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Abstract

This thesis is concerned with the inference of current population structure based on
geo-referenced genetic data. The underlying idea is that population structure affects its
spatial genetic structure. Therefore, genotype information can be utilized to estimate
important demographic parameters such as migration rates. These indirect estimates
of population structure have become very attractive, as genotype data is now widely
available. However, there also has been much concern about these approaches. Im-
portantly, genetic structure can be influenced by many complex patterns, which often
cannot be disentangled. Moreover, many methods merely fit heuristic patterns of ge-
netic structure, and do not build upon population genetics theory. Here, I describe two
novel inference methods that address these shortcomings.

In Chapter 2, I introduce an inference scheme based on a new type of signal, iden-
tity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks
of genome shared between pairs of samples. These blocks are direct traces of recent co-
alescence events. As such, they contain ample signal for inferring recent demography.
I examine sharing of IBD blocks in two-dimensional populations with local migration.
Using a diffusion approximation, I derive formulas for an isolation by distance pattern
of long IBD blocks and show that sharing of long IBD blocks approaches rapid expo-
nential decay for growing sample distance. I describe an inference scheme based on
these results. It can robustly estimate the dispersal rate and population density, which
is demonstrated on simulated data. I also show an application to estimate meanmigra-
tion and the rate of recent population growth within Eastern Europe.

Chapter 3 is about a novel method to estimate barriers to gene flow in a two di-
mensional population. This inference scheme utilizes geographically localized allele
frequency fluctuations - a classical isolation by distance signal. The strength of these
local fluctuations increases on average next to a barrier, and there is less correlation
across it. I again use a framework of diffusion of ancestral lineages to model this effect,
and provide an efficient numerical implementation to fit the results to geo-referenced
biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to
gene flow, as tests on simulated data confirm.
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1. Introduction

1.1 Demographic Inference from Genetic Data

The main theme of this thesis is the estimation of population structure from
genetic data. The underlying idea is simple: The demographic structure of
a population affects its genetic structure. In turn, genetic variation contains
information about population structure. Therefore, sampling and genotyp-

ing individuals can be utilized to learn about demography of a population.

Typical questions of this discipline are about important demographic parameters:

• Dispersal:What is the distribution of distances covered by an individual between
birth and reproduction? In particular, what is the variance of this distribution?

• Barriers to gene flow: Are there barriers to dispersal, for instance caused by phys-
ical barriers or genetic incompatibilities? What is the strength of such barriers?

• Population size and density: What is the total size of the population? What is
the population density per area?

• Population dynamics: Is the population currently growing or declining? Was
population structure different in the past?

Answers to such questions are of great interest in conservation and population
management, and can also be of much practical utility, for instance for pest control.
Moreover, knowledge about demographic structure is important for understanding
how various evolutionary forces shape genetic variation - one of the key questions
in population genetics and modern genomics. A sound null model for demographic
structure is also essential for interpreting the genetic traces of selection and adaptation
in the wild, as the lack of such knowledge can lead to seriously misleading conclusions
(Meirmans, 2012).
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In principle, demographic inference can be based on direct observations, such as
radio-tagging or capture-mark-release experiments. However, such observation are of-
ten very time- andwork-intensive. They are error-prone, since rare but important events,
such as long-distance migrations, can be easily missed. Moreover, these methods only
provide a snapshot in time. Therefore, the rapidly increasing capacities to genotype
genetic markers and to record geographic data has aroused a great deal of interest
in inferring demographic structure from genetic data. The idea to extract information
about population structure from genetic variation has a long history. First attempts
trace back to the founding fathers of the modern synthesis (Wright et al., 1942).

Genetic data can also be used to infer the deep history of a population and large-
scale demographic events, for instance large scale colonization patterns. This discipline
has been termed “phylogeography” (Knowles, 2009; Nielsen and Beaumont, 2009), and
has delivered novel insight into important open questions, such as the origin of our
own species,Homo sapiens. In contrast, this thesis focuses on the estimation of structure
of populations on more recent timescales. The aim is not to draw inference about the
history of the population, but to estimate its current structure. Inference is best done
on geographical scales that are much smaller than the range of a species, as genetic
structure begins tomirror current population structuremuch quicker and approximate
equilibrium is reached more rapidly on geographically localized scales (Slatkin and
Barton, 1989).

1.2 Inference of Population Structure - a Brief Review

Demographic inference based on genetic markers has a long history. Interest in this ap-
proach traces back all the way to the founders of the modern synthesis of population
genetics. Already S. Wright and Th. Dobzhansky studied the population structure and
dispersal patterns of the common fruit flyDrosophila pseudoobscura (Wright et al., 1942).
Back then, they lacked the ability to genotype individuals, i.e. to directly measure ge-
netic variation. But they ingeniously based inference on recessive lethal mutations, as
it was possible to detect those by cumbersomely counting offspring of crosses in the
laboratory. They fit a basic model of population structure to the spatial distribution
of such mutations, which enabled them to estimate migration rates and local effective
population sizes.
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The Genotyping Revolution

During the last decades, revolutionary advances in genotyping have occurred. New
technologies dramatically changed the data available for demographic inference. This
progress has spurred the development of completely novel inference methods. To pro-
vide the right context for the following sections, I first briefly review this genotyping
revolution.

In the 1960s, it became possible to directly measure genetic variation at the molec-
ular level. The first methods analyzed allozyme variation by means of studying elec-
trophoretic variants. In the following decades, similar techniques such as RFLP (re-
striction fragment length polymorphism) analysis were developed. Typically, DNA
fragments of various length are separated through a process known as agarose gel
electrophoresis. For instance, one can ascertain whether or not a restriction enzyme
cut at restriction sites, and therefore infer sequence variance at these sites. While such
techniques are often slow and cumbersome, they were the first methods inexpensive
enough to see widespread application. Analysis is typically limited to variation of a
handful of specific markers. But these methods enabled eager researchers to yield a
first glimpse into existing genetic variation (Hubby and Lewontin, 1966), and they pro-
vided a solid basis for further development.

In the following decades, more sophisticated methods to study genetic variation
were developed. During the 1990s the analysis of microsatellite markers was popular-
ized. These genetic markers are tracts of tandemly repeated (i.e. adjacent), several nu-
cleotide longDNAmotifs. Themutation rate ofmicrosatellite markers can bemarkedly
higher than the nucleotide mutation rate, and therefore microsatellite markers are of-
ten found to be highly variable in a population. Since PCR (polymerase chain reaction)
became ubiquitous in laboratories in the early 1990s, researchers were able to design
primers and amplify sets of microsatellites at low cost. They quickly became an impor-
tant signal for demographic inference (Manel et al., 2003), and they have remained an
important tool up until today.

In addition to microsatellite markers, it has become feasible to genotype single nu-
cleotide polymorphisms (SNPs), which are single site variations in DNA. Several appli-
cations have been developed that interrogate SNPs, typically by hybridizing comple-
mentary DNA probes to the SNP site. SNPs have a much lower mutation rate (Scally
(2016) estimate a mean rate of ≈ 0.5 · 10−9 per base pair and generation in humans)
than most microsatellites (Brinkmann et al. (1998) estimate a mutation rate of up to
≈ 1.0 · 10−3 per generation for some human microsatellites). Therefore existing SNP
variation typically traces back to much older mutations. Modern SNP arrays can in-
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terrogate hundreds of thousands of SNPs simultaneously. This approach is often con-
siderably cheaper than sequencing whole genomes once suitable arrays have been de-
signed, while still providing similar amounts of information (Gabriel et al., 2002).

Nowadays we are rapidly approaching an era of population genomics. The advent
of fluorescence sequencing technologies in the 2000s has made it possible to determine
most of the DNA sequence of a sample at high speed and at reasonable cost. New se-
quencing technologies continue to bring down the cost of sequencing even further. For
instance,modern high-throughput sequencing allows to sequence a humangenome for
$10000, which is a dramatic decrease in cost since sequencing the first human genome
for approximately $100 million in 2001 (Wetterstrand, 2013). One can speculate that in
the foreseeable future full-genome sequencing ofmany individualswill becomewidely
affordable, even for non-model organisms.

Method Development

Quickly following these dramatic advances in genotyping, novel methods to infer pop-
ulation structure from observed genetic variation have been developed. While the un-
derlying ideas often trace back a long time, the methods to fit the data and their un-
derlying signal have been driven by the amount of available genetic data, and also by
increasing computational power. Here I give a brief overview of such methods. I focus
on signals that have been utilized for inference, and summarize approaches to fit the
observed genetic data.

The first allozyme studies almost immediately triggered methods that fit demo-
graphic models to observed geographic genetic variation. A lot of necessary theory
had been already developed, but had not been applied to empirical data yet. Right
from the beginning, a common underlying theme of many methods has been that ge-
ographic structure of a population will cause spatial partitioning of genetic variation.
The important idea is that studying this variation can be used to infer gene flow be-
tween subpopulations together with the rate of random drift within them.

Tracing back to the famous population geneticist Wright, the perhaps most popular
method to do so is based on the fixation index FST, a measure of genetic differentiation,
to learn about gene flow between different subpopulations. In Wright’s original defi-
nition, FST measures the correlation between genotypes chosen randomly from within
the same subpopulation relative to the entire population (Wright, 1949). Since then, a
whole zoo of similar measures has been developed, many of them formally equiva-
lent to FST. In particular, it has become increasingly popular to describe FST in terms of
diversities within and between subpopulations (Nei, 1973), since these quantities can
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be estimated from empirical data. A modern population genetics approach is to trace
back ancestral lineages and describe coalescence times (i.e. the timing of most recent
common ancestors). In this framework, defining FST in terms of coalescence times has
proven to be very useful (Slatkin, 1991). Up until today, FST has remained one of the
most frequently used statistics in population genetics.

The great value of FST for demographic inference derives from a simple formula
(Wright, 1949) for the so called infinite island model. According to Wright’s famous
formula, if a large number of subpopulations are equally likely to exchange migrants
and if mutation is rare, then at equilibrium:

FST ≈ 1
4Nem′ + 1

,

where m′ is the fraction of migrants each population receives and Ne is the effective
population size of local populations. This formula has been widely used to estimate
the product Nem

′ from sample data. Typically, first some method is used to estimate
FST from genetic data, which is then translated into an estimate for Nem

′ via Wright’s
formula. Several robustmethods to estimate this summary statistic from genotype data
have been developed. In particular, method-of-moments estimates have been widely
used (Weir and Cockerham, 1984). Utilizing FST is a source of information that is rela-
tively robust to specificmodel deviations, such as selection and variation in population
model (Slatkin and Barton, 1989). However, as I will review below, recently there has
been much concern about this method (Whitlock and McCauley, 1999).

There have beenmany refinements and extensions to methods for inference of pop-
ulation structure based on signals of genetic differentiation. One can directly fit Nem

′

via maximum likelihood approaches (Barton et al., 1983; Slatkin and Barton, 1989),
based on the result that in the infinite islandmodel the allele frequency distribution fol-
lows a beta distribution (Wright, 1938). Methods for microsatellite markers have been
developed, taking their high mutation rate and their specific mutation pattern into ac-
count (Slatkin, 1995). Also, the spatial distribution of rare variants has been utilized as
the signal for inference (Slatkin, 1985). In all cases, the underlying idea remains simi-
lar: Population structure can be inferred via its effect on spatial genetic variation across
different subpopulations.

Another popular approach based on patterns of genetic differentiation is to utilize
classical isolation by distance. This concept traces back to Wright (1943) as well. The
underlying idea is that in populations with local migration, nearby individuals are ge-
netically more similar on average than more distant ones, as they have a higher chance
to be related. Based on classicalmodels ofMalécot (1948) andKimura andWeiss (1964),
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Rousset (1997) shows that the rate of decay of a measure of genetic differentiation such
as FST with pairwise geographic distance is primarily informative about a model pa-
rameter termed neighborhood size Nbh, which is roughly the number of individuals
in the area fromwhich parents of an individual can be drawn. Therefore, by fitting iso-
lation by distance models to observed genetic data, one can estimate this demographic
parameter. This is typically done by regressing a measure of pairwise diversity against
pairwise geographic distance, either for pairs of demes (Rousset, 1997) or for pairs of
individuals (Rousset, 2000).

A different kind of signal used since relatively early on is the non-independence
of different markers. Such independences can arise because some markers are mostly
co-inherited together, in particular for markers that are genetically close (i.e. linked
markers). In some scenarios, these shared patterns across loci contain information that
can be utilized for demographic inference. For instance, linkage patterns for pairs of
markers are informative about dispersal patterns in admixture zones (Barton andGale,
1993), in which there is a balance between linkage disequilibrium built up by dispersal
and recombination which breaks down these associations. Even in spatially unstruc-
tured populations, random drift can build up random associations between markers,
and this signal can be informative about the recent size of a population (Hill, 1981;
Waples and Do, 2008).

The advent of cost-efficient, large-scale genotyping techniques has induced a flood
of genetic data. Simultaneously, rising computational power has enabled researchers
to fit more complex models. Together, these two advances triggered the development
of a next generation of inference schemes. In the early years of this millennium, meth-
ods that use Markov Chain Monte Carlo algorithms to fit parameters for models for
population structure were introduced (Beerli and Felsenstein, 2001). Ever since then,
they have been in wide use to estimate the joint posterior distribution of these param-
eters, without the need to explore the whole, often very complex, parameter space.
The underlying ideas of inference have remained mostly the same, but these methods
directly fit models to discrete genotype data, without the intermediate step of sum-
mary statistics. On the other hand, approximate Bayesian Computation methods that
fit summary statistics of the data to estimate parameters of sometimes complexmodels
of recent demography have been widely used (Beaumont et al., 2002).

The wealth of data, in particular the possibility to genotype many markers for a
large number of individuals, has also enabled the development of completely novel
approaches. One can learn about population structure by clustering samples into pop-
ulation units based on genetic similarity, or by directly inferring immigrants based on
their genotype (Pritchard et al., 2000; Guillot et al., 2005). Nowadays genetic data can
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be even utilized to directly identify close relatives based on their genotypes (Blouin,
2003). However, identifying relatives or immigrants is conceptually closely related to
direct observations, and therefore demographic inference based on these signals suffer
from similar shortcomings. They typically only yield a snapshot in time, and rare, but
important, events could be missed.

Landscape Genetics

In parallel to these advances in classical population genetics, a whole new discipline
that tries to infer complex demographic patterns has been founded (Manel et al., 2003).
This field named landscape genetics is concerned with quantifying the effect of land-
scape composition and configuration on gene flow and spatial variation (Storfer et al.,
2007). Typically, questions about connectivity and barriers to gene flow are addressed
by correlating some measure of genetic differentiation - often FST - against environ-
mental variables. Triggered by the increasing availability of genetic data, the ability
of high resolution landscape data and the relative ease with which such methods can
be applied, the number of landscape genetic publications has been rising rapidly re-
cently (Storfer et al., 2010). Landscape geneticmethods are usually not based on explicit
population genetic models, but are rather statistical methods that often originate from
ecology. These approaches can be broadly grouped into two approaches.

First, one can try to infer geographic genetic structure without first including infor-
mation about landscape. For instance, one can group individuals into population clus-
ters based on their genotypes (Pritchard et al., 2000; Guillot et al., 2005). This is typically
done by simultaneously inferring the allele frequencies within clusters and population
memberships via minimizing both linkage disequillibrium and Hardy-Weinberg dis-
equillibrium (Falush et al., 2003). Another method is to directly infer areas of sharp
genetic change (Womble, 1951; Manni et al., 2004; Cercueil et al., 2007). After applying
these methods, one can ask whether the inferred delimitations or cluster boundaries
agree with known landscape features. For example, such approaches have been used
to detect barriers to gene flow (Safner et al., 2011).

Second, one can directly model the effect of known landscape features. For instance
the Mantel and partial Mantel test (Smouse et al., 1986), statistical tests of the correla-
tion between two or more distance matrices, have been widely used to test whether
some measure of environmental distance has an effect on genetic differentiation (Stor-
fer et al., 2010). More recently, resistance methods that draw upon electrical circuit
and random walk theory have become popular (McRae et al., 2008). These approaches
utilize a resistance model for connectivity in heterogeneous landscapes to calculate
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pairwise coalescence times. Although they only approximate exact population genet-
ics theory, these approaches can be used to calculate expected genetic differentiation
such as pairwise FST (McRae, 2006). Using this intermediate step, circuit methods have
been applied to fit the effects of complex migration landscapes. They are of approxi-
mate nature, but they offer an often necessary numerical speedup compared to exact
coalescence methods (Petkova et al., 2015).

The Beginning of a New Era: Haplotypes

It has become feasible to genotype markers spaced densely throughout the genome.
Nowadays methods can therefore make use of a wealth of linkage information and
haplotype structure for demographic inference (Hellenthal et al., 2014; Goldberg et al.,
2014; Sedghifar et al., 2015). One signal is particularly promising for demographic in-
ference: In humans and some model systems, it has become possible to directly detect
the traces of recent relatedness, so called identity by descent (IBD) blocks. Such blocks
of shared genome are co-inherited from a recent co-ancestor, and therefore carry ex-
ceptionally few distinguishing mutations. They are the direct genetic signal of recent
co-ancestry, and are not affected by older patterns. This advantage makes IBD blocks
an ideal source for inferring the recent structure of a population. Moreover, the length
of such blocks is informative about age of co-ancestry, and this helps to avoid several
fundamental limitation of existing methods (Barton et al., 2013). This approach opens
up completely novel avenues for the inference of recent demography (Novembre and
Peter, 2016). First methods that make use of this signal have been already developed
(Ralph and Coop, 2013; Palamara and Pe’er, 2013; Hellenthal et al., 2014; Ringbauer
et al., 2017a). These inference schemes have already yielded novel insight into the fine-
scale population structure of humans, andmost likely this field has a promising future.

Common Caveats and Concerns

Demographic inference based on genetic data is an attractive substitute for direct ob-
servations. However, there are also severe pitfalls and caveats. Fitting simple models
to observed genetic structure can be misleading. The real demographic history can be
very complex, but most methods require that stringent model assumptions are met.
For instance, methods that translate FST into estimates of gene flow assume that a set
of panmictic demes symmetrically exchange migrants, with a low mutation rate and
enough time to equilibrium, and without any further substructure. It seems plausible
that one or more of these assumptions are frequently violated - and therefore the un-
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derlying model has been termed the “fantasy island model” (Whitlock andMcCauley,
1999).

Moreover, it is often difficult to validate inference methods against simulated data.
The true model is usually unknown and the parameter space can be huge. Therefore it
is a complex and computationally expensive task to test such a large space of models
and study the effects of model misspecification. In addition, it is often challenging to
interpret the outcome of inference schemes, and link it back to biologically relevant
parameters. In particular, most methods do not use a population genetics model to
fit genetic data, but rather use statistical models to empirically fit heuristic patterns.
Therefore, most inference methods do not model the process that generates spatial ge-
netic structure, but merely fit its effects. However, without knowledge about the un-
derlying process, it is difficult to interpret the fitted parameters, and link them back to
biologically relevant models.

The last problem seems to be most pronounced for inference in populations with
continuous spatial structure. For such populations, estimates are often only based on
heuristic statistical models. This disconnect is somewhat surprising, as spatial pop-
ulation genetics theory is relatively well developed (e.g. (Wright, 1943; Malécot, 1948;
Nagylaki, 1978; Barton et al., 2002, 2013). The use of a geographic diffusion approxima-
tion for the spread of ancestry combined with modern coalescence theory (Kingman,
1982) has deliveredmuch theoretical insight (Barton et al., 2002;Wilkins, 2004), andfirst
ideas along these lines trace back to Wright (1943). While ideas for inference schemes
for continuous populations have been laid out by Barton et al. (2013), very few existing
methods draw upon explicit spatial population genetic theory (e.g. Rousset (1997)).

In particular, many landscape genetic methods suffer from these shortcomings.
While genetic data is often limited and the true underlying, perhaps very complex,
scenario is usually unknown, models with many parameters are fit to often very lim-
ited genetic data. Observed genetic patterns are usually assumed to be caused exclu-
sively by present landscape structure. The genetic structure due to deeper patterns of
phylogeography are often not accounted for.

For instance, many popular circuit resistance methods (McRae, 2006) assume that
genetic differentiation is solely due to current migration patterns, but in practice they
are often applied to geographical scales of whole species. On such large scales, deeper
phylogenetic patterns can easily invalidate themodel assumptions and lead to spurious
inferences, especially when old genetic polymorphisms such as SNPs are used. Some
other landscape genetic methods such as using theMantel statistic do not test the effect
of landscape against any population genetic nullmodel at all. This problemmakes their
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use even more problematic, as they can be fundamentally flawed in the presence of
spatial-autocorrelation (Guillot and Rousset, 2013).

