two with the lattice

points ±(u
(ε)
1 + u

(ε)
2 ). We call the bisectors of type 1 and type 2, respectively. Their

distances to the origin are given by f1(ε) and f2(ε), respectively, with

f1(ε) =

√
ε2 + 1

2
√

2
, f2(ε) =

ε√
2
.
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Figure 4.2: The Voronoi cell Vor(Borg) for two different values of ε >
√

1
3

(left) and

ε <
√

1
3

(right). On the left, the bisectors of type 1 are hit first, whereas in the right

bisectors of type 2 are hit first. Note that all lattice points neighboring the origin lie on

a common circle around the origin.

We call fm(ε) = min{f1(ε), f2(ε)}, and fm(ε) = max{f1(ε), f2(ε)}. Note that f1(ε) >

f2(ε) if and only if ε <
√

1
3

(Figure 4.2).

There are six boundary vertices of Vor(Borg) and they all have the same distance to

the origin, namely

v1(ε) =
ε2 + 1

2
√

2
,

which agrees with the covering radius computed in [Edelsbrunner and Kerber, 2011].

As expected, v1(ε) ≥ fm(ε), with equality if and only if ε = 1.

With this data we can directly derive a formula for the excess E : If r ≤ fm(ε), Borg

is completely contained in Vor(Borg) and the E equals 0. If r ≥ v1(ε), Borg contains all

boundary vertices of Vor(Borg) and thus all of Vor(Borg) (of volume ε), by convexity. In

the last case where fm(ε) < r < v1(ε), the part of Borg that is not in Vor(Borg) is the

union of up to six circular segments. Their area is given by

A =
r2

2
(Θ− sin Θ),

where Θ is the angle at the origin induced by the chord that bounds the circular seg-

ment. This angle can be expressed as

Θ = 2 arccos

(
d

r

)
,

where d is the smallest distance of the chord to the origin. In our case, the chord is

given by a bisector. Depending on the type t of the bisector, d is either equal to f1(ε)
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or equal to f2(ε). So we define

Θt =

0 r < ft(ε),

2 arccos
(
ft(ε)
r

)
r ≥ ft(ε),

Since the circular segments do not intersect for any r < v1(ε) (because an intersection

would imply that a boundary vertex of Vor(Borg) is part of Borg) and there are four

bisectors of type 1 and two bisectors of type 2, it follows that for 0 ≤ ε ≤ 1:

E =


0 0 ≤ r ≤ fm(ε),

r2(2Θ1 + Θ2 − 2 sin Θ1 − sin Θ2) fm(ε) ≤ r ≤ v1(ε),

πr2 − ε v1(ε) ≤ r .

Recall that the overlap Ovol is simply the normalization of the excess; therefore, we

obtain its formula after a division by ε. We can now prove:

Theorem 7. In dimension 2, the lattice Λε which maximizes the relaxed packing quality

w.r.t. Ovol is attained by the hexagonal lattice (i.e. ε ∈ {1/
√

3,
√

3}) independent of the

value of ω ∈ R≥0.

Proof. Let ω and ε be fixed. Our goal is to compute δ(ε, r) where r := r(ε, ω) is

chosen maximally such that Ovol(ε, r) ≤ ω. Observe that the maximal r is certainly at

least the packing radius fm(ε). This results in the packing density, which is maximized

by the hexagonal lattice. Moreover, if ω is sufficiently large to allow a covering, i.e.

ω ≥ Ovol(ε, v1(ε)), the maximal density is attained at the best covering. This is known

to be the hexagonal lattice. So we can concentrate on the case fm(ε) ≤ r ≤ v1(ε)

where

0 ≤ Ovol(ε, r) ≤ Ovol(ε, v1(ε)) =
π(ε2 + 1)2

8ε
− 1, (4.11)

Consider the function F (ε, ω, r) := ω − Ovol(ε, r), with Ovol = E/ε, which is defined

for (ω, ε, r) in the limits of interest given in (4.11). By definition, r = r(ε, ω) satisfies

F (ε, ω, r(ε, ω)) = 0. The density is given by

δ(ε, r(ε, ω)) =
π · r(ε, ω)2

ε
,
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which we want to maximize w.r.t. ε. This requires computing the derivative of r(ε, ω)

w.r.t. ε. We do this by using the implicit function theorem

∂r

∂ε
(ε, ω) = −

∂F
∂ε

(ε, ω, r)
∂F
∂r

(ε, ω, r)
.

After some calculations we find

∂ δ(ε, r(ε, ω))

∂ε
=



π
√

2r2−ε2

2ε arccos
(

ε
r
√

2

) f2(ε) ≤ r ≤ f1(ε), 0 < ε < 1√
3
,

π(ε2−1)
√

8r2−ε2−1

8ε2
√
ε2+1 arccos

(
ε2+1

8r2

) f1(ε) ≤ r ≤ f2(ε), 1√
3
< ε < 1,

√
8r2−ε2−1(ε2−1)+2ε

√
2r2−ε2

√
ε2+1

4r
√
ε2+1

(
2 arccos

√
ε2+1

8r2
+arccos

(
ε
r
√

2

)) fm(ε) ≤ r ≤ v1(ε), 0 < ε < 1.

One can easily check that the first derivative is non-negative for any ε, except if r

equals the packing radius f2(ε) corresponding to ω = 0, and we know the optimal pack-

ing for this case. Similarly, the second derivative is non-positive except if r equals the

packing radius f1(ε). The third derivative is zero either if ε = 1√
3

or if r equals the cover-

ing radius v1(ε) corresponding to ω ≥ Ovol(ε, v1(ε)), in which case the hexagonal lattice

is optimal as we argued above. Moreover, for r < v1(ε), the derivative is increasing for

ε < 1√
3

and decreasing for ε > 1√
3
. This concludes the proof.

Dimension 3

In three dimensions, we analyze the 3 dimensional Voronoi region Vor(Borg) and mea-

sure the excess E by an inclusion-exclusion formula for spherical caps: for small radii,

Borg ⊆ Vor(Borg) the excess is zero. For increasing r, Borg starts to intersect facets

of Vor(Borg), and the excess is the sum of spherical caps. When r further increases,

Borg also intersects edges of Vor(Borg), and the intersection of two spherical caps must

be subtracted from E . Finally, when Borg includes vertices of Vor(Borg) (but not all of

Vor(Borg)), the intersection of three spherical caps must be re-added to E ; we refer to

the appendix B for further details.

Formulas for the intersection of one, two and three spherical caps have been de-

scribed in [Edelsbrunner and Fu, 1994]. In combination with our analysis, they result

in a branchwise-defined closed expression for Ovol(ε, r). We have computed these ex-

pressions using the computer algebra system [MAPLE].2 A 3-dimensional plot of the

2http://www.maplesoft.com
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Figure 4.3: Surface plot of Qpack(ε, ω) (left), slices through the surface Qpack for ω =

0.05, 0.1 and 0.3 (middle), and slices through the surface Qpack for the BCC lattice, the

integer lattice and the FCC lattice (right).

function Qpack(ε, ω) is shown in Figure 4.3 (left). In Figure 4.3 (middle and right) we

highlight specific slices through the 3-dimensional plot to better explain the behavior.

Figure 4.3 (middle) shows Qpack(ε, ω) for three different values of ω. We can observe

that the FCC lattice (ε = 2) is indeed optimal for small values of allowed overlap ω.

When ω = 0.1, the BCC (ε = 0.5) and the FCC lattice achieve approximately the same

density, namely δ = 1.03. Interestingly, for larger values of ω the BCC lattice attains the

maximal density and surpasses the FCC lattice. Also observe that both lattices always

achieve a better relaxed packing quality than the integer lattice (ε = 1). Looking at the

density of the FCC and the BCC lattice depending on ω in Figure 4.3 (right), we can

note that there is indeed only one switch of optimality (at ω ≈ 0.1).

Our analysis indicates that the FCC and the BCC lattice are always locally optimal

configurations, and no other lattice from the family yields a better packing, indepen-

dently of the allowed overlap. The natural next step would be to prove our observation.

This problem can in theory be tackled with the same approach that we used in Sec-

tion 4.2.3 in the 2D case by relating the derivative ofQpack(ε, ω) to the partial derivatives

of Ovol using the implicit function theorem. For small values of ω, we were able to verify

the claim, that is, prove monotonicity of the function in all branches with a substan-

tial amount of symbolic computations. However, as soon as the expression for Ovol

involves intersections of 2 and 3 spherical caps, the derivatives seem to become too

complicated to be handled analytically.
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4.3 Soft disc packing

The main result of this section is the following,

Theorem 8 (Main). Among all lattice configurations in R2, the regular hexagonal grid

in which each disk overlaps the six neighboring circles in 30◦ arcs maximizes the prob-

ability that a random point lies exactly in one disk.

Maximizing the given probability, we naturally favor configurations between the tra-

ditional packing and covering without the explicit use of any constraining parameter.

4.3.1 Background

In this section, we introduce notation for lattices, Voronoi domains, and Delaunay trian-

gulations in R2. We allow ourselves a bit of repetition from the background sections in

other chapters for a matter of self-containment.

Lattices. Depending on the context, we interpret an element of R2 as a point or a

vector in the plane. Vectors a1, a2 ∈ R2 are linearly independent if k1a1 + k2a2 = 0

implies k1 = k2 = 0. A lattice is defined by two linearly independent vectors, a1, a2 ∈ R2,

and consists of all integer combinations of these vectors:

Λ(a1, a2) = {k1a1 + k2a2 | k1, k2 ∈ Z}. (4.12)

Its fundamental domain is the parallelogram of points k1a1 + k2a2 with real numbers

0 ≤ k1, k2 ≤ 1. Writing ‖a1‖ for the length of the vector and γ for the angle between

a1 and a2, the area of the fundamental domain is det Λ(a1, a2) = ‖a1‖‖a2‖ sin(γ). The

same lattice is generated by different pairs of vectors, and we will see shortly that at

least one of these pairs defines a non-obtuse triangle. We will be more specific about

this condition shortly, as it is instrumental in our proof of the optimality of the regular

hexagonal grid.

Voronoi domain. Given a lattice Λ, the Voronoi domain of a point p ∈ Λ is the set of

points for which p is the closest:

Vor(p) = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖,∀q ∈ Λ}. (4.13)
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It is a convex polygon that contains p in its interior. Any two Voronoi domains have

disjoint interiors but may intersect in a shared edge or a shared vertex. The lattice

looks the same from every one of its points, which implies that all Voronoi domains are

translates of each other: Vor(p) = p + Vor(0). Similarly, central reflection through the

origin preserves the lattice, which implies that Vor(0) is centrally symmetric.

Figure 4.4: A primitive Voronoi diagram on the left, and a non-primitive Voronoi diagram

on the right. The Delaunay triangulations are superimposed.

The Voronoi diagram of Λ is the collection of Voronoi domains of its points. It is

primitive if the maximum number of Voronoi domains with non-empty common inter-

section is 3. In this case, the Voronoi domain is a centrally symmetric hexagon; see

Figure 4.4. In the non-primitive case, there are generators that enclose a right angle,

and the Voronoi domains are rectangles. To the first order of approximation, the area of

any sufficiently simple and sufficiently large subset of R2 is the number of lattice points

it contains times the area of Vor(0). Similarly, it is the number of lattice points times the

area of the fundamental domain. It follows that the area of Vor(0) is equal to det Λ.

Packing and covering. Like before, for % > 0, we write B(p, %) for the closed disk with

center p and radius %. The packing radius is the largest radius, rΛ, and the covering

radius is the smallest radius, RΛ, such that B(0, rΛ) ⊆ V (0) ⊆ B(0, RΛ). The density of

the configuration of disks with radius % centered at the points of Λ is the area of a disk

divided by the area of the Voronoi domain:

δΛ(%) = %2π
det Λ

. (4.14)

It is also the expected number of disks containing a random point in R2. The packing

density is δΛ(rΛ), which is necessarily smaller than 1. It is maximized by the regular

hexagonal grid, H, for which we have δH(rH) = 0.906 . . .. The covering density is
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δΛ(RΛ), which is necessarily larger than 1. It is minimized by the regular hexagonal grid

for which we have δH(RH) = 1.209 . . .. More generally, it is known that H maximizes the

density among all configuration of congruent disks whose interiors are pairwise disjoint

[Thue, 1910], and it minimizes the density among all configurations that cover the entire

plane [Kershner, 1939]. Elegant proofs of both optimality results can be found in Fejes

Tóth [Tóth, 1953].

Delaunay triangulations. Drawing a straight edge between points p and q in Λ iff

Vor(p) and Vor(q) intersect along a shared edge, we get the Delaunay triangulation of

Λ. In the primitive case, the edges decompose the plane into triangles. Among the six

triangles sharing 0 as a vertex, three are translates of each other and, going around 0,

they alternate with their central reflections. It follows that all six triangles are congruent

and, in particular, they have equally large circumcircles that all pass through 0. Since

their centers are vertices of the Voronoi domain of 0, we have the following result.

Lemma 8 (Inscribed Voronoi Domain). The vertices of Vor(0) all lie on the circle bound-

ing B(0, RΛ).

The discussion above proves the Inscribed Voronoi Domain Lemma in the primitive

case. It is also true in the simpler, non-primitive case in which Vor(0) is a rectangle.

Returning to the primitive case, we note that the two angles opposite to a shared edge

in the Delaunay triangulation add up to less than 180◦. In a lattice, these two angles

are the same and therefore both acute. The two types of triangles in the Delaunay

triangulation of a lattice can be joined across a shared edge in three different ways.

We can therefore make the same argument three times and conclude that all angles

are less than 90◦. A slightly weaker bound holds in the non-primitive case.

Lemma 9 (Non-obtuse Generators). Every lattice Λ in R2 has vectors a1, a2 ∈ R2 with

Λ = Λ(a1, a2) such that

(i) in the primitive case 0, a1, a2 are the vertices of an acute triangle,

(ii) in the non-primitive case 0, a1, a2 are the vertices of a non-obtuse triangle with a

right angle at 0.
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Assuming a1, a2 satisfy the Non-obtuse Generators Lemma, the triangle 0a1a2 has

edges of length ‖a1‖, ‖a2‖, and ‖a3‖ = ‖a1 − a2‖. In the non-primitive case (ii), ‖a1‖

and ‖a2‖ are the lengths of the sides of the rectangle Vor(0), and ‖a3‖ is the length

of a diagonal. We have ‖a3‖2 = ‖a1‖2 + ‖a2‖2, and therefore ‖a1‖ ≤ ‖a2‖ ≤ ‖a3‖,

possibly after swapping a1 and a2. In the primitive case (i), we can choose a1, a2, and

a3 = a1 − a2 such that ‖a1‖ ≤ ‖a2‖ ≤ ‖a3‖. In this case, Vor(0) is a centrally symmetric

hexagon with distances ‖a1‖, ‖a2‖, ‖a3‖ between antipodal edge pairs.

4.3.2 Equilibrium configurations

Given a lattice in R2, we are interested in the radius of the disks for which the probability

that a random point lies inside exactly one disk is maximized. Further maximizing this

probability over all lattices, we get the main result of Section 4.3.

Partial disks. Fix a lattice Λ in R2. For a radius % > 0, consider the set of points that

belong to the disk centered at the origin but not to any other disk centered at a point of

Λ:

D∗(%) = B(0, %) \
⋃

06=p∈Λ

B(p, %). (4.15)

As illustrated in Figure 4.5, for radii strictly between the packing radius and the covering

radius, this set is partially closed and partially open. We distinguish between the con-

vex boundary that belongs to the circle bounding B(0, %), and the concave boundary

that belongs to other circles:

∂xD∗(%) = ∂B(0, %) ∩D∗(%), (4.16)

∂vD∗(%) = ∂D∗(%) \ ∂xD∗(%). (4.17)

We note that ∂xD∗(%) = ∂B(0, %)∩Vor(0). By the Inscribed Voronoi Domain Lemma, the

vertices of Vor(0) are all at the same distance from 0. This implies that for rΛ < % < RΛ,

the convex boundary consists of 2, 4, or 6 circular arcs that alternate with the same

number of circular arcs in the concave boundary.
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Figure 4.5: The shaded partial disk D∗(%) with its boundary divided into a solid convex

portion and a dotted concave portion.

Angles. Recall that the concave boundary consists of at most three pairs of arcs, and

let αi(%) be the angle of each of the two arcs in the i-th pair, for i = 1, 2, 3. The total

angle of the concave boundary is

ΦΛ(%) =
3∑
i=1

2αi(%), (4.18)

and the total angle of the convex boundary is 2π − ΦΛ(%). We have ΦΛ(rΛ) = 0 and

ΦΛ(RΛ) = 2π, and between these two limits, the function is continuous and monotoni-

cally increasing.

Lemma 10 (Monotonicity). Let Λ be a lattice in R2. Then ΦΛ : [rΛ, RΛ] → [0, 2π] is

continuous, with ΦΛ(%1) < ΦΛ(%2) whenever %1 < %2.

Proof. The continuity of the function follows from the fact that ∂B(0, %) intersects ∂Vor(0)

in at most a finite number of points.

To prove monotonicity, we recall that 2π − ΦΛ(%) is the total angle of ∂xD∗(%) =

∂B(0, %) ∩ Vor(0). The Voronoi domain is a convex polygon with 0 ∈ Vor(0). Drawing

circles with radii %1 < %2 centered at 0, we let 0 ≤ θ < 2π and write p1(θ) and p2(θ) for

the points on the circles in direction θ. Either both points belong to Vor(0), both points

do not belong to Vor(0), or p1(θ) ∈ Vor(0) but p2(θ) 6∈ Vor(0). The fourth combination is

not possible, which implies 2π−ΦΛ(%1) ≥ 2π−ΦΛ(%2) or, equivalently, ΦΛ(%1) ≤ ΦΛ(%2).

To prove the strict inequality, we just need to observe that there is an arc of non-zero

length in ∂xD∗(%1) such that the corresponding arc in ∂B(0, %2) lies outside Vor(0) and

therefore does not belong to ∂xD∗(%2).
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Area. The probability that a random point belongs to exactly one disk is the area of

D∗(%) over the area of Vor(0). The latter is a constant independent of the radius. We

will prove shortly that the former is a unimodal function in % with a single maximum at

the radius % = %Λ that balances the lengths of the two kinds of boundaries; see Figure

4.6. We call %Λ the equilibrium radius of Λ. Write areaΛ : [rΛ, RΛ] → R for the function

that maps % to the area of D ∗ (%).

Figure 4.6: Increasing the radius grows D∗(%) along the convex boundary and shrinks

it along the concave boundary.

Lemma 11 (Equilibrium Radius). Let Λ be a lattice in R2. The function areaΛ : [rΛ, RΛ]→

R is strictly concave, with a unique maximum at the equilibrium radius %Λ that satisfies

ΦΛ(%Λ) = π.

Proof. Recall that ΦΛ(%) is the total angle of the concave boundary of D∗(%), and 2π −

ΦΛ(%) is the total angle of the convex boundary. When we increase the radius, the

partial disk grows along the convex boundary and shrinks along the concave boundary.