Together, these caveats have caused much skepticism in the population genetics
community about the general validity of most landscape genetic methods. Overall,
mismatches between population structure inferred from genetic structure and direct
observations have caused awidespread belief that demographic inference from genetic
data is problematic in general, and that genetic data is often over-interpreted (Bossart
and Prowell, 1998). Further studies that compare estimates based on genetic data to
direct observations of population structure are urgently needed to settle this issue.

1.3 Contributions of this Thesis

The overarching theme of this thesis is to develop novel inferencemethods for spatially
extended populations. My aim has been to overcome some of the above mentioned
shortcomings. In particular, the goal has been to develop inference schemes that link
demographic inference to population genetic theory, and are based on signals that are
not confounded by deep, ancestral structure. In Chapter 2, I do so by basing inference
on a promising novel signal: Identity by Descent blocks.

In all cases, the ultimate goal has been to develop a full-fledged inference scheme,
that can be applied to genetic data by other researchers to address central questions
about recent demography. To build such a scheme, I typically partitioned the work
into four steps:

1. Develop theory
To infer parameters that can be directly interpreted in terms of population genet-
ics, I directly fit population genetic models. Models with a low number of param-
eters can obviously only be an approximation to the complex, real demography
of natural populations. Therefore, the goal was not to develop a mathematically
exact model, which in many cases is formally problematic anyways, especially
in two spatial dimensions (Felsenstein, 1975), but one that robustly fits observed
patterns based on important summary parameters. I tried to make use of pat-
terns in the data that are robust to many confounding factors, such as ancestral
population structure.

Usually, there exists a plethora of population genetic theory to draw from, in
particular for unlinked markers. In Chapter 2, I make use of a promising novel
signal, identity by descent (IBD) blocks. This young area of population genetics
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that deals with the sharing of such blocks is still relatively unexplored. Therefore,
while drawing upon previous work, I also developed novel theory. In Chapter 3
I modify and expand existing theory to obtain a robust numerical framework for
the analysis of barriers to gene flow.

2. Develop methods to fit theory to data
To do inference, one has to connect theory with observed data. One has to ap-
ply methods to fit the model to observed genetic data. There are usually many
possibilities to do so. Different methods have different properties with respect
to estimator bias and variation, and a priori it is often not clear which method
performs best. Therefore, it is important to test and compare these methods.

3. Test methods on simulated data
In order to learn about the power and the limitations of an inference scheme, it is
essential to test it on datasets where the actual population structure is known. A
straightforward way to produce such data is to analyze synthetic data simulated
with known ground truth. Throughout this work, I implemented my own simu-
lation engines. In most cases, the goal was not to compete with existing methods,
but to have simulations that can be easily tweaked to simulate different scenarios,
and produce data that fit seamlessly into the inference pipeline.

4. Apply methods to real data
The ultimate test of an inference is to apply the developed inference methods
to empirical datasets. Such an application showcases the ability of the inference
scheme to fit genetic patterns. During this process, shortcomings of amethod and
hidden caveats can be uncovered. One is also able to also explore the fit of the best
model, which can yield important insights into deviations from the fitted model.

In Chapter 2, I develop a method based on the spatial distribution of pairwise
shared long blocks of genome, so called IBD (identity by descent) blocks. Such blocks
are a novel type of signal, which can be detected from dense genotype or sequence data
from individuals. The detection of shared blocks is already feasible for human data,
and will likely become practical for many other species in the near future (Browning
and Browning, 2012). Long IBD blocks are genetic traces of recent coalescence events,
and their lengths hold information about the age of recent co-ancestry. This signal holds
much promise for demographic inference, as several drawbacks of existing methods
can be avoided. I develop amethod that fits sharing of IBD blocks in a two-dimensional
population with limited migration. I use the signal that block sharing decays with in-
creasing sample distance. As the study of IBD blocks is rather novel subfield in popula-
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tion genetics, I develop new theory and a way to fit this decay. I show that the decay of
IBD block sharing with distance mostly depends on block map length and on the dis-
persal rate σ2. Importantly, this method can be used to learn about the dispersal rate
σ2 separately, which is not possible when using traditional methods that are based on
similarities of single markers. This chapter is based on Ringbauer et al. (2017a).

In Chapter 3, I introduce amethod to infer barriers to gene flow in two-dimensional
populations. This scheme uses geographically local fluctuations of allele frequencies as
a signal. I extend existing theory that describes the effect of a barrier, utilizing a model
in which movement of lineages back in time is approximated by a partially reflected
random walk. The method fits the strength of a linear barrier by fitting data to this ex-
plicit population genetic model. The fitted parameters can be directly linked to existing
population genetic theory (Nagylaki, 1988; Barton, 2008). This bridges a gap, as most
existing methods to infer barriers are not based on any population genetics model, and
only heuristically fit the effects of a barrier. This chapter is based on Ringbauer et al.
(2017b).



2. Inferring recent demography from
isolation by distance of long shared
sequence blocks

Abstract. Recently it has become feasible to detect long blocks of nearly identical
sequence shared between pairs of genomes. These IBD blocks are direct traces of
recent coalescence events and, as such, contain ample signal to infer recent demog-
raphy. Here, we examine sharing of such blocks in two-dimensional populations with
local migration. Using a diffusion approximation to trace genetic ancestry, we derive
analytical formulae for patterns of isolation by distance of IBD blocks, which can also
incorporate recent population density changes. We introduce an inference scheme that
uses a composite likelihood approach to fit these formulae. We then extensively eval-
uate our theory and inference method on a range of scenarios using simulated data.
We first validate the diffusion approximation by showing that the theoretical results
closely match the simulated block sharing patterns. We then demonstrate that our
inference scheme can accurately and robustly infer dispersal rate and effective density,
as well as bounds on recent dynamics of population density. To demonstrate an appli-
cation, we use our estimation scheme to explore the fit of a diffusion model to Eastern
European samples in the POPRES data set. We show that ancestry diffusing with a
rate of σ ≈ 50–100 km/√gen during the last centuries, combined with accelerating
population growth, can explain the observed exponential decay of block sharing with
increasing pairwise sample distance.

There has been a longstanding interest in estimating demography, as migra-
tion and population density are key parameters for studying evolution and
ecology. Demographic models are essential for disentangling the effects
of neutral evolution from selection, and are crucial to understanding lo-
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cal adaptation. Moreover, the inference of demographic parameters is important for
conservation and breeding management. Given the intensive nature of obtaining such
parameters bydirect observations,which aremoreover necessarily limited to short time
scales, the increasing availability of genetic markers has spurred efforts to develop in-
ference methods based on genetic data.

This work focuses on a method to estimate dispersal rate and population density in
two-dimensional habitats by analyzing the geographic distribution of so called identity
by descent (IBD) blocks, which are commonly defined as coinherited segments delim-
ited by recombination events (Fig. 2.1). It has nowbecome feasible to detect long regions
of exceptional pairwise similarities from dense SNP or whole genome sequences (Gu-
sev et al., 2009; Browning and Browning, 2011). For regions longer than a few cM, the
bulk mostly consists of a single IBD block unbroken by recombination, at least when
inbreeding is rare (Chiang et al., 2016). This yields novel opportunities for inferring
recent demography, as one can study the direct traces of coancestry.

Moreover, the length of shared blocks contains information about their age. That is,
the longer the time to the most recent common ancestor, the shorter the expected IBD
block length, as recombination hasmore chances to break up ancestral geneticmaterial.
The probability that no recombination occurs in a block of a given map length decays
exponentially going back in time.Hence, long IBDblocks originatemostly fromvery re-
cent coancestry and provide insight into the recent history of a population. Shared long
blocks between pairs of populations can be used to infer the distribution of recent co-
alescence times (Ralph and Coop, 2013), and fitting deme and island models can yield
information on recent population sizes (Palamara et al., 2012; Browning and Browning,
2015) and migration patterns (Palamara and Pe’er, 2013). These works are complemen-
tary to the analysis of short identical segments, which are informative about deeper
times scales (Li and Durbin, 2011; Harris and Nielsen, 2013), and they showcase the
utility of long IBD blocks for inferring recent demography.

Here, we focus on a pattern of isolation by distance of IBD blocks within popu-
lations extended in two dimensions with local migration. For such populations, the
classical Wright-Malecot formula describes an increase of mean pairwise genetic di-
versity with increasing geographic separation (Wright, 1943; Malécot, 1948). Several
inference methods utilize such classical isolation by distance patterns as signals to in-
fer the parameters of recent demography. For example, fitting increasing pairwise ge-
netic diversity with geographic distance is widely used (Rousset, 1997, 2000; Vekemans
and Hardy, 2004), and ABC methods have been applied (Joseph et al., 2016). Similarly,
the extent of geographic clustering of rare alleles can be used as a signal for inference
(Novembre and Slatkin, 2009). While the signal of locally decreased pairwise genetic
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Figure 2.1: Example of an IBD block coinherited from a common ancestor three gen-
erations back. Going back in time, recombination splits up genetic ancestry (colored
red and blue here) into blocks distributed among ancestors. If, as depicted here, such
ancestral blocks overlap in a recent common ancestor, the intersecting stretch of the
genome will be shared and both individuals will carry few distinguishing mutations.
Here, we define IBD blocks to be delimited by any recombination events on the ge-
nealogical path to the most recent common ancestor. Thus, the recombination events
that are fused again quickly by inbreeding loops, as depicted by the blue chromosome
(thick arrow), also delimit IBD blocks. However, this recombination is not detectable in
practice, and the two adjacent IBD blockswould be identified as one long IBD segment.
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diversity mostly stems from recent times (Leblois et al., 2004), such patterns can be
severely confounded by deeper, often unknown ancestral patterns (Meirmans, 2012).
Moreover, such methods can usually only infer the neighborhood size 4πDeσ

2, which
is proportional to the product of dispersal rate σ2 with effective density De. Usually,
these important parameters cannot be estimated separately, as the underlying signal is
mostly based on a short-term equilibrium between local drift and dispersal. An excep-
tion is quickly mutating organisms such as viruses, for which phylogeographic diffu-
sion approaches yield separate estimates of σ (Lemey et al., 2010). However, the mu-
tation rates are usually too low to provide significant additional information on recent
demography (Barton et al., 2013). In summary, inference schemes based on pairwise
genetic diversity suffer from several fundamental limitations.

To overcome these problems, this work builds upon the ideas of Barton et al. (2013),
who observed that the analysis of long shared IBD blocks would, in principle, allow
one to estimate dispersal and population density separately. They argued that such an
inference scheme would be robust to confounding by ancestral structure, since long
IBD blocks mostly originate from not long ago. Here, we introduce a practical infer-
ence scheme based on this idea. We first expand the theoretical results of Barton et al.
(2013). We utilize a model of spatial diffusion of ancestry, which yields analytical for-
mulae for block sharing patterns.We then fit these results using a composite likelihood
framework, similar to Ralph and Coop (2013). This approach allows one to readily in-
clude error estimates for block detection, such as limited detection power or wrongly
inferred block lengthswhich are problems that usually arisewhen IBDblocks are called
from genotype data (Browning and Browning, 2012; Ralph and Coop, 2013). Recently,
Baharian et al. (2016) have independently derived similar equations for block sharing
under the diffusion approximation and used them for demographic inference by fitting
binned data. We extend this work in several ways. We additionally deal with growing
and declining populations, and our composite likelihoodmethod offers several signifi-
cant advantages over fitting binned data. Importantly, as a major part of this paper, we
extensively evaluate our estimation scheme against simulated data. We test its power
to recover demographic parameters for several geographic models and we investigate
how model deviations, such as nearby habitat boundaries, affect inference. This yields
valuable novel insight into the validity of the underlying idealized diffusionmodel and
examines the scope of the inference scheme.

Currently, large IBD block data sets are available mainly for humans. To showcase
a practical application of our inference scheme, we use it on a subset of the POPRES
dataset, which Ralph and Coop (2013) previously analyzed for long IBD blocks. Al-
though human demography is without doubt very complex, the diffusion model pro-
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vides a good fit to the data, which allows us to draw conclusions about the extent of
human ancestry spread in continental Europe during the last centuries. We also infer
a rapidly increasing population density, which stresses the importance of accounting
for rapid population growth when analyzing human IBD block sharing.

2.1 Materials and Methods

2.1.1 The Model

To describe block sharing in two spatial dimensions with local migration, we use two
basic model assumptions to approximate awide range of scenarios. Obviously, the true
demographic history of a population is more complex than any such simple model.
Thus, the aim is not to have a mathematically rigorous model, which is often formally
problematic (Felsenstein, 1975; Nagylaki, 1978) and only holds exactly in specific set-
tings, but to have an accurate approximation that captures general patterns that can
be used for robust inference of basic demographic parameters. In the following, we
outline these two central modeling assumptions.

Poisson recombination

Weapproximate recombination as a homogeneous Poissonprocess, i.e. crossover events
are assumed to occur at a uniform rate along a chromosome. Throughout this work, the
unit of genetic distance will therefore be the Morgan, which is defined as the distance
over which the expected average number of intervening chromosomal crossovers in a
single generation is one. Small scale processes, such as gene conversion, are not cap-
tured by the Poisson approximation, but for the large genomic scales of typically sev-
eral cM considered here this can be neglected (Lynch et al., 2014). Similarly, we ignore
the effect of interference, which is reasonable when describing the effects of recombi-
nation over several generations. Since the female and male recombination rate can be
markedly different, for our purposes we use the sex-averaged rate r = rm+rf

2 . In ev-
ery generation, loci on autosomes have an equal chance to trace back to a female or
male ancestor. Thus, the female and male Poisson processes together are described by
a single Poisson process with the averaged recombination rate. Generalizing this line of
thought, any individual differences in map length can be modeled by a single Poisson
process with the population-averaged rate.
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Diffusion approximation

Following a long tradition of modeling individual movement in space by diffusion
(Fisher, 1937; Wright, 1943; Malécot, 1948; Nagylaki, 1978), we approximate the spa-
tial movement of genetic material back in time using a diffusion process. The position
of ancestral material at some time t in the past is the sum of the migration events until
then, which are often correlated only on small timescales. Therefore, using the central
limit theorem, the probability density for the displacement of a lineage can be approx-
imated using a Gaussian distribution with axial variance of σ2t (Fig. 2.2). This approxi-
mation does not depend on details of the single-generation dispersal kernel, provided
its variance is finite. It seems plausible that diffusion of ancestry is often an accurate
approximation on recent to intermediate timescales (Barton et al., 2002), which are im-
portant for the sharing of long IBD blocks.

If consecutive single-generation dispersal events are uncorrelated, σ2 is the average
squared axial parent-offspring distance (Rousset, 1997). Even with small-scale spatial
or temporal correlations between dispersal events, one can model the spread of ances-
try using the diffusion approximation (Robledo-Arnuncio and Rousset, 2010). In this
case, σ2 has to be interpreted as a parameter that describes the rate of the spread of
ancestry back in time (Barton et al., 2002), which can differ markedly from the single
generation squared axial parent-offspring distance.

Here, we will need to describe the chance that pairs of lineages of homologous
loci come into close proximity. For this, we assume that the two lineages diffuse in-
dependently. In this case, the sum of their movements can be described using a two-
dimensional Gaussian distribution with twice the variance of a single lineage. The
probability density that two lineages that were initially separated by (x0, y0) have a
pairwise distance of 0 along each axis at time t, or equivalently, that the sum of the
movements is (−x0,−y0), is therefore:

1
4πtσ2 exp

(
−x2

0 + y2
0

4tσ2

)
= 1

4πtσ2 exp
(

− r2

4tσ2

)
, (2.1)

where r =
√
x2

0 + y2
0 is the initial Euclidean distance between the two lineages.

This ignores the fact that once coalesced, lineages remain at a pairwise distance of
0. Wilkins (2004) gave recursions and approximate formulae (Form. A15, A17), that
account for this interference of lineages in two spatial dimensions. They show that
complex interference terms can be neglected as long as previous coalescence is suf-
ficiently rare. Thus, for describing the chance of pairwise coalescence in the relatively
recent past, Eq. 2.1 usually represents an accurate approximation, particularly for well-
separated samples. Other causes of correlations of movements are often of local geo-
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graphic nature, as in the cases of density fluctuations or local barriers. Such small-scale
heterogeneities often average outwhen viewed on larger scales, and the approximation
that lineagesmove independently remains accurate on these scales (Barton et al., 2002).

Figure 2.2: Diffusion model visualized in one spatial dimension. Our model is in fact
two-dimensional, but is qualitatively similar. Left: One realization of the movement of
ancestry of two homologous loci initially separated by distance r. In our model, there
is a chance that they coalesce every time they come close, which is indirectly propor-
tional to the local effective density parameter De (Appendix A). Right: In our model,
the probability density function of having moved distance ∆x at time t generations
back spreads out as a Gaussian distributionN(0, σ2t) with linearly increasing variance
of σ2t.

2.1.2 IBD Sharing in the Model

Using similar assumptions, Barton et al. (2013) calculated the probability that two in-
dividuals a certain distance apart share an IBD block longer than a minimum length
starting from a specified locus. For this specific purpose they could directly apply the
Wright-Malecot formula by replacing mutation with recombination. For practical in-
ference from IBD blocks, more general formulae describing the total number of shared
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blocks of a specific length L are advantageous. In this section,we derive such equations.

IBD blocks of age t

Following Ralph and Coop (2013), we first partition NL, the number of shared blocks
of map length L for a given pair of samples, into N t

L, the number of blocks coalescing
at time t:

E[NL] =
∫ ∞

0
E[N t

L] dt. (2.2)

Throughout this paper, such terms are always understood as a density with respect
to block length and time. Following the ancestry of two chromosomes back in time, a
change of genealogy only occurswhen there is a recombination event somewhere along
the lineage. Between these discrete jumps, genetic material can be traced as a single
locus. This allows us to further split E[N t

L] into the product of the expected number of
blocks of length L obtained by splitting the two chromosomes according to the Poisson
recombination over time twith the probability that a single locus coalesces time t ago.
We denote the first factor by E[Kt

L], and the second factor, commonly known as the
coalescence time distribution, by ψ(t):

E[N t
L] = E[Kt

L]ψ(t). (2.3)

Number of candidate blocks

Under our model assumptions, the position of all recombination events on two inde-
pendent chromosomes traced back until time t is given by a Poisson process with rate
2t. The expected number of all block pairs overlapping at an intersection length L can
then be calculated as follows. A recombination event occurs in a small region of map
length ∆L with a probability of 2t∆L, and the probability that a region of length L
does not recombine follows the exponential distribution exp(−2Lt). For chromosomes
of map length G, summing the possible start sites yields the expected total number of
blocks of length L:

E[Kt
L] = 2 · 2t exp(−2Lt) + (G− L)4t2 exp(−2Lt), (2.4)

where the first term describes the blocks starting at either edge and the second term
the fully interior blocks, which require two delimiting recombinations. Neglecting the
effects of chromosome edges (G ≫ L), this is approximated by:
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E[Kt
L] ≈ G4t2 exp(−2Lt). (2.5)

We will use Eq. 2.5 to derive an approximate formula for capturing the qualitative be-
havior of mean IBD sharing. The slightly more complex result, including edge effects
is derived analogously (Appendix B) and is used for inference.

Single locus coalescence probabilities

The probability ψ(t) that two homologous loci have their last common ancestor time
t ago depends on their pairwise sample distance r and the parameters of the demo-
graphic model. We can follow Barton et al. (2002) and approximate the probability of
a recent coalescence as the product of the probability of the pairwise sample distance
being 0 (Eq. 2.1) and a rate of local coalescence that, following Barton et al. (2013),
we shall denote by 1/(2De). In Appendix A, we justify this approximation and give a
formal definition of this so-called effective density De. In order to describe a globally
growing or declining population, which is particularly important for the human case
studied in this chapter, we let De depend on time t. Together, this yields:

ψ(t) = 1
2De(t)

1
4πtσ2 exp

(
− r2

4tσ2

)
. (2.6)

Full formula

Substituting Eq. 2.5 and Eq. 2.6 into Eq. 2.3 gives:

E[N t
L] = Gt

2De(t)πσ2 exp
(

− r2

4tσ2 − 2Lt
)
. (2.7)

To determine the total number of expected shared blocks, we have to integrate all
possible coalescence times t. For the class of power density functions, where

De(t) = Dt−β D > 0, β ∈ R, (2.8)

the integral yields explicit formulae. The important case of β = 0 models a constant
population density, while β > 0 and β < 0 describe populations with a growing or
declining density, respectively. With β > 0, the density approaches infinity for t = 0,
which corresponds to a negligible chance of coalescence at the present. However, since
we effectively fit block sharing on intermediate timescales (Fig. 2.9), this obvious prob-
lem of themodel is not very limiting in practice. This class of functions has been used to
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fit human demographic growth (Von Foerster et al., 1960). Importantly, linear combi-
nations of such terms can be used to build more complex density functions, including
polynomials for the special case β ∈ N, which then also yield analytical formulae.

Performing the integral of Eq. 2.2 gives the main result:

E[NL] = 2
−3β

2 −3 G

πDσ2

(
r√
Lσ

)2+β

K2+β

(√
2Lr
σ

)
. (2.9)

Integrating this formula with respect to the block length gives the expected number of
shared blocks longer than the threshold length L0:

E[N>L0 ] =
∫ ∞
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)
, (2.10)

whereKγ is the modified Bessel function of the second kind of degree γ (Abramowitz
and Stegun, 1964). We analyze Eq. 2.9 and 2.10 qualitatively in the discussion section,
and Fig. 2.3 depicts their accuracy on simulated data.

For a widely used functional form of population density change, an exponential
growth with rate β, the integral converges only for blocks of length 2L > β. Otherwise,
the exponential rate at which the long blocks are broken up is slower than the expo-
nentially increasing chance of local coalescence, and the expected number of blocks
does not vanish for large t. However, we can approximate exponential growth on in-
termediate timescales by using its standard Taylor expansion up to a certain term, and
then applying our results for the power density functions. Again, this effectively fits a
population density up to the intermediate timescales, where the truncated Taylor ap-
proximation is accurate, while circumventing the pathological behavior of the distant
past.

2.1.3 Fitting the Model to Data

To learn about recent demography, we fit the observed block-sharing between a set of
samples to Eq. 2.9. Here,we use a likelihoodmethod, inwhichwe approximate the like-
lihood function f : θ → Pr (x | θ) of the observed data x for a given set of parameters θ
(σ, D, β) with a composite likelihood f̃(θ). This allows us to estimate the approximate
standard deviations and confidence intervals from the empirical Fisher information
matrix. One can utilize standard numerical optimization techniques to find the maxi-
mum likelihood estimates θ̂MLE. In our analysiswe use theNelder-Meadmethod, as im-
plemented in the class GenericLikelihoodModel of the Python package statsmodels,
which proved to be numerically robust and quick.



23

Figure 2.3: Simulated IBD block sharing compared with theoretical expectations. We
show values normalized to give rates per pair and cM. Theoretical expectations are cal-
culated for each length bin using Eq. 2.10. For the five models described in the Meth-
ods section, we kept the population density constant at De = 1, with a dispersal rate
of σ = 2 on a torus of size 180, and simulated IBD block sharing between 150 cM
chromosomes spread out on a sub-grid with nodes 2 distance units apart (for a full
set of specific simulation parameters, see 2.5.1). For every model, we ran 20 replicate
simulations. Distances are measured in dispersal units (so that σ = 1) and error bars
depict the estimated standard deviations for each bin among the 20 runs to visualize
the uncertainty of the estimates. Dots are spread out for better visualization around
their original positions (middle dot).
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Poisson model

We can construct an approximate likelihood of observed block sharing by using an ap-
proach that follows Ralph and Coop (2013). First, for every pair of samples, we bin
block sharing with respect to shared block length into small length bins. Then, we
model the number of shared blocks within each of these bins as independent Pois-
son distributions around expected rates λi, which, for a small enough bin [Li, Li + ∆L]
can be approximated using Eq. 2.9:

λi(r, θ) = E[NLi
(r, θ)]∆L. (2.11)

Using this equation, we can calculate a composite likelihood of the observed data given
the demographic parameters θ (Appendix C).

Block detection errors

The detection of IBD blocks from genetic data is not a trivial task. In practice, one often
has to deal with erroneous detection (Browning and Browning, 2012). Blocks might be
called in the absence of true IBD blocks (false positives), and only a fraction of true
IBD blocks of a given length are detected (limited power), and there is a probability
of assigning them the wrong length (error). Following Ralph and Coop (2013) we can
include these errors into our likelihood framework. Careful analysis allows one to es-
timate block detection errors (Ralph and Coop, 2013), and the expected rates per bin
can be updated accordingly (Appendix D).

Assumption of Independence

This Poisson approximation assumes that all shared blocks are the outcomes of inde-
pendent processes. This is obviously an over-simplification. Block-sharing can be cor-
related along chromosomes and among different sample pairs because of the initially
shared movement of genetic material. Taking all these correlations into account would
go beyond the simple pairwise diffusion model. However, maximizing the likelihood
of actually correlated observations (composite likelihood) is a widely used practice in
inference from genetic data (e.g., Fearnhead and Donnelly (2002)). It still gives consis-
tent and asymptotically normal estimates, although the errors calculated from the cur-
vature of themaximum-likelihood surface at its maximum (Fisher-Informationmatrix)
will be too tight when the observations are actually correlated (Lindsay, 1988; Coffman
et al., 2016). Moreover, in many cases, correlations among blocks can be expected to
remain fairly weak since initial correlations in spatial movement are broken up quickly
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by recombination. When analyzing well-separated samples, sharing of long blocks is a
rare event and, thus, most of the observed block-sharing will originate from indepen-
dent coalescent events.

Adjacent IBD blocks

The theory and inference scheme introduced here are based on IBD blocks that have
been defined to be ended by any recombination event on the path to the common an-
cestor. However, multiple, consecutive IBD blocks of recent coancestry, for unphased
data from all four possible pairings of two sets of diploid chromosomes, produce an
unbroken segment of exceptionally high similarity that is detected as a single long IBD
block in practice. This can significantly inflate the number of observed IBD blocks of
a given length beyond the true value, especially for shorter IBD blocks (Chiang et al.,
2016).

If adjacent IBD blocks happen to be neighbors, the error estimationmodel by Ralph
and Coop (2013), which is based on introducing artificial IBD blocks of known length
partly accounts for this effect. However, this does not estimate the effect of short in-
breeding loopswhere ancestral geneticmaterial thatwas broken up by a recombination
fuses together again quickly (Fig. 2.1), rendering the IBD block ending recombination
event ineffective (Barton et al., 2013).

Intuitively, for a large neighborhood size (a parameter proportional to the product
of σ2 and effective density 4πσ2De) short inbreeding loops that significantly extend a re-
cent IBD block by quick re-coalescence are rare, and our approach remains valid. How-
ever, for a population with small neighborhood size, ineffective recombination events
can potentially confound observed block-sharing patterns and the estimates based on
them. This effect is driven mostly by coalescence within a few generations, before the
blocks migrate away from each other. Hence, local dispersal and breeding patterns are
important; however, the diffusion of ancestry usually only becomes accurate on inter-
mediate timescales. Therefore a generally applicable theoretical treatment of this issue
is not feasible. In this chapter, we study the effects of this model inaccuracy using sim-
ulations, and show that the inference scheme is not greatly affected in the simulated
scenarios.

2.1.4 Simulations

To test our equations and inference scheme, we simulated the sharing of IBD blocks in
a set of samples by tracing the ancestry of the chromosomes back in time for a vari-
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ety of spatial population models. Simulations were mostly done on a two-dimensional
torus that was large enough that IBD block sharing over more than half of the torus
was very unlikely; thus we effectively simulated a two-dimensional population with-
out boundary effects. Since sharing of long IBD blocks is very unlikely to originate far
back in time, we ran the simulations up to a maximal time tmax. If not otherwise stated,
we analyzed the sharing of true IBD blocks, in which every recombination event was
assumed to be effective.

Grid models

In our grid models, the nodes of a rectangular grid were occupied by a prespecified
number of pairs of homologous chromosomes to mimic diploid individuals. Similar
to the classic Wright-Fisher model of panmictic populations, for every chromosome, a
parentwas chosen independently for every discrete generation back,with the probabil-
ities described by a prespecified dispersal kernel. Poisson recombination events along
the chromosome induced a switch between the two parental chromosomes. Whenever
the ancestral material of the two distinct initial chromosomes fell on the same chromo-
some and overlaps for longer than a given threshold chromosome length, we stored the
resulting IBD block. We simulated the dispersal following discretized uniform, Gaus-
sian, and Laplace probability densities along each axis to have representatives of dis-
persal kernels with low, intermediate, and high kurtosis. To analyze the effects of a
growing or declining population density, we simulated a varying number of multiple
pairs of homologous chromosomes per node. A chromosome then first picks an an-
cestral node as before, and subsequently a random diploid ancestor from this node.
The grid model was also easily modified to simulate a classic nearest neighbor step-
ping stone model (Kimura and Weiss, 1964). Nodes were grouped into demes, and
each chromosome either chose its parent uniformly from within its own or one of the
neighboring demes.

Continuous model: Spatial Lambda-Fleming-Viot Process

We additionally simulated a model in which each individual occupied a position in
continuous space. For this, we utilized DISCSIM, a fast implementation (Kelleher et al.,
2014) of the recently introduced spatial Lambda-Fleming-Viot process. Summarizing
briefly, thismodel introduced by Barton et al. (2010) follows lineages backwards in time
and events are dropped randomly with a certain rate parameter and uniform spatial
density. In each such event, every lineage within radiusR is affected with the probabil-
ity u by this event. A prespecified number of parents, here two, are dropped uniformly
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within the disc, and every affected lineage jumps to them, switching parents according
to the recombination rate. Given an initial set of loci, DISCSIM generates their coales-
cence tree up to a specified time. The output contains a list of all coalescent nodes,
which we further analyzed to detect IBD block sharing.

2.1.5 Application to Eastern European Data

Currently, population genomic datasets which allow one to analyze long IBD blocks
are available mainly for humans. To test the inference scheme, we applied a dataset of
blocks shared betweenEuropeans,whichwas generated previously byRalph andCoop
(2013), and includes detailed error estimates for IBD block detection. They reported
significant differences in patterns of block sharing between Eastern and Western Eu-
ropean populations. Therefore, we concentrated our analysis on block sharing in the
Eastern European subset, as diffusion should be a better approximation for modeling
the spread of ancestry in continental regions. Moreover, Eastern European countries
are on average geographically more compact and, thus, the position data at the coun-
try level is expected to be more accurate.

The data

The detection method and the error analysis of the IBD block data were described in
detail by Ralph andCoop (2013). Summarizing briefly, IBD blockswere called for a sub-
sample of the POPRES dataset (Nelson et al., 2008) and genotyped at ~500, 000 SNPs
using the fastIBD method, as implemented in Beagle v3.3 (Browning and Browning,
2011). Every sample used in the analysis was required to have all reported grandpar-
ents from the same country. We analyzed block sharing between 125 Eastern European
samples (see also 2.5.1). We followed the geographic classification of Ralph and Coop
(2013), but excluded the six Russian and one Ukrainian samples, as location data at the
country level are likely very inaccurate for these two geographically extended coun-
tries. We analyzed shared blocks longer than 4 cM. Within our subsample, 1, 824 such
blocks were reported (Fig. 2.9). We set the position of each country to its current demo-
graphic center, defined as the weighted mean location (2.5.1). In our analysis, we used
sex average map lengths of autosomes given by the Decode map (Kong et al., 2002),
consistent with Ralph and Coop (2013).
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Data analysis

Throughout the analysis, we worked with block length bins ranging from 0 to 30 cM
with a bin width of ∆L = 0.1 cM, and applied the error function estimates reported by
Ralph and Coop (2013). For maximizing the likelihood, we calculated the likelihood of
block sharing in the bins from 4 cM to 20 cM, which is informative about the last few
centuries (Fig. 2.9). We excluded the longer shared blocks from our analysis since these
blocks have a considerable chance of originating in the last few generations, which is
not expected to be accurately captured in the diffusion model. Longer shared blocks
are also confounded by the sampling scheme that excluded individuals with reported
grandparents from different countries.

We used our inference scheme to fit several specific models of past density D as
follows:

• For a constant population: D = C.

• For a population growing at accelerating rate: D = C/t.

• For a growth model where the growth rate is fitted as well: D = Ct−β .

In each case, t measured time back in generations. To learn about the certainty of
estimates, in addition to using the curvature of the likelihood surface (Fisher infor-
mation matrix), we bootstrapped the data. Since we suspected strong correlations and
systematic deviations from the model, we resampled different units. We bootstrapped
on the level of blocks by redrawing each block a number of times following a Poisson
distribution of mean 1, and similarly over country pairs, since we suspected systematic
correlations on this level.

Furthermore, we analyzed the deviation of pairwise block sharing between pairs
of countries from the expected value predicted by the best fit model. For this, we as-
sumed that the observed block sharing was Poisson distributed around the predicted
block sharing. Transforming the block count data x → 2

√
x converts these Poisson dis-

tributions into approximately Gaussian distributions with standard deviation 1, which
helped visual inspection of the statistical significance of residuals.

Data Availability

We implemented the described methods to simulate and analyze IBD block sharing
data in Python. The source codewas uploaded to the freely available Github repository
https://git.ist.ac.at/harald.ringbauer/IBD-Analysis. The preprocessed human IBD block

https://git.ist.ac.at/harald.ringbauer/IBD-Analysis
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sharing data, including the detection error estimates used here, were the result of the
analysis of Ralph and Coop (2013), and can be freely accessed at http://www.github.
com/petrelharp/euroibd.

2.2 Results

2.2.1 Block-sharing in Simulated Data

We compared simulated block sharing patterns with the theoretical expectations. For
each bin, we depicted rates per pair and normalized for a rate per cM.

Constant population density

For a constant population density the theoretical expectation (Fig. 2.3) is given by Eq.
2.9:

E[NL] = G

8πDσ2

(
r√
lσ

)2

K2

(√
2l r
σ

)
,

where K2 is the modified Bessel function of the second kind of degree 2 (Abramowitz
and Stegun, 1964). This formula predicts that block-sharing approaches exponential
decay with distance, as Bessel functions Kγ(x) converge to

√
π
2r

exp (−r) for r ≫ 1
(Abramowitz and Stegun, 1964). This decay then dominates the polynomial terms in
front of the Bessel functions, and the slope of this exponential decay (on a log scale)
converges to

√
2L
σ

as
√

2L r
σ
> 1. For the long blocks considered here, this quick decay is

approached for pairwise sample distances of a few σ. In all simulations, block-sharing
patterns were very similar among the five different simulated models, and closely fol-
lowed the theoretical expectation (Fig. 2.3).

Growing and declining populations

We simulated block sharing for three scenarios of a growing, declining, and constant
population with growth parameters β = 1, 0,−1. Fig. 2.4 shows that the results are
again in good agreement with theory. We depicted the result for the simulated Laplace
dispersal. The other dispersal kernels yielded almost identical results. In all scenar-
ios, the decay of block sharing with distance approached exponential decay with rate
√

2l/σ, where the specific density scenario determined the speed of convergence.

http://www.github.com/petrelharp/euroibd
http://www.github.com/petrelharp/euroibd
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Figure 2.4:Various population density scenarios. Simulated IBD block sharing per pair
and cM in various density scenarios was compared to theoretical expectations based
on Eq. 2.9. The block sharing of a subset of 150 cM chromosomes 4 distance units apart
placed on an initial grid was analyzed. Along each axis, dispersal was modeled by a
Laplace distribution with σ = 1, and the number of diploid individuals per node n
either remained constant at n = 10, grew as n(t) = t, or declined as n(t) = 200/t; in
all cases, t denotes the time back measured in generations, and at every step, n(t) was
rounded to the nearest integer value. For each scenario, 20 replicate runs were done.
Dots depict the mean and error bars the standard deviation for every bin. The solid
lines show the theoretical prediction based on Eq. 2.9.
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2.2.2 Inference in Simulated Data

We tested our parametric inference scheme and analyzed its ability to recover the un-
derlying demographic parameters from simulated block-sharing data. For every simu-
lated block data set, we numerically computed themaximum likelihood estimates θMLE

for shared blocks between 4cM and 20 cM, put into bins of width 0.1 cM.

Constant population density

Results for the parameter inference for a population of constant density are depicted
in Fig. 2.5. We simulated a varying number of samples on a grid, consisting of one
chromosome each, to test the behavior of the inference scheme with respect to limited
sample size. Naturally, the variance of estimates increasedwith decreasing sample size,
but the bias remained small. Moreover, the estimated standard errors captured the true
estimator variance relatively well (2.5.2). This confirms that most of the shared blocks
were the result of uncorrelated coalescence events, as heuristically argued above. The
typical log-likelihood surface for a single simulated IBD block sharing data set was
found to be smooth (Fig. S2), and in all cases, numerical maximization did not result
in spurious maxima, even for initial estimates orders of magnitudes off. Moreover, es-
timates of density and dispersal rate were only slightly correlated in the scenario con-
sidered here (2.5.2).

Varying population density

We also tested the ability of the inference scheme to detect recent changes in popula-
tion densities. For this, we simulated three scenarios of a growing, declining, and con-
stant population with growth parameters β = 1, 0,−1. Results are depicted in Fig. 2.6.
The estimates of the demographic parameters allowed us to robustly distinguish these
three scenarios. Interestingly, accurate estimates of the dispersal rate were feasible in
all these demographic scenarios; even when fitting a model with constant population
size to the other two scenarios of a recently quickly changing population size (Fig. S1).
This can be explained by the fact that the eventual rate of decay, the main signal for
estimating σ from fitting Eq. 2.9, remains the same, independent of the specific popu-
lation density scenario. The speed of convergence varies, but in all cases, the eventual
rate is approached relatively quickly within several dispersal distances (Fig. 2.4).
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Figure 2.5: Maximum likelihood estimates. We simulated a Laplace model on a grid
of nodes of size 180 × 180 for t = 200 generations back. We set the dispersal rate at
σ = 2 and the number of individuals per node to D = 1. In every run, a random
subset of 100, 270, 440 or 625 chromosomes of map length 150 cM was picked from an
initial sample grid spaced two nodes apart. For each sample size, 100 simulations and
subsequent parameter estimates were run. Every dot depicts the maximum likelihood
parameter estimate of a single run. The 95% confidence intervals were calculated from
the Fisher information matrix.
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Figure 2.6: Likelihood estimates for various population density scenarios. The same
scenarios used in Fig. 2.4 were simulated. For 20 runs each, 625 chromosomes of length
150 cM were randomly picked from a sample grid and traced back using a Laplace
dispersal kernel with σ = 1; and the maximum likelihood fits and 95% confidence in-
tervals were calculated from their block sharing. For the estimated population density,
the true value of the simulations and the MLE estimate for every run are shown.
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Figure 2.7: Observable IBD blocks compared with theoretical predictions for true IBD
blocks. Simulations were run with DISCSIM for an initial grid of 150 cM chromosomes
that were 3 distance units apart on a torus with axial size 90. Dispersal rate was set to 1.
IBD blocks were detected as consecutive runs of coalescence times< 1000 generations,
and then used to estimate demographic parameters. For various densities correspond-
ing to neighborhood sizes 4−86, 10DISC-SIM runs were simulated. The mean of these
runs was compared with the theoretical prediction using Eq. 2.9 that assumes that ev-
ery recombination event is effective.
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True versus detectable IBD blocks

In Fig. 2.7, the effect of undetected recombination events on estimates of demographic
parameters and overall IBD block number is depicted. This was investigated with sim-
ulations in the DISCSIMmodel, as it allowed easy and continuous tuning of the neigh-
borhood size 4πσ2De through the parameter describing the probability that an event
hits an individualwithin its range (Barton et al., 2013). Pairwise coalescence times for all
pairs of loci along the chromosomewere extracted, but now, only the effective recombi-
nation eventswere counted,whichwere defined as jumps of coalescence times between
adjacent pairs of loci with at least one coalescence time older than a preset time thresh-
old of 1000 generations back, the time at which the backward simulations were run.
This would capture most short recombination-coalescence loops, while still being well
below the bulk of ancestral coalescence times. The effect of the non-detectable recom-
bination events became significant only for very low neighborhood sizes (< 15) when
the detected number of IBD blocks of a certain lengthwas inflated bywrongly inferring
multiple shorter blocks as a single longer block. While estimates for density remained
almost unbiased, the inferred dispersal rates increased significantly, likely due to an
excess of block sharing for distant samples. However, even for very low neighborhood
sizes, when the effective density of individuals measured in dispersal units was about
one (for neighborhood size 4πDeσ

2 ≈ 12.6), the upward bias remained less than 50%.

2.2.3 Sampling Guidelines

Edge effects

In practice, populations do not extend infinitely beyond the sampling area, but have
range boundaries. This forces lineages to deviate from the simple diffusion model,
as they cannot wander out of the species range (Wilkins and Wakeley, 2002; Wilkins,
2004). This might be a common violation of our model assumptions. We assessed how
much our inference method was affected using simulated data from habitats of lim-
ited size. In these simulations, we assumed that the lineages were reflected once they
reached a range boundary.