Indeed, the derivative is the difference between the two lengths:

∂areaΛ

∂%
(%) = %[2π − ΦΛ(%)− ΦΛ(%] (4.19)

= 2%[π − ΦΛ(%)]. (4.20)

The derivative vanishes when ΦΛ(%) = π, is positive when ΦΛ(%) < π and negative

when ΦΛ(%) > π, as claimed.
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4.3.3 Optimality of the regular hexagonal grid

Here we present the proof of the main result stated in Section 4.3. After writing the

probability that a random point lies in exactly one disk as a function of the radius, we

distinguish between three cases, showing that the maximum is attained at the regular

hexagonal grid.

Probability. Given a lattice Λ in R2, we write rΛ < %Λ < RΛ for the packing, equilib-

rium, and covering radii. Recall that the probability in question is

PΛ(%Λ) = areaΛ(%Λ)
‖a1‖‖a2‖ sin γ

, (4.21)

in which Λ = Λ(a1, a2) and γ is the angle between a1 and a2. Recall furthermore that

the convex boundary consists of at most six arcs, two each with angle α1, α2, α3, in

which we set the angle to zero if the arc degenerates to a point or is empty.

Lemma 12 (Equilibrium Area). Let Λ = Λ(a1, a2) be a lattice in R2 with angle γ between

a1 and a2. Then

PΛ(%Λ) =
2%2

Λ

‖a1‖‖a2‖ sin γ
·

3∑
i=1

sinαi. (4.22)

Proof. Recall that ‖a1‖‖a2‖ sin γ is the area of Vor(0). Let Ain be the area of B(0, %Λ) ∩

Vor(0), let Aout be the area of B(0, %Λ) \ Vor(0), and note that Ain − Aout is the area

of D∗(%Λ). Since Ain + Aout = %2
Λπ, we have Ain − Aout = %2

Λπ − 2Aout. The portion

of B(0, %Λ) outside the Voronoi domain consists of up to three symmetric pairs of disk

segments, with total area

Aout = 2
3∑
i=1

%2
Λ

2
(αi − sinαi) (4.23)

= %2
Λ

(
π
2
−

3∑
i=1

sinαi

)
, (4.24)

in which the second line is obtained using
∑3

i=1 αi = π
2

from the Equilibrium Radius

Lemma. The probability is Ain − Aout divided by the area of the Voronoi domain:

PΛ(%Λ) =
%2

Λπ−2Aout

‖a1‖‖a2‖ sin γ
. (4.25)

Together with (4.24) this implies the claimed relation.
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Case analysis. We focus on the primitive case in which the Voronoi domain is a

hexagon, considering the non-primitive case a limit situation in which two of the edges

shrink to zero length. Let a1, a2 ∈ R2 be generators of the lattice satisfying the condition

in the Non-obtuse Generators Lemma, set a3 = a1 − a2, and assume ‖a1‖ ≤ ‖a2‖ ≤

‖a3‖. Recall that these three lengths are the distances between parallel edges of the

hexagon. Further notice that we have rΛ = ‖a1‖
2

for the packing radius and RΛ > ‖a3‖
2

for the covering radius. As before, we write αi for the angles of the arcs of ∂xD∗(%), and

we index such that α1 ≥ α2 ≥ α3.

CASE 1: ‖a1‖
2
< %Λ ≤ ‖a2‖

2
. Then α1 > 0 and α2 = α3 = 0.

CASE 2: ‖a2‖
2
< %Λ ≤ ‖a3‖

2
. Then α1 ≥ α2 > 0 and α3 = 0.

CASE 3: ‖a3‖
2
< %Λ < RΛ. Then α1 ≥ α2 ≥ α3 > 0.

For example the configuration depicted in Figure 4.5 falls into Case 2. Using the ex-

pression for the probability in the Equilibrium Area Lemma, we determine the maximum

for each of the three cases. Here we state the results, referring to Appendix C for the

proofs. By the probability we mean of course the probability that a random point be-

longs to exactly one disk.

Lemma 13 (Two Arcs). In Case 1, the maximum probability is attained for ‖a2‖ =
√

2‖a1‖, γ = arccos 1
2
√

2
, and %Λ = ‖a1‖/

√
2, which gives PΛ(%Λ) = 0.755 . . ..

Lemma 14 (Four Arcs). In Case 2, the maximum probability is attained for ‖a2‖ = ‖a1‖,

γ = arccos(
√

2− 1), and %Λ = ‖a1‖
√

1− 1/
√

2, which gives PΛ(%Λ) = 0.910 . . ..

Lemma 15 (Six Arcs). In Case 3, the maximum probability is attained for ‖a2‖ = ‖a1‖

= ‖a3‖, γ = π
3

and %Λ = ‖a1‖/(2 cos π
12

), which gives PΛ(%Λ) = 0.928 . . ..

Note that the lattice in the Six Arcs Lemma is the regular hexagonal grid. Comparing

the three maximum probabilities, we see that the regular hexagonal grid gives the

global optimum; see Figures 4.7. For this lattice, we get %H such that each disk overlaps

with six others and in each case covers 30◦ of the bounding circle: the 12-hour clock

configuration in the plane. This implies the Main Theorem stated in Section 4.3.

We further illustrate the result by showing the graph of the function that maps

‖a1‖/‖a2‖ and the angle γ to the probability at the equilibrium radius; see Figure 4.8.
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Figure 4.7: Left: for
√

2‖a1‖ = ‖a2‖ ≤ ‖a3‖, the angle γ is between arccos 1
2
√

2
and π

2
.

Right: for ‖a1‖ = ‖a2‖ ≤ ‖a3‖, the angle γ is between π
3

and π
2
. In both cases, the

probability increases as the angle decreases, attaining its maximum at the minimum

angle.

Figure 4.8: The graph of the function that maps 0 ≤ ‖a1‖/‖a2‖ ≤ 1 and arccos ‖a1‖
2‖a2‖ ≤

γ ≤ 90◦ to the probability that a random point lies in exactly one disk. The thus de-

fined domain resembles a triangle and decomposes into three regions corresponding

to Cases 1, 2, 3. The regular hexagonal grid is located at the lower left corner of the

domain.

4.4 Soft sphere packing

In this section we extend the previous relaxed packing setting to 3D. Placing the sphere

centers on a lattice, we define the soft density of the configuration by penalizing multiple
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overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional

integer lattices, we show that the soft density is maximized at the FCC lattice.

4.4.1 Lattice configurations

In Rn, we need n linearly independent vectors to define a lattice, which consists of all

integer combinations:

Λ(a1, a2, . . . , an) =

{
p =

n∑
i=1

kiai | ki ∈ Z

}
. (4.26)

Same as already pointed out for R2, note that 0 is a point in Λ = Λ(a1, a2, . . . , an), and

that the neighborhood of every lattice point looks like the neighborhood of every other

lattice point. We will therefore focus on 0 and its neighborhood.

Voronoi Domains and Brillouin Zones

A standard tool in the study of lattices is the Voronoi diagram, which assigns to each

point p ∈ Λ the set of points x ∈ Rn for which p is the closest lattice point or, if there

is a tie, p is among the closest lattice points. This set is a convex polyhedron and

commonly referred to as the Voronoi domain of p. We are interested in short- as well

as long-range interactions between the points, which motivates us to generalize this

concept.

Perpendicular bisectors. Following Fejes Toth [Tóth, 1976; Tóth, 1979], we define

the i-th Voronoi domain of 0 as the set of points x ∈ Rn for which 0 is among the i

nearest lattice points, denoting this domain by Vori(0). We write Vor(0) = Vor1(0) for

the ordinary Voronoi domain.

There are at least two rather different ways to construct these domains; see Figure

4.9 for an illustration of the first. Recall that the perpendicular bisector of p 6= q is

the hyperplane of points at equal distance from both: ‖x− p‖ = ‖x− q‖. Drawing

all perpendicular bisectors defined by 0 and p ∈ Λ \ {0}, we get an arrangement of

countably many hyperplanes in Rn. The hyperplanes decompose Rn into chambers,

which are maximal closed sets so that no two points lie on opposite sides of any of the
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Figure 4.9: Drawing all bisectors defined by 0 and other points in the lattice, we get

the i-th Brillouin zone of 0 as the closure of the points separated from 0 by i− 1 of the

bisectors. We highlight the 2-nd Brillouin zone on the left and the 6-th Brillouin zone on

the right. Related to this concept is the i-th Voronoi domain of 0, which is the union of

the first i Brillouin zones or, equivalently, the closure of the points separated from 0 by

i− 1 or fewer lines.

hyperplanes. For example Vor(0) is the unique chamber that contains 0. Every other

chamber is separated from 0 by at least one hyperplane, and Vori(0) is the union of all

chambers separated from 0 by at most i− 1 hyperplanes.

The generalized Voronoi domains are not necessarily convex, but they satisfy a

related weaker condition. A set A ⊆ Rn is star-convex if there exists a point a ∈ A such

that for every x ∈ A the entire line segment connecting a to x is contained in A. The

kernel of A is the set of such points a, which is a subset of A.

Lemma 16 (Star-convexity). Let Λ be a lattice in Rn. For each i ≥ 1, Vori(0) is bounded

and star-convex, and 0 lies in the interior of its kernel.

PROOF. Because Λ is a lattice, there is a real number R = R(i) such that every ball of

radiusR contains i or more lattice points in its interior. It follows that no point x ∈ Vori(0)

can be at distance R or further from 0. In other words, Vori(0) is bounded. It is star-

convex because x ∈ Vori(0) implies that all points on the line segment connecting x to

0 belong to Vori(0). Indeed, if x is separated by at most i− 1 bisectors from 0 then so is

any point on this line segment. This also proves that 0 belongs to the kernel of Vori(0).

But this is still true if we substitute any point of the first Voronoi domain for 0, so the
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entire Vor(0) belongs to the kernel, which implies that 0 belongs to the interior of the

kernel, as claimed.

It is often convenient to consider the difference between two contiguous domains

rather than individual domains. Following the French physicist Léin Brillouin [Brillouin,

1930], we therefore define Zi(0) as the closure of Vori(0) \ Vori−1(0), calling it the i-th

Brillouin zone centered at 0. Setting Vor0(0) = ∅, the first zone is Z1(0) = Vor(0).

Zone invariants. Fixing i, we note that the i-th Brillouin zones of different lattice

points have disjoint interiors, and the collection of all i-th zones covers Rn. Incidentally,

this is the degree-i Voronoi diagram as defined in [Edelsbrunner and Seidel, 1986].

Since any two i-th zones are translates of each other, and because there are equally

many i-th zones as there are j-th zones — namely one for each lattice point — it

must be that all Brillouin zones have the same volume. This result was mentioned

already by Bieberbach [Bieberbach., 1939]. We formalize this insight and generalize

it to measures beyond the n-dimensional volume. Recall that a function µ : Rn → R is

integrable if

µ[S] =

∫
x∈S

µ(x) dx (4.27)

is well defined for every Borel set S ⊆ Rn. It is Λ-periodic if µ(x) = µ(x + p) for every

x ∈ Rn and every p ∈ Λ. For example, if µ is identical 1, then it is obviously periodic

and µ[S] is the n-dimensional volume of S. We prove that every Brillouin zone has the

same measure, no matter what center or index.

Theorem 9 (Zone Invariants). Let Λ be a lattice in Rn and µ : Rn → R be a Λ-periodic

integrable function. Then µ[Zi(p)] = µ[Zj(q)] for all i, j ≥ 1 and all p, q ∈ Λ.

PROOF. In a lattice, every point looks like every other point: Λ = Λ + p for every

p ∈ Λ. For a point p ∈ Λ, we have Zi(p) = Zi(0) + p, and because µ is Λ-periodic,

µ[Zi(p)] = µ[Zi(0)] for every i ≥ 1. By transitivity,

µ[Zi(p)] = µ[Zi(q)], (4.28)

for all p, q ∈ Λ and all i ≥ 1. To extend this relation to Brillouin zones with different

indices, we consider the closed ball with radius R > 0 centered at the origin, denoted
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by B(0, R). Counting the lattice points in the ball with m(R) = card (B(0, R) ∩ Λ), we

write Ωi(R) for the union of the i-th zones centered at these m(R) points. Letting wi be

the maximum distance of a point x ∈ Zi(0) from 0, we note that the symmetric difference

between B(0, R) and Ωi(R) is contained inside the annulus of points at distance at most

wi on either side of the sphere that bounds B(0, R). With increasing R, the volume of

this annulus grows asymptotically slower than the volume of the ball. Hence,

µ[Zi(0)] =
µ[Ωi(R)]

m(R)
= lim

R→∞

µ[B(0, R)]

m(R)
. (4.29)

The right-hand side converges to a finite value that is independent of i. It follows that

the measure of any i-th zone is the same as the measure of any j-th zone. The claimed

relation thus follows from (4.28) and (4.29).

EXAMPLE 1. Fixing a non-negative integer j, set µ(x) = 1 if x is covered by j or

more balls, and set µ(x) = 0 otherwise. Clearly, µ is a periodic integrable function, so

Theorem 9 implies that the volume of points covered by at least j balls is the same

within every Brillouin zone. For j = 0, this formalizes our informal argument that all

zones have the same n-dimensional volume.

EXAMPLE 2. Let µ have Dirac deltas at the lattice points. More concretely, let ε > 0 be

sufficiently small and set

µ(x) = max
p∈Λ

{
0, (n+1)(ε−‖x−p‖)

νnεn+1

}
, (4.30)

in which νn is the n-dimensional volume of the unit ball. Clearly, µ is a periodic inte-

grable function and µ[Vor(0)] = 1. Theorem 9 implies that the measure of every zone is

1. Interpreting this measure as counting lattice points, we get exactly one lattice point

per zone, provided we take appropriate fractions if the points are shared.

Iterative Construction

The second way of constructing the generalized Voronoi domains proceeds in rounds

of invasions and relocations of conquered real-estate. We remark that Sibson used

the same “area-stealing” idea to construct interpolations based on Voronoi diagrams

[Sibson, 1980].
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Invasion and relocation. We construct the 2-nd Brillouin zone centered at 0 by let-

ting the Voronoi neighbors invade Vor(0) and divide up the real-estate. Each obtained

region belongs to an ordered pair, (0, p), in which 0 and p are the 1-st and 2-nd lattice

points from any point in the region. Translating the region to the Voronoi domain of −p,

we get Z2(0) as the union of these regions; see Figure 4.10.

Figure 4.10: Left: We decompose the first Voronoi domain of 0 according to the second

nearest lattice point, and assemble the 2-nd Brillouin zone by moving each piece to the

reflection of the corresponding point. Right: We refine the decomposition according

to the third nearest lattice point, and assemble the 3-rd Brillouin zone by moving each

piece to the reflection of the corresponding point.

We can iterate. Specifically, we further decompose each region by letting the sur-

rounding regions invade and divide up the real-estate, as before. Each region in this

decomposition belongs to an ordered triplet, (0, p, q), in which 0, p, q are the 1-st, 2-nd,

3-rd lattice points from any point in the region. Translating the region to the Voronoi

domain of −q, we get Z3(0) as the union of these regions, as before; see again Figure

4.10.

Piecewise translations. We formalize the iterative construction by proving that there

is a piecewise translation from Vor(0) to Zi(0) for every i. To describe this map, let

x be a point in Vor(0). Ordering the lattice points in increasing distance from x, we

get ‖x− p1‖ ≤ ‖x− p2‖ ≤ . . . ≤ ‖x− pi‖ ≤ . . . . Most of these inequalities are strict,

and ties are broken arbitrarily. For i ≥ 1, we define fi : Vor(0) → Zi(0) by mapping x

to fi(x) = x − pi. We will show that fi is almost a bijection. To express this, we let

V ◦i ⊆ Vor(0) be the set of points x in Vor(0) for which the 1-st and i-th lattice points

are unique: ‖x− p1‖ < ‖x− p2‖ and ‖x− pi−1‖ < ‖x− pi‖ < ‖x− pi+1‖. Similarly, we
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let Z◦i ⊆ Zi(0) be the set of points in the i-th Brillouin zone for which the 1-st and i-th

lattice points are unique. Note that V ◦i is contained in the interior of Vor(0) and contains

almost all points of the Voronoi domain. Similarly, Z◦i is contained in the interior of Zi(0)

and contains almost all points of the i-th Brillouin zone.

Lemma 17 (Bijection). For each i ≥ 1, the restriction of the function fi to V ◦i ⊆ Vor(0)

and Z◦i ⊆ Zi(0) is a bijection.

PROOF. First we show that the restriction of fi is well defined. Recall that 0 and pi are

the unique 1-st and i-th lattice points from x. Since fi(x) = x − pi, this implies that

0 − pi = −pi and pi − pi = 0 are the unique 1-st and i-th lattice points from fi(x). It

follows that fi(x) belongs to the interior of Vor(−pi) as well as to the interior of Zi(0),

and thus to Z◦i .

To prove that the restriction is injective, let pi, p′i ∈ Λ be the i-th lattice points from

x, x′ ∈ V ◦i . If pi = p′i, then fi(x) − fi(x′) = x − x′, so that x 6= x′ implies fi(x) 6= fi(x
′).

Otherwise, if pi 6= p′i, we have fi(x) 6= fi(x
′) because the two points lie in the interiors

of two different 1-st Voronoi domains.

To prove that fi is surjective, we start with a point y in Z◦i , and let p ∈ Λ such that

y ∈ Vor(−p). Define x = y+p. Since −p and 0 are the unique 1-st and i-th lattice points

from y, this implies that −p + p = 0 and 0 + p = p are the unique 1-st and i-th lattice

points from x. Hence, x belongs to V ◦i and fi(x) = y.

It is not difficult to see that the functions fi can be used to give a second proof of

Theorem 9. Indeed, the restriction of fi to V ◦i and Z◦i is a bijection that consists of

finitely many translations. Each translation maps a connected piece of V ◦i to a con-

nected piece of Z◦i . By the periodicity of µ, the measure of these two pieces is the

same. Since the pieces are pairwise disjoint and cover almost all of Vor(0) and of Zi(0),

this implies that µ[Vor(0)] = µ[Zi(0)]. We get the relation in Theorem 9 by transitivity.

Configurations of balls

We call a set of closed balls in Rn a configuration of balls or, equivalently, a configura-

tion of spheres if we want to emphasize how the boundaries of the balls decompose

space. We are interested in the case in which all balls have the same radius and the
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centers are placed periodically in Rn. Letting B(p, r) = B(0, r) + p be the closed ball

with radius r > 0 centered at p ∈ Rn, we write

B(Λ, r) = {B(p, r) | p ∈ Λ} (4.31)

for the configuration of balls defined by the lattice and the radius. In this subsection,

we fix Λ as well as r and write B = B(Λ, r).

Multiple covering. For each i ≥ 0, let Bi ⊆ Rn be the set of points that are covered

by at least i of the balls in B. For finite r, there is a minimum index, m, such that Bi = ∅

iff i ≥ m. Clearly, ∅ = Bm ⊆ . . . ⊆ B1 ⊆ B0 = Rn. To assess the relative size of these

sets, we let ϕi be the probability that a randomly selected point in Rn is contained in at

least i of the balls. More formally,

ϕi(Λ, r) = lim
R→∞

vol[Bi ∩B(0, R)]

vol[B(0, R)]
=

vol[Bi ∩ Vor(0)]

vol[Vor(0)]
, (4.32)

in which we get the right-hand side because Bi intersects every Voronoi domain in the

same way. The inclusions among the Bi imply 0 = ϕm ≤ . . . ≤ ϕ1 ≤ ϕ0 = 1. Observe

also that ϕi−ϕi+1 is the probability that a randomly selected point lies in exactly i balls

of B.

Probability in terms of volume. We generalize (4.32) by considering the intersec-

tions of B(0, r) with the generalized Voronoi domains: Di(r) = B(0, r) ∩ Vori(0), for

i ≥ 0, noting that D0(r) = Vor0(0) = ∅. Continuing the convention of dropping the fixed

radius from the notation, we write Di = Di(r).

Lemma 18 (Probability). For each i ≥ 1, the probability that a randomly selected point

in Rn belongs to at least i balls in B is

ϕi =
vol[Di]− vol[Di−1]

vol[Vor(0)]
. (4.33)

PROOF. Let x be a point in Vor(0). We prove the claimed relation by showing that the

point y = fi(x) belongs to Di \Di−1 iff x is covered by at least i balls; see Figure 4.11.

This implies (4.33). We now prove the two directions of the claimed equivalence.

“=⇒”. By construction of the function, y = fi(x) belongs to Zi(0). If it furthermore

belongs to B(0, r) and thus to Di \ Di−1, then 0 is the i-th lattice point from y and its
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Figure 4.11: The probability that a randomly selected point is covered by at least two

disks is the normalized area of the intersection between the disk centered at 0 and the

2-nd Brillouin zone of 0. Indeed, we can move the pieces of this intersection back into

the first Voronoi domain so that they decompose the portion covered by at least two

disks, the one centered at 0 and the other centered at a neighboring lattice point.

ball covers y. Hence, y is covered by at least i balls, which implies that x is covered by

at least i balls.

“⇐=”. If x is covered by at least i balls, then so is y = fi(x). We have y ∈ Zi(0) by

definition, and y ∈ B(0, r) because 0 is the i-th lattice point from y. Hence y ∈ Di\Di−1.

4.4.2 Measures of density

Given a lattice configuration of balls, the classic notion of density is the expected num-

ber of balls that contain a randomly selected point:

δ(Λ, r) =
∑
i≥1

ϕi =
vol[B(0, r)]

vol[Vor(0)]
, (4.34)

in which the ratio on the right-hand side is clear and also follows from Lemma 18. We

introduce variants of this classic notion that penalize for overlapping balls and prove

that for a fixed lattice they are unimodal functions of the radius.
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Soft densities

In this subsection, we introduce a family of soft densities and relate them to volumes

of balls and generalized Voronoi domains.

Two definitions. Let Λ ⊆ Rn be a lattice and r > 0 be a radius. For each j ≥ 1, we

define the j-th soft density of B = B(Λ, r) as

δj(Λ, r) =

j∑
i=1

ϕi −
∞∑

i=j+1

ϕi. (4.35)

We have δ1 ≤ δ2 ≤ . . . ≤ δ, and δj = δ iff the configuration does not have any j + 1

overlapping balls.

From the point of view of the applications motivating the work described in this

section, the most interesting soft density is the first: δ1(Λ, r) = ϕ1 − ϕ2 − ϕ3 − . . .. It

favors configurations of balls with only minor overlap. Nonetheless, there are lattices for

which the configuration that maximizes the 1-st soft density has triplets of overlapping

balls. To avoid the complications caused by triple intersections, we introduce the 1-st

simplified soft density :

δ1s(Λ, r) =
∞∑
i=1

(3− 2i)ϕi, (4.36)

noting that δ1s ≤ δ1 agree on the first two terms and differ only in the weight given to

overlaps of three or more balls. We will see shortly that δ1s is easier to compute than

δ1.

Density in terms of volume. Recall that (4.34) writes the classic notion of density

as the normalized volume of a ball. We generalize this relation to soft densities, unsim-

plified and simplified.

Lemma 19 (Soft Density). Let j ≥ 1. The j-th soft density and the 1-st simplified soft

density of the configuration of balls defined by a lattice Λ and a radius r are

δj =
2vol[Dj]− vol[B(0, r)]

vol[Vor(0)]
, (4.37)

δ1s =
vol[B(0, r)]

vol[Vor(0)]
−
∑

06=p∈Λ

vol[B(0, r) ∩B(p, r)]

vol[Vor(0)]
. (4.38)
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PROOF. We first prove the relation for the unsimplified soft densities. Writing the two

normalized volumes on the right-hand side of (4.37) in terms of probabilities, we get

vol[Dj]

vol[Vor(0)]
=

j∑
i=1

ϕi, (4.39)

vol[B(0, r)]

vol[Vor(0)]
=
∞∑
i=1

ϕi. (4.40)

Taking the first sum twice and subtracting the second sum, we match the definition of

the j-th soft measure in (4.35).

Second, we prove the relation for the simplified soft density. Equation (4.40) writes

the first normalized volume in (4.38) in terms of probabilities. To do the same for the

second normalized volume, we note that the common intersection of B(0, r) and k − 1

other balls is accounted for k − 1 times. Recall that B(0, r) ∩ Bk is the subset of the

ball covered by at least k − 1 other balls. The second normalized volume in (4.38) can

therefore be rewritten as

VLunes =
∞∑
k=2

vol[B(0, r) ∩ Bk]
vol[Vor(0)]

=
∞∑
k=2

∞∑
i=1

vol[Zi(0) ∩B(0, r) ∩ Bk]
vol[Vor(0)]

, (4.41)

in which we get the second line by decomposing the ball into its intersections with the

Brillouin zones. To write the double-sum in terms of probabilities, we note that the

indicator function of Bk is Λ-periodic. Hence, Theorem 9 implies that

vol[Zi(0) ∩ Bk]
vol[Vor(0)]

= ϕk (4.42)

for all choices of i ≥ 1 and k ≥ 0. Recall now that for every point x ∈ Zi(0), the origin is

the i-th lattice point from x. For 1 ≤ i ≤ k, 0 is among the first k lattice points. Hence, if

x is contained in k or more balls, then it is also contained in B(0, r). For k ≤ i, x ∈ Zi(0)

is contained in B(0, r) iff it is contained in i or more balls. Hence,

vol[Zi(0) ∩B(0, r) ∩ Bk]
vol[Vor(0)]

=

 ϕk for 1 ≤ i ≤ k

ϕi for k ≤ i,
(4.43)

in which we get the first line from (4.42) and the second line from (4.33). Starting with

(4.38), we use (4.40) to rewrite the first sum and combine (4.41) with (4.43) to rewrite

the second sum to get

δ1s =
∞∑
i=1

ϕi −
∞∑
k=2

(
kϕk +

∞∑
i=k+1

ϕi

)
=
∞∑
i=1

(3− 2i)ϕi. (4.44)
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Simple rearrangements lead to the right-hand side, which matches the definition of the

1-st simplified density in (4.36).

Derivatives

In this subsection, we fix the lattice but vary the radius. It is therefore convenient to

write B(r) = B(Λ, r), δj(r) = δj(Λ, r), etc. We are interested in the radius at which a

soft density attains its maximum.

Derivative of probability. Since all density measures in this section are linear com-

binations of probabilities, we focus on the functions ϕi : R+ → R. Remembering that

ϕi(r) is the normalized volume of B(0, r) ∩ Zi(0), we introduce radii ri < Ri such that

this intersection is empty iff r < ri and equal to Zi(0) iff Ri ≤ r. Specifically, ri is the

supremum of the radii for which every ball contains fewer than i lattice points, and Ri

is the supremum of the radii for which there exists a center such that the ball contains

fewer than i lattice points. For example, r2 is the packing radius of Λ, and R1 is the

covering radius of Λ. Within the interval [ri, Ri], ϕi increases monotonically from 0 to

1. When we increase the radius, the volume of B(0, r) ∩ Zi(0) grows where the sphere

∂B(0, r) lies inside Zi(0). To streamline the notation, we write Si(r) = ∂B(0, r)∩Vori(0),

and area[Si(r)] for its (n− 1)-dimensional volume. Recalling that the i-th Brillouin zone

is Zi(0) = Vori(0) \ Vori−1(0), we therefore get

∂ϕi
∂r

(r) =
area[Si(r)]− area[Si−1(r)]

vol[Vor(0)]
(4.45)

for the derivative of the probability that a randomly selected point lies in at least i balls.

Derivative of soft density. Recall the definition of the soft density in (4.35) and that

of the simplified soft density in (4.36). Accordingly, their derivatives are

∂δj
∂r

(r) =

j∑
i=1

∂ϕi
∂r

(r)−
∞∑

i=j+1

∂ϕi
∂r

(r), (4.46)

∂δ1s

∂r
(r) =

∞∑
i=1

(3− 2i)
∂ϕi
∂r

(r), (4.47)

for every integer j ≥ 1 and every r ∈ R+. These derivatives can also be written in

terms of areas.
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Lemma 20 (Soft Density Derivative). Let j ≥ 1. The derivatives of the j-th soft density

and of the 1-st simplified soft density of the configuration defined by a lattice Λ ∈ Rn

and a radius r > 0 are

∂δj
∂r

(r) =
2area[Sj(r)]− area[∂B(0, r)]

vol[Vor(0)]
, (4.48)

∂δ1s

∂r
(r) =

area[∂B(0, r)]

vol[Vor(0)]
−
∑

06=p∈Λ

2area[∂B(0, r) ∩B(p, r)]

vol[Vor(0)]
. (4.49)

PROOF. Using (4.45), we write both sums on the right-hand side of (4.46) as telescop-

ing sums. Almost all terms cancel, and we get

j∑
i=1

∂ϕi
∂r

(r) =
area[Sj(r)]

vol[Vor(0)]
, (4.50)

∞∑
i=j+1

∂ϕi
∂r

(r) =
area[∂B(0, r)]− area[Sj(r)]

vol[Vor(0)]
. (4.51)

Subtracting (4.51) from (4.50), we get (4.48). Alternatively, we would start with (4.37)

and get (4.48) directly. We prefer the latter, geometric argument to prove (4.49). In-

deed, the first term on the right-hand side of (4.49) is the derivative of the first term on

the right-hand side of (4.38). Similarly, each term in the sum of (4.49) is the derivative

of the corresponding term in the sum of (4.38). Here we get a factor 2 because

∂[B(0, r) ∩B(p, r)] = [∂B(0, r) ∩B(p, r)] ∪ [B(0, r) ∩ ∂B(p, r)]. (4.52)

The two spherical caps on the right-hand side have the same area, so the sum of the

areas is twice the area of the first cap.

Equilibrium

In this subsection, we prove that the soft density of the ball configuration defined by a

fixed lattice is a unimodal function of the radius. This property holds for the unsimplified

as well as the simplified soft densities.

Fraction versus area. For the proof of unimodality, it will be important that the gen-

eralized Voronoi domains centered at 0 are star-convex and contain 0 in the interiors

of their kernels; see Lemma 16. To see why this is important, we grow a sphere
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with center 0. As the radius increases, the fraction of this sphere inside Vorj(0) de-

creases monotonically from 1 to 0. By complementarity, the fraction of the sphere out-

side Vorj(0) increases monotonically from 0 to 1. Plotting the difference between these

two fractions as a function of the radius, we get two flat intervals, as shown in Figure

4.12, with a monotonically decreasing segment in between. This segment crosses the

zero-line exactly once, at the equilibrium radius, which we denote by %j.

+1

0

−1

rj

%j Rj

Figure 4.12: The graph of the difference between the fraction of the sphere inside

Vorj(0) and the complementary fraction outside Vorj(0).

Recall that a real-valued function is unimodal if it increases until it attains its maxi-

mum, after which it decreases. More formally, we call a differentiable function f : R+ →

R unimodal if there exists % ∈ R+ such that

∂f

∂r
(r)


> 0 for r < %,

= 0 for r = %,

< 0 for r > %.

(4.53)

It follows that the integral of the difference of fractions, as sketched in Figure 4.12, is

unimodal with equilibrium radius %j. However, according to (4.48), the derivative of the

j-th soft density is the difference between the normalized areas of the sphere inside

and outside Vorj(0), and not the difference between the fractions.

Unimodality. The j-th soft density is unimodal with equilibrium radius %j nonetheless,

but this requires a proof.

Lemma 21 (Unimodality). Let Λ be a lattice in Rn. For each j ≥ 1, the j-th soft density

function of Λ is unimodal, and it attains its maximum at the equilibrium radius of Λ,

which satisfies rj < %j < Rj.
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PROOF. We begin by proving that the fraction of the sphere inside the first j rings is

monotonically decreasing. Write

F (r) =
area[Sj(r)]

area[∂B(0, r)]
(4.54)

for the fraction and consider radii rj ≤ r < R ≤ Rj. Associate each point x ∈ ∂B(0, r)

with the point y = R
r
x ∈ ∂B(0, R). Since Vorj(0) is star-convex, with 0 in its kernel,

y ∈ Sj(R) implies that x ∈ Sj(r). Hence, F (R) ≤ F (r). To see that the inequality

is strict, we use the fact that 0 lies in the interior of the kernel of Vorj(0). We can

therefore find a non-empty open arc in Sj(r) such that none of the associated points in

∂B(0, R) belongs to Sj(R). This implies that F (R) < F (r). The difference between the

normalized areas inside and outside Vorj(0) is

∆(r) =
2area[Sj(r)]− area[∂B(0, r)]

vol[Vor(0)]
=

area[∂B(0, r)]

vol[Vor(0)]
· (2F (r)− 1), (4.55)

This difference has the same sign as 2F (r)− 1. Hence,

∆(r)


> 0 for r < %j,

= 0 for r = %j,

< 0 for r > %j.

(4.56)

It follows that δj is unimodal and that it attains its maximum at r = %j. We have rj <

%j < Rj because 2F (rj)− 1 = 1 and 2F (Rj)− 1 = −1.

REMARK 1. It is not difficult to adapt the proof of Lemma 21 to show that the following

parametrized version of the soft density is also unimodal:

δj,C =

j∑
i=1

ϕi − 1
C−1

∞∑
i=j+1

ϕi, (4.57)

in which C > 1 is a constant. Its equilibrium radius is defined by having a fraction of

1/C of the sphere inside Vorj(0).

REMARK 2. The proof of Lemma 21 can also be adapted to show that the 1-st simplified

soft density is unimodal. To see that δ1s is unimodal, we re-normalize by multiplying

with vol[Vor(0)]/area[∂B(0, r)]. The first term on the right-hand side of (4.49) becomes

identical 1, and the sum becomes strictly increasing. Hence, there is a unique radius

at which the difference vanishes. This is the radius at which δ1s attains its maximum.
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Counterexamples to unimodality. We have chosen our measures of density care-

fully so that they are unimodal. Many other choices are not unimodal, and some sur-

prisingly so. Consider, for example, ψi : R+ → R defined by mapping r to the probability

that a randomly selected point is contained in exactly i balls: ψi = ϕi−ϕi+1. For lattices

in R2, ψ1 is unimodal, and this was exploited in [Edelsbrunner et al., 2015] to show that

the hexagonal lattice provides the maximizing lattice configuration. But already in R3,

ψ1 is not necessarily unimodal, as we now show. Let

a1 =


1

0

0

 , a2 =


0

4

0

 , a3 =


0

0

4

 . (4.58)

The packing radius of the thus defined lattice Λ ⊆ R3 is 0.5. Increasing the radius from

0.0 to 1.0, the probability grows monotonically from ψ1(0.0) = 0 to ψ1(1.0) = π
2
. LetD∗(r)

Figure 4.13: Front view of a row of unit spheres and, superimposed, of the same row

of slightly enlarged spheres. The shaded sets D∗(r) are contained in the 1-st Voronoi

domain of 0.

be the set of points in B(0, r) that are not contained in any other balls (i.e. 2D1(r) −

D2(r)). The boundary of D∗(r) consists of points on ∂B(0, r) and of points on other

spheres in the configuration. We then write ∂D∗(r) = S0(r)∪S(r), with S0(r) ⊆ ∂B(0, r)

and S(r) ⊆ B(0, r)\∂B(0, r); see Figure 4.13. For r = 1.0, Archimedes’ theorem implies

that the two have the same area. Writing f(r) = vol[D∗(r)], the derivative vanishes:

∂f

∂r
(1.0) = area[S0(1.0)]− area[S(1.0)] = 0. (4.59)

Indeed, if we increase r moderately beyond 1.0, we keep getting constant volume and

vanishing derivative. More precisely, we get f(r) = π
2

for 1.0 ≤ r ≤ 2.0, with smaller val-
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ues for all other radii. In summary, ψ1(r) = f(r)/vol[Vor(0)] has an interval of maxima,

which contradicts unimodality.

Extending this example to four and higher dimensions, it is possible to get functions

ψ1 : R+ → R with multiple local maxima separated from each other by valleys of lower

probability.

4.4.3 Optimality in R3

This section presents the case analysis we use to prove the following Theorem,

Theorem 10 (Main Result). Among the lattices in the diagonal family in R3, the FCC

lattice with balls of radius 1.090 . . . times the packing radius maximizes the soft density

at δ1 = 0.844 . . ..

As a warm-up exercise, we compute the 1-st soft density of the equilibrium config-

urations of the FCC lattice in R3.

FCC lattice. We generate the face centered cubic lattice with the vectors

a1 =


4/3

1/3

1/3

 , a2 =


1/3

4/3

1/3

 , a3 =


1/3

1/3

4/3

 . (4.60)

The packing radius is half the minimum distance between the points, which is r =
√

2
2

.

The volume of the Voronoi domain is also the volume of the parallelepiped spanned by

the generating vectors:

vol[Vor(0)] = det


4/3 1/3 1/3

1/3 4/3 1/3

1/3 1/3 4/3

 = 2. (4.61)

The equilibrium radius is % = 12
11
r = 6

√
2

11
. Indeed, at this radius a sphere intersects the

neighboring balls in twelve equal and non-intersecting caps, each one twenty-fourth of

the area of the sphere. The caps are in the direction of the vectors ±ai and ai − aj, for

i, j ∈ {1, 2, 3}, and have area

ACap = 2π%(% − r) = 24πr2

112 = 0.311 . . . . (4.62)
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The volume of a ball is

VBall = vol[B(0, %)] = 4π
3
%3 = 16·122πr3

113 = 1.922 . . . . (4.63)

The volume of the cone over a cap is one twenty-fourth of this. The boundary of the

cap is a circle which spans a disk, and the volume of the cone over this disk is

VCone = (%2 − r2) rπ
3

= 23πr3

3·112 = 0.070 . . . . (4.64)

Referring to the difference between a cone over the cap and the cone over the disk

as a segment of the ball, we note that its volume is VSgmt = 1
24

VBall − VCone. To finally

compute the 1-st soft density, we get ϕ1 as the normalized volume of the ball minus

twelve segments, ϕ2 as the normalized volume of twelve segments, and the 1-st soft

density as the difference:

ϕ1 = 1
2
(1

2
VBall + 12VCone) = 1082πr3

113 = 541
√

2π
2·113 = 0.902 . . . , (4.65)

ϕ2 = 1
2
(1

2
VBall − 12VCone) = 70πr3

113 = 35
√

2π
2·113 = 0.058 . . . , (4.66)

δ1 = ϕ1 − ϕ2 = 92πr3

112 = 23
√

2π
112 = 0.844 . . . . (4.67)

Since there are no triple intersections, this is also the 1-st simplified soft density: δ1 =

δ1s. By comparison, the 1-st soft density of the BCC lattice is 0.832 . . ..