Our results indicated that, in cases when the boundaries were close to the samples,
such that the distance to the nearest samples was on the same order of magnitude as σ,
the estimates for the dispersal rate σ and density D become biased downward (2.5.3),
an effect also observed for the inference method of Novembre and Slatkin (2009) that is
based on the sharing of rare alleles. Similarly, we observed that the estimates forD and
σ become biased downward for habitats of width ≈ 10 σ. Therefore, we recommend
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to always check whether most of the samples are collected far from the habitat edges
(> σ) and whether the habitat is sufficiently large (diameter > 10 σ).

For the special case of rectangular habitats with reflecting boundaries, the method
of images described byWilkins (2004) gives a simple way of calculating the coalescence
probabilities for two spatially diffusing lineages (Eq. 2.6). In principle, it is straightfor-
ward to update our formulae for expected block sharing accordingly. One simply has
to add terms describing the expected block sharing with ghost samples reflected at
the edges. However, we did not implement this correction, as this approach cannot be
extended to more irregularly shaped habitats and boundary edges, as usually encoun-
tered in reality.

Clumped sample distribution

In practice, samples are not always evenly distributed, but are often clumped due to
sampling constraints. To investigate how such clustered sampling affects our inference
scheme,we compared the results of various scenarios of clumping (2.5.3). The estimates
and their inferred uncertainty were not affected substantially, only in the cases of very
asymmetric clumping we observed a small upward bias of dispersal estimates. This
overall robustness is not surprising, as the distribution of pairwise sampling distances
is not changed much as long as the clumping is not overly pathogenic (i.e., a very low
number of sample clusters).

2.2.4 Analysis of POPRES Data

Best fit models

When fitting our models to the Eastern European subset of the POPRES IBD block
data, the model of quick population growth with a population density De(t) = 1/t
fit markedly better than a model of constant population size, which underestimated
sharing of short blocks (Fig. 2.8) at the maximum likelihood parameters. In the more
complex model, De(t) = t−β , the growth rate parameter β was estimated to be close
to 1. The increase of log-likelihood was small (∆L = 1.1), especially when considering
that there are correlations in the data that make the difference of true likelihood even
smaller (Coffman et al., 2016). Similarly, fitting several more complex density functions
as sums of power terms did not significantly increase the likelihood. In all threemodels,
the estimates for dispersal σwere about 60–70km/√gen, even under the likelymisspec-
ified constant population size model (Table 2.1), and bootstrapping on the country pair
level yielded 95% confidence intervals that ranged from 45–80 km/√gen.
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Figure 2.8: Fit ofmodels to Eastern European block sharing data. (A) To better visualize
the data, observed block sharing was binned into distance and block length bins. The
dots depict the average block sharingwithin each bin and the lines are predictions from
the best fit models. The error bars represent standard deviations under the assumption
of Poisson counts in every bin; some are clearly too tight and there are outliers, which
hints at more systematic deviations at the country-pair level (see also Fig. 2.5).
(B) Residuals for pairs of countries for blocks of length 4–6 cM:Upper line in every field:
Total number of IBD blocks predicted by the best fit model. Lower line: Observed num-
ber of IBD blocks. Color of every field is determined by statistical significance (z-Value
when transformed x → 2

√
2x). Abbr.: AT: Austria, HU: Hungary, CZ: Czech Republic,

SK: Slovakia, SL: Slovenia, PL: Poland, RO: Romania, BG: Bulgaria, MK: Macedonia,
BA: Bosnia, HR: Croatia, RS: Serbia, ME: Montenegro, AL: Albania.

Table 2.1: Maximum Likelihood Estimates for Eastern European IBD data.
Density Model Parameter MLE-Estimate 95% CI Emp. 95% CI

De = D D 0.047 0.043–0.051 0.038–0.065
σ 67.8 62.9–72.8 53.03–81.50

De = D/t D 1.71 1.48–1.94 1.22–2.87
σ 62.6 56.1–69.0 42.2–82.6

De = Dt−β D 2.13 1.39–2.86 1.16–5.83
σ 63.0 56.2–69.8 44.2–82.4
β 1.05 0.98–1.13 0.90–1.25

All units so that distances are measured in km and time in generations. CIs are based on
Fisher Information matrix and empirical CIs are based on 100 estimates bootstrapped over
country pairs.
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The estimated parameter uncertainty when bootstrapping over single blocks was
only slightly larger than was estimated from the curvature of the likelihood, but boot-
strapping over country pairs gave markedly increased confidence intervals (Fig. S3),
which implies that there are systematic correlations at this level in the data. This was
further confirmed by the analysis of the residuals for the country pairs, which yielded
a gradient toward the Balkans for more block sharing than predicted by the best fit
models. The deviations were statistically most significant for short blocks because of
the increased power due to the higher number of shared blocks (Fig. 2.5); however, the
overall pattern also held for longer blocks (Fig. S4).

Figure 2.9: Left: Age of shared IBD blocks. Density of blocks of certain length origi-
nating t generations ago, as calculated from the 1/T population density growth model
with best fit parameters. Most of the signal is predicted to have arisen within the last
50 generations (green line). Block sharing would have been more recent assuming a
constant population density. Right: Distribution of block lengths used in our analysis
of empirical human data.

2.3 Discussion

The main goal of this article was to develop a robust inference scheme for populations
extended in two spatial dimensions that utilizes pairwise shared long IBD blocks to
reliably estimate the dispersal rate σ and the effective population densityDe separately.
For this, we derived analytical formulae for block sharing under an model of diffusion
of ancestry that extended the previous work of Barton et al. (2013), and fit these results
by maximizing a composite likelihood similar to that used by Ralph and Coop (2013).
Using extensive tests on data simulated under a variety of scenarios, we demonstrated
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that our method could robustly perform this task.

Baharian et al. (2016) recently independently arrived at similar formulae for block
sharing under a model of spatial diffusion, which they fit by regressing block shar-
ing binned according to pairwise geographic distance and block length. Our work is
conceptually similar, but provides several important extensions. We additionally de-
scribed the effect of recent population density changes,which seems especially relevant
for human populations. For the special case of a constant population size, our results
matched an equivalent result of Baharian et al. (2016), and our approach allowed us to
additionally incorporate chromosomal edge effects. Moreover, our likelihood frame-
work offers several advantages over regressing binned data because it makes use of
the information contained in the lengths of shared blocks. It can also be used to quan-
tify the uncertainty of the parameter estimates, and can readily include error estimates
for block detection. Another major contribution is our extensive testing on simulated
data. These simulations yielded insights into the general accuracy of the underlying
idealized model assumptions. They also helped us to investigate how several devia-
tions from the model that might occur in practice, including ineffective recombination
events, wrongly specified growth models, irregular sample distribution and nearby
habitat boundaries, affect inference.

Exponential decay of IBD block sharing with distance and block length

The derived formulae for sharing long IBD blocks under diffusion of ancestry are struc-
turally similar to the Wright-Malecot formula (Barton et al., 2013) that describes allelic
identity by state using similar approximations. A polynomial factor is multiplied with
a Bessel function of the second kind, Kγ

(√
2λ r

σ

)
; for allelic correlation λ = µ, the mu-

tation rate, while here λ = L, the IBD block map length. For long blocks, L is much
larger than typical mutation rates µ. This allows us to probe the tail of the Bessel func-
tion (

√
2λx

σ
> 1) where it approaches exponential decay that dominates the polynomial

factor. This exponential decay occurs with both an increasing block length
√
L and an

increasing geographic distance r. The theory predicts that for long blocks this decay
can be over orders of magnitude when pairwise geographic sample distance increases
multiple dispersal distances (Fig. 2.3), which is observed in the human data (Fig. 2.8).
This pattern persists even in the case of recent population density changes (Fig. 2.4).
When global density changes can be modeled as the sums of power terms of the form
Eq. 2.8, the result for expected block sharing will be given by the sums of the corre-
sponding Bessel functions (Eq. 2.9). Each of those approaches exponential decay with
rate

√
2L/σ; thus, also their sum does. Therefore, estimates of the dispersal rate σ that
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use the decay rate in the exponential regime can be expected to be robust with respect
to recent demographic history.

2.3.1 Implications for Demographic Inference

The fast rate at which long blocks are broken up and the ability to probe the exponen-
tial regime of decay offer several significant advantages for demographic inference,
which our inference scheme can utilize. First, long blocks typically stem from very re-
cent times (Fig. 2.9). This is clearly advantageous for populations that have been in
equilibrium for only a relatively short time, as is likely often the case. Inference meth-
ods that rely on allelic correlations probe recent timescales as well (Barton et al., 2013).
They similarly pick up locally increased identity by state by recent coancestry. How-
ever, this is often only a small signal on top of a majority of identity by state stemming
from ancient times. Thus, thesemethods aremuchmore susceptible to confounding by
ancestral structure (Meirmans, 2012), and have stringent, often unrealistic, equilibrium
time requirements (Leblois et al., 2003), which our method can avoid. For instance, in
the human case, the best fit model predicts that most long blocks stem from within
the last 50 generations (Fig 2.9). Second, quick exponential decay, both with sampling
distance and block length, offers a very robust signal for demographic inference. As
demonstrated, the expected number of blocks that are multiple cM long decays by or-
ders of magnitude over a geographical scale of several dispersal distance units. This
pattern should be relatively robustwith respect to small-scale heterogeneities of habitat
or dispersal. Such quick decay also aids robust inference, as shown by the accuracy of
the inferencemethod on simulated data. This is in contrast to inference that is based on
classic measures of pairwise genetic similarity. Such measures usually only decay with
the logarithm of distance (Barton et al., 2002), which causes low and often problematic
signal to noise ratios (Watts et al., 2007). Third, utilizing the logarithmic regime of the
Wright-Malecot formula only allows one to infer the neighborhood size proportional
to the product of density and dispersal. Naturally, however, their separate values are
of interest. As demonstrated, inference based on long IBD blocks allows one to obtain
robust separate estimates of these two important demographic parameters.

2.3.2 Analysis of Human Data

The analysis of human data nicely demonstrates our inference scheme. The true demo-
graphic scenario is doubtlessmore complex, including heterogeneous, time-dependent
migration rates, and large-scale migrations. However, qualitatively the patterns of IBD
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block sharing appear to fit well with our diffusion model. Despite several significant
deviations, the best fit model explains the overall broad trends in the empirical data
(Fig. 2.8), such as the decay of the number of shared blocks with both increasing ge-
ographic distance and block length. Using our inferred model, we predicted most of
the shared blocks we used (> 4 cM) and hence, our signal originates within the last 50
generations (Fig. 2.9), which corresponds to the past 1450 years (assuming 29 years per
generation (Fenner, 2005)). This mostly postdates the period of large-scale migrations
in Europe (”Völkerwanderung” (Davies, 2014)). Our inferred demographic parameters
seem to be plausible. There is a clear signal for rapidly accelerating recent population
growth, which is in agreement with historical estimates (McEvedy et al., 1978) and pre-
vious genetic studies based on the allele frequency spectrum (Keinan and Clark, 2012;
Gao and Keinan, 2016). Historical dispersal estimates infer values of typical migration
distances per generation ranging from a few to several dozen kilometers (Wijsman and
Cavalli-Sforza, 1984; Pooley and Turnbull, 2005). While agreeing on orders of magni-
tude, these are somewhat lower than our estimates (σ ≈ 50 − 100km/√gen). However,
there is also evidence that preindustrial individual human migrations over large dis-
tances are rare, but occur at a significant rate (Pooley and Turnbull, 2005).

We detected a systematic, large-scale deviation from a simple diffusion model with
uniform population density, as there is a clear gradient for higher block sharing in the
direction of the Balkan countries (Fig. 2.5). This was already observed by Ralph and
Coop (2013). They hypothesized that this could be due to the historic Slavic expan-
sion, a hypothesis supported by admixture analysis (Hellenthal et al., 2014). However,
the pattern of increased block sharing also holds for longer, typically younger blocks,
which could hint additionally at a consistently lower population density in these re-
gions. Such systematic regional deviations from the diffusion model also imply that
care should be taken when estimating parameters and their uncertainty ranges.

2.3.3 Outlook

Our inference scheme based on long IBD blocks requires large amounts of data, as it
needs dense genotype data from a few dozen individuals, spatial information of the
samples, and a linkage map. However, the novel opportunities and advantages for in-
ference of recent demography should justify the effort. The possibility to accurately
estimate dispersal distances and past effective population densities could yield inter-
esting novel insights for a whole range of organisms. The necessary datasets are within
reach for several systems, and they will become evenmore accessible in the near future
with increasing genotyping capacities.
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A salient extension of ourmodelwould be to address complications such as anisotropy
(Jay et al., 2013) and large-scale heterogeneities in migration patterns or population
densities across the landscape. For classic measures of genetic similarity, elaborate
computational techniques have been recently applied for inference within such com-
plex demographic scenarios (Duforet-Frebourg and Blum, 2014; Petkova et al., 2015).
As argued above, analysis of IBD blocks would be even more suited to this task, as the
length of shared blocks gives additional information. However, analytical solutions,
which hugely facilitate inference, are likely no longer feasible. Inference will have to be
based on numerical predictions, although utilizing block sharing of different lengths
will be even more computationally intensive than extracting information from a sin-
gle genetic similarity matrix. Consequently, this challenge is beyond the scope of this
paper. We hope that future work will help to fully utilize the potential of shared IBD
blocks, and that our inference schememarks only one step in a new era of demographic
inference.

2.4 Appendix

2.4.1 Appendix A: Effective Density

We use diffusion to model the separation of two lineages backward in time. Let r(x, t)
denote the probability density of the vector x of pairwise distances along each axis at
time t back. In our model two lineages coalesce instantaneously with a coalescence rate
ν(x) that depends on x. For the probability of coalescing at time t ago, we get:

ψ(t) =
∫

R2
r(x, t)ν(x) dx.

In cases where only discrete sample distances x are possible, such as the stepping stone
model, the integral has to be replaced with a sum. The key observation is that ν(x) is
usually negligible outside a small area around the origin, since in most models only
very close samples (|x| ≈ σ) have an appreciable chance to coalesce. Within such small
areas around the origin, for t ≫ 1 we approximate r(x, t) with ≈ r(0, t) and get:

ψ(t) ≈ r(0, t)
∫

R2
ν(x) dx = r(0, t) 1

2De

, (2.12)

where we have defined 1/(2De) :=
∫

R2 ν(x) dx. It can be shown that stepping stone
models asymptotically converge to this model when rescaling appropriately (Barton
et al., 2002, 2013). With demes separated by one distance unit De corresponds to the
number of diploid individuals per deme, which motivates the name effective density.
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Here we give this more general definition of De to allow one to directly calculate its
value in various scenarios we simulated above (2.5.2).

2.4.2 Appendix B: Chromosomal Edge Effects

Here, we give the full result for block sharing that includes chromosomal edge effects,
which we use for inference. We shall denote the formula Eq. 2.9 with fixed G = 1M
with nL(β), where the dependencies other than β are suppressed for ease of notation.
Then, integrating Eq. 2.4 yields:

E[NL] = (G− L)nL(β) + nL(β − 1),

the formula for one chromosome of length G. For multiple chromosomes of dif-
ferent lengths one has to sum this formula over all chromosomes. For pairs of diploid
individuals, the resulting formula has to be also multiplied by a factor of four, since for
every pair of individuals four pairs of chromosomes are compared.

2.4.3 Appendix C: Likelihood

Using the Poisson approximation (Eq. 2.11), the likelihood of a pair of samples (j) at
distance r sharing blocks of length L⃗ = L1, . . . , Ln that fall into a set of length bins
i1, . . . , in is given by:

f̃j = Pr(L⃗ | r, θ) = Cλi1λi2 · · ·λin exp(−
∑

i

λi), (2.13)

where C absorbs all constants that do not depend on the model parameters θ. This
constant can be dropped when doing likelihood based analysis. Continuing to assume
independence, we take the product over all pairwise likelihoods f̃j to get the total com-
posite likelihood:

f̃(L⃗, θ) =
∏
Pairs j

f̃j

(
L⃗j, rj, θ

)
,

where L⃗j denotes the shared blocks of the jth pair.

The number of pairs n(n−1)
2 increases quadratically with sample size n. This scal-

ing is advantageous for an inference scheme, but implies that the runtime also grows
with the square of sample size. However, algorithms to maximize functions with a low
number of parameters are very efficient, so even sample sizes of hundreds of individ-
uals can be easily handled. Calculation can be also sped up by grouping pairs with
the same pairwise distance. For instance, when analyzing multiple individuals from
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a population with the same spatial coordinates the λi do not have to be calculated re-
peatedly for every individual pair. Denoting the length bins of blocks shared over all
pairs by i1, . . . , in and the number of pairwise comparisons by k yields:

Pr(L⃗ | r, θ, k) = Cknλi1λi2 · · ·λin exp(−k
∑

i

λi),

where the factorCkn does not depend on themodel parameters and can be dropped
when maximizing the likelihood.

Appendix D: Block Detection Errors

The probability density λ̃(y) of actually observing a pairwise shared block of length y
can be calculated from the probability λ(x) of sharing true blocks of length x:

λ̃(y) = f(y) +
∫ G

0
R(y, x)c(x)λ(x) dx, (2.14)

where f(y) describes the false discovery rate function depending on block length y,
c(x) the power to detect a block of length x and R(y, x) the probability of detecting a
block of true length x as block of length y. Doing a careful analysis using techniques
such asmanually inserting shared blocks and rerunning the IBD block detection allows
one to estimate these error functions (Ralph and Coop, 2013).

This error model is straightforwardly included into the framework of working with
small length bins. First, for every block length bin of a pair of samples first the predicted
true sharing λ is calculated for a set of demographic parameters θ. Second, the predic-
tions are updated according to Eq. 2.14 with the detection error estimates to get the
predicted rates λ̃ when accounting for errors. Third, the likelihood of observed block
sharing are computed as before.



45

2.5 Supplementary Material

2.5.1 Supplementary Information 1: POPRES analysis

Location data for every country was downloaded from http://cs.baylor.edu/~hamerly/
software/europe_population_weighted_centers.txt. Montenegro was not listed, so coordi-
nates were set to its capital Podgorica. This should not be problematic as only one sam-
ple from Montenegro entered the analysis.

http://cs.baylor.edu/~hamerly/software/europe_population_weighted_centers.txt
http://cs.baylor.edu/~hamerly/software/europe_population_weighted_centers.txt
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Table 2.2: Location and number of samples used for inference (compare (Ralph and
Coop, 2013)).

Country Nr individuals
Austria 14
Hungary 19
Czech Republic 9
Slovakia 1
Slovenia 2
Poland 22
Romania 14
Bulgaria 1
Macedonia 4
Bosnia 9
Croatia 9
Serbia 11
Montenegro 1
Albania 9
Total 125
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2.5.2 Supplementary Information 2: Simulation Details

Parameters values

Given the formula 1/(2De) :=
∫

R2 ν(x) dx (Appendix A) for the effective density, it is
straightforward to calculate the effective density De for the models used here to simu-
late IBD block sharing.

First, in the case of the described grid model, where every node occupied by a sin-
gle diploid individual is separated by one distance unit, ν(x) is simply the chance of
changing pairwise distance by−xmultipliedwith a factor 1/2. Summing 2∑ ν(x) over
all pairwise distances therefore is simply the sum over all probabilities of moving dis-
tance x. This trivially sums to 1, independent of the exact shape of the dispersal kernel.
Therefore, the effective density is given byDe = 1. Whenmodelingmultiple individual
per node, such as in a stepping stone model, an analogous calculation shows thatDe is
given by the number of diploid individuals per node.

For the DISCSIM model, two lineages coalesce when they are hit by the same event
and both lineages jump to the same ancestral chromosome. Therefore, ν(x) is the in-
tegrated rate of all those events affecting two individuals at distance x. Exchange the
order of integrals in the full integral then yields ν(x) = 1

2u
2R4π2. Normalizing with

the rate by which an individual gets hit by an event gives the rate in generation times:
1
2R

2πu and therefore De = 1
R2πu

.

The dispersal rate σ2 in the deme and grid model is simply given by the axial vari-
ance of the single generation dispersal kernel. In the DISCSIMmodel, in everymigration
event a lineage jumps from a random point within a circle of radius R to another ran-
dom point, the average squared distance of such jumps can be calculated to beR2. This
is two times the axial variance, and thus σ2 = R2

2 .

Simulation parameters

Here we give the simulation parameters used for generating the pictures above. Since
we used discretized dispersal kernels for the simulations on grids, throughout the pa-
per we always adjusted the parameters to draw from the continuous dispersal kernels
(Laplace, Normal, Uniform) such that the empirical single generation axial σ2 matched
the target value on a simulated very large number of discretized random draws.