1-parameter family of lattices. We consider the diagonal family of lattices intro-

duced in [Edelsbrunner and Kerber, 2011]. Recall that each lattice in this family is ob-

tained by compressing or stretching the integer lattice, Z3, along the diagonal direction.

Writing u1, u2, u3 for the unit coordinate vectors, which span Z3, and 1 = u1 + u2 + u3,

we define

ui(ε) = ui + ε−1
3
· 1, (4.68)

for 1 ≤ i ≤ 3, and we let Λε be the lattice generated by these vectors. Note that

〈ui(ε),1〉 = 1 + (ε− 1), which shows that for ε = 0, all three vectors are orthogonal to 1

and therefore not linearly independent. We get a lattice for every ε > 0, and particularly

interesting examples are the BCC lattice at ε = 1
2
, the integer lattice at ε = 1, and the

FCC lattice at ε = 2.

For ε = 1, the Voronoi domain is the unit cube, Vor(0) = [−1
2
, 1

2
]3, which has vol-

ume 1. More generally, the Voronoi domain of Λε has volume ε, namely the same
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volume as the parallelotope defined by u1(ε), u2(ε), u3(ε). As observed already in

[Edelsbrunner and Kerber, 2012], the Voronoi domains for parameters 0 < ε < 1

are all combinatorially equivalent, being bounded by eight hexagons and six rectan-

gles. Similarly, the Voronoi domains for 1 < ε < ∞ are combinatorially equivalent,

being bounded by twelve rhombi; see Figure 4.14. This combinatorial predictability of

Figure 4.14: The Voronoi domains of Λε, for ε slightly smaller than 1 on the left, and for

ε slightly larger than 1 on the right.

the Voronoi domain enables the detailed analysis in [Edelsbrunner and Kerber, 2011;

Iglesias-Ham et al., 2014] as well as in this section. Given a value of the parameter

ε and a radius r, we need to determine which faces, edges, and vertices of Vor(0)

intersect B(0, r). Fixing ε, we call r a critical radius if there is a face, edge, or vertex

of Vor(0) that touches B(0, r) but is disjoint of its interior. Because of the symmetry of

the configuration, there are very few critical radii. For 0 < ε < 1, these have already

been determined in Section 4.2 (also in [Iglesias-Ham et al., 2014]). With reference to

Figure 4.14, they are:

f1(ε) =
√

(ε2 + 2)/12, (4.69)

f2(ε) =
√

(2ε2 + 1)/6, (4.70)

f3(ε) =
√

3ε/2, (4.71)

e1(ε) = (ε2 + 2)/(3
√

2), (4.72)

e2(ε) =
√

(ε2 + 2)(2ε2 + 1)/(2
√

3), (4.73)

v1(ε) =
√

8ε4 + 11ε2 + 8/6, (4.74)

corresponding to the 6 square-like hexagons, the 6 rectangles, the 2 small hexagons,
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the 18 long edges, the 18 short edges, and the 24 vertices of the polytope on the left in

Figure 4.14. Similarly for 1 < ε <∞, we have six critical radii:

f1(ε) =
√

(ε2 + 2)/12, (4.75)

f4(ε) =
√

2/2, (4.76)

e3(ε) =
√

6/3, (4.77)

e4(ε) = (ε2 + 2)/
√

12ε2 + 6, (4.78)

v2(ε) = (ε2 + 2)/(2
√

3ε), (4.79)

v3(ε) =
√
ε2 + 8/(2

√
3), (4.80)

corresponding to the 6 square-like rhombi, the 6 narrow rhombi, the 6 short edges, the

18 long edges, the 8 degree-3 vertices, and 6 degree-4 vertices of the polytope on the

right in Figure 4.14. See Appendix D.1 for details.

Soft density at equilibrium. Given a lattice Λε in the diagonal family, we write δ1(ε) =

maxr>0 δ1(Λε, r) for the maximum soft density, and δ1s(ε) = maxr>0 δ1s(Λε, r) for the

maximum simplified soft density. As argued in the preceding sections, the maxima are

obtained for the respective equilibrium radii. To compute the maximum soft density

of every lattice Λε, we divide R+ into 12 intervals such that within every interval the

expressions and the order of the critical and equilibrium radii are constant. Table 4.1

summarizes the pertinent information for all 12 intervals. Note that in Cases I to IX,

the equilibrium radius precedes the critical radii that belong to edges and vertices of

the Voronoi domains. Equivalently, the equilibrium configuration contains pairwise but

no triplewise overlaps among the balls. In these cases, the soft density equals the

simplified soft density: δ1(ε) = δ1s(ε). Indeed, we do all computations for the simplified

soft density, which by construction considers only pairwise intersections, and we will

find that the FCC lattice maximizes this measure. The equilibrium configuration has

triple intersections only for lattices with values of ε larger than that of the FCC lattice,

and to prove that the FCC lattice also maximizes the unsimplified soft density, we will

finally bound the soft density of these equilibrium configurations from above. To do

the computations for the simplified density, we determine the number and type of the

spherical caps, and we determine the equilibrium radius, % = %1, at which these caps

amount to half the surface area. Note that the number and type of the caps is the same
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Case Critical and Equilibrium Radii Interval

I f3 ≤ % ≤ f1 ≤ f2 ≤ e2 ≤ e1 ≤ v1 (0.000 . . . , 0.239 . . .]

II f3 ≤ f1 ≤ % ≤ f2 ≤ e2 ≤ e1 ≤ v1 [0.239 . . . , 0.500 . . .]

III f1 ≤ f3 ≤ % ≤ f2 ≤ e1 ≤ e2 ≤ v1 [0.500 . . . , 0.617 . . .]

IV f1 ≤ % ≤ f3 ≤ f2 ≤ e1 ≤ e2 ≤ v1 [0.617 . . . , 0.632 . . .]

V f1 ≤ % ≤ f2 ≤ f3 ≤ e1 ≤ e2 ≤ v1 [0.632 . . . , 0.664 . . .]

VI f1 ≤ % ≤ f2 ≤ e1 ≤ f3 ≤ e2 ≤ v1 [0.664 . . . , 1.000 . . .]

VII f1 ≤ % ≤ f4 ≤ e4 ≤ e3 ≤ v2 ≤ v3 [1.000 . . . , 1.471 . . .]

VIII f1 ≤ f4 ≤ % ≤ e4 ≤ e3 ≤ v2 ≤ v3 [1.471 . . . , 2.000 . . .]

IX f4 ≤ f1 ≤ % ≤ e3 ≤ e4 ≤ v2 ≤ v3 [2.000 . . . , 2.342 . . .]

X f4 ≤ f1 ≤ e3 ≤ % ≤ e4 ≤ v2 ≤ v3 [2.342 . . . , 2.449 . . .]

XI f4 ≤ e3 ≤ f1 ≤ % ≤ e4 ≤ v2 ≤ v3 [2.449 . . . , 2.576 . . .]

XII f4 ≤ e3 ≤ % ≤ f1 ≤ e4 ≤ v2 ≤ v3 [2.576 . . . ,∞)

Table 4.1: The order of the equilibrium radius among the critical radii. Within each of

the twelve intervals dividing the positive number line, the order is independent of the

parameter ε. Precise expressions for the interval endpoints can be found in Appendix

D.

in Cases II and III, in Cases IV to VII, and — because we ignore triple overlaps for the

time being — in Cases VIII to XI. The twelve cases thus consolidate to five, which we

discuss in sequence.

Case I. Here we have 2 caps, both with critical radius f3(ε). At the equilibrium radius,

each of the caps covers one quarter of the sphere. Accordingly, the equilibrium radius

and the soft density are

%(ε) =
√

3ε, (4.81)

δ1(ε) = δ1s(ε) = 3
√

3πε2/2. (4.82)

The derivative of δ1 is positive in the entire interval, as can be seen in Figure 4.15.

Cases II and III. Here we have 8 caps, 2 with critical radius f3(ε) and 6 with critical

radius f1(ε). At the equilibrium, these caps cover half the sphere. The equilibrium
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Figure 4.15: The graph of the maximum simplified soft density, δ1s, as a function of

ε, which parametrizes the lattices in the diagonal family. From 0 to 2.342 . . ., this is

identical to the graph of the maximum soft density, δ1.

radius and the corresponding soft density are

%(ε) = ε
√

3+
√

3ε2+6
7

, (4.83)

δ1(ε) = δ1s(ε) = π[27
√

3ε(11ε2−8)+(26−95ε2)
√

3ε2+6]
882ε

. (4.84)

The derivative vanishes at ε = 1
2
, and the second derivative is negative throughout the

entire open interval. It follows that δ1 is concave over the interval, with maximum at

ε = 1
2
, which corresponds to the BCC lattice; see Figure 4.15.

Cases IV to VII. Here we have 6 caps, all with critical radius f1(ε). The corresponding

equilibrium radius and the corresponding soft density are

%(ε) =
√

3ε2+6
5

, (4.85)

δ1(ε) = δ1s(ε) =
11π
√

(3ε2+6)3

1350ε
. (4.86)

The derivative vanishes at ε = 1, and the second derivative is positive throughout the

entire open interval. It follows that δ1 is convex over the interval, with minimum at ε = 1,

which corresponds to the integer lattice; see Figure 4.15.

Cases VIII to XI. Here we have 12 caps, 6 each with critical radii f1(ε) and f4(ε). Ig-

noring intersections among these caps, we compute the equilibrium radius such that
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the total area of the 12 caps equals half the sphere. The equilibrium radius and the

corresponding simplified soft density are

%(ε) =
√

3ε2+6+3
√

2
11

, (4.87)

δ1s(ε) = π[324
√

2ε2−882
√

2+(478−85ε2)
√

3ε2+6]
2178ε

. (4.88)

The derivative vanishes at ε = 2, and the second derivative is negative throughout

the entire open interval. It follows that δ1 is concave, with maximum at ε = 2, which

corresponds to the FCC lattice; see Figure 4.15.

Case XII. Here we have 6 caps, all with critical radius f4(ε). Ignoring intersections

among these caps, the equilibrium radius and the corresponding simplified soft density

are

%(ε) = 3
√

2
5
, (4.89)

δ1s(ε) = 11
√

2π
25ε

. (4.90)

The derivative of δ1s is negative throughout the interval.

The above case analysis is summarized in Figure 4.15, which shows the maximum

simplified soft density as a function of ε. We see that there are two local maxima

separated by a local minimum, with

δ1s(0.5) = 0.832 . . . , (4.91)

δ1s(1.0) = 0.691 . . . , (4.92)

δ1s(2.0) = 0.844 . . . , (4.93)

corresponding to the BCC, the integer, and the FCC lattices, all members of the di-

agonal family. For ε < 2.342 . . ., the maximum is achieved without triple intersections,

which implies that δ1(ε) = δ1s(ε). In particular, (4.91), (4.92), (4.93) remain valid after

substituting δ1 for δ1s. This is consistent with Theorem 10, which claims that the FCC

lattice maximizes the soft density, but it is not quite a proof yet. Indeed, we still need

information on the behavior of δ1 for ε > 2.342 . . .. We will now fill this gap and thus

complete the proof of Theorem 10. The main new idea is another measure of density,

which we will show majorizes the maximum soft density.
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Extrapolated soft density. Consider the FCC lattice, at ε = 2, as described at the

beginning of this section. At the equilibrium, the ball centered at the origin intersects

12 other balls whose centers lie in three planes. Specifically, 3 of the 12 centers satisfy

〈p,1〉 = −2, 6 centers satisfy 〈p,1〉 = 0, and 3 centers satisfy 〈p,1〉 = 2. As ε increases,

these three planes move apart until the ball at 0 intersects only the 6 balls in the middle

plane at equilibrium. For the simplified soft density, this happens for ε > 2.576 . . .,

and for the unsimplified soft density it happens a little later, for ε > 2.62 . . .. Within

a plane orthogonal to the diagonal, the lattice points do not move, which implies that

for all ε larger than some threshold, all equilibrium configurations are the same: a ball

surrounded by six others forming a regular hexagon around 0. This corresponds to

Case XII. It follows that for each radius r, there are a threshold ε0(r) and a constant

C(r), such that the soft density has the form

δ1(Λε, r) = C(r)
ε

(4.94)

for all ε > ε0(r). Similarly, the equilibrium radius remains constant beyond this thresh-

old, and the maximum soft density satisfies δ1(ε) = C/ε, in which C = C(%(ε)) for

large enough ε. Since we define the constant for the unsimplified soft density, it is

slightly larger than it would be for the simplified soft density given in (4.90), namely

1.96 > 1.95 ≈ 11
√

2π/25; see Appendix D.4 for details. We define the extrapolated soft

density as

δ1x(Λε, r) = C(r)
ε
, (4.95)

but now for all ε > 0. Similarly δ1x(ε) = C/ε is the maximum extrapolated soft density.

While we define δ1x for all positive ε, we are really only interested in ε ≥ 2.342 . . . —

the range in which the equilibrium configuration contains triple intersections among the

balls. At that parameter value, we have δ1x(2.342 . . .) = 1.96 . . . /2.342 . . . = 0.837 . . .,

which is smaller than δ1(2) = 0.844 . . .; see Appendix D.4 for the details necessary to

see that this inequality is preserved if we use the precise numbers.

Majorization. It remains to prove that the maximum extrapolated soft density ma-

jorizes the maximum soft density, which in turn majorizes the maximum simplified soft

density.



90

Lemma 22 (Majorization). We have

δ1s(ε) ≤ δ1(ε) ≤ δ1x(ε) (4.96)

for all ε > 0.

PROOF. We first prove the left inequality. Recall from (4.35) and (4.36) that for a given

lattice and a given radius, we have

δ1(Λ, r) = ϕ1 − ϕ2 − ϕ3 − ϕ4 − . . . , (4.97)

δ1s(Λ, r) = ϕ1 − ϕ2 − 3ϕ3 − 5ϕ4 − . . . . (4.98)

This implies that δ1s(Λ, r) ≤ δ1(Λ, r) for all lattices and all radii. To extend this inequality

to the corresponding maxima, we write %1s for the equilibrium radius of Λε under the

simplified soft density. Then

δ1s(ε) = δ1s(Λε, %1s) ≤ δ1(Λε, %1s) ≤ δ1(ε), (4.99)

in which the last inequality follows by definition of δ1(ε) as the maximum soft density of

Λε.

Figure 4.16: A part of the simplified soft density function, with maximum at ε = 2.

On the right and slightly above the graph of δ1s, we see the graph of the soft density

function, δ1, with the dotted extrapolated portion ending at the point (2.342 . . . , 0.837 . . .).

Second, we prove the right inequality. For a given lattice, Λε, and a given radius,

r, we have δ1(Λε, r) ≤ δ1x(Λε, r), simply because the latter accounts for a subset of
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the balls that enter the computation of the soft density. Let now %1 = %1(ε) be the

equilibrium radius of Λε under the soft density. Then

δ1(ε) = δ1(Λε, %1) ≤ δ1x(Λε, %1) ≤ δ1x(ε), (4.100)

in which the last inequality follows by the definition of δ1x(ε) as the maximum extrapo-

lated soft density of Λε.

The two inequalities are illustrated in Figure 4.16. Together with δ1x(2.342 . . .) <

δ1(2), they imply that the FCC lattice at ε = 2 is the unique maximum of δ1 over the

entire diagonal family of lattices. This completes the proof of Theorem 10.

4.5 Discussion

The chapter has covered three main results in the area of the soft sphere packing.

In a first approach we analyzed the problem of densest sphere packings while al-

lowing some overlap among the spheres. We see our contributions as a first step

towards an interesting and important research direction, given the numerous applica-

tions of spheres with overlap in the natural sciences. For example, our analysis of the

distance-based overlap measure showing that the FCC lattice is optimal independent

of the amount of overlap, and hence independent of the scaling of the spheres, lays

the theoretical foundations for [Uhler and Wright., 2013], i.e., for analyzing the spatial

organization of chromosomes in the cell nucleus as a sphere arrangement. A major

restriction of our approach is our focus on a one-dimensional sub-lattice, the diagonally

distorted lattices. Can we hope for an analysis of more general lattice families? This

question should probably first be considered in 2D, given the extremely involved proof

of optimality already for the classical packing problem in 3D.

In a second approach, we proof that the 12-hour clock configuration of disks in the

plane maximizes the probability that a random point lies in exactly one of the disks.

This is a different criteria that favors configurations between packing and covering that

can be formulated, and it would be interesting to decide which one fits the biological

data about DNA organization within the nucleus best.

As we know now and as discussed in the introduction of the section, the 12-hour

clock configuration is also optimal among all configurations of congruent disks in the
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plane [Blind and Blind., 1986]. Then we are left with another concrete mathematical

question related to this approach:

• What is the optimal lattice configuration of balls in R3?

To appreciate the difficulty of the second question, we note that the FCC lattice gives

the densest packing [Gauss, 1831], while the BCC lattice gives the sparsest covering

[Bambah, 1954]. Does one of them also maximize the probability that a random point

lies inside exactly one ball?

In a third approach we extend the results to 3D. The main contributions are the

definition of soft density of a lattice sphere configuration and the proof that among the

3-dimensional lattices in the diagonal family introduced in [Edelsbrunner and Kerber,

2011], the 1-st soft density is maximized at the FCC lattice. A key step in the proof of

optimality is the unimodality of the soft density for any given lattice. Indeed, unimodality

holds for all j ≥ 1 and all dimensions n ≥ 1.

Optimal lattices. A difficult question is the determination of the lattices that maximize

the j-th soft density. For j = 1 and n = 2 dimensions, the optimal configuration has

been determined in [Balázs, 1973], but for j ≥ 2, we do not have a proof that the hexag-

onal lattice provides the optimum. In n = 3 dimensions, there are no results beyond

what we proved in this chapter, namely that the FCC lattice gives the optimum among

the lattices in the diagonal family introduced in [Edelsbrunner and Kerber, 2011].

• Does the FCC lattice give the maximum 1-st soft density among all lattices in R3?

• What about values of j larger than 1 and dimensions n larger than 3?

• Does the FCC lattice maximize the probability that a random point belongs to

exactly one ball of the configuration?

Short of proving that the FCC lattice maximizes δ1 among all lattices in R3, it might

be possible to use Csikós’ formula for the volume derivative [Csikós., 2001] to at least

show that the FCC lattice furnishes a local maximum.
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Nonlattice configurations. The notion of soft density can be extended to nonlattice

configurations of balls: within a region Ω ⊆ Rn, we compute the probability, ϕi, that a

randomly selected point belongs to at least i balls, we set δj = ϕ1 + . . .+ϕj−ϕj+1− . . .,

we increase Ω, and we finally take the limit. Fixing the centers and growing the balls,

we get again a function of the radius, but it is not necessarily unimodal. Indeed, we

can define the generalized Voronoi domains of a point p in the configuration as before.

Extending Lemma 19 and using the star-convexity of the Vorj(p), we can show that

the difference between the volume of B(p, r) inside and outside Vorj(p) is a unimodal

function of r. However, the sum of these unimodal functions over different points in the

configuration is not necessarily unimodal. This lack of global unimodality is likely to

make progress on soft packing for nonlattice configurations difficult to come by.
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5 Applications

In this chapter, we describe the first steps into connecting the theoretical results de-

veloped in this thesis with applications. In particular, we represent arrangements of

spherical grains by order-2 Voronoi diagrams and show its deformation after shearing.