For the simulations used to generate Fig. 3, we used the following parameters:
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Parameter Value

Torus Size (Axis) 180
Sample Distance (Axis) 2
Chromosome length 150 cM
Locus Nr. (DISCSIM) 1500
σ (axial, per generation) 2

u (DISCSIM) 1
8π

R (DISCSIM)
√

2 · 2
Deme Size (Axis, deme model) 5

tMax (in generations) 200

Visualisation of axial dispersal kernels with σ2 = 2, value on right top gives excess
kurtosis:

Comparison Confidence Intervals

Here we compare the empirical 95% confidence interval from Fig. 5 to the mean length
of the estimated confidence intervals, which shows that the estimates from the curva-
ture of the likelihood surface capture parameter uncertainties rather well. This indi-
cates that IBD blocks originate from mostly independent events in the scenarios simu-
lated here. We also give the correlation of σ andD based on 100 replicate runs for each
sample size.
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Sample Size σ De Correlation
Emp. CI Est. CI Emp. CI Est. CI (MLE-estimates)

100 0.967 1.12 1.24 1.07 0.1
270 0.304 0.390 0.350 0.332 -0.16
440 0.258 0.239 0.219 0.200 - 0.10
625 0.209 0.166 0.186 0.140 -0.20
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2.5.3 Supplementary Information 3: Simulations

Clumping of individuals

To assess how much our inference method is affected by clumping, we simulated four
scenarios of two different kinds of clumping. Simulations were always done on a torus
grid with axial length 96, with Laplace dispersal along each axis, dispersal distance set
such that σ = 1 and assuming a constant population size.

Regular Clumping

First, in four scenarios, a total number of 576 samples (150 cM chromosomes) were
clustered on regular grids:

• Scenario 1: Samples are evenly spaced 4 distance units apart.

• Scenario 2: Samples are clustered into 2 × 2 clusters 8 distance units apart (along
each axis).

• Scenario 3: Samples are clustered into 3×3 clusters 12 distance units apart (along
each axis).

• Scenario 4: Samples are clustered into 4×4 clusters 16 distance units apart (along
each axis).

This sampling scheme is visualized in the following picture:



51

We simulated block sharing until t = 200 generations back. Our inference scheme
applied to blocks 4–20 cM simulated under 20 replicates of each of these scenarios
yielded the following parameter estimates and 95% confidence intervals:

The inference method was very robust with respect to clumping, neither the bias
nor the uncertainty of estimates differed substantially between the sampling scenarios
considered here.
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Irregular Clumping

We then also assessed the effect of more irregular and asymmetric clumping. In four
scenarios, a total number of 576 samples (150 cM chromosomes) were clustered to dif-
ferent degrees:

• Scenario 1: Samples are evenly spaced 4 distance units apart on a regular grid.

• Scenario 2: Every sample is independently drawn from all grid positions.

• Scenario 3: Randomly clustered samples are simulated in three steps. First, cen-
ters of clusters are drawn at random. Then, for every center a random number
is drawn from a geometric distribution with mean 5 to determine the number
of samples per cluster. Last, for each individual sample, the offset by the mean
is determined by a discretized Gaussian with standard deviation σ = 5 along
each axis. Individual samples are drawn until the total number of 576 samples is
reached.

• Scenario 4: Same as in Scenario 3, but now the number of samples in every cluster
is geometrically distributed with mean 50.

Single realizations of the randomclustering schemes described above are visualized
in the following picture:
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For each scenario, we did 20 replicates. In Scenario 2 − 4, the sample positions were
generated independently for every replicate, and in each case we simulated block shar-
ing until t = 200 generations back. Our inference scheme applied to blocks of length
4–20 cM yielded the following parameter estimates and 95% confidence intervals:

Overall, irregular clumping did not severely affect estimates. However, dispersal
estimates became slightly biased upwards with increasing degree of clumping. This
weak effect is likely due to clusters of individuals on very small spatial scales; since for
geographically close samples the diffusion approximation is not expected to accurately
predict leptokurtic single generation dispersal kernel. This hypothesis is supported by
the fact that the bias vanishes if spatial size of the sample clusters is increased (data not
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shown).

Edge effects

To assess the effect of nearby habitat edges on our inference method, we simulated fi-
nite rectangular habitats. For simulations, we utilized our node model, as above with
axial Laplace dispersal such that σ = 2. We assumed that lineages get reflected each
time they would trace back beyond an edge. That is, if in a single generation back a lin-
eage would havemigrated a certain distance beyond the habitat boundary, that lineage
moves to a location an equally far distance from the boundary, but inside the habitat.
We simulated four scenarios, where reflective boundaries were surrounding a 12 × 12
array of samples (150 cM chromosomes) spaced two σ apart.

1. The reflective boundary was at a distance 10 σ.

2. The reflective boundary was at a distance 5 σ.

3. The reflective boundary was at a distance 1 σ.

4. The reflective boundary was at a distance 0.5 σ.

This sampling scheme is illustrated in the following figure:
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We simulated block sharing until t = 200 generations back. Our inference scheme
applied to blocks 4–20 cM simulated under 20 replicates of each of these scenarios
yielded the following parameter estimates and 95% confidence intervals:

Both dispersal and density estimates got noticeably biased downwards as soon as
range boundaries got closer, but remained right on orders of magnitude.

Limited habitat size

To assess the effect of limited habitat size compared to dispersal width σ, we simu-
lated a finite rectangular habitat. Similarly, we utilized our grid model with reflective
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boundaries, and a Laplace dispersal kernel along each axis. We simulated four scenar-
ios, where the samples were distributed on a fixed 15×15 grid two distance units apart
from each other within a total habitat of axial width 60. Dispersal was set to various
values:

• Scenario 1: σ = 1 (habitat width is 60 σ).

• Scenario 2: σ = 2 (habitat width is 30 σ).

• Scenario 3: σ = 5 (habitat width is 12 σ).

• Scenario 4: σ = 10 (habitat width is 6 σ).

These sampling schemes and width of σ are illustrated in the following figure:

We simulated block sharing until t = 200 generations back. Our inference scheme
applied to blocks 4–20 cM simulated under 20 replicates of each of these scenarios
yielded the following parameter estimates and 95% confidence intervals:
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For habitats of width ≈ 10 σ and smaller the inference method gave markedly
downward biased estimates for σ and De, with particularly large bias for De.





3. Estimating barriers to gene flow
from distorted isolation by distance
patterns

Abstract. In continuous populations with local migration, nearby pairs of individuals
have on average more similar genotypes than geographically well separated pairs. A
barrier to gene flow distorts this classical pattern of isolation by distance. Genetic sim-
ilarity is decreased for sample pairs on different sides of the barrier and increased for
pairs on the same side near the barrier. Here, we introduce an inference scheme that
utilizes this signal to detect and estimate the strength of a linear barrier to gene flow
in two dimensions. We use a diffusion approximation to model the effects of a barrier
on the geographical spread of ancestry backwards in time. This approach allows us to
calculate the chance of recent coalescence and probability of identity by descent. We
introduce an inference scheme that fits these theoretical results to the geographical
covariance structure of bialleleic genetic markers. It can estimate the strength of the
barrier as well as several demographic parameters. We investigate the power of our
inference scheme to detect barriers by applying it to a wide range of simulated data.
We also showcase an example application to a Antirrhinum majus (snapdragon) flower
color hybrid zone, where we do not detect any signal of a strong genome wide barrier
to gene flow.

Many populations are distributed across geographically extended habi-
tats that are sometimes interrupted by barriers to gene flow. They can
arise due to physical obstacles that reduce migration, but can also be
caused by genetic incompatibilities, which reduce gene flow across

a hybrid zone (Barton, 1979). Barriers can prevent locally adapted populations from
being swamped by dispersal, and they can facilitate divergence, ultimately leading to
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speciation. Therefore, they play a central role not only in conservation, but also in evo-
lutionary biology and ecology. As direct observations of individual movement and
reproduction are time-consuming and expensive, and moreover can only give a snap-
shot in time, there is much interest in indirect methods that infer such barriers from
observed geographic genetic structure.

Such methods to detect barriers from genetic data can be grouped into two dis-
tinct approaches (Guillot et al., 2009): Clustering methods, that detect geographic ge-
netic discontinuities between populations by grouping individuals into population
units based on genetic similarity (Falush et al., 2003; Guillot et al., 2005; Dupanloup
et al., 2002), and edge detection methods, that identify areas of sharp genetic change
(Womble, 1951; Cercueil et al., 2007; Manni et al., 2004). None of these approaches is
directly linked to any spatial population genetic model. They can therefore infer the ex-
istence of a barrier, but cannot givemeaningful and biologically interpretable estimates
of its strength. In addition, these approaches are often confounded by isolation by dis-
tance patterns (Safner et al., 2011; Meirmans, 2012), whereby individuals nearby are
more similar than distant individuals (Wright, 1943) due to recent co-ancestry. While
the description of this effect has a long history in theoretical population genetics of ho-
mogeneous populations (Malécot, 1948; Slatkin, 1993; Rousset, 1997; Hardy and Veke-
mans, 1999; Barton et al., 2002), it has not been included into a practically applicable
method to estimate the strength of a barrier to gene flow.

Here, we fill this gap, and introduce a method that infers the strength of a barrier in
a two-dimensional population by fitting a population genetic model. Our method uti-
lizes the fact that a barrier to gene flow distorts classical isolation by distance patterns
(Fig. 3.1). Based on theoretical work of (Nagylaki, 1988), Barton (2008) constructed a
theoretical framework. He showed that in two spatial dimensions, where fluctuations
of allele frequencies are more localized than in one dimension, these effects of a bar-
rier on allele frequency fluctuations can be significant already for intermediate bar-
rier strengths. This signal therefore holds big potential for demographic inference. The
derivation of Barton (2008) also shows that the effect of a barrier depends primarily
on short-lived, localized fluctuations. In general, isolation by distance patterns equili-
brate relatively quickly and depend mostly on recent demography (Barton et al., 2013;
Aguillon et al., 2017). Therefore, an inference scheme based on distorted isolation by
distance patterns infers contemporary barriers to gene flow, and should be robust to
confounding effects of ancestral structure.

Here, we first expand previous theoretical results that describe the effect of a barrier
on classical isolation bydistance patterns (Nagylaki, 1988; Barton, 2008).We introduce a
model where ancestry diffuses backwards in time and is partially reflected by a barrier.
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This allows us to numerically calculate the probability of recent co-ancestry, which can
then be fitted to genetic data. As single nucleotide polymorphism (SNP) datasets are
currently widely used, we develop and implement ways to fit such biallelic genetic
markers.

We test our inference scheme on synthetic data simulated under an explicit pop-
ulation genetics model and investigate how it is affected by confounding factors, for
instance in a scenario of secondary contact. We also show a practical application, in
which we apply our inference scheme to a hybrid zone population of Antirrhinum ma-
jus, in which a sharp transition in flower color and a causal flower color gene occurs
(Whibley et al., 2006). We apply our method to test whether there is also a genome
wide barrier to contemporary gene flow. To this end, we analyze a dataset of 12389
individuals and 60 suitable SNP markers.

3.1 Materials and Methods

We first outline the model underlying our inference scheme and discuss its assump-
tions, and then describe how our method fits this model to observed genotype data. In
brief, we use a diffusion approximation for the spread of ancestry to calculate the prob-
ability of recent identity by descent between pairs of samples. We then fit our model
to data by finding the demographic parameters that maximize the fit of observed ho-
mozygosity between all sample pairs.

3.1.1 Model

Nomodel can capture all complexities of the real demographic history of a population.
Therefore, the aim is not to have a mathematically exact model, but one that robustly
captures general patterns of spatial fluctuations of allele frequencies. We use a model
of a two-dimensional continuous habitat that is interrupted by a barrier and assume
that the demographic parameters are the same on both sides. In short, we calculate
the chance of pairwise coalescence before a long distance migration or mutation event.
We use a diffusion model to trace lineages backwards in time, and assume that rare
long distance migration events, which counteract the build up of local allele frequency
fluctuations, occur at a constant rate. To calculate the equilibrium identity by descent
pattern, i.e. the probability that two lineages coalesce before a rare long distancemigra-
tion or mutation event happen, we first derive the coalescence probability at specific
times t in the past and then integrate over t.
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Figure 3.1:Geographic fluctuations of allele frequencies.We simulated individual bial-
lelic genotype data for one locus in a two-dimensional habitat in absence of a barrier
to gene flow (left) and in presence of a strong barrier (right). We used the backward
simulation scheme on a grid outlined below with a axial variance of dispersal σ2 = 1,
one genotype per deme, a long distance migration rate µ = 0.001 and a complete bar-
rier κ = 0. Top: Discrete genotype data. The two colors in each grid position code for
the two possible allelic states. Bottom: Allele frequencies are smoothed with a Gaus-
sian Kernel for better visualization. This figure demonstrates the underlying idea of
our method: A barrier distorts random geographic fluctuations of allele frequencies.
The average strength of these local fluctuations increases next to the barrier, and there
is less correlation across the barrier. This signal can be used to infer the strength of the
barrier.
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Our model is closely related to previous theoretical treatments of allelic identiy by
state in presence of a barrier to gene flow (Nagylaki, 1988; Barton, 2008). For a pop-
ulation occupying a linear habitat, Nagylaki (1988) derived continuous equations for
identity by state by taking the limit of a model of linear demes that exchange migrants
(the so called stepping stone model). Barton (2008) expanded this by solving an anal-
ogous equation for two-dimensional populations. His formulas are given as a numer-
ical Fourier transform that diverges for nearby individuals. These equations for two-
dimensional populations are formally problematic, as theywere not obtained by rescal-
ing (which is impossible in two spatial dimensions), but Barton (2008) demonstrated
that the solution is in close agreement with the solutions from a discrete stepping stone
model for all but very close distances.

Here, we base our inference scheme on a different approach. We use a diffusion
approximation to describe the spread of ancestry backwards in time. While the results
are formally equivalent, we found our model to be computationally more robust, and,
most importantly, more efficient. This approach allows us to apply our method to sam-
ple sizes of hundreds to thousands of individuals, and dozens to hundreds of loci.

Diffusion approximation

We model the spread of ancestry using a geographic diffusion approximation, which
has a long history in population genetics (Fisher, 1937; Wright, 1943; Malécot, 1948;
Nagylaki, 1978). Tracing a lineage of one locus backwards in time, the total spatial
movement is the sum of many independent migration events. If these events are suffi-
ciently uncorrelated, the central limit theorem establishes that the total displacement
tends towards a normal distribution. Therefore, the overall spread of ancestry can be
approximated as a randomwalk process. This approximation is accurate as long as rare
large scale events do not significantly influence themovement of ancestral lineages. The
diffusion approximation is expected to be most accurate on recent to intermediate time
scales, on which large scale events such as colonizations often play only a minor role.

In the absence of a barrier, the process is a free diffusion, and the probability density
function (PDF) of finding an ancestor at position x at time t back along a given axis is
given by a Gaussian probability density function around the current position x0 and
variance σ2t that increases linearly backwards in time:

G0(x, y, t) := 1√
2πσ2t

exp
(

−(x− y)2

2σ2t

)
. (3.1)

The dispersal rate σ describes the speed of the spread of ancestry. In case of a homoge-
neous density of individuals across the landscape, the backward dispersal probability
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density equals the probability density of lineages moving forward in time. The disper-
sal rate σ2 can be interpreted as the axial variance of the one generational dispersal
kernel then, if time is measured in generations (Rousset, 1997). The diffusion approxi-
mation is fully determined by the equation:

∂

∂t
G(x, y, t) = σ2

2
∂2

∂x2G(x, y, t) (3.2)

with initial condition:

G(x, y; t = 0) = δ(x− y). (3.3)

Partial barrier to gene flow

Wemodel a barrier as a partially permeable barrier to diffusion of ancestry. For a barrier
at x = 0, the following interface boundary conditions have to be supplied (Grebenkov
et al., 2014):

lim
ϵ→0

(
∂

∂x
G(x, y, t)

)
x=+ϵ

= lim
ϵ→0

(
∂

∂x
G(x, y, t)

)
x=−ϵ

=2κ
σ2

(
lim
ϵ→0

G(ϵ, y; t) − lim
ϵ→0

G(−ϵ, y; t)
)
.

(3.4)

The first line describes the constancy of the flux across the barrier. For κ = 0 there
is no flux across the barrier, and the barrier is infinitely strong. On the other hand, the
case κ = ∞ implies the continuity of the probability density across the barrier and the
solution reduces to free diffusion. Comparing to differential equation (54) of (Nagy-
laki, 1988), which is derived by rescaling a stepping stone model, gives an intuitive
interpretation of κ: This parameter corresponds to the fraction of successful migrants
across a barrier if demes are spaced one dispersal unit apart. The quotient γ := 2κ

σ2 cor-
responds to an equivalent factor in formula (54) of Nagylaki (1978). It is also the inverse
of the barrier strength parameterB defined by Barton and Bengtsson (1986), which has
dimension of distance.

Equations 3.2, 3.3 and 3.4 allow for an analytic solution for the probability density
with a barrier (Grebenkov et al., 2014):
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G(x, y, t) =
exp

(
− (x−y)2

2σ2t

)
+ exp

(
− (x+y)2

2σ2t

)
√

2πσ2t

− 2κ
σ2 exp

(4κ
σ2 (y − x+ 2kt)

)
erfc

(
y − x+ 4κt√

2σ2t

)
, x > 0

G(x, y, t) = 2κ
σ2 exp

(4κ
σ2 (y − x+ 2kt)

)
erfc

(
y − x+ 4κt√

2σ2t

)
, x < 0,

(3.5)

where erfc(z) denotes the complementary error function. These expressions are
valid for y > 0, and their extension to y < 0 is straightforward by the symmetry
x, y → −x,−y. In Fig. 3.2, these formulas are compared to random walk simulations.
The PDF converges to the Gaussian of free Brownian motion for κ → 0. For a two-
dimensional diffusion process with a linear barrier at x = 0, the full solution is given
by multiplying the one-dimensional density functions Eq. 3.2 for movement parallel to
the barrier and Eq. 3.5 for movement normal to the barrier.

Figure 3.2: Comparison of analytical diffusion formulas (Eq. 3.5) with discrete random
walk simulations for t = 500 in the past. We simulated a one-dimensional random
walk on an array of linear discrete nodes at all integers and a barrier at x = 0.5. Every
generation, a random step to one side ismade (which implies that σ = 1). If amovement
would be across the barrier, it is realizedwith probability κ (otherwise no step ismade).
For each of four barrier strengths, we simulated 106 replicates starting at x = 20. The
blue line depicts the corresponding Gaussian probability density of free diffusion in
absence of a barrier.
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Pairwise coalescent probabilities

We use the diffusion approximation to model the distribution of coalescence times for
pairs of individuals. We approximate the chance of co-ancestry originating in a small
time interval dt around time t ago as the product of the probability of coming close
and a rate of local coalescence 1/(2De) (Ringbauer et al., 2017a). The local density De

describes a rate with which nearby lineages coalesce (Wright, 1943). In a stepping stone
model, De corresponds to the number of diploid individual per deme (Barton et al.,
2002). This approximation ignores that lineages do not move apart again once they
have coalesced. An equivalent simplification is made by Barton (2008), and it has been
shown to be accurate as long as coalescence is sufficiently rare (Wilkins, 2004). Since the
dispersal process is symmetrical in time in our model of constant population density,
the chance that two lineages at current position x and y are close at time t back equals
the probability density that a single lineage moves from x to y in time 2t. Formally, the
probability density ψ(x, y, t) of coalescence Tc at time t in the past is approximated by

ψ(x, y, t) = Pr(Tc ∈ [t, t+ dt])
dt

≈ G(x, y, 2t) 1
2De

. (3.6)

Identity by descent

We define identity by descent F of two samples at x⃗ and y⃗ as the chance that two lin-
eages coalesce before a long distance migration or, equivalently (but unlikely for single
nucleotide polymorphisms), a mutation event occurs along one of the lineages. This
definition is closely related to the widely used fixation index FST , and both definitions
agree in the limiting case of an infinite population (see Rousset (2002) for a review).
If one assumes that mutation or long-distance migration occur at a constant rate µ, it
is straightforward to calculate the probability that two lineages coalesce before a long
distance event:

F (x, y) =
∫ ∞

0
ψ(x, y, t) exp (−2µt) dt (3.7)

In the absence of a barrier, the probability of identity by descent varies only with the
Euclidean distance r between two individuals. In this special case, the integral in Eq.
3.7 has an analytical solution, the classical Wright-Malecot formula (Barton et al., 2002,
2013):

F (r) = 1
4πDeσ2K0

(√
2µ r
σ

)
, (3.8)
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whereK0 is the modified Bessel function of the second kind of degree zero. A well
known caveat of this analytical solution is that K0 diverges logarithmically as r → 0
(Barton et al., 2002). Similarly, the integral in Eq. 3.7 diverges for nearby individuals. As
for the Wright-Malecot formula, this is caused by a behavior of the diffusion approx-
imation for short timescales, as in this model the chance of two lineages being close
diverges as 1/t for t → 0. An obvious solution to circumvent this problem is to start
integration at time t0 > 0. Here, we choose one generation time, a biologically plau-
sible value. We could not find an analytical solution, but Eq. 3.7 can be numerically
integrated.