The persistence diagrams of the sequence of arrangements show new information

contained in the order-2 Voronoi diagrams that do not appear in the order-1 Voronoi

diagrams.

5.1 Prior work and results

Previous studies [Francois et al., 2013], [Klumov et al., 2014] and [Hanifpour et al.,

2015], give steps into relating geometrical and topological changes in arrangements

of hard spheres with crystallization processes. As a follow-up, [Saadatfar et al., 2017]

uses persistent homology to describe different stages in partially crystallized pack-

ings. Additionally, it uses simulations to describe the topological changes occurring

during the melting of crystals. In particular, persistent homology produces maps of the

topological configurations of the spheres, which show the formation of tetrahedral and

octahedral pores that are basic components of crystals.

Following [Saadatfar et al., 2017], we use arrangements of spheres from physical

simulations. The starting point in these simulations are arrangements of spheres with

centers in the FCC lattice or the HCP configuration. When considering arrangements

of spheres it is known that the best packing is obtained by the FCC lattice, and that

the HCP configuration leads to the same packing density [Hales et al., 2017; Gauss,

1831]. Both the FCC lattice and the HCP configurations can be obtained by stacking

shifted versions of the hexagonal lattice on top of each other (See Fig. 5.1). The
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first two layers in both cases are the same ( a-b ). If we repeat them we obtain the

HCP configuration (c), while adding the alternative 3rd layer and repeating the triple

leads to the FCC arrangement (d). Although using variations of the same construction

mechanism we can obtain other sphere arrangements with optimal packing density, the

FCC and HCP configurations are more common in nature.

a) b)

c) d)

Figure 5.1: FCC and HCP ball configurations built by stacking hexagonal grids on top

of each other. a) hexagonal grid at level 0 b) hexagonal grids at levels 0-1 c) levels

0-1-0 for an HCP configuration. Here the 3rd level coincides with the positions at level

0, d) levels 0-1-2 for an FCC configuration.

In this chapter, we show that higher-order representations, in particular the order-

2 Voronoi diagrams, contain relevant information that is not present in the commonly

used order-1 diagrams. This serves as a first step into exploring the potentials of

the k-fold volume formulas as well as other more complex Voronoi decompositions

in applications. More precisely: we compute order-2 diagrams from a sequence of

arrangements of approximately 2420 spheres, provide two algorithms to compute fil-

tration values representing the growth of the 2-fold region, and compute one of them

together with the respective persistence diagrams. We observe that there is new in-
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formation in the 0-th and 1-st homology compared to using order-1 Voronoi diagrams.

This new information may be found associated with steps in the crystallization and/or

melting process of grain arrangements.

Outline. Section 5.2 provides background on persistent homology. Section 5.3 shows

a description of the used data, followed by details into the computation of the diagrams

and the filtration values in section 5.4. Section 5.5 shows the experimental results,

comparing them with the results obtained with the order-1 Voronoi diagram. Section

5.6 concludes the chapter.

5.2 Persistent homology

Persistent homology allows to describe our data from a topological point of view. In this

section, we recall basic definitions used in this context for easy reference. Complete

literature in the subject can be found in [Munkres, 1984] for general background on

homology groups and [Edelsbrunner and Harer, 2010] for background on persistent

homology.

Homology. Homology is an algebraic way to describe the connectivity of a topolog-

ical space. Topological invariants captured are for instance the number of connected

components (β0), the number of holes (β1) and the number of cavities (β2). Often,

all of them are referred as holes in dimensions zero, one, two or higher. Below, we

summarize the main concepts related with its computation.

We need an algebraic structure that contains the building blocks whose union rep-

resents the shape of interest. Usually, a simplicial complex K is used, and the building

blocks are vertices, edges, triangles, tetrahedra and perhaps higher dimensional sim-

plices. A p-chain is in this context a subset of the p-dimensional simplices. The sum

of two p-chains is another p-chain, which is the symmetric difference between the two

sets of simplices. The boundary of a p-simplex is the set of its (p − 1)- facets, and the

boundary of a p-chain, is the sum of the boundaries of its simplices. A p-cycle, is then a

p-chain whose boundary is empty. We restrict ourselves to Z/2Z (modulo-2 arithmetic)

for simplicity.
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A special type of p-cycle comes from the boundary of a (p + 1)-dimensional chain.

This follows from the fact that the boundary of a boundary is always empty. Adding two

cycles gives a cycle, as well as adding two boundaries gives another boundary. There-

fore, we can call Zp to the group of p-cycles and Bp to the group of p-boundaries, which

leads to the quotient Hp = Zp/Bp. In this way the collection of cycles are partitioned

in equivalence classes and two cycles are said to be homologous if their difference is

a boundary. The idea is to be able to distinguish between cycles that bound different

topological features. For instance, different cycles surrounding the same 1-dimensional

hole will be in the same equivalence class, two vertices in the same connected com-

ponent will be in the same class and so on. In particular, H0 represents the equiva-

lence class of the 0-cycles and its rank is the betti number β0, which is the number of

connected components of the simplicial complex. H1 is the equivalence class of the

1-cycles and its rank is the betti number β1 or number of loops. Lastly, the rank of H2

is the betti number β2, or number of voids. We stop at β2 because in R3 no other betti

numbers are non-zero.

Filtration. The homology of a particular shape depends on the scale that we use to

look at the data. At too fine a resolution, a collection of points may look like a large

number of independent components, while looking at a lower resolution may reveal

more global information of the given shape. Deciding what is the correct scale is not an

easy task, depends on the application, on the data, and even on personal perspective.

Ideally, we would like to look at all scales observing the shape changes, to decide later

in a more impartial way what are the relevant features.

A filtration is a sequence of topological spaces, each contained in the next. As

we represent our shape with a simplicial complex, this translates into a sequence of

subcomplexes, each a subcomplex of the next, and ending with the full triangulation:

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

Each subcomplex will show the shape of interest in one particular level of detail.

In order to construct it, we need to assign to every simplex a real number f(σ), which

determines from which time on the simplex belongs to the subcomplex. The ordered

sequence of simplices is then called a filter, if every simplex is preceded by its faces.
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This is f(σ) ≤ f(τ) if σ ⊆ τ . We order by dimension if f(σ) = f(τ) so all prefixes are

complexes. Fixing a filter value α, every simplex with f(σ) ≤ α belongs to Kα.

Persistence diagrams. Using the filtration for a simplicial complex, we can com-

pute the betti numbers for different levels of detail. As we increase α, these numbers

change, showing holes that appear and dissapear for different dimensions. For every

hole, one can quantify the lifespan by the difference in α from the time it first appears

(birth) and the time it dissapears (death). The death- birth values are called the persis-

tence of the hole and its used to describe the homology of the data in a scale-invariant

way.

The collection of (birth, death) intervals are visualized in different ways. Barcodes

representations use a bar for every interval and they are clustered by dimension. The

length of the bar shows the importance or persistence of the homology class. More

widely used are the persistence diagrams, where every interval is represented by a

point in R2. All the points will lie above the diagonal and the larger the distance to the

diagonal the larger its persistence.

5.3 Description of the data

The data described in this section belongs to the experiments performed in [Saadatfar

et al., 2017]. Using a computer simulation, a collection of equal-sized spheres were

placed once with centers in the FCC lattice (2420 spheres) and another time with cen-

ters in the HCP configuration (1960 spheres). The top layers are then set in motion

at a constant shear rate and 50 time steps are recorded for computations (See Figure

5.2). The full data consist of 4 different simulation sequences, showing the shearing

of arrangements of balls until the packing becomes disordered. This setup represents

perfectly crystalline layers of grains that are modified to represent the process of melt-

ing of a granular crystal. Each sphere is given in terms of its x, y, z coordinates and its

radius.
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Figure 5.2: Snapshots of the computer simulated packings as it gets disordered.

5.4 Computational details

In this section, we describe details about the computation of the order-2 diagrams and

the filtration values obtained from them. Optimizations towards efficiency are left for

future work.

5.4.1 Computing the order-2 Voronoi diagram

As described in Chapter 3, the order-k Voronoi diagram can be obtained from the

(weighted) order-1 Voronoi diagram of k-fold averages of points. In particular, for k = 2,

the averages are built from all pairs of balls but not all of them result in a non empty

Voronoi domain. Following the same criteria used for R2 by [Lee, 1982], we find the

pairs with non-empty intersection from the order-1 Voronoi diagram. By construction,

any two points in the same domain of the order-2 diagram have the same two closest

points. Therefore, the corresponding pairs can be obtained from each order-1 Voronoi

domain (all with the same closest point) and its immediate neighbors (the second clos-

est points).

Below we enumerate the main steps in terms of the dual Delaunay triangulation:
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1. Represent every sphere as a weighted point with weight equal to the squared

radius (set B).

2. Compute the weighted order-1 Delaunay triangulation of B.

3. Traverse all edges and build from the respective pair of vertices an average ball

(set B).

4. Compute the weighted order-1 Delaunay triangulation of B .

The triangulations are computed with the 3D CGAL weighted Delaunay triangula-

tion software [CGAL]. The worst case complexity is quadratic in the number of points.

Although the number of possible pairs is also a quadratic term, in our examples we

observe that the number of vertices in the order-2 triangulation (or equivalently the

number of edges in the order-1 triangulation) is linear in the number of spheres (≈

6-7 times the number of vertices in its order-1 version). Indeed, in reasonably dense

packings, it is impossible to have superlinear Delaunay triangulations.

5.4.2 Computing the filtration values

In this subsection, we describe the details for computing both the filtration of the grow-

ing average balls and the filtration of the growing k-fold volume. Although related, the

two filtrations are not the same. In fact, the k-folds show larger or equal filtration values.

In the last subsection, we give more details about the relationship.

Filtration of growing average balls

In general, the filtration values represent the moment where the growing average balls

meet its dual Voronoi cell using the power distance. The computations are done fol-

lowing the standard method for a weighted alpha shape [Edelsbrunner and Mücke,

1994]. Below, we include a pseudocode with the details about its computation (See

Algorithm 1).

The main steps of the algorithm can be described as follows. As input we receive

the collection of cells from the weighted Delaunay triangulation. Traversing first over all

tetrahedra, we assign the squared radius of its orthogonal sphere, r2
σ, as the filtration
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Algorithm 1 Average balls filtration
1: procedure ORDER2FILTRATION({ }, {4}, {r}, {•})

2: for each σ ∈ { } do . over all tetrahedra

3: fB (σ)← r2
σ . power distance to the weighted circumcenter

4: end for

5: for each σ ∈ {4} do . over all triangles

6: if attached then

7: fB (σ)← fB (τ) . τ is the that 4 is attached to

8: else

9: fB (σ)← r2
σ . from its smallest orthogonal sphere

10: end if

11: end for

12: for each σ ∈ {r} do . over all edges

13: if attached then

14: fB (σ)← min{fB (τ)} . τ is the 4 or that r is attached to

15: else

16: fB (σ)← r2
σ . from its smallest orthogonal sphere

17: end if

18: end for

19: for each σ ∈ {•} do . over all vertices

20: if attached then

21: fB (σ)← min{fB (τ)} . τ is the r, 4 or that • is attached to

22: else

23: fB (σ)← −weight . negative squared radius of the average ball or

distance from the weighted point to its center

24: end if

25: end for

26: end procedure
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value. This is equivalent to the weighted distance from any of the weighted points of

the cell to its orthocenter, which coincides with its dual Voronoi cell.

In the case of lower dimensional cells, it is often used the term attached. The

attachment property for a cell σ, relates to its dual Voronoi cell γ(σ). A cell is attached

when the smallest circumsphere of the balls involved in σ is not empty. In other words,

the first meeting point of the growing balls involved in σ and the affine space of its dual,

do not lie in the interior of γ(σ). In these cases, the first meeting point of the balls and

γ(σ) coincides with the first meeting point of at least one cofacet of σ and therefore

share the same filtration value. It is said then that its meeting point (or filtration value),

is attached to the one for the respective cofacet. Notice that a 2-dimensional Delaunay

cell has only two cofacets and can be attached to at most one, while lower dimensional

cells can be attached to several cofacets. The argument for the 2-dimensional cells is

the same as in 2D, and follows from the property that full dimensional Delaunay cells

have empty circumspheres.

The triangles, edges and vertices are then traversed and the attachment property is

also verified. If the cell is not attached then the filtration value is the weighted distance

from any of its balls to its weighted circumcenter. This is equivalent to the squared

radius of its smallest orthogonal sphere. Otherwise it takes the minimum filtration value

from the cofacets that it is attached to. Notice that for unattached vertices, the ball

center lies in its dual Voronoi domain and therefore when the ball shows as a point, it

coincides with its filtration value. This is the weighted distance from the ball to its center,

which is minus the weight value of the point. Equivalently, the smallest orthogonal ball

is the negative ball with the same center and same radius. The weight is also its

squared radius but negative for this type of ball.

Filtration of growing 2-folds

The 2-folds filtration is computed in a similar way as the one for the average balls. In

this case, the growing shapes are pairwise intersections of balls associated to vertices.

The filtration value of a cell coincides with the radius at which all involved 2-folds touch

their dual Voronoi cell. See details in the pseudocode provided in Algorithm 2.

Recall from section 2.4 that every cell γ(σ) of Vk is associated with the subset
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Algorithm 2 2-folds filtration (f2F : filtration value for 2-fold)
1: procedure ORDER2FILTRATION({ }, {4}, {r}, {•})

2: for each σ ∈ { } do . over all tetrahedra

3: f2F (σ)← max{πa1(wc), πa2(wc)} . wc is the weighted circumcenter of σ

4: end for

5: for each σ ∈ {4} do . over all triangles

6: if attached then

7: f2F (σ)← f2F (τ) . τ is the that 4 is attached to

8: else

9: f2F (σ)← max{πa1(wkc), πa2(wkc)}

10: end if

11: end for

12: for each σ ∈ {r} do . over all edges

13: if attached then

14: f2F (σ)← min{f2F (τ)} . τ is the 4 or that r is attached to

15: else

16: f2F (σ)← max{πa1(wkc), πa2(wkc)}

17: end if

18: end for

19: for each σ ∈ {•} do . over all vertices

20: if attached then

21: f2F (σ)← min{f2F (τ)} . τ is the r, 4 or that • is attached to

22: else

23: f2F (σ)← πa1(wc) . a1 and a2 are at the same distance to wc

24: end if

25: end for

26: end procedure
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Qγ ⊆ B of balls that are among the k closest for at least one Voronoi domain containing

γ. Assuming general position, we have

k ≤ cardQγ ≤ k + n. (5.1)

For k = 2, this means that the number of balls associated with γ is at least 2 and

at most 5. However the upper bound is relaxed when we deal with balls in non-general

position.

Lets observe this property from another perspective. Consider the level-2 from the

hyperplane arrangement of the original balls represented in R4 (Recall in section 2.3).

The projection of the chambers that it bounds from above into R3 corresponds with the

order-2 Voronoi diagram. The cells from the order-2 diagram are a subset of the ones

in the level-2 in the arrangement. For every point p in the interior of γ, its corresponding

point in the arrangement must lie below up to k − 1 hyperplanes and at least n + 1 −

dim γ hyperplanes which all meet at γ (the later number is exact with general position

assumptions). This means that the point p is closer to the ball represented with the

hyperplane above and at equal distance to the at least 4 − dim γ meeting at γ. Notice

that when considering the distances from the involved balls in σ to a point in the interior

of γ(σ) there are only two possible values, the distance from the hyperplanes meeting

at γ, (4 - dim γ)-times, and the smaller distance from the hyperplane above γ, at most

1 time. Likewise, every pair of balls, a1, a2, from the vertices of σ have the same

distances to p, so either the two balls are among the hyperplanes meeting at γ with

equal distance, or one of them corresponds to the closer ball.

Another property that needs to be explained is the attachment for a 2-fold filtration.

In this case, the smallest circumsphere of the balls involved in σ is a sphere with the

4 - dim γ balls on its boundary, which forces its center, wkc, to be in the affine space

A(γ(σ)). In order for σ to be unattached, this sphere must be empty except for at

most one ball which must be in its interior. This interior ball, if exists, is the one in σ

with smaller distance to γ(σ). Notice, that the referred closest point in γ(σ), wkc, is

not necessarily wc, the weighted circumcenter of the respective average balls. As a

matter of fact, wkc corresponds to the center of the minimum enclosing ball for the

balls involved in σ. The cell is not attached also when wkc lies in the interior of its dual

Voronoi cell, i.e. no other balls are closer to it than the ones in σ.
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REMARK 3. When the original set of balls are not in general position, the number of

balls at the same distance to A(γ(σ)) is larger than 4 - dim γ. Any subset of size 4 -

dim γ of them will provide the same information (lie in the same affine space). However,

when we observe only the pairs involved in one subsimplex product of a subdivision

of a Delaunay cell, we need to verify that we get a big enough sample to determine

attachment correctly.

The general steps of the algorithm can be then described as follows. Traversing

over all tetrahedra we assign the maximum weighted distance from the balls in σ to its

weighted circumcenter, γ(σ). It is enough to consider the distances from the 2 balls, a1

and a2, associated with one of the vertices in σ. The moment when the farthest away

ball touches γ(σ) is when all pairwise intersections touch the dual Voronoi cell. Next,

we traverse in order the triangles, edges and last the vertices, verifying the attachment

property to assign the correct filtration value. In the case of the vertices, the meeting

point of the two involved balls is the midpoint, to which both a1 and a2 have the same

distance. Notice that with a similar argument than for the average balls, the triangles

can only be attached to one of its neighbor cofacets, while the lower dimensional cells

can be attached to several of them.

Filtration values for k-folds. The filtration for the k-folds can be computed in a simi-

lar way. In this case, every cell σ will have 4 − dim γ balls with same distance to γ(σ)

and ` < k balls at closer distance. Similarly, for a cell to be unattached, the smallest

circumsphere of the balls in σ, which have the 4− dim γ balls in its boundary, will have

to be empty except for the ` balls that must be in its interior. Every vertex will have as-

sociated k balls and therefore the filtration values when unattached will be of the form

max{πa1(wkc), . . . , πak(wkc)}. For a vertex, wkc is the center of the minimum enclosing

ball of its k balls, which should not contain any other point in its interior.

On the correctness of the filtration. For the function defined in this section to serve

as a correct filtration, we need to verify that when fixing a filter value α and collecting all

simplices with value at most α we get a complete subcomplex. This is the case because

every simplex have smaller filtration value than its facets. Observe that when a cell is

attached it shares the same value with its smallest cofacet. When it is unattached, the
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smallest circumsphere of the balls in σ have a center in the interior of γ(σ). Likewise,

the smallest circumsphere of an unattached cofacet τ , has a center in the interior of

γ(τ) (when τ is attached it has a larger value). Also, γ(τ) is on the boundary of γ(σ) and

the balls from σ are a subset of the balls in τ . Being the filtration value the maximum

distance to the closest point, and knowing it lies in the interior of γ(σ), we conclude that

the distance to γ(τ) can only be larger.

5.4.3 Containment of k-folds and its average balls.

In this subsection, we compare both filtrations by observing their behavior while grow-

ing the original collection of balls.

The filtration values for the average balls are always larger or equal than the ones

from the k-folds. This follows from the observation that the k-folds are contained into

the respective average balls. The following result about the union and common inter-

section of a set of balls follows from the Weighted Distance Lemma in section 3.3.

Lemma 23 (Double Containment Lemma). Let B0 be a convex combination of balls B1

to Bk in Rn. Then

k⋂
i=1

Bi ⊆ B0 ⊆
k⋃
i=1

Bi (5.2)

Proof. We prove the first containment relation by showing that x ∈
⋂
iBi implies x ∈ B0.

Indeed, if x is inside all balls, then all k weighted distances are non-positive. This

implies that the weighed average is non-positive and that x is inside B0. We prove

the second containment relation by showing that x 6∈
⋃
iBi implies x 6∈ B0. Indeed, if

x is outside all balls, then all k weighted distances are positive. This implies that the

weighted average is positive and that x is outside B0.

Given a ball Bi = B(xi, ri), we let Bα
i be the ball with the same center and with

squared radius r2
i + α2. Write Bα = {Bα

i | Bi ∈ B} and Uα
k = Uk(Bα). We choose

this particular growth model because it leaves the Voronoi diagrams and Delaunay

complexes invariant.
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Lemma 24 (Constant Diagram Lemma). Let B be a finite set of balls in Rn, j < k two

integers, and α2 ∈ R. Then

Vj,k(Bα) = Vj,k(B), (5.3)

Dj,k(Bα) = Dj,k(B). (5.4)

The proof is straightforward and omitted.

Fixing k and varying α2 from −∞ to ∞, we get the two filtrations of the order-k

Delaunay complex: the complexes Rk(Bα) for the growing k-folds and the complexes

R(Bαk ) for the growing average balls.

Lemma 25 (Growth Relation Lemma). Let B be a finite set of balls in Rn, k an integer,

and α2 ∈ R. Then

Rk(Bα) ⊆ R(Bαk ). (5.5)

Proof. The claimed relation follows from the first containment in the Double Contain-

ment Lemma, namely that the average contains the common intersection of the balls.

REMARK 5. The homotopy of the k-folds at a particular radius can come delayed

compared with its average balls. An example showing that Rk(Bα) and R(Bαk ) do not

necessarily have the same homotopy type consists of unit disks B1, B2, B3 centered at

the points (−1.1, 0), (0, 0), (1.1, 0). We have non-empty B1 ∩ B2 and B2 ∩ B3. However,

(B1 ∩B2) ∩ (B2 ∩B3) = ∅, while (1
2
B1 + 1

2
B2) ∩ (1

2
B2 + 1

2
B3) 6= ∅ (See figure 5.3).

5.5 Experiments

In this section, we compute the persistence diagrams for dimensions 0, 1, and 2 from

the order-2 Voronoi diagrams. We use the filtration of the average balls and compare

with the existing results that use the order-1 Voronoi diagrams.



109

Figure 5.3: Representation of three collinear balls (with larger size), having two con-

nected components in its 2-fold area, while the respective average balls, represented

by the two smaller circles, have only one connected component.

5.5.1 Computing the persistence diagrams

We are going to identify the four sequences of simulated arrangements by the configu-

ration of its starting point (FCC lattice or HCP configuration) and the friction parameter

used (1, or 0.1). Once a filtration is computed, we use the phat library [Bauer et al.,

2016] to obtain the persistence pairs. The visualization is done using the maple soft-

ware [MAPLE].

The persistence diagram is treated as a 2D histogram with bin size 0.005. We count

as m, the number of pairs lying in the window of values for every bin. A color code is

used then to represent the multiplicity ranging from RGB (0,1,1) as light blue for small

values and RGB (1,0,1) as pink for maximal multiplicity. The values are represented in

a log scale to show the fine details of the diagram. More precisely, every bin stores the

value log(log(m+ 1) + 1) divided by the maximum bin value per arrangement.

In figure 5.4 we show the differences between the persistence diagrams of H1 us-

ing the order-1 and order-2 Voronoi diagrams at three different time steps. See the

appearance of a new concentration spot above the diagonal which would be worth to

study. Figure 5.5 shows a similar comparison but this time using the H2 homology.

There, although there are also differences its relevance is less clear. Additionally, we

compare the plots for H0 at one particular time steps for illustration in figure 5.6. Not

surprisingly, the H0 persistence diagram using the order-1 Voronoi diagram shows no

interesting information, while its order-2 case shows concentration spots possibly about

relevant pairs of beads within the arrangement.
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Figure 5.4: H1 for the sequence FCC-0.1 at time steps 2,18 and 47. Top row uses

the order-1 Voronoi diagram and the bottom row the order-2 Voronoi diagram with the

filtration of average balls.

5.6 Discussion

In this chapter, we present the first steps into describing arrangements of beads using

higher-order Voronoi diagrams. The experiments show there is new information to

be analyzed when using order-2 Voronoi diagrams respect with its order-1 versions.

However, we find more questions than answers which we would like to explore further

in the future. Some of the clear open tasks from a theoretical point of view are:

1. Can we obtain a correct implementation of the k-folds filtration for comparison?

2. Can we bound the distance between both filtrations to know precisely how good

of an approximation of the k-folds diagram is the one using the average balls?

3. Can we get a better approximation to the k-folds filtration than the one using

average balls?

4. Can we design a Poset diagram that partitions the space in more meaningful

regions than the Voronoi regions?

Related to the applications we also wonder:
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Figure 5.5: H2 for the sequence FCC-0.1 at time steps 2,18 and 47. Top row uses

the order-1 Voronoi diagram and the bottom row the order-2 Voronoi diagram with the

filtration of average balls.

1. What are the key structures within the sphere arrangement that produce the con-

centration points in the persistence diagrams?

2. Are the new concentration points revealing any physical property of the melting

of crystals? Can we use the same method to investigate other processes?

3. Do real arrangements of balls resemble optimal soft packing configurations after

being subject to external deformation?

1.1. Can we find a suitable and feasible measure of similarity between an ar-

rangement of balls and a particular lattice, e.g FCC or BCC?

1.2. Can we correlate the amount of overlap in an arrangement of balls in real

data with an optimal soft lattice, i.e. FCC for small overlap and BCC for larger

values?

4. Does the 2-fold volume of overlapping spheres in real data say something about

the force transmission in the whole system?

5. Could order-3 Voronoi domains be associated with region of interaction of pores?
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Figure 5.6: H0 for the sequence FCC-0.1 at time step 18. Left plot uses the order-

1 Voronoi diagram and the right plot the order-2 Voronoi diagram with the filtration of

average balls.

These are only the first clear questions that remain open at this point. We believe

that there must be other application areas where higher-order Voronoi diagrams can

also be used to better understand physical or biological processes.
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6 Conclusions

We have expanded on the knowledge of α-shapes and union of balls as a first con-

tribution of this thesis. In this respect, we provided formulas for the computation of

k-fold coverings from the order-k diagram and the Level-k complex. As a next step,

it is necessary to find efficient implementations in order to explore its potential in real

applications.

We also contribute the theoretical description of the poset diagrams, a general-

ization which contains the order-k and degree-k diagrams as special cases. Poset

diagrams allows for more flexible designs to partition the space, which could be advan-

tageous in particular applications.

While sphere packing and covering are well-studied areas, our contributions on

the Soft/Relaxed sphere packings lie in a less explored area in-between. We have

learnt in the process about the very few other existing results. Our findings focus

on the soft disk packing of spheres with centers lying on lattice configurations, while

the more interesting 3D cases focus only on an interesting subfamily of lattices. Our

optimization criteria are only intuitive propositions, and its occurrence on real data is

yet to be explored.

We are enthusiastic about the apparent new information found in order-2 Voronoi

diagrams using persistent homology. In the future, we plan to further explore the po-

tentials of higher-order diagrams for 3D arrangements of spheres from a topological

point of view.
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A Appendix - Maximizing the Relaxed Covering Quality

We next briefly analyze the relaxed covering quality and show that in this case the

optimum is always attained by the optimal covering configuration. Similarly as for Odist,

we use a linearized measure of the uncovered space 1−U . We define it as the largest

diameter of a sphere which can be inscribed into the free-space, i.e.:

F(ε, r) = max

(
maxp∈∂Vor(Borg) ‖p‖ − r

r
, 0

)
(A.1)

The maxp∈∂Vor(Borg) ‖p‖ has been computed in [Edelsbrunner and Kerber, 2011] for

the 1-parameter family of lattices under consideration (it corresponds to the covering

radius):

max
p∈∂Vor(Borg)

‖p‖ =


√
n2−1+(n2+2)ε2+(n2−1)ε4

√
12n

0 ≤ ε ≤ 1,
√
n2−1+ε2

2
√
n

1 ≤ ε; n odd,√
n2−2+ε2+ 1

ε2

2
√
n

1 ≤ ε; n even.

(A.2)

Using these formulas we can show that the maximum density configuration does not

depend on the amount of allowed free-space and is always attained by ε = 1/
√
n+ 1,

which corresponds to the optimal covering lattice in the family for all n ≥ 2 and over all

lattices in dimension 2-5.

Theorem 11. The lattice Λε which minimizes the relaxed covering quality w.r.t. F is

attained by ε = 1/
√
n+ 1 independent of the value of ω ∈ R≥0.

Proof. The proof is analogous to the proof of Theorem 6. The function δ(ε, r(ε, ω)) for

n = 3 and ω = 0.5 is shown in Figure 4.1 (right).
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B Appendix - Analyzing the 3D Voronoi Cell

In three dimensions, the symmetry between ε and 1
ε

is lost, and we need to analyze

both branches.

We first discuss the case 0 < ε ≤ 1: Imagine that r increases from 0 to∞. Initially,

the excess E is zero. When increasing the ball radius r, there are three possibilities

w.r.t. the Voronoi cell Vor(Borg) = Vor(Borg)ε:

(i) We hit a bisector plane. From now on we have to add a spherical cap to the

volume. There are a total of 14 bisector planes of three different types. Their

distance to the origin and number of occurrences are:

f1(ε) =
√

ε2+2
12

(6 planes),

f2(ε) =
√

2ε2+1
6

(6 planes),

f3(ε) = ε
√

3
2

(2 planes).

(ii) We hit a boundary edge of Vor(Borg), where two bisector planes are meeting.

From now on, we have to subtract the volume of the intersection of the two spher-

ical caps involved (because they are counted twice). There are a total of 36

trisector edges of two different types. Their distance to the origin, number of

occurrences, and types of bisector planes between the 3 involved spheres are:

e1(ε) := ε2+2
3
√

2
(18 edges of type 1-1-2),

e2(ε) :=

√
(ε2+2)(2ε2+1)

2
√

3
(18 edges of type 1-2-3).

However, note that the volume of the cap intersection depends on the type of the

bisector plane between the two spheres that are not centered at the origin. We

get 5 different subtypes, four of them appearing 6 times, and one appearing 12

times in the polytope.
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(iii) We hit a boundary vertex of Vor(Borg). All 24 boundary vertices have the same

distance to the origin, namely the covering radius

v1(ε) := 1
6

√
8ε4 + 11ε2 + 8.

When r exceeds v1(ε) the whole Voronoi cell Vor(Borg) is covered, so the excess

has volume vol[Borg]− ε.

Depending on the value of ε we have the following ordering of the critical radii:

f3(ε) ≤ f1(ε) ≤ f2(ε) ≤ e2(ε) ≤ e1(ε) ≤ v1(ε) 0 ≤ ε ≤ 1/2,

f1(ε) ≤ f3(ε) ≤ f2(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε) 1/2 ≤ ε ≤
√

2
5
,

f1(ε) ≤ f2(ε) ≤ f3(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε)
√

2
5
≤ ε ≤

√
19−
√

297
4

,

f1(ε) ≤ f2(ε) ≤ e1(ε) ≤ f3(ε) ≤ e2(ε) ≤ v1(ε)
√

19−
√

297
4

≤ ε ≤ 1.

So Ovol(ε, r) seen as a function in ε has 4 branches. In every branch, the interval

which r falls into determines how many and which types of cap intersections have to

be taken into account to compute the volume-based overlap.

For ε > 1, a similar analysis can be performed. However, there is one remarkable

difference: The vertices of Vor(Borg) are no longer arranged in the same distance

around the origin. More precisely, there are 8 vertices at distance v2(ε) and 6 vertices

at distance v3(ε) with

v2(ε) :=
ε2 + 2

2
√

3ε
, v3(ε) :=

√
ε2 + 8

2
√

3
.

Note that v2(ε) < v3(ε) and v3(ε) is the covering radius. So for ε > 1 and v2(ε) < r <

v3(ε) we need to take into account also triple intersections of spherical caps.
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C Appendix - 2D Proofs

In this appendix, we give detailed proofs of the three Arc Lemmas. As described in

Section 4.3.3, the three lemmas add up to a proof of the Main Theorem stated in

Section 4.3 of this thesis. We begin with a few relations that will be useful in all three

proofs. Given a triangle with edges of lengths ‖a1‖, ‖a2‖, ‖a3‖ and angle γ opposite the

edge a3, the law of cosines implies

‖a3‖2 = ‖a1‖2 + ‖a2‖2 − 2‖a1‖‖a2‖ cos γ. (C.1)

Assuming ‖a1‖ ≤ ‖a2‖ ≤ ‖a3‖, the angle γ is at least as large as each of the other

two angles. From (C.1) together with ‖a2‖ ≤ ‖a3‖, we get cos γ ≤ ‖a1‖
2‖a2‖ . As justified by

the Non-obtuse Generators Lemma, we may assume the triangle is non-obtuse, which

implies

arccos ‖a1‖
2‖a2‖ ≤ γ ≤ π

2
. (C.2)

The range of possible angles is largest for ‖a1‖ = ‖a2‖ where we get 60◦ ≤ γ ≤ 90◦.

Furthermore, we write the angles αi of the arcs in the convex boundary of the partial

disk in terms of the edge lengths and the radius:

cos α1

2
= ‖a1‖

2%
, (C.3)

cos α2

2
= ‖a2‖

2%
, (C.4)

cos α3

2
= ‖a3‖

2%
. (C.5)

The first relation holds provided ‖a1‖
2
≤ % < RΛ, and similar for the second and third

relations. Finally, we note that scaling does not affect the density of a configuration.

We can therefore set ‖a2‖ = 1, which we will do to simplify computations.
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Proof of the Two Arcs Lemma. Case 1 is defined by ‖a1‖
2
< %Λ ≤ ‖a2‖

2
, which implies

α1 > 0 and α2 = α3 = 0. Since sinα2 = sinα3 = 0, the probability at the equilibrium

radius simplifies to

PL(%Λ) =
2%2

Λ

‖a1‖‖a2‖ sin γ
· sinα1 (C.6)

= ‖a1‖
‖a2‖ sin γ

, (C.7)

where we get the second line by combining α1 = π
2

with (C.3) to imply %Λ = ‖a1‖/
√

2.

For the remainder of this proof, we normalize by setting ‖a2‖ = 1. To maximize the

probability, we choose ‖a1‖ as large as possible and γ as small as possible. From

‖a1‖/
√

2 = %Λ ≤ 1
2
, we get ‖a1‖ ≤ 1/

√
2, and from ‖a2‖ ≤ ‖a3‖ we get γ ≥ arccos 1

2
√

2
.

The two parameters can be optimized simultaneously, which gives

PΛ(%Λ) = 1
√

2 sin

(
arccos

1
2
√

2

) = 0.755 . . . . (C.8)

Proof of the Four Arcs Lemma. Case 2 is defined by ‖a2‖
2
< %Λ ≤ ‖a3‖

2
, which implies

α1 ≥ α2 > 0 and α3 = 0. The probability at the equilibrium radius is therefore

PΛ(%Λ) =
2%2

Λ

‖a1‖‖a2‖ sin γ
· (sinα1 + sinα2). (C.9)

To get a handle on the maximum of this function, we first write the the sum of sinα1 and

sinα2 and second the equilibrium radius in terms of other parameters. Using cos 2α =

cos2 α−sin2 α and cos2 α+sin2 α = 1, we get cosα2 = 2 cos2 α2

2
−1, and since α1+α2 = π

2
,

we have sinα1 = cosα2. Recalling (C.4), we get sinα1 = ‖a2‖2/(2%2
Λ)− 1, and recalling

(C.3), we get sinα2 = ‖a1‖2/(2%2
Λ)− 1. Adding the two relations gives

sinα1 + sinα2 = ‖a1‖2+‖a2‖2
2%2

Λ
− 2. (C.10)

To find a substitution for the equilibrium radius, we begin with (C.4), use α2

2
= π

4
− α1

2
,

and finally apply cos(α + β) = cosα cos β − sinα sin β:

‖a2‖
2%Λ

= cos
(
π
4
− α1

2

)
(C.11)

= 1√
2

(
cos α1

2
+ sin α1

2

)
. (C.12)

Next, we substitute the two trigonometric functions using (C.3) and sin2 α = 1− cos2 α.

Simplifying the resulting relation and squaring it, we get

%2
Λ = 1

2

(
‖a1‖2 + ‖a2‖2 −

√
2‖a1‖‖a2‖

)
. (C.13)
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Plugging (C.10) and (C.13) into the equation for the probability and normalizing by

setting ‖a2‖ = 1, we get

PΛ(%Λ) = 2
√

2‖a1‖−‖a1‖2−1
‖a1‖ sin γ

(C.14)

= 2
√

2‖a1‖−‖a1‖2−1

‖a1‖

√√√√1−
(
√

2−
‖a1‖2+1

2‖a1‖

)2
(C.15)

where we maximize to get the second line by choosing γ as small as possible. Specif-

ically, γ is implicitly restricted by ‖a2‖
2

< %Λ ≤ ‖a3‖
2

, so we can use 4%2
Λ ≤ ‖a3‖2 together

with (C.1) and (C.13) to get

cos γ ≤
√

2− ‖a1‖2+‖a2‖2
2‖a1‖‖a2‖ . (C.16)

Checking with the Maple software [MAPLE], we find that the right-hand-side of (C.15)

increases in [0, 1] attaining its maximum at ‖a1‖ = 1. We therefore get γ = arccos
(√

2− 1
)

from (C.16), %2
Λ = 1− 1/

√
2 from (C.13), and

PΛ(%Λ) =

√
2
√

2− 2 = 0.910 . . . (C.17)

from (C.15).