Our results show that if a barrier to gene flow is present, identity is decreased across
the barrier, and increased for points on the same side of the barrier (Fig. 3.3). Inter-
estingly, the increase of F for a pair of points x⃗ and y⃗ on the same side of the barrier
equals the decrease of identity between points x⃗ and y⃗′, where y⃗′ is the point y⃗ reflected
across the barrier. This symmetry originates from a reflection principle of the under-
lying random walk model, as lineages that do not cross the barrier behave as if they
were reflected. This symmetry already occurs in the barrier point density function (Eq.
3.5). It implies that for a complete barrier identity by descent can increase to at most
twice the value in absence of a barrier, as observed in the equivalent case of a range
boundary (Wilkins, 2004).

Rescaling

Not all parameters in Eq. 3.7 are independent. Consequently, they cannot be estimated
separately, as in absence of a barrier (Rousset, 1997; Barton et al., 2013). Therefore, we
replace the four demographic parameters θ⃗ : De, κ, µ, σ in equation Eq. 3.6 with three
compound parameters θ̄: Neighborhood size Nb := 4Deσ

2π (a classical parameter that
goes back to Wright (1943)), a scaled barrier parameter γ := 2κ

σ2 (corresponding to the
inverse of Barton’s B), and a scaled long-distance migration ratem := 2µ

σ2 (Appendix).

3.1.2 Fitting the model to data

A typical dataset consists of diploid genotypes gi
1, . . . , g

i
n ∈ {0, 0.5, 1} for a marker i and

individuals at geographic positions p⃗1, . . . , p⃗n. To infer the underlying demographic
parameters θ⃗ from observed data, we have to develop a way to fit our model to such
data.

In principle, it is straightforward to transform the probability of identity by descent
as calculated by our model into expected allele frequency covariances. Denoting the
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Figure 3.3: Decay of identity by descent F in presence of a strong barrier to gene flow
(κ = 0.01), and moderate neighborhood size (σ = 1,De = 5, µ = 0.003). We calculate F
for an individual at x = 1 (blue illustration), an individual at x = −1 (red illustration)
and an individual at x = −5 (yellow illustration) with, for all of them, other individuals
to the left of the barrier at x = 0 that only differ in their x-coordinate (right panel). The
analytical solution in the absence of a barrier is given by the Wright-Malecot formula
(Eq. 3.8), the others are integrated numerically (Eq. 3.7).

.

probability of identity by descent between a pair of samples k and l by Fkl and the
population mean allele frequency of a marker i by p̄i, the expected covariance between
their genotypes is given by:

Cov
(
gi

k, g
i
l

)
= Fklp̄i(1 − p̄i)

However, often mean allele frequencies have to be estimated from the data, and
estimating the means of allele frequencies for manymarkers would lead to over-fitting.
To circumvent this caveat, we developed and tested different methods to fit identity
by descent to genotype data without directly estimating all mean allele frequencies.
We included one approach that models individual genotypes as binomial draws from
latent allele frequencies modeled by a Gaussian random field (Supp. Text 1).

Fitting pairwise homozygosity

Of all tested fitting methods a relatively simple approach that fits the fraction of pair-
wise homozygosity (defined as fraction of identical genotypes) has least bias and sam-
pling variation (Supp. Text 2). Throughout this work, we use this method for data anal-
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ysis. In the following we give a brief outline of howwe calculate expected homozygos-
ity and how we fit it to data.

The observed average homozygosity hkl for a pair of individuals k and lwith geno-
types gi

k and gi
l ∈ {0, 0.5, 1} atmarkers i = 1, 2, . . . , n can be straightforwardly calculated

from the data:

hkl = 1
n

n∑
i=1

(
gi

kg
i
l + (1 − gi

k)(1 − gi
l)
)
. (3.9)

Our model predicts the pairwise chance of identity by descent F , and these probabili-
ties can be used to calculate the expected values of average homozygosities E(hkl). The
expected pairwise homozygosity of a pair of samples k and l at a marker i is given by:

E(hi
kl) = Fkl + (1 − Fkl)(p̄i

2 + (1 − p̄i)2).

The first term gives the probability of having the same genotype due to identity
of descent and the second describes the probability of having the same genotype by
chance. To avoid estimating all mean allele frequencies, we average over all nmarkers
to get the expected fraction of pairwise identical genotypes:

E(hkl) = Fkl + (1 − Fkl)
1
n

∑
i

(
p̄i

2 + (1 − p̄i)2
)

︸ ︷︷ ︸
:=s

(3.10)

Instead of fitting all unknown allele frequencies, now only one additional com-
pound parameter s has to be fit in addition to the demographic parameters θ. We tried
fitting this formula to observed data with a composite likelihood approach. However,
we found that minimizing the sum of all squared deviations between the expected and
observed pairwise homozygosities

θ̄ = min
θ,s

∑
k<l

(E(hkl(θ, s)) − hkl)2 (3.11)

gives almost identical results, while being additionally much faster (Supp. Text 2).

Fitting pairwise homozygosities can be easily extended to deme data, where nearby
individuals have been binned, by plugging deme allele frequencies into Eq. 3.9

Estimation uncertainties

To learn about estimation uncertainty, we bootstrap over genetic markers. Unlinked
markers contain almost independent information because their spatial movements are
typically correlated only on very short timescales. Therefore, resampling loci at random
is expected to yield accurate empirical confidence intervals.
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3.1.3 Implementation

In brief, our inference scheme runs the following three computational steps for a given
set of demographic parameters θ⃗:

1. Calculate pairwise F for all pairs of samples with integral Eq. 3.7.

2. Use these pairwise F to calculate the expected pairwise homozygosity for all
pairs of samples with Eq. 3.10.

3. Calculate the sum of squared differences between the expected and observed
pairwise homozygosities (Eq. 3.11).

Our program then finds the parameters θ̄ that minimize this function by using the
Levenberg-Marquardt algorithm, as implemented in the Python package Scipy.

We implemented the described simulation and inferencemethodsmostly in Python.
To speed up calculations we parallelized the calculations for pairwise F , so that they
can be run simultaneously on different CPUs. The evaluation of the integrand Eq. 3.7
is a computational bottleneck. We implemented this calculation in C, to make use of
the superior speed of a compiled language.

The inference scheme has to compute the expected identity by state for every pair
of samples. It therefore scales quadratically with the number of individuals, as there
are n(n−1)

2 such pairs. It has a runtime of several hours for a individual/deme number
of 1000 when run on a single standard desktop CPU. In order to produce a sufficient
number of replicates and bootstraps, we utilized a scientific computer cluster at IST
Austria. To speed up runtime, individuals can be grouped into demes. If clustering is
done on small scales for bins at most a few σ in diameter, it does not significantly affect
the estimation scheme (Supp. Text 2). In our results, we capped γ to a maximum value
of 1, as for γ > 1 the effect of a barrier becomes negligible (Fig. 3.2).

3.1.4 Simulations

We extensively tested our inference scheme on simulated data sets. We used a step-
ping stone model with De individuals per deme, and we traced ancestry backwards
in time (Fig. 3.4). Every generation each individual picks an ancestor at random with
probabilities given by a dispersal kernel. Here, we use a discretized Laplace distribu-
tion as axial dispersal kernel. Due to the rapid convergence to the continuous diffusion
approximation (Fig. 3.2), the specific choice of dispersal kernel has no significant im-
pact as long as its axial variance σ2 remains finite. If two lineages happen to pick the
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same ancestor, they coalesce into a single ancestral lineage. We simulate long distance
migration events to occur at a constant rate. If they occur, the corresponding lineage
picks an allele at random from the population mean allele frequency p̄. To model the
effects of a barrier, we follow Nagylaki (1988) and realize migration events across the
barrier only with relative probability κ, the barrier strength parameter. For constant
deme sizes, this backwards model is equivalent to a forward model in which a large
number of gametes disperse with the same dispersal kernel (Nagylaki, 1988).

After a preset maximum number of generations, every lineage picks an allele at
random according to the mean allele frequency p̄. Different, unlinked loci were simu-
lated as independent runs. We picked mean allele frequencies at random according to
a predetermined distribution, usually Gaussian with standard deviation σ(p̄) around
an overall mean of 0.5. We also investigated how robust our inference scheme is to sce-
narios of secondary contact. We simulated them by assigning each ancestral lineage an
allele with probability p̄l or p̄r, according to its location at time of secondary contact.

Figure 3.4: Model used to generate synthetic data sets. Ancestry is traced back on a
two-dimensional grid of demes in discrete time steps. An ancestral deme is randomly
picked according to a dispersal kernel, and then an ancestor is chosen at random from
within this deme. If lineages fall on the same ancestor, they coalesce into a single lin-
eage. For each unique lineage and every step, there is constant chance that a long dis-
tancemigration event occurs. In this case, the lineage and all corresponding individuals
pick the same allele randomly drawn from a mean allele frequency.

We stress that the data is simulated under a process very similar to our model. For
real data, there could be other deviations which might further reduce the power of
the inference scheme. Therefore, our results should be seen as limits for the inference
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scheme in case of ideal data.

3.1.5 Antirrhinum majus Data

To show the practical utility of our inference scheme, we applied it to data from an An-
tirrhinum majus hybrid zone. This hybrid zone is located in a valley in the Eastern Pyre-
nees. It shows a geographically narrow transition between two flower color morphs, in
which a range of hybrid flower color phenotypes occur. This transition is mainly deter-
mined by three major flower color genotypes that regulate the intensity and patterning
of flower color (Whibley et al., 2006; Bradley et al., 2017). We applied our method to a
dataset of 12389 plants collected between 2009 and 2014, which were genotyped for 112
SNP markers.

To satisfy the assumptions of our model as good as possible, we filtered markers
based on four quality criteria: minor allele frequency, large scale geographic correla-
tion, linkage disequilibrium and deviations from local Hardy Weinberg equilibrium.
SNP design and filtering are explained in detail in Supp. Text 3. After this data cleaning
step, we were left with 60 unlinked polymorphic SNPs, that were spaced throughout
most of the genome (Supp. Text 3).

3.1.6 Data Availability

The source code for the implementation of our inference scheme is freely accessible at
the Github repository https://github.com/hringbauer/BarrierInferPublic.git

The Antirrhinum majus dataset is a subset of samples collected from 2009 to 2014
with the long term goal to build a pedigree. The details of this dataset and data filtering
are described in Supp. Text 3.

3.2 Results

3.2.1 Inference on Simulated Data

We investigated the overall capability of this method to estimate barrier strengths and
the accuracy of empirical bootstrap uncertainty estimates. Our tests show that the infer-
ence scheme can reliably recover barrier strengths as well as demographic parameters
(Fig. 3.5 and Fig. 3.6). Estimates of the neighborhood size are robust, but show a slight
upward bias. These slight biases are likely due to the fact that a continuous model is

https://github.com/hringbauer/BarrierInferPublic.git
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used to fit to discrete simulations. Estimates of the long distance migration rate m are
more variable, but are not significantly biased. In all cases, the range of bootstrap esti-
mates mostly overlaps with the true value to the expected degree. This result indicates
that bootstrapping gives accurate uncertainty estimates (Fig. 3.6).

The stronger the barrier, the more strongly it affects allele frequency fluctuations.
Our results indicate that the inference scheme has higher power to infer strong barri-
ers (γ < 0.1), whereas weaker barriers cannot be inferred reliably (Fig. 3.5). The exact
power of the method will depend on a combination of several factors, in particular the
strength and the geographic extent of isolation by distance patterns, as well as the ge-
ographic sampling scheme. As a barrier mostly affects fluctuations near it, generally a
high sampling density next to the putative barrier is preferable. Our power simulations
for a specific, realistic scenario indicate that at least a few dozen markers and several
hundred individuals are required for robust inference of strong barriers (Supp. Text 1).

Figure 3.5: Parameter estimates on simulated data. For each replicate, we simulated a
population of 60×40 individuals spaced one node apart, and then applied the inference
scheme to fit neighborhood size Nbh, barrier strength γ, scaled long-distance migra-
tion rate m, as well as the allele frequency variance parameter s. To keep run-times
manageable, we binned individuals into 2×2 demes. We simulated 10 different barrier
strengths (γ = 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0), with 20 replicate runs each.
Every dot represents an estimate for one such replicate. Horizontal lines depict the true
parameters used in the simulations (σ = 1, De = 5, µ = 0.003, σ(p̄) = 0.1). We split up
the barrier plot into two parts with different axes (blue and red) for better visibility.
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Figure 3.6: Bootstrap estimates on simulated data: We simulated 60×40 individuals on
a grid spaced one distance unit apart. We simulated 5 replicates of 4 different barrier
strengths (γ = 0, 0.1, 0.5, 1.0). For each of the 20 data-sets we inferred the parameters
and additionally did 20 estimateswhen bootstrapping over loci. Horizontal lines depict
the true parameters used in the simulations (σ = 1, De = 5, µ = 0.003, σ(p̄) = 0.1)

.

Secondary contact

Barriers to gene flow sometimes coincide with areas of secondary contact, for instance
in secondary hybrid zones (Barton andHewitt, 1985). Allele frequenciesmight have di-
verged before this contact, and present day allele frequency differences are not caused
by the presence of a barrier. However, these clines resembles the effect of a barrier, and
might be mistakenly inferred as such. One salient way to deal with this problem is to
removemarkers that show large scale geographic structure of allele frequency. One can
base inference on a subset of markers that have similar mean allele frequency across
thewhole population range and only display fluctuations on small geographical scales,
which equilibrate quickly (Barton et al., 2013). We tested this approach on simulated
data.When applying the inference scheme to a simulated scenario of secondary contact
with divergent allele frequencies, it wrongly infers a barrier in case of no filtering (Fig.
3.7). However, when using the subset of loci that show no large scale correlation with
geography, the false positive signal decreases. Moreover, filtering out loci with large
scale structure does not remove the signal in case of a true barrier since secondary con-
tact (Fig. 3.7). However, if sampling is only done on small spatial scales, such filtering
could become problematic, as one might remove signal from local fluctuations as well.
Therefore we advise to always check that the sampling area is bigger than the spatial
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scale of isolation by distance patterns before any markers are removed.

Figure 3.7: Parameter estimates in a simulation of secondary contact. The two ancestral
populations allele frequencies were drawn independently from a Gaussian with stan-
dard deviation 0.1 around an overall mean of 0.5. We simulated a population of 50×20
individuals spaced two dispersal units apart, with a barrier in the middle of the x-axis,
and secondary contact 100 generations ago. We simulated 25 replicates of two scenar-
ios after contact. Left: No barrier to gene flow after contact. Right: A strong barrier to
gene flow (γ = 0.05). We then filtered out loci that were correlated with either x- or
y-axis coordinates more than four different R2 values before doing inference for each
of these replicates. The two bottom figures show the number of filtered loci that were
used for inference.

Unknown barrier locations

Our inference scheme assumes that the location of the putative barrier is known a pri-
ori. In practice one might not always have this information, or one perhaps wants to
test the hypothesis of barriers in different locations. In this case, one can repeatedly ap-
ply the inference scheme and fit different potential barrier positions. When testing this
approach on simulated data, the inference scheme only inferred a strong barrier near
the true position (Fig. 3.8). The estimate uncertainties on the habitat edges are inflated.
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This effect is caused by limited power to infer barriers near sampling edges: One needs
a sufficient number of samples on both sides of a barrier to fit the strength of a barrier.

Figure 3.8: Testing various putative barrier positions on synthetic data. We simulated a
single dataset as in Fig. 3.5 with a barrier strength of γ = 0.05. We applied our inference
scheme to fit 15 putative barrier locations, and bootstrapped 20 times over loci for each
putative barrier to visualize the uncertainty of the inferred parameters.

3.2.2 Hybrid Zone Analysis

We observed a clear isolation by distance pattern across the Antirrhinum hybrid zone
(Fig. 3.9). On average, mean identity by state for nearby plants is elevated by about two
percent above the background level, and falls away with increasing pairwise distance,
most rapidly over the first 2000meters. Our inference scheme fits this patternwell, with
an estimated neighborhood size of 188 (95% bootstrap confidence interval: 120 − 240,
Fig. 3.10).

Obviously there are demographic complications that are not captured by ourmodel,
such as heterogeneities in plant distributions and density. The population is not dis-
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tributed uniformly in two dimensions, as plants are often found in patches of suitable
habitat (Fig. 3.10). However, our analysis indicates that isolation by distance patterns
are neither strongly influenced by the cardinal direction or relative plant positions, nor
the geographic location within the hybrid zone (Supp. Text. 3). These observations im-
ply that our model assumptions are not grossly violated.

For putative barriers in the center of the hybrid zone, our inference scheme esti-
mates no barrier (γ > 1). Bootstrap estimates rarely fall below γ = 0.5, and all of them
are above γ = 0.1. When testing for barriers towards the flank of the hybrid zone,
estimates get more variable. Some estimates in both flanks indicate an intermediate
barrier to gene flow, but in each case some of the corresponding bootstrap estimates
also take the value of no barrier (γ > 1). This signal likely reflects the lower power to
infer barriers in these regions, as there is a higher sampling density in the center of the
hybrid zone (58.7% of the samples originate from within 500 meter of the flower color
transition). Only in one case, for the leftmost tested barrier, the bootstrap estimates do
not overlap with the value of the null hypothesis (γ = 1.0). This area also shows the
strongest small scale isolation by distance pattern (Supp. Text 3), and the density of
plants is very low in sampled patches (Personal Communication: Maria Melo). There-
fore, a potential explanation for this significant deviation from the null hypothesis of
constant demography and no barrier to gene flow is an exceptionally low plant density
in this area.

Given the overall good fit of isolation by distance with our inference scheme (Fig.
3.9), our results indicate that there is no strong genome wide barrier to contemporary
gene flow that coincideswith the flower color transition. As such a strong barrierwould
require many barrier loci spaced densely throughout the genome (Barton and Bengts-
son, 1986), this result comes as no surprise. At the moment, no other traits apart from
flower color are known to be divergent across the hybrid zone, despite much work to
detect them (Personal Communication: Maria Melo).

Previous results suggest the presence of a barrier to exchange of flower color alleles
(Whibley et al., 2006; Bradley et al., 2017) and indicate that selection maintains dif-
ferences in flower color (Ellis, 2016). Therefore, we applied our method to a subset of
polymorphic markers in the genetic neighborhood of two genes known to affect flower
color variation in the hybrid zone, Rosea and Eluta. However, bootstraps estimates var-
iedwidely for all tested barrier locations (results not shown), which indicates that there
is not sufficient signal in the data. This lack of power is likely due to the low number
of suitable SNP markers without steep allele frequency clines near this region in our
dataset (< 10). Simulations confirmed that for this low number of markers there is not
enough power to detect even strong barriers (Supp. Text 1).
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Figure 3.9: Decay of pairwise homozygosity with geographic distance for hybrid zone
data. All pairwise homozygosities for the filtered dataset were binned according to
pairwise distance. We also plot the best fit (Nbh = 188,m = 4.4 · 10−4, s = 0.5247).
Formula 3.10 can be used to translate pairwise homozygosity into pairwise F .
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Figure 3.10: Inference of various putative barrier positions on data from a Antirrhinum
majus population. We used our inference scheme to fit 15 barrier locations, and boot-
strapped 20 times over loci for each putative barrier (bootstrap estimates are shown in
orange and cyan). Bottom: Geographic distribution of 12389 samples. The color of each
dot represents flower-color phenotype.
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3.3 Discussion

To our knowledge, our scheme is the first method that infers the strength of the barrier
based on an explicit spatial population genetic model. There are several similarities
with the inference method BEDASSLE (Bradburd et al., 2013), which aims to disentan-
gle the effects of geographical isolation by distance and differences in ecological vari-
ables. This scheme is not based on an explicit population genetic model, but rather fits
the decay of genetic similarity with distance to a heuristic formula. In light of possibly
very complex demographic structure this approach is not necessarilyworse than fitting
our spatial model. However, this approach does not take the increased covariances on
the same side of a barrier into account, and does not make use of some valuable signal
because of that. Moreover, it uses a MCMC approach that is based on a model of Gaus-
sian random Fields, which is computationally too expensive to apply to hundreds or
even thousands of individuals or demes. In contrast, our method is well suited to data
sets of this magnitude.