Proof of the Six Arcs Lemma. Case 3 is defined by ‖a3‖
2

< %Λ < RΛ, which im-

plies α1 ≥ α2 ≥ α3 > 0. Starting with the expression for the probability given in the

Equilibrium Area Lemma, we first express the sinαi in terms of the other parameters:

sinα1 =
‖a1‖
√

4%2
Λ−‖a1‖2

2%2
Λ

, (C.18)

sinα2 =
‖a2‖
√

4%2
Λ−‖a2‖2

2%2
Λ

, (C.19)

sinα3 = 1−
[
‖a1‖
√

4%2
Λ−‖a2‖2+‖a2‖

√
4%2

Λ−‖a2‖2
]2

8%4
Λ

. (C.20)

To get (C.18), we use sin 2α = 2 sinα cosα with α = α1

2
, together with (C.3). To get

(C.19), we use the same trigonometric identity with α = α2

2
, together with (C.4). To

get (C.20), we use the equilibrium condition together with sinα3 = sin(π
2
− α1 − α2) =

cos(α1 +α2) = 1−2 sin2 α1+α2

2
, and finally substitute sin(α+β) = sinα cos β+sin β cosα,

with α = α1

2
and β = α2

2
.
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To do the same for sin γ, we take the cosine of both sides of the equilibrium condi-

tion, which is α3

2
= π

4
− α1

2
− α2

2
. Writing ci = cos αi

2
and si = sin αi

2
, for i = 1, 2, 3, and

applying standard trigonometric identities, we get

c3 = 1√
2
[c1c2 − s1s2 + s1c2 + c1s2]. (C.21)

c2
3 = 1

2
+ (2c1c

2
2 − c1)

√
1− c2

1

+ (2c2
1c2 − c2)

√
1− c2

2. (C.22)

Using (C.3), (C.4), (C.5) and substituting ‖a3‖2 using (C.1), we get the following relation

after a few rearrangements:

cos γ = ‖a1‖2+‖a2‖2−2
2‖a1‖‖a2‖ − ‖a2‖2−2%2

Λ

4%2
Λ‖a2‖

√
4%2

Λ − ‖a1‖2

− ‖a1‖2−2%2
Λ

4%2
Λ‖a1‖

√
4%2

Λ − ‖a2‖2. (C.23)

Using cos2 γ = 1 − sin2 γ, we can substitute sin γ in the formula for PΛ(%Λ). We thus

arrived at a relation that gives the probability in terms of ‖a1‖, ‖a2‖, and %Λ only. While

being lengthy, this relation is readily obtained by plugging (C.18), (C.19), (C.20), and

(C.23) into (4.22). We therefore take the liberty to omit the formula here and refer the

interested readers to the website of the author 1.

It remains to determine the parameters that maximize the probability. To simplify

this task, we normalize by setting ‖a2‖ = 1. The probability is thus a function of two

variables, ‖a1‖ and %Λ. Using the Maple software, we compute the two partial deriva-

tives, ∂PΛ/∂‖a1‖ and ∂PΛ/∂%Λ. Setting both to zero, we get ‖a1‖ = 1 matched up with

three radius values:

%Λ = 1
2

(√
6−
√

2
)

= 0.517 . . . , (C.24)

%Λ = 1
2

√
C

1
3 − 1 + C−

1
3 = 0.582 . . . , (C.25)

%Λ = 1
2

(√
6 +
√

2
)

= 1.931 . . . , (C.26)

with C = 3 + 2
√

2. Setting ‖a1‖ = ‖a2‖ = 1, the covering radius depends only on the

angle γ, which ranges from π
3

to π
2
. It is largest for γ = π

2
, where RΛ =

√
2/2 = 0.707 . . ..

The radius we get at the third root is larger than that and can therefore be excluded.

The maximum probability is attained at one of the two remaining roots or along the

1A Maple file with the main steps in the formulas related with this appendix is available at http:

//mabelih9.wix.com/mabelhome#!publications/cee5.
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Figure C.1: The quadrangle in the plane defined by the length of a1 and the radius is

shaded. Along its boundary, we encounter three local minima (two corners and a point

along the right edge) and three local maxima (a corner and a point each along the

lower edge and the right edge).

boundary of the domain region that corresponds to Case 3. As illustrated in Figure

C.1, we simplify the computation by taking a quadrangle that contains this region. The

quadrangle is defined by

√
2

2
≤ ‖a1‖ ≤ 1 (C.27)

1
2
≤ % ≤ ‖a3‖

2 sin γmax
, (C.28)

in which the first interval follows from the bounds that define Case 3, and the second

interval is obtained by limiting the radius by the covering radius of the configuration in

which a1 and a2 enclose its maximum angle. The maximum angle for Case 3, γmax, cor-

responds to the minimal angle for Case 2 derived from (C.16). The upper boundary on

% is a convex curve and so we replace it with the straight line connecting its extremes.

We evaluate the probability at the four vertices and, using the Maple software, at

the roots of the derivatives along the four edges. As shown in Figure C.1, we find three

local minima alternating with three local maxima along the boundary of the quadrangle.

The maximum and minimum in the interior of the right edge coincide with the roots in

(C.24) and (C.25). Among the three local maxima, the probability is largest at (C.24),

which is characterized by ‖a1‖ = ‖a2‖ = 1 and %Λ = 1
2

(√
6−
√

2
)

= 1/(2 cos π
12

). This
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gives PΛ(%Λ) = 0.928 . . ., as claimed in the Six Arcs Lemma. Indeed, plugging the

values into the equilibrium condition of Case 3, we get ‖a3‖ = 1, which shows that the

probability is maximized by the regular hexagonal grid.
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D Appendix - 3D Case Analysis

In this appendix, we present the computations needed in Section 4.4.3 to determine the

maximum soft density as a function of ε, which parametrizes the lattices in the diagonal

family. We begin with describing the critical radii of the faces of the Voronoi polytope

and continue with finding the positions of the equilibrium radii among the critical radii.

D.1 Critical Radii

The critical radii listed in Section 4.4.3 correspond to the radii at which a growing ball

centered at the origin touches different faces of the Voronoi domain; see Table D.1.

For ε ≤ 1, f1 corresponds to the 6 square-like hexagons normal to the ±ui(ε), f2 to

the 6 rectangles normal to the ±[ui(ε) + uj(ε)], f3 to the 2 small hexagons normal to

±[u1(ε)+u2(ε)+u3(ε)], e1 to the 18 long edges parallel to the vectors ui(ε)×uj(ε), e2 to

the 18 short edges parallel to the vectors ui(ε)× [u1(ε)+u2(ε)+u3(ε)], and the covering

radius, v1, corresponding to the 24 vertices of the polytope on the left in Figure 4.14.

For ε ≥ 1, f1 corresponds to the 6 square-like rhombi normal to the ±ui(ε), f4 to the 6

narrow rhombi normal to the ui(ε)−uj(ε), e3 to the 6 short edges parallel to the vectors

[ui(ε)−uj(ε)]× [ui(ε)−uk(ε)] or, equivalently, parallel to the vector u1(ε)+u2(ε)+u3(ε),

e4 to the 18 long edges parallel to the vectors ui(ε)×uj(ε), v2 to the 8 degree-3 vertices,

and the covering radius, v3, corresponding to the 6 degree-4 vertices of the polytope

on the right in Figure 4.14 for i, j ∈ {1, 2, 3} and `,m ∈ {2, 3}.

After ordering the critical radii, we are left with seven sequences, which we show in

Table D.2.
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radius value vectors

f1(ε)
√

(ε2 + 2)/12 [0,±ui(ε)]

f2(ε)
√

(2ε2 + 1)/6 ±[0, ui(ε) + uj(ε)]

f3(ε)
√
3ε/2 ±[0,1(ε)]

e1(ε) (ε2 + 2)/(3
√
2) [0, ui(ε),−uj(ε)]

±[0, ui(ε), ui(ε) + uj(ε)]

e2(ε)
√
(ε2 + 2)(2ε2 + 1)/(2

√
3) ±[0,1(ε), ui(ε)]

±[0,1(ε), ui(ε) + uj(ε)]

±[0,−ui(ε), uj(ε) + uk(ε)]

v1(ε)
√
8ε4 + 11ε2 + 8/6 ±[0,1(ε), ui(ε), ui(ε) + uj(ε)]

±[0,−ui(ε), uj(ε) + uk, uj(ε)]

f4(ε)
√
2/2 ui(ε)− uj(ε)

e3(ε)
√
6/3 ±[0, ui(ε)− uj(ε), ui(ε)− uk(ε)]

e4(ε) (ε2 + 2)/
√
12ε2 + 6 ±[0, ui(ε), uj(ε)]

±[0, ui(ε), ui(ε)− uj(ε)]

v2(ε) (ε2 + 2)/(2
√
3ε) ±[0, u1(ε), u2(ε), u3(ε)]

±[0, ui(ε), ui(ε)− uj(ε), ui(ε)− uk(ε)]

v3(ε)
√
ε2 + 8/(2

√
3) ±[0, u`(ε), u1(ε)− um(ε), u1]

±[0, u`(ε), u1(ε)− um(ε), u`(ε)− um(ε)]

±[0, u`(ε) + um(ε)− u1, u`(ε), um(ε)]

±[0, u`(ε) + um(ε)− u1, u`(ε), u`(ε)− u1(ε)]

±[0, u`(ε)+um(ε)−u1, u`(ε)−u1(ε), um(ε)−u1(ε)]

Table D.1: The right column gives the centers of the spheres that define the corre-

sponding critical radius, namely the minimum radius at which these spheres have a

non-empty common intersection. Notice that although at radius v3 only 8 vertices are

met, they correspond to the circumcenter of 16 tetrahedra around the origin.

D.2 Position of Equilibrium Radius

Given a constant ordering of the critical radii over an interval of values ε, we find the

equilibrium radius by searching in this sequence. At any one step, we consider a

particular critical radius, and we compute the area of the sphere covered by the corre-

sponding caps. If this is more than half of the sphere, then the search continues on the
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Ordering Interval

f3(ε) ≤ f1(ε) ≤ f2(ε) ≤ e2(ε) ≤ e1(ε) ≤ v1(ε) 0.000 . . . ≤ ε ≤ 0.500 . . .

f1(ε) ≤ f3(ε) ≤ f2(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε) 0.500 . . . ≤ ε ≤ 0.632 . . .

f1(ε) ≤ f2(ε) ≤ f3(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε) 0.632 . . . ≤ ε ≤ 0.664 . . .

f1(ε) ≤ f2(ε) ≤ e1(ε) ≤ f3(ε) ≤ e2(ε) ≤ v1(ε) 0.664 . . . ≤ ε ≤ 1.000 . . .

f1(ε) ≤ f4(ε) ≤ e4(ε) ≤ e3(ε) ≤ v2(ε) ≤ v3(ε) 1.000 . . . ≤ ε ≤ 2.000 . . .

f4(ε) ≤ f1(ε) ≤ e3(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε) 2.000 . . . ≤ ε ≤ 2.449 . . .

f4(ε) ≤ e3(ε) ≤ f1(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε) 2.449 . . . ≤ ε

Table D.2: Sequences of critical radii.

left, and if it is less than half, then the search continues on the right. It is also possible

that it switches from more to less than half within the interval, in which case we divide

the interval and search in the subintervals independently.

First sequence. Referring to the first two rows in Table 4.1, we note that for 0 < ε ≤

0.5, the sorted sequence of critical radii is f3(ε) ≤ f1(ε) ≤ f2(ε) ≤ e2(ε) ≤ e1(ε) ≤

v1(ε). Recall that the first critical radius is the packing radius and thus precedes the

equilibrium radius in all cases. We begin the search by testing the second critical

radius. At radius f1(ε), the ball intersects two facets of the Voronoi domain, both at

distance f3(ε) from the origin. We therefore get 2 caps, and using (4.69) and (4.71),

we get their height and area as

h(ε) = f1(ε)− f3(ε) =
√

3ε2+6
6
− ε

√
3

2
, (D.1)

A(ε) = 2πf1(ε)h(ε) = π(3ε2+6)−9πε
√
ε2+2

18
. (D.2)

The corresponding area defect is a normalized version of (4.49), namely the normal-

ized area of the sphere minus twice the normalized area of the caps:

∆(ε) =
4πf2

1 (ε)−4A(ε)

ε
= −πε

3
− 2π

3ε
+ 2π

√
ε2 + 2. (D.3)

With the help of the Maple software [MAPLE], we find that the area defect is negative

for 0 < ε <
√

70/35 = 0.239 . . . and positive in the complementary open interval; see

Figure D.1, left graph in top row. We therefore divide the considered interval into two,

namely into (0, 0.239 . . .] corresponding to Case I and [0.239 . . . , 0.5] corresponding to

Case II; see Table 4.1. In Case I, the equilibrium radius lies between the first two critical
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Figure D.1: The graphs of the area defect taken at strategic critical radii. Top row from

left to right : at the second critical radius in the interval (0.00, 0.50], at the third critical

radius in [0.239 . . . , 0.632 . . .], at the second critical radius in [0.50, 0.632 . . .]. Middle row

from left to right : at the second critical radius in [0.632 . . . , 1.00], at the second and third

critical radii in [1.00, 2.00]. Bottom row from left to right : at the second and third critical

radii in [2.00,∞), at the fourth critical radius in [2.342 . . . , 2.576 . . .].

radii and the search is complete. In Case II, the equilibrium radius lies to the right of

the second critical radius, and we continue the search by evaluating the area defect at

the third critical radius, f2(ε). At this size, the ball intersects 6 additional facets of the

Voronoi domain, all at distance f1(ε) from the origin. We thus deal with two types of

caps and index their heights and areas by the subscript of the corresponding critical
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radius:

h3(ε) = f2(ε)− f3(ε) =
√

12ε2+6
6
− ε

√
3

2
, (D.4)

h1(ε) = f2(ε)− f1(ε) =
√

12ε2+6
6
−
√

3ε2+6
6

, (D.5)

A3(ε) = 2πf2(ε)h3(ε) = π
√

12ε2+6
3

√
12ε2+6−3

√
3ε

6
, (D.6)

A1(ε) = 2πf2(ε)h1(ε) = π
√

12ε2+6
3

√
12ε2+6−

√
3ε2+6

6
. (D.7)

The corresponding area defect is

∆(ε) =
4πf2

2 (ε)−4A3(ε)−12A1(ε)

ε

= −14π(2ε2+1)
3ε

+ 2π
√

4ε2+2(ε+
√
ε2+2)

ε
, (D.8)

which is negative for every ε in the considered interval; see Figure D.1, middle graph

in top row. It follows that in Case II, the equilibrium radius lies between the second and

third critical radii.

Second sequence. For 0.5 ≤ ε ≤
√

2/5 = 0.632 . . ., the sorted sequence of critical

radii is f1(ε) ≤ f3(ε) ≤ f2(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε). As before, we begin the search

at the second critical radius. The corresponding ball intersects 6 Voronoi facets, all at

distance f1(ε) from the origin. Using (4.69) and (4.71), we get the height, cap area,

and area defect as

h(ε) = f3(ε)− f1(ε) = ε
√

3
2
−
√

3ε2+6
6

, (D.9)

A(ε) = 2πf3(ε)h(ε) = πε(3ε−
√
ε2+2)

2
, (D.10)

∆(ε) =
4πf2

3 (ε)−12A(ε)

ε
= −15πε+ 2π

√
9ε2 + 18. (D.11)

The latter is positive for ε < 2
√

42/21 = 0.617 . . . and negative for values of ε larger than

this bound; see Figure D.1, right graph in top row. We thus divide the considered inter-

val into [0.5, 0.617 . . .] corresponding to Case III and [0.617 . . . , 0.632 . . .] corresponding

to Case IV. In Case IV, the equilibrium radius lies between the first two critical radii

and the search is complete. In Case III, we continue by evaluating the area defect at

f2(ε), at which size the ball intersects 2 additional Voronoi facets at distance f3(ε) from

the origin. The corresponding formulas for the height, cap area, and area defect are

the same as (D.4) to (D.8). Again, the area defect is negative, which implies that the

equilibrium radius is between f3(ε) and f2(ε); compare with Table 4.1.
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Third sequence. For 0.632 . . . ≤ ε ≤
√

19− 3
√

33/2 = 0.664 . . ., the sorted sequence

of critical radii is f1(ε) ≤ f2(ε) ≤ f3(ε) ≤ e1(ε) ≤ e2(ε) ≤ v1(ε). Beginning the search

at f2(ε), the ball intersects 6 Voronoi facets, all at distance f1(ε) from the origin. Using

(4.69) and (4.70), we get

h(ε) = f2(ε)− f1(ε) =
√

12ε2+6−
√

3ε2+6
6

, (D.12)

A(ε) = 2πf2(ε)h(ε) =
π(4ε2+2−

√
2(2ε2+1)(ε2+2))

6
, (D.13)

∆(ε) =
4πf2

2 (ε)−12A(ε)

ε
= 2π(−10ε2−5+

√
12ε2+6

√
3ε2+6)

3ε
(D.14)

for the height, cap area, and area defect. The latter is negative for ε >
√

22/8 ≈

0.59 and therefore within the entire considered interval. In other words, in Case V the

equilibrium radius lies between the first and the second critical radii; compare with

Table 4.1.

Fourth sequence. For 0.664 . . . ≤ ε ≤ 1, the sorted sequence of critical radii is

f1(ε) ≤ f2(ε) ≤ e1(ε) ≤ f3(ε) ≤ e2(ε) ≤ v1(ε). Beginning the search at f2(ε), we get

the same formulas for the height, cap area, and area defect as in (D.12) to (D.14). The

area defect is negative in the entire interval; see Figure D.1, left graph in middle row.

If follows that in Case VI the equilibrium radius lies between the first two critical radii;

compare with Table 4.1.

Fifth sequence. For 1 ≤ ε ≤ 2, the sorted sequence of critical radii is f1(ε) ≤ f4(ε) ≤

e4(ε) ≤ e3(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at f4(ε), the ball intersects 6

Voronoi facets, all at distance f1(ε) from the origin. Using (4.75) and (4.76), we get

h(ε) = f4(ε)− f1(ε) =
√

2
2
−
√

3ε2+6
6

, (D.15)

A(ε) = 2πf4(ε)h(ε) =
√

2π
6

(
3
√

2−
√

3ε2 + 6
)
, (D.16)

∆(ε) =
4πf2

4 (ε)−12A(ε)

ε
=

2π(
√

6ε2+12−5)
ε

(D.17)

for the height, cap area, and area defect. The latter is negative for ε <
√

13/6 =

1.471 . . . and positive for values of ε larger than this bound; see Figure D.1, middle graph

in middle row. We thus divide the considered interval into [1, 1.471 . . .] corresponding

to Case VII and [1.471 . . . , 2] corresponding to Case VIII. In Case VII, the equilibrium

radius lies between the first two critical radii and the search is complete; compare
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with Table 4.1. In Case VIII, we continue the search with e4(ε), at which size the ball

intersects all 12 Voronoi facets, 6 each at distances f1(ε) and f4(ε) from the origin. The

heights and areas of the two types of caps and the area defect are

h1(ε) = e4(ε)− f1(ε) = ε2+2√
6(2ε2+1)

−
√

3ε2+6
6

, (D.18)

h4(ε) = e4(ε)− f4(ε) = ε2+2√
6(2ε2+1)

−
√

2
2
, (D.19)

A1(ε) = 2πe4(ε)h1(ε) = π(ε2+2)2

3(2ε2+1)
− π(ε2+2)

√
ε2+2√

18(2ε2+1)
, (D.20)

A4(ε) = 2πe4(ε)h4(ε) = π(ε2+2)2

3(2ε2+1)
− π(ε2+2)√

3(2ε2+1)
, (D.21)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)

ε

= 2
√

2π(ε2+2)(
√
ε2+2+

√
6)

ε
√

2ε2+1
− 22π(ε2+2)2

3ε(2ε2+1)
. (D.22)

It is negative over the entire interval; see Figure D.1, right graph in middle row. It follows

that in Case VIII, the equilibrium radius lies between the second and the third critical

radii; compare with Table 4.1.