Another widely used method to infer barriers to gene flow, Geneland, clusters in-
dividuals using their explicit geographic coordinates (Guillot et al., 2005). Safner et al.
(2011) identified it as one of the most potent methods to infer barriers to gene flow.
Therefore, we tested its performance on some of the datasets which we have generated
to test our scheme (Supp. Text 4). As described previously (Guillot and Santos, 2009;
Safner et al., 2011), Geneland’s ability to accurately infer barriers to gene flowdecreases
when isolation by distance patterns are present, as its underlying model assumptions
of discrete populationswithwell-defined allele frequencies are violated. Indeed, it fails
to detect a barrier to gene flow in our test data sets, that all exhibit such isolation by dis-
tance patterns (Supp. Text 4). In contrast, themethod introduced here can give accurate
estimates of the barrier strength in these scenarios. It is not confounded by isolation by
distance patterns; it in fact relies on the presence of this signal. Our method can there-
fore be seen as complementary to Geneland.

In contrast to BEDASSLE, Geneland and most other existing methods, which all
heuristically describe the strength of the parameter, the inference scheme introduced
here fits an explicit spatial population genetics model. It corresponds to Nagylaki’s γ
(Nagylaki, 1978), whose inverse 1/γ is equal to Barton’s barrier strength B (Barton and
Bengtsson, 1986). This correspondencemakes the inferred barrier strength parameter γ
interpretable directly in terms of population genetic theory. For instance, the parameter
B/σ2, which has dimension of time, must be large to retard the spread of even a neutral
allele (Barton and Bengtsson, 1986).

Our method can reliably estimate the presence of strong barrier (γ ⪅ 0.1), but there
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is little power to distinguish between a weak and no barrier (Fig. 3.5 and Fig. 3.6). The
reason is not a shortcoming of our inference scheme, but the fact that relatively weak
barriers do not significantly affect the spread of ancestry (Fig. 3.2). Therefore, it is in-
feasible to estimate the strength of weak barriers to gene flow, simply because they do
not have a significant effect on allele frequency covariances. This effect was already
observed by Barton et al. (2013), who found that in two spatial dimensions the effect
of a barrier starts to have appreciable effects on the spatial pattern of genetic marker
alleles when barrier strength B (which corresponds to 1/γ) is ≈ σ.

The exact power of the inference method depends on a range of factors. As a bar-
rier mostly affects nearby allele frequency fluctuations, a high sampling density spread
evenly on both sides of a putative barrier is ideal (Fig. 3.8). Our method is data hungry,
as it needs at least a few dozen SNPmarkers and at least hundreds of sampled individ-
uals (Supp. Text 2). This wealth of data is required since recent pairwise coalescence
events, which constitute the signal for our inference scheme, are rare events in most
realistic scenarios. As a rough rule of thumb, our inference scheme can be applied in
cases in which there is sufficient power to detect an overall isolation by distance pat-
tern.

Any realistic scenario has its own set of parameters and specific sampling scheme.
Our power simulations can only test a tiny fraction of possible combinations of these.
They helped to elucidate general underlying patterns, but cannot cover all specific
cases. Therefore, we recommend to do customized power simulations. Simulating the
specific sampling scheme, the maker number together with likely demographic pa-
rameters will help to determine whether the inference scheme has sufficient power to
detect putative barriers for the specific scenario of interest.

3.4 Outlook

The inference scheme introduced here fits a linear barrier, the most straight-forward
model for a barrier in two dimensions.We used an analytical formula (Eq. 3.5) tomodel
the spread of ancestry, which in turn allows one to reduce calculations for pairwise F
to a single numerical integral (Eq. 3.7). However, in practice barriers might be geo-
graphically more complex. There could also be multiple barriers in different locations
- which would be partly indicated by our method, but also invalidate its underlying
model of a single barrier. Such more complicated scenarios will most likely not allow
for simple formulas, and calculations for the chance of recent co-ancestry becomemuch
more challenging. One could trace the geographic ancestry distribution back with dis-
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cretized simulations, and use them to first calculate the expected distributions of recent
pairwise coalescence (Eq. 3.6) and consequently identity by descent patterns (Eq. 3.7)
. This salient extension to our model poses a numerical challenge, but it seems to be
within reach of present day computational power.

Our method fits allele frequencies, which can be confounded by deeper ancestral
patterns. By filtering loci that show large scale geographic variation, one can in prin-
cipal remove some of this ancestral genetic structure, but by doing so one might acci-
dentally remove true signal as well. This problem can be a severely confounding factor
when applying the inference method to scenarios were ancestral structure is present,
for instance zones of putative secondary contact.

One promising way to overcome this problem would be to base inference on iden-
tity by descent blocks, the direct genetic traces of recent co-ancestry (Browning and
Browning, 2012). As blocks of ancestral genetic material are split up at a constant rate
by recombination, the probability of sharing a block of length l decays exponentially
back in time (Ralph and Coop, 2013). Therefore, blocks longer than 5 cM, say, are very
unlikely to originate from co-ancestry older than 100 generations, even under relatively
extreme demographic scenarios. Moreover, the length of the blocks contains informa-
tion about the time of coalescent. Identifying such blocks is a non-trivial task, in partic-
ular when only un-phased genotype data is available (Browning and Browning, 2012).
It requires dense genotype data and linkage information. But in caseswhere IBD blocks
can be robustly called - as already possible for humans and somemodel organisms - an
inference scheme based on this signal holds great potential. Our method to model the
spread of ancestry can be combined with formulas for block sharing (Ralph and Coop,
2013; Ringbauer et al., 2017a) to calculate the expected number of shared IBD blocks in
presence of a barrier. These results could be used to fit observed block sharing data.

Summarizing, our method is only a first step to robustly infer barriers to gene flow
from genotype data. The techniques outlined here can be expanded in various direc-
tions to better deal with the complexities of real data, and to make full use of opportu-
nities within the era of population genomics. We hope that this will ultimately lead to
a better understanding of barriers to gene flow within many natural populations.
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3.5 Appendix

Here we give the full formula we fit, and describe the rescaling to a set of independent
effective parameters. Let x1, x2 denote the x-coordinate of the samples, ∆x(= x1 − x2)
and ∆y their separation along each axis. For the identity by state on different sides of
the barrier, plugging into formula Eq. 3.7 gives for pairwise F :
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We now rescale time, such that t′ = σ2t. The integral (dt′ = σ2 dt) transforms to:
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Defining Nbh := 4πDeσ
2, γ := 2κ

σ2 and m = 2µ
σ2 gives the full formula used for

inference:
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The formula for same sides of the barrier is rescaled analogously. The additional
term in the integrand becomes:
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3.6 Supplementary Material

3.6.1 Supplementary Information 1: Fitting Allele Frequencies

In the main text, we calculate the chance of pairwise identity by state F , which we de-
fined as the probability of coalescence before a long distance or mutation event. These
chances of recent co-ancestry can be only indirectly observed as covariances of allele
frequencies, and it is not immediately clear how to best fit these results to observed
data. The fitting is also further complicated by the fact that mean allele frequencies are
usually unknown. Fitting all of them would introduce many new parameters beyond
the small number of demographic parameters and likely lead to to over-fitting of the
data, as naive allele frequency estimates will be biased towards the most common di-
rection of the allele frequency fluctuations. There are different possible approaches to
deal with these problems. We decided to implement and test three different ways to
fit allele frequency fluctuations based on our model. Their full implementations are
available on the github repository: https://github.com/hringbauer/BarrierInferPublic.git

Method 1: Gaussian Random Field Method

In Computer Science and Machine Learning, the so called Gaussian Random Field
method is widely used to fit covariance structures (Rasmussen and Williams, 2006).
The goal is to fit the covariances themselves, and then use this fit to make new predic-
tions based on the fitted covariance structure. Here, we adapt this method to fit allele
frequency covariances. A similar approach has been recently used by Bradburd et al.
(2013).

Summarizing briefly, in the Gaussian Random Field method the observed data yi

are modeled to depend on known parameters x⃗i and to covary depending on these
known parameters. The covariances affect latent, unobserved variables fi. These unob-
served variables are drawn from a multivariate normal distribution with some mean
m and covariance matrix K : f ∼ N(m,K). The entries Kij of the covariance matrix
depend on xi and xj , and a set of so called hyper parameters θ:

Kij = K(xi, xj, θ)

The Gaussian Random Field approach utilizes the fact that a multivariate Gaussian
distribution is fully determined by its mean and its covariance matrix. It therefore pos-
sible to write down a full likelihood of the observed data given the covariance matrix,
by integrating over all latent variables f :

https://github.com/hringbauer/BarrierInferPublic.git
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L(y, θ) =
∫

f
P (y | f) P (f | K(x, θ)) df (3.12)

If one assumes that the data y are drawn as a Gaussian around the latent variable,
this integral can be solved analytically due to convenient properties of Gaussian prob-
ability densities. One can then easily calculate the marginal likelihood of the observed
data, and fit the hyper-parameters via maximizing this likelihood.

If the observations are restricted to binary discrete values (w.l.o.g. 0 or 1), it is still
possible to apply theGaussianRandomfieldmodel. One typically transforms the latent
variables f using a so called link function p(f) to take values pi between 0 and 1 (most
commonly the logit or the probit function), and then models the discrete observed val-
ues yi to be drawn binomially with mean pi. However, integral 3.12 cannot be solved
analytically anymore. As it is very high dimensional, direct numerical integration is
also computationally infeasible. Therefore, several analytical approximations to 3.12
are widely used (Nickisch and Rasmussen, 2008). For genotype data, we decided to uti-
lize a custom implementation of the Laplace method (Rasmussen andWilliams, 2006).
This widely used approach is based on a second order Taylor approximation around
the most likely latent variables fi. These and the Hessian are found numerically, and
these calculations can be done relatively fast. Using this approximation allows for a
analytical approximation of the total likelihood. A full description of the method can
be found in Rasmussen and Williams (2006).

Genetic datawith geographic information consists of discrete genotypes yi sampled
at positions x⃗i. W.l.o.g. biallelic markers have values 0 or 1. Diploids can be split up
into two haploid genotype data points. The Gaussian Random Field method can then
be adapted to fit covariance structure within such data, but one has to deal with some
peculiarities. Importantly, the magnitude of the allele frequency covariances depends
on the mean allele frequency p̄:

Cov(yi, yj)) = p̄ (1 − p̄)F (xi, xj), (3.13)

while our model predicts the F (xi, xj). In order to account for the additional terms, we
introduce a custom link function.Weutilize the inverse Fisher’s angular transformation
of allele frequency (Fisher et al., 1947):

p(f) := sin2
(
f

2

)

This is a valid link function, as its image is confined to the interval [0, 1]. Its useful-
ness stems from the fact that it solves the following differential equation:
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p′(f) =
√
p(f) (1 − p(f)).

Allele frequency fluctuations are usually small, and a first order approximation
p(f) ≈ p(f0) + p′(f0)∆f yields:

Cov ((p(f1), p(f2)) ≈ p′(f0)2Cov(f1, f2) = p0(1 − p0))Cov(f1, f2)

Comparing with Eq. 3.13 shows that this link function together with the F -Matrix
as Covariance kernel model the covariance structure of discrete genotypes. As we can
directly calculate F (xi, xj) with our model, this approach can be used to fit the demo-
graphic parameters θ to the data.

To deal with the problem of over-fitting by estimating a potentially large number of
mean allele frequencies, we adapted the Gaussian Random Field approach. Unknown
allele frequencies are not estimated directly, but only the variance of the unknown dis-
tribution of mean allele frequency: We model that mean latent variables are randomly
drawn from a distribution with Variance σ2 around some overall mean and that then
the latent variables fi are drawn with covariance matrix K around this means. If the
means are drawn from a normal distribution, the overall covariance will also be dis-
tributed as a multivariate normal distribution:

f ∼ N(0, K + Jσ2)

where J denotes the unit matrix, whose entries are all 1. Using this approach, we can
fit the effects of unknown distribution of mean allele frequencies as a single hyper-
parameter of the covariance matrix. For multiple, independent (unlinked) genotypes,
the marginal likelihoods can be multiplied.

Summarizing, the Gaussian Random Field approach allows us to calculate an ap-
proximate marginal likelihood of genotype data given the expected co-ancestry struc-
ture F based on some demographic hyper parameters θ. Using standard methods to
maximize likelihoods, we can find maximum likelihood estimates of these θ. After ex-
perimenting with several methods, we found that the standard Nelder-Mead method
works very reliably, and used it in all our implementations.

Our approach has two sources of error. First, it is not immediately clear how accu-
rate the Laplace approximation is for genotype data, in particular since allele frequency
correlations are typically weak. Second, allele frequency data will not be always dis-
tributed as a multivariate Gaussian. Under the model of diffusion of ancestry, there
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will also be higher order moments. For instance, having recent co-ancestry with in-
dividuals in one geographic direction makes it less likely to have shared co-ancestry
with individuals from the opposite direction, and this effect is not captured well by
the Gaussian Random Field model. Calculating these higher order moments would
go far beyond the pairwise diffusion model that we outline in this work. However, the
multivariate Gaussian approximation can be expected to be an accurate approximation
as long as fluctuations remain small (Barton et al., 2013).

Method 2: Maximizing Pairwise Likelihoods

This method maximizes the likelihood of observing the three states of pairwise geno-
types. Given two markers, there are four possible states: 00, 10, 01 and 11. Using our
calculations for the co-ancestry matrix F , it is straightforward to write down the prob-
ability for each of these for states. Denoting the mean allele frequency of marker 1 by p
and marker 0 by q:

P (00) = F · p+ (1 − F ) · p2

P (10) = P (01) = (1 − F ) · p · q

P (11) = F · q + (1 − F ) · q2.

As the mean allele frequency is usually unknown, we integrate over their unknown
distribution:

P (00) = F · p̄+ (1 − F ) ·
(
Var(p) + p̄2

)
P (10) = P (01) = (1 − F ) ·

(
p̄− Var(p) − p̄2

)
P (11) = F · q̄ + (1 − F ) ·

(
Var(q) + q̄2

)
This approach introduces one additional parameter: v := Var(p) = Var(q). By mul-

tiplying all pairwise likelihoods one gets at a composite likelihood that depends on
the demographic parameters θ and the variance parameter v. These pairwise likeli-
hoods are not independent - realized co-ancestry with one individual also increases
the probability of co-ancestry with other individuals near the related one. Therefore,
multiplying pairwise likelihoods does not yield the total likelihood of the observed
data. However, this composite likelihood should be seen as a way to fit the data, and
this approach will give consistent parameter estimates in the limit of large amounts of
sufficiently uncorrelated data. We implemented the maximization of this likelihood by
using the GenericLikelihoodModel class of the Python package statsmodels.
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Method 3: Pairwise Homozygosity

One can also fit identity-by-descent probabilities F based on the signal of pairwise
homozygosity. As stated in the main text, the chance of pairwise homozygosity for a
single marker is given by:

h = F + (1 − F ) · (p̄2 + (1 − p̄2)

Summing over all markers gives the expected fraction of pairwise homozygotes:

E(h) = F + (1 − F ) ·
∑
pi

Pr(pi) · (p2
i + (1 − pi)2)︸ ︷︷ ︸

:=s

In order to fit this signal, we minimize the sum of squared difference between the
expected and observed pairwise homozygosity for all pairs:

θ̄ = min
θ

∑
k<l

(h̄kl(θ, s) − hkl)2

In our implementation we use the method curvefit from the Python package Scipy.

Performance on simulated Data

To test which method performs best in scenarios with realistic parameters, we tested
them on simulated data sets. We used the simulation scheme outlined in the main text
to generate data with known demographic parameters, and applied the three meth-
ods described above. We first simulated and fitted scenarios without a barrier, in order
to test the general capability of the methods to accurately fit allele frequency fluctua-
tions. The outcome is visualized in Figure Fig. 3.11. Our results show that the Gaussian
Random Field method (Method 1) has a significant downward bias when estimating
the neighborhood size, whereas the pairwise likelihood and pairwise homozygosity
method are approximately unbiased. Our results also indicate that these two inference
methods produce highly correlated estimates and have similar estimation variances.
We also found that using the pairwise homozygosity method is a factor of 10 quicker
than using the pairwise likelihood method.

Limited Number of Loci and Individuals

Different methods are expected to perform differently when information is limited.
Therefore, we tested the three methods on datasets with a varying amount of data. We
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Figure 3.11: Fit to allele frequency fluctuations: We tested the three methods on syn-
thetic datasets generated using the method described in the main text. The datasets
consist of 1000 haploid individuals, situated on a grid of 50 × 20 individuals spaced 2
dispersal units apart along each axis, with genotype information for 200 loci. We sim-
ulated 25 replicate data sets for four different neighborhood sizes (and consequently
different magnitudes of allele frequency fluctuations). Throughout, m = 0.006 and a
random distribution of mean allele frequencies with σ(p) = 0.1. The lower row de-
picts the estimates for the Variance Parameter that fits the fluctuations of mean allele
frequencies, whose true value is different for all three used models.
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simulated two types of data sets: One with a varying number of loci, and one with a
varying number of individuals. Our results are visualized in Fig. 3.12 and Fig. 3.13.

Interestingly, the Gaussian Random Field method remains biased when the num-
ber of loci increases; however this bias vanishes with increasing number of individuals.
The estimator variance of the other two methods decreases slowly with increasing in-
formation. However, neither increasing the number of loci nor increasing the number
of individuals seem to yield dramatic increases in estimation accuracy.

Figure 3.12: Testing the methods on datasets with varying numbers of individuals. We
randomly sub-sampled the target number (200−2200 individuals) from a grid of 100 ×
40 haploid individuals spaced 1 dispersal units apart along each axis. We simulated
independent data sets with genotype information for 200 loci (m = 0.006,Nbh = 4π5 ≈
62.83 and σ(p) = 0.1)
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Figure 3.13: Testing the methods on datasets with varying number of loci. We simu-
lated independent data setswith varying number of independent loci (50-350).Haploid
individuals were spaced on a grid of 50 × 20 with a spacing of 1 dispersal unit along
each axis. (m = 0.006, Nbh = 4π5 ≈ 62.83 and σ(p) = 0.1)
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Fitting barriers with limited data

One can fit the barrier strength parameter γ while keeping the other parameters fixed.
This can be for instance useful if onewants to test the hypothesis of a barrier at a specific
subset of loci. One can then estimate the demographic parameters using all loci, and
proceed to fit γ based only on the subset of markers.

We therefore tested this approach. We find that fitting the barrier strength alone
does not markedly improve inference for estimating γ, at least in the tested scenario, in
which there is sufficient information to accurately fit the isolation by distance pattern
(Fig. 3.14).

Our results also indicate that even with 2400 individuals and a strong barrier (γ =
0.05), one would need at least a few dozen independent biallelic markers to reliably
estimate a strong barrier. The required number of markers and individuals for a given
scenario will of course depend on the exact sampling scheme as well as the strength
and shape of isolation by distance in the data.

Binning Indivduals into Demes

Method 3 can be used to analyze deme data, as outlined in the main text. Binning into
demes of k individuals each speeds up calculations by a factor of k2, as all pairwise
comparisons for individuals between two demes reduce to a single comparison. On
the other hand, binning nearby individuals is not expected to have a big effect on the
inference scheme, as only information for pairs within demes is lost. To confirm this
intuition we tested our method on simulated data (Fig. 3.15). Our results indicate that
small scale binning (with bins are extended up to a few dispersal units) does not have
a major effect on the parameter estimates. The variance of the inferred parameters in-
creases as expected, but this increase is slow.