Sixth sequence. For 2 ≤ ε ≤
√

6 = 2.449 . . ., the sorted sequence of critical radii

is f4(ε) ≤ f1(ε) ≤ e3(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at f1(ε), the

ball intersects 6 Voronoi facets, all at distance f4(ε) from the origin. Using (4.75) and

(4.76), we get

h(ε) = f1(ε)− f4(ε) =
√

3ε2+6−3
√

2
6

, (D.23)

A(ε) = 2πf1(ε)h(ε) =
π(ε2+2−

√
6(ε2+2)

6
, (D.24)

∆(ε) =
4πf2

1 (ε)−12A(ε)

ε

=
6π
√

6(ε2+2)−5πε2−10π

3ε
(D.25)

for the height, cap area, and area defect. The latter is positive for all values of ε in

the considered interval; see Figure D.1, left graph in bottom row. We thus continue the

search with e3(ε), at which size the ball intersects 12 Voronoi facets, 6 each at distances

f4(ε) and f1(ε) from the origin. The corresponding heights, cap areas, and area defect
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are

h1(ε) = e3(ε)− f1(ε) = 2
√

6−
√

3ε2+6
6

, (D.26)

h4(ε) = e3(ε)− f4(ε) = 2
√

6−3
√

2
6

, (D.27)

A1(ε) = 2πe3(ε)h1(ε) = π(4−
√

2ε2+4)
3

, (D.28)

A4(ε) = 2πe3(ε)h4(ε) = (4−2
√

3)π
3

, (D.29)

∆(ε) =
4πe23(ε)−12A1(ε)−12A4(ε)

ε

= 12
√

2π
√
ε2+2+24

√
3π−88π

3ε
. (D.30)

The latter is negative for ε <
√

278− 132
√

3/3 = 2.342 . . . and positive for values of ε

larger than this bound; see Figure D.1, middle graph in bottom row. We thus divide the

considered interval into [2, 2.342 . . .] corresponding to Case IX and [2.342 . . . , 2.449 . . .]

corresponding to Case X. In Case IX, the equilibrium radius lies between the second

and the third critical radii and the search is complete; see Table 4.1. In Case X, we

continue the search with e4(ε), at which size the ball still intersects the same 12 Voronoi

facets, but some of the corresponding caps overlap. As mentioned earlier, we ignore

these overlaps by considering the simplified soft density. We get the same equations

for the heights, cap areas, and area defect as above, (D.26) to (D.30), except that we

substitute e4(ε) for e3(ε). We list the corresponding equations for completeness:

h1(ε) = e4(ε)− f1(ε) = ε2+2√
6(2ε2+1)

−
√

3ε2+6
6

, (D.31)

h4(ε) = e4(ε)− f4(ε) = ε2+2√
6(2ε2+1)

−
√

2
2
, (D.32)

A1(ε) = 2πe4(ε)h1(ε) = π(ε2+2)2

3(2ε2+1)
− π(ε2+2)

√
3ε2+6

3
√

6(2ε2+1)
, (D.33)

A4(ε) = 2πe4(ε)h4(ε) = π(ε2+2)2

3(2ε2+1)
− π(ε2+2)√

3(2ε2+1)
, (D.34)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)

ε

=
π(6
√

2(ε2+2)(2ε2+1)+12
√

6ε2+3−22ε2−44)(ε2+2)

3ε(2ε2+1)
. (D.35)

The area defect is negative for all ε > 0, which covers the interval of interest; see

Figure D.1, right graph in bottom row. It follows that in Case X, the equilibrium radius

lies between e3(ε) and e4(ε); compare with Table 4.1.

Last sequence. For 2.449 . . . ≤ ε <∞, the sorted sequence of critical radii is f4(ε) ≤

e3(ε) ≤ f1(ε) ≤ e4(ε) ≤ v2(ε) ≤ v3(ε). Beginning the search at e3(ε), the ball intersects
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6 Voronoi facets, all at distance f4(ε) from the origin. Using (4.76) and (4.77), we get

h(ε) = e3(ε)− f4(ε) = 2
√

6−3
√

2
6

, (D.36)

A(ε) = 2πe3(ε)h(ε) = (4−2
√

3)π
3

, (D.37)

∆(ε) =
4πe23(ε)−12A(ε)

ε
= 8π(3

√
3−5)

3ε
(D.38)

for the height, cap area, and area defect. The latter is positive over the entire interval.

We thus continue the search at f1(ε). Ignoring overlaps by considering the simplified

soft density, we get the same formulas as in (D.23) to (D.25). The area defect is positive

for ε <
√

166/5 = 2.576 . . . and negative for ε exceeding this bound; see Figure D.1, left

graph in bottom row. We thus divide the interval into [2.449 . . . , 2.576 . . .] corresponding

to Case XI and [2.576 . . . ,∞) corresponding to Case XII. In Case XII, the equilibrium

radius lies between e3(ε) and f1(ε) and the search is complete; compare with Table 4.1.

In Case XI, we continue the search at e4(ε). Ignoring overlaps among the caps, we get

the same formulas as in (D.31) to (D.35). The area defect is negative for all values of ε

in the interval of interest; see Figure D.1, right graph in bottom row. It follows that the

equilibrium radius in Case XI is between f1(ε) and e4(ε); compare with Table 4.1.

D.3 Maximum Soft Density

After identifying the position of the equilibrium radius among the critical radii in Ap-

pendix D.2, we now compute the equilibrium radius as well as the corresponding soft

density. By construction, this is the maximum soft density for any given parameter ε

and thus gives the graph displayed in Figure 4.15. We consider Cases I to XII in turn

but consolidate the twelve cases to five.

Case I. Referring to Table 4.1, we recall that for all ε ∈ (0, 0.239 . . .], the equilibrium

radius lies between the first two critical radii: f3(ε) ≤ %(ε) ≤ f1(ε). We get an equation

for the equilibrium radius by setting the area defect to zero. Note that the height, cap
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area and area defect are

h3(ε) = %(ε)− f3(ε) = %(ε)−
√

3ε
2
, (D.39)

A3(ε) = 2π%(ε)h3(ε) = 2π%(ε)
(
%(ε)−

√
3ε
2

)
, (D.40)

∆(ε) = 4π%2(ε)−4A4(ε)
ε

= 4π%(ε)[
√

3ε−%(ε)]
ε

. (D.41)

Setting ∆(ε) = 0, we get %(ε) =
√

3ε; compare with (4.81). To get the soft density, we

still need the volume of the cap, by which we mean the volume of the convex hull of

the cap. Equivalently, it is the volume of the cone over the cap minus the volume of

the cone of the disk spanned by the circle bounding the cap. The area of the disk is

2πh3(ε)%(ε)− πh2
3(ε). The volume of the cap and the soft density are therefore

V3(ε) =
π[3h2

3(ε)%(ε)−h3
3(ε)]

3
(D.42)

= π[ε
√

3−2%(ε)]2[ε
√

3+4%(ε)]
24

, (D.43)

δ1(ε) = 4π%3(ε)−12V3(ε)
3ε

= 3
√

3πε2

2
; (D.44)

compare with (4.82).

Cases II to III. Referring to Table 4.1, we note that for every ε ∈ [0.239 . . . , 0.617 . . .]

the ball with the equilibrium radius intersects the same 8 Voronoi facets. Indeed, we

have f3(ε), f1(ε) ≤ %(ε) ≤ f2(ε) throughout the interval. To get an equation for the

equilibrium radius, we reuse the equation for A3 and compute the height and area of

the other type of cap and the area defect:

h1(ε) = %(ε)− f1(ε) = %(ε)−
√
ε2+2
2
√

3
, (D.45)

A1(ε) = 2π%(ε)h1(ε) = 2π%(ε)
(
%(ε)−

√
ε2+2
2
√

3

)
, (D.46)

∆(ε) = 4π%2(ε)−4A3(ε)−12A1(ε)
ε

(D.47)

= 4π%(ε)[
√

3ε−
√

3ε2+6−7%(ε)]
ε

. (D.48)

Setting ∆(ε) = 0 we get %(ε) =
(√

3ε+
√

3ε2 + 6
)
/7; compare with (4.83). As before,

we continue by computing the volume of the cap and the soft density:

V1(ε) =
π[3h2

1(ε)%(ε)−h3
1(ε)]

3

= π[−6%(ε)+
√

3ε2+6]2[12%(ε)+
√

3ε2+6]
648

, (D.49)

δ1(ε) = 4π%3(ε)−12V3(ε)−36V1(ε)
3ε

= −π[27
√

3ε(11ε2−8)+(26−95ε2)
√

3ε2+6]
882ε

; (D.50)
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compare with (4.84). The only root of the derivative is δ1
′(0.5) = 0, with the second

Figure D.2: The second derivative of the maximum soft density function within the

interval [0.239 . . . , 0.617 . . .].

derivative δ1
′′(0.5) < 0. We see in Figure D.2 that the second derivative is negative

throughout the interval of interest, which implies that the maximum soft density is con-

cave over [0.239 . . . , 0.617 . . .]; see Figure 4.15.

Cases IV to VII. Referring to Table 4.1, we note that for every ε ∈ [0.617 . . . , 1.471 . . .]

the ball with the equilibrium radius intersects the same 6 Voronoi facets: f1(ε) ≤ %(ε) ≤

f2(ε), f3(ε), f4(ε) throughout the interval. Reusing (D.46), the area defect is

∆(ε) = 4π%2(ε)−12A1(ε)
ε

= 4π%(ε)
√

3ε2+6−20π%2(ε)
ε

. (D.51)

Setting ∆(ε) = 0, we get %(ε) =
√

3ε2 + 6/5; compare with (4.85). Reusing (D.49), the

soft density is

δ1(ε) = 4π%3(ε)−36V1(ε)
3ε

=
11π
√

(3ε2+6)3

1350ε
; (D.52)

compare with (4.86). The only root of the derivative is δ1
′(1) = 0, with the second

derivative δ1
′′(1) > 0. We see in Figure D.3 that the second derivative is positive

throughout the interval of interest, which implies that the maximum soft density is con-

vex over [0.617 . . . , 1.471 . . .]; see Figure 4.15.
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Figure D.3: The second derivative of the maximum soft density function within the

interval [0.617 . . . , 1.471 . . .].

Cases VIII to XI. Referring to Table 4.1, we note that for ε ∈ [1.471 . . . , 2.576 . . .] the

ball with the equilibrium radius intersects all 12 Voronoi facets: f1(ε), f4(ε) ≤ %(ε). In

Cases X and XI, there are overlaps among the corresponding caps, but we ignore

them for the time being by considering the simplified soft density. We reuse (D.46) and

compute the height and area of the remaining cap type and the area defect:

h4(ε) = %(ε)− f4(ε) = %(ε)−
√

2
2
, (D.53)

A4(ε) = 2π%(ε)h4(ε) = 2π%(ε)
(
%(ε)−

√
2

2

)
, (D.54)

∆(ε) = 4π%2(ε)−12A1(ε)−12A4(ε)
ε

= 12
√

2π%(ε)+4π%(ε)
√

3ε2+6−44π%2(ε)
ε

. (D.55)

Setting ∆(ε) = 0, we get %(ε) =
(√

3ε2 + 6 + 3
√

2
)
/11; compare with (4.87). We con-

tinue by computing the cap volume and the simplified soft density:

V4(ε) =
π(3%(ε)h2

4(ε)−h3
4(ε))

3

= π(
√

2−2%(ε))2(4%(ε)+
√

2)
24

, (D.56)

δ1s(ε) = 4π%3(ε)−36V1(ε)−36V4(ε)
3ε

= π[324
√

2ε2−882
√

2+(478−85ε2)
√

3ε2+6]
2178ε

; (D.57)

compare with (4.88). The only root of the derivative is δ1s
′(2) = 0, with the second

derivative δ1s
′′(2) < 0. We see in Figure D.4 that the second derivative is negative
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throughout the interval of interest, which implies that the maximum simplified soft den-

sity is concave over [1.471 . . . , 2.576 . . .]; see Figure 4.15. Interestingly, the second

derivative does not go to 0 when ε approaches the endpoints, and we observe the

same phenomenon in Figures D.2 and D.3. It follows that the second derivative of the

maximum simplified soft density has discontinuities, namely at ε = 0.239 . . . , 0.617 . . . ,

1.471 . . . , 2.576 . . ..

Figure D.4: The second derivative of the maximum soft density function within the

interval [1.471 . . . , 2.576 . . .].

Case XII. Referring to Table 4.1, we note that for ε ∈ [2.576 . . . ,∞) the ball with the

equilibrium radius intersects only 6 Voronoi facets: f4(ε) ≤ %(ε) ≤ f1(ε). Ignoring

the overlaps among the corresponding caps, we consider the simplified soft density.

Reusing (D.54), we get the area defect:

∆(ε) = 4π%2(ε)−12A4(ε)
ε

= 12
√

2π%(ε)−20π%2(ε)
ε

. (D.58)

Setting ∆(ε) = 0, we get %(ε) = 3
√

2/5; compare with (4.89). Reusing (D.56), we get

the simplified soft density:

δ1s(ε) = 4π%3(ε)−36V4(ε)
3ε

= 11
√

2π
25ε

; (D.59)

compare with (4.90).
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D.4 Unsimplified Soft Density

Here we consider equilibrium configurations with triple intersections. In particular, we

recompute the position of the equilibrium radius among the critical radii for the un-

simplified soft density, the threshold for ε beyond which the equilibrium radius remains

constant, and the constant C such that the unsimplified soft density has the form (4.94).

Position of the equilibrium radius. For ε > 2.342 . . ., the position of the equilib-

rium radius for the soft density may be different from that for the simplified soft density.

The reason is that the formula for the area defect now includes a term involving triple

intersections. Considering Case X, we begin the search at e4(ε), at which size the

ball at the origin intersects 6 Voronoi facets at distance f4(ε), 6 Voronoi facets at dis-

tance f1(ε), and 6 Voronoi edges at distance e3(ε). Using the spherical area formula in

[Edelsbrunner and Fu, 1994] as well as (D.33) and (D.34), we get

Ae(ε) = b1(ε)+b2(ε)
6ε2+3

, (D.60)

∆(ε) =
4πe24(ε)−12A1(ε)−12A4(ε)+12Ae(ε)

ε

= 2[6b1(ε)+6b2(ε)+π(ε2+2)b3(ε)]
ε(6ε2+3)

(D.61)

for the surface area of a single triple intersection and the area defect, in which

b1(ε) = (ε2 + 2)2
(
π − arccos ε4−8ε2−2

2(ε2−1)2

)
,

b2(ε) = −2(ε2 + 2)
√

6ε2 + 3 arccos
√

2ε2+1
ε2−1

,

b3(ε) = 6
√

6ε2 + 3 +
√

(12ε2 + 6)(3ε2 + 6)− 11(ε2 + 2) (D.62)

The area defect is negative for all ε > 2.342 . . .; see the left graph in Figure D.5. It

follows that the equilibrium radius remains at the same position among the critical radii

as for the simplified soft density. In Cases XI and XII, the expression for the area defect

at e4(ε) is the same as above, which implies that the equilibrium radius is smaller than

e4(ε). It remains to evaluate the area defect at f1(ε). Using (D.24), we get

Af (ε) = c1(ε) + c2(ε), (D.63)

∆(ε) =
4πf2

1 (ε)−12A4(ε)+12Af (ε)

ε

= c3(ε) + c4(ε) (D.64)
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Figure D.5: Two graphs of the area defect for the soft density measure, at e4(ε) for

ε ∈ [2.342 . . . , 3] on the left and at f1(ε) for ε ∈ [2.449 . . . , 3] on the right.

for the surface area of the triple intersection and the area defect at radius f1(ε), in which

c1(ε) = − ε2+2
6

arccos ε2−10
2ε2−8

,

c2(ε) = 2π+πε2

6
−
√

6ε2+12
3

arccos 2√
2ε2−8

,

c3(ε) = 2π+πε2

3ε
− (2ε2+4)

ε
arccos ε2−10

2ε2−8
,

c4(ε) = 2
√

6ε2+12
ε

[
π − 2 arccos 2√

2ε2−8

]
.

As shown in Figure D.5 on the right, ε = 2.622758110 . . . ≈ 2.62 separates positive from

negative area defect. In other words, Cases XI and XII remain the same, except that

the transition shifts from 2.576 . . . to 2.622 . . ..

Maximum soft density. Cases X and XI corresponding to ε ∈ [2.342 . . . , 2.62 . . .] have

the same expression for the area defect. Reusing (D.46) and (D.54), we get

Ae(ε) = −2%(ε)[d1(ε) + d2(ε)− π%(ε)], (D.65)

∆(ε) = 4π%2(ε)−12A1(ε)−12A4(ε)+12Ae(ε)
ε

= 4%(ε)[−6d1(ε)+d3(ε)+d4(ε)−6d2(ε)]
ε

, (D.66)



148

for the area of the triple intersection and the area defect, in which

d1(ε) =
√

2 arccos 1√
6%2(ε)−3

,

d2(ε) = %(ε) arccos %2(ε)−1
2%2(ε)−1

,

d3(ε) = π
√

3ε2 + 6,

d4(ε) = 3
√

2π − 5π%(ε).

Setting ∆(ε) = 0, we do not succeed in finding a closed-form expression for %(ε), but

we are able to sample its value at discrete parameters ε. Reusing (D.49) and (D.56),

we get

Ve(ε) = [1−6%2(ε)]d1(ε)+2d5(ε)−4%2(ε)d2(ε)
6

, (D.67)

δ1(ε) = 4π%3(ε)−36V1(ε)−36V4(ε)+36Ve(ε)
3ε

= −d3(ε)d7(ε)+d1(ε)d8(ε)+144%2(ε)d2(ε)+6d6(ε)
18ε

(D.68)

for the volume of a single triple intersection and the soft density, in which

d5(ε) =
6π%3(ε)+

√
3%2(ε)−2

3
,

d6(ε) = 20π%3(ε) + 3
√

2π[1− 6%2(ε)]− 4
√

3%2(ε)− 2,

d7(ε) = ε2 − 36%2(ε) + 2,

d8(ε) = 216%2(ε)− 36.

We use the ability to sample the equilibrium radius from (D.66) and plug these values

into (D.68) to sketch the graph of δ1(ε) in the interval [2.342 . . . , 2.62 . . .], which falls of

course between the graphs of the simplified and the extrapolated soft densities; see

Figure 4.16.

Extrapolated soft density. In Case XII, the equilibrium radius is constant over the

entire interval from 2.62 . . . to infinity. Reusing (D.54) and (D.65), we get

∆(ε) = 4π%2(ε)−12A4(ε)+12Ae(ε)
ε

= 4%(ε)[π%(ε)+3
√

2π−6d1(ε)−6d2(ε)]
ε

, (D.69)
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for the area defect. Setting ∆(ε) = 0 and reusing (D.56) and (D.67), we get

%(ε) = 0.8601773122 . . . , (D.70)

δ1(ε) = 4π%3(ε)−36V4(ε)+36Ve(ε)
3ε

= [6−36%2(ε)]d1(ε)−24%2(ε)d2(ε)+d9(ε)
3ε

, (D.71)

in which

d9(ε) = 4
√

3%2(ε)− 2 + 4π%3(ε) + 3
√

2π[6%2(ε)− 1].

Plugging the constant equilibrium radius (D.70) into (D.71), we get δ1(ε) = C/ε, with

C = 1.962290082 . . . ≈ 1.96; see Figure 4.16. This gives δ1x(2.342 . . .) = 0.8378301951 . . .,

which is less than the soft density of the FCC lattice at equilibrium, as desired.