Conclusion

The application to simulate data indicates that the methods based on fitting pairwise
statistics (Method 2 and Method 3) are more accurate and less biased than the compu-
tationally more elaborate Gaussian Random Field approach (Method 1). As outlined
above, the latter suffers from two potential errors: The Laplace approximation and also
themultivariate Gaussian approximation could be inaccurate for the spatial covariance
patterns typically observed in genotype data. Our datasets were simulated under an
explicit population genetics model (see main text) with parameters chosen to match
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Figure 3.14: Fitting only the barrier parameter: We simulated a dataset of 60 × 40 in-
dividuals spaced on a grid with step size 1σ (m = 0.006, Nbh = 4π5 ≈ 62.83 and
σ(p) = 0.1 and a strong barrier at the middle of the x-axis with γ = 0.05). We simulated
25 replicates for different loci numbers (5, 10, . . . , 100). We applied Method 3 to fit the
barrier strength γ by estimating all parameters (upper figure) and to fit only the bar-
rier strength and the fluctuation parameter, with the demographic parameters fixed to
their true value (lower figure).
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Figure 3.15:Various degrees of binning:We simulated 25 datasets of 60×40 individuals
spaced one dispersal unit apart (m = 0.006, Nbh = 4π5 ≈ 62.83 and σ(p) = 0.1 and
a barrier at the middle of the x-axis with γ = 0.1). For analysis, we binned individual
data into demes of 1 × 1 (yellow), 2 × 2 (orange), 3 × 3 (red), 4 × 4 (purple) individuals.
We used Method 3 to analyze the resulting data sets.
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typical isolation by distance patterns, and our findings imply that the Gaussian Ran-
dom Field approachwith a Laplace approximation is not suited well to fit those, unless
the number of sampled individuals gets very high (Fig. 3.12).

Method 3, which is based on fitting pairwise homozygosity, is additionally faster by
a factor of about 10 than Method 2. Our results indicate that it can be used on binned
data, without much loss of accuracy. Therefore, we decided to base inference in the
main text on this method.

3.6.2 Supplementary Information 2: Comparison to Geneland

A widely used program to detect barriers to gene flow based on spatially explicit data
is Geneland (Guillot et al., 2005). In a recent study that compares different methods to
detect barriers, it was identified as one of the most potent methods (Safner et al., 2011).

Here we test Geneland on two kinds of simulated data sets. One of them fulfills the
model assumptions of Geneland, i.e. a barrier but not further substructure of the pop-
ulations on either side of the barrier. For the second scenario, we simulated a scenario
of a barrier with additional isolation by distance.

Application Details

In all analysis, we ran geneland with an MCMC chain length of 105. For analysis, we
used a thinning of 100 and a burn-in of 200, and visually inspected summary statistics
to ensure proper convergence. We usually used a fixed population numberK = 2, and
investigated whether Geneland can accurately cluster the two subpopulations on each
side of the barrier.

Scenario I: Two Panmictic Populations

In this scenario, we simulated data-sets that met the model assumptions of Geneland.
Two equally sized populations on both sides of the barrier were assumed to be panmic-
itc units, i.e. for all individuals alleles were binomially drawnwithmeans pl and pr. We
simulated datasets of 400 diploid individuals with genotype information for 200 bial-
lelic loci spaced on 20×20 grid. The overall mean allele frequencies for the individuals
left and right where randomly drawn:

pl =0.5 + ∆p

pr =0.5 + ∆p+ ∆pr,
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where ∆p and ∆pr are random normal variables with standard deviation σ = 0.1.

We simulated 10 replicates. In all of them, Genelandwas able to accurately infer the
position of the barrier and assign all individuals correctly (see 3.16).

Figure 3.16: Geneland with no isolation by distance: This picture visualizes the typical
outcome when Geneland is applied to a model with a barrier but no further substruc-
ture (see main text). The figure visualizes posterior probability of population member-
ship. Geneland is able to accurately infer the subdivision of the population into two
subpopulations.

Scenario II: Barrier with Isolation by Distance

Second, we applied Geneland on data-sets that we have generated using our explicit
spatial population genetics simulations. We simulated 10 replicates of a datasets of 400
individuals for each a complete (γ = 0) and a weak barrier (γ = 0.1) with moderate
isolation by distance (m = 0.006, Nbh = 4π5 ≈ 62.83 and σ(p) = 0.1). As expected, an
isolation by distance pattern can be observed in this data (Fig. 3.17). In all 10 data-sets,
Geneland fails to accurately estimate the barrier, but rather infers 2 patchily distributed
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subpopulations (Fig. 3.18). It also cannot infer the barrier if the population number K
is not fixed, but inferred as well (Results not shown).

In stark contrast, our method is able to infer the existence and the strength of a
barrier in these scenarios (Fig. 3.19).

Figure 3.17: Isolation by Distance scenario: The decay of pairwise homozygosity in one
dataset simulated under the Isolation by Distance scenarios.

Conclusion

Our results show that Geneland is a powerful tool to infer a barrier when its model
assumptions are met (i.e. population is structured into 2 subpopulations without fur-
ther substructure). However, as observed previously (Safner et al., 2011), it fails in the
scenario with additional isolation by distance, which we simulated under an explicit
population genetics model. Our findings indicate that caution is warranted when ap-
plying Geneland to datasets with isolation by distance patterns. In particular, when the
scale of isolation by distance observed on scales smaller than the geographic extension
of the subpopulations, Geneland will have very limited power to detect a barrier. In
contrast, our method works well in these cases. It can therefore be seen as a comple-
mentary approach to Geneland.
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Figure 3.18: Geneland with isolation by distance: This picture shows a typical output
of Geneland when applied to simulated data with a complete barrier and isolation by
distance (see main text). The figure visualizes the posterior probability of population
membership. Geneland fails to accurately infer the subdivision of the population into
two subpopulations.
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Figure 3.19:Ourmethod on isolation by distance datasets: 25 replicates of four different
barrier strengths were simulated γ = 0, 0.05, 0.1, 0.15. In all datasets Geneland failed
to infer the barrier, whereas our method can accurately estimate the strength of the
barrier.
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3.6.3 Supplementary Information 3: Data Cleaning for Hybrid Zone

In themain textwe apply ourmethod to a data set from a hybrid zone between two sub-
species of the model plant Antirrhinum majus. In the following, we describe sampling,
genotyping and filtering criteria we used for selecting data for our analysis.

Sampling and Data Collection

As part of a long-term project examining wild pedigrees and geographic clines, each
year from 2009 to 2014 we sampled plants from a hybrid zone between Antirrhinum
majus pseudomajus and Antirrhinum majus striatum in the Spanish Pyrenees located in
val di Ribes near the village of Planoles. Individual plants are primarily found within
100 m either side of two roughly parallel roads that run up the valley (Fig. 10). The
sampling concentrated on a ≈ 4 km transect encompassing the center of the pheno-
typic and genetic clines involved in magenta and yellow flower pigmentation (ROSEA;
Whibley et al. (2006), and SULFUREA; Desmond et al 2017, respectively1) and some of
the flanking regions in which the pure subspecies mostly reside.

The following data were obtained for each plant:

• A global positioning system (GPS) coordinate

• Leaf material (for DNA extraction)

The collection occurred between May and July, for individuals with open flowers
only. Individual’s geographic coordinate was collected using a GPS device (Trimble
GeoXT datalogger) with a mean accuracy of ≈ 2 m. Four to six fresh leaves from each
plant were stored in individual glassine envelope bags, which were placed within a
plastic bag containing silica gel (Fisher Scientific) for drying the leaf tissue. Compo-
nents of the magenta and yellow color of the flowers were scored in the field according
to Whibley et al. (2006).

SNP Genotyping

TheKASPgenotypingplatform (LGCgenomics)was used to genotype single nucleotide
polymorphisms (SNPs) across the Antirrhinum genome. In total, we designed ≈ 240
SNP at a subset of polymorphic and divergent loci, but here report just on a subset of
60 polymorphic loci. The remaining markers that clearly violate our model assump-
tions have been filtered out (see below).
1 Add citation in final version, this paper is accepted but not published yet
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Candidate loci were identified using a draft A. majus reference genome (≈ 630
Mb across eight linkage groups; courtesy of Yongbiao Xue, BGI) and allele frequen-
cies obtained from whole-genome Illumina PoolSeq of six pools of n = 50 individu-
als located along a transect through the hybrid zone (unpublished data). All potential
SNP loci were identified across the genomewith a custom Python script SNPextract.py
(https://github.com/dfield007/genomics_general) which identified SNPs positions suit-
able for KASP genotyping platform (LGC Genomics). The script was run with the fol-
lowing parameters: (i) 30 < depth < 300 in all pools at the focal SNP (to reduce the
probability of false positives and paralogs), (ii) 30 < depth < 300 for sequences 50bp
upstream and downstream of focal SNP, (iii) <3 other SNPs within 50bp (to ensure
primer efficiency), and (iv) biallelism (a KASP requirement). We also selected loci on
the basis of being polymorphic in the hybrid zone (0.3 < p̄ < 0.7) and selected one lo-
cus randomly every couple of mapping units (cM) to maximize marker independence
(Figure 3.20). For each candidate, the script extracted the 100bp sequence surrounding
each candidate polymorphic site required to design the SNP primers. DNA extractions
and SNP genotyping were carried out by LGC Genomics. Replicate DNA extractions
and genotyping confirmed relatively low error rates of the KASP platform (mean error
rate < 0.1% per locus).

Data Filtering

Our method requires all individuals to have no missing genotype data. Starting with
n = 13722 individuals in the core hybrid zone (≈ ±2kmaroundflower color transition),
we first removed individuals with more than 8 missing genotypes (n = 246). Next, we
identified individualswith atmost one genotypemismatch, anddeleted duplicate indi-
viduals (n = 1087) to remove intentionally or non-intentionally regenotypedplants. For
the remaining data (n = 12389), we imputed missing genotypes. For this, we first cal-
culated the mean allele frequency per marker averaged over all individuals; and then
binomially draw two alleles for missing genotypes at random with the corresponding
calculated mean allele frequency. As only a fraction 0.84% of all genotypes had to be
inputed, this step does not significantly affect the results of the inference method.

Before applying our method, we filtered markers based on the following 4 criteria:

1. Geographical Variation: We removed markers that were correlated to the x or
the y coordinate, as such large scale variations could originate from deeper time
scales or be the traces of divergent selection or could also be the remnants of
secondary contact. We chose a cut-off value of R2 = 0.015.

https://github.com/dfield007/genomics_general
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Figure 3.20: Position of KASP SNPs used in our analysis on draft Antirrhinum majus
linkage map. Positions of 56 loci (black lines) indicated, the remaining 4 SNP loci could
not be placed on the linkage map.
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2. Linkage Disequilibrium: We further filtered markers with strong linkage dis-
equilibrium, because our method assumes that different markers contain inde-
pendent information. We iteratively pruned markers that were correlated more
than R2 = 0.03 with any other marker.

3. Minor Allele Frequency: We removed all markers with a minor allele frequency
below p̄ = 0.15, as rare markers can have a dominating influence on pairwise
measures of relatedness, but here we aim to base inference on the independent
information of many markers. Most markers in our dataset have intermediate
allele frequency near p = 0.5, and the overall allele frequency distribution is rel-
atively narrow (Fig. 3.21) .

4. Deviations from Hardy-Weinberg Equilibrium:We tested for a significant deficit
or surplus of heterozygous from random mating expectations. These deviations
canhavemultiple reasons, for instance failed genotyping, strong geographic struc-
ture or non-randommating. For filtering,we first calculated local allele frequency
estimates by weighting all other individuals with a two-dimensional symmetric
Gaussian. After testing the fit of several standard deviations σ, we found that
σ = 500 meters gave the best predictions for local allele frequencies. We first
calculated this expected mean allele-frequency for every marker and every in-
dividual with this Gaussian. Based on these local frequencies, we then obtained
the expect number of heterozygous and homozygous sites for each marker. Us-
ing a χ2-test, we calculated p-values for deviations from the expected numbers.
We then filtered markers that had a p̄-value below a cutoff of 10−5.

After filtering, we were left with a dataset of n = 12389 individuals and 60 SNP
markers. To ensure that there is no bias towards low or high frequencies, we flipped
the 0 and 1 state for every marker with probability 0.5.

Data Availability

The detailed oligo-sequences for SNP genotyping, filtered genotype and geographic
data are available at https://github.com/hringbauer/BarrierInferPublic/tree/master/DataHZ.
The Python scripts used for data filtering are freely accessible at https://github.com/
hringbauer/BarrierInferPublic/tree/master/SNPCleaningScripts.

https://github.com/hringbauer/BarrierInferPublic/tree/master/DataHZ
https://github.com/hringbauer/BarrierInferPublic/tree/master/SNP Cleaning Scripts
https://github.com/hringbauer/BarrierInferPublic/tree/master/SNP Cleaning Scripts
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Figure 3.21: Allele frequency distribution. This figure depicts the distribution of the
mean allele frequencies of the 60 markers (standard deviation 0.117). Left: Mean allele
frequency ordered by marker. Right: Histogram of mean allele frequencies.

Heterogeneity of Isolation by Distance

Our method assumes a uniform isolation by distance pattern in two dimensions. To
confirm that this is not grossly violated for theAntirrhinumdata,we calculated isolation
by distance patterns and investigated them for heterogeneity, both with respect to ab-
solute position and angle (Fig. 3.22). Our analysis indicates that there are some spatial
fluctuations of isolation by distance. However, they are mostly within the uncertainty
estimates obtained by bootstrapping over genetic markers; so there is no indication of
gross violations of the model assumptions.

Power Simulation

To test whether our method has sufficient power to detect a strong barrier to gene flow,
we simulated a dataset similar to the Antirrhinum dataset. We used the same simula-
tion engine described in the main text. We used 60 markers with a standard deviation
σ(p̄) = 0.117355, as in the filtered hybrid zone data set. We simulated a population of
a 60 × 40 demes one dispersal unit apart, with 16 diploid individuals per deme (thus
Nbh=201.06). We sampled one individual per deme, and simulated a strong barrier to
gene flow (γ = 0.02). This synthetic dataset has a similar isolation by distance pattern
as the hybrid zone data set (Fig. 3.23). Running our inference scheme on this dataset of
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Figure 3.22: Heterogeneity of isolation by distance estimates. As a test statistic for the
chance of recent co-ancestry F we used (p1−p̄)(p2−p̄)

4 . This statistic should be a good esti-
mator for F for intermediate mean allele frequencies (p̄ ≈ 0.5). In the figures we depict
the excess deviation compared to the average over all pairs. Left: Spatial heterogeneity
and 25 bootstraps over loci: We depict mean excess F for all pairs with distance less
than 200 meters. Right: Excess F when pairs are binned into 16 angular bins and three
distance bins (20 − 100, 100 − 400, 400 − 2000 meter).

2400 samples indicates that there is sufficient power to infer the presence of a strong
barrier (Fig. 3.24). At the true position of the barrier, the fit as well as 20 bootstraps over
markers estimate a strong barrier to gene flow. For most other putative locations, no
strong barrier is estimated. There is variation of bootstrap estimates which indicates
that power is limited, but in total only a small number of bootstrap fits estimates a
strong barrier. We stress that these power simulations are done for an idealized sce-
nario in which our model assumptions hold.
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Figure 3.23: IBD of data simulated with hybrid zone parameters. The plot depicts pair-
wise homozygosity for pairwise distance bins. The small difference in absolute values
is due to the randomness with which mean allele frequencies for the synthetic data set
were drawn. Left: Hybrid zone data (fit: Nbh = 192.20,m = 0.00839, s = 0.528088).
Right: Synthetic data set (fit: Nbh = 150.6,m = 0.0056, s = 0.52735), pairwise distance
is measured in standard deviations σ of the dispersal kernel.
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Figure 3.24:Power of inference scheme on simulateddata set. Black dots indicate best fit
estimates, colored dots are estimates after bootstrapping over genetic markers. Marker
number, mean allele frequency distribution and demographic parameters were cho-
sen to approximate the parameters from the Antirrhinum hybrid zone. We simulated a
strong barrier (γ = 0.02), and run the inference scheme for multiple putative barrier
locations (indicated by black lines).





4. Future Directions

The methods developed in this thesis are implemented and are ready to be
applied to more datasets. However, there are some necessary steps needed
to provide other researchers a comfortable option to use these inference
schemes. Perhaps the most pressing task is to develop software that makes

the inference methods easily accessible. Further down, I outline a road-map to a full
software package that helps to address these issues.

There are also many possible extensions. The underlying models can be expanded
to fit other scenarios, in particular for IBD block sharing. Since the inference schemes
introduced here are based on analytical approximations, such extensions to more com-
pex models will lead to novel computational challenges. However, the methods to fit
the model to data are very general and can be easily adapted to fit a wider range of
models. In the following, I will outline some of these possible extensions.

4.1 Generalized Parametric Inference for IBD Blocks

The inference method of Chapter 2 fits isolation by distance patterns of IBD blocks to
a scenario of homogeneous diffusion of ancestry. While this scenario is designed to be
a general approximation to many two-dimensional populations, it is easy to imagine
other scenarios and models for which IBD block data can be utilized for estimation
of population structure. For instance, one might be interested to infer the effect of a
barrier to gene flow (as in Chapter 3), or in scenarios where demographic parameters
vary throughout a habitat and perhaps even time.

The methods used to fit observed IBD blocks to a model do not depend on the
specifics of the demographic model. Recapitulating briefly, the inference scheme pre-
dicts expected pairwise IBD block sharing for given demographic parameters, and
finds the parameter values that maximize the fit to observed IBD block sharing. In
principle, one can use the same technique to fit the parameters of any other model that
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predicts expected IBD block sharing.

The only big advantage of the diffusion model is its analytical tractability. Pairwise
sharing of IBD blocks of a given length can be easily calculated with an analytical for-
mula (Eq. 3), and this leads to a huge speed up of computational runtime. To calculate
expected IBD block sharing for more complex models, numerical techniques have to
be applied. These can be a huge computational challenge.

To address this issue, I outline a general numerical approach which can be used
to calculate this expected pairwise sharing. It is based on expanding some of the key
techniques of Chapter 2. This proposed numerical approach is joint workwithRaphael
Forien, who helped to design and implement a first pilot project.

4.1.1 Parametric Model for Spread of Ancestry

The goal is to calculate pairwise IBD block sharing of a given segment length. In Chap-
ter 2, we used a diffusion approximation to model the movement of ancestral lineages,
andwe combined this with Poisson recombination to calculate expected sharing of IBD
blocks (Eq. 2.3). Importantly, the specific demographicmodel only entered via the pair-
wise coalescence time distribution ψ(t) in these calculations. Any numerical scheme
that can predict pairwise coalescence probabilities ψ(t) can therefore be straightfor-
wardly combined with the method of Chapter 2.

Here, we introduce a numerical method to calculate this pairwise coalescence time
distribution. We use a model discretized both in space and time, and follow the prob-
ability density of ancestry for an initial position on a grid backwards in time. In every
time step t, ancestry is updated according to a migration matrix M(t) that describes
the migration probabilities between all grid points. Given an initial set of samples
i = 1 . . . n at initial positions xi = 1 . . . n, this approach yields the spatial probability
density distribution Gt

xi
of ancestry at time t back:

Gt
xi

= M(t)M(t− 1) · · ·M(2)M(1)xi. (4.1)

The chance that two lineages starting at position x and y coalesces at time t is given
by the sum over the probabilities that lineages coalesce in any local deme. Denoting
the number of individuals in deme k by Ne(k), this sum is:

ψxy(t) =
∑

k

1
Ne(k)

Gt
x(k)Gt

y(k). (4.2)

This recursion neglects previous coalescence events, similar to the approximation
in 2. There, this simplification was applied to yield analytical formulas. When doing
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numerical calculations of the coalescence time distribution, one could in principal also
account for previous coalescence events. For instance, the spatial probability density
distributions, Gt

xi
could be updated to delete previously coalesced lineages. However,

these updateswould have to be applied for every pair of samples, and this scaling could
be numerically problematic. Since double coalescence events are usually not problem-
atic for all but very low neighborhood sizes (Chapter 2, (Wilkins, 2004)) neglecting
them for sake of speed of calculations seems to be a valid approximation for most prac-
tical use cases. However, one should always keep the approximative nature of Eq. 4.2
in mind, in particular when dealing with extreme cases.

This discrete numerical model is very general. One can vary the migration matrices
M(t) as well as the local coalescence probabilitiesDe to model spatial and also tempo-
ral heterogeneities. For a given set of demographic parameters, the expected IBD block
sharing can be calculated, which can in turn can be combined with our method to fit
these parameters to observed block sharing. In principal, this approach allows one to
use arbitrary complex parametric models. However, caution with the number of pa-
rameters should be exercised in order to avoid over-fitting. Moreover, the parameters
of the model should be sufficiently independent in order to avoid degeneracies and to
ensure that they can be estimated independently.

This numerical model has some useful computational properties. The calculations
of Eq. 4.1 and Eq. 4.2 can be efficiently implemented asmatrix calculations, which helps
to speed up calculations in many programming languages. For many scenarios, these
matrices are very sparse, which further speeds up calculations. For multiple samples,
one also only needs to trace the ancestry of a sample at x only once, and one can reuse
the stored results for intermediate timesteps. The overall complexity of this algorithm
therefore scales linearly with the number of demes and number of time steps, and
quadratically with the number of initial samples. For many realistic discretizations,
this allows numerically tractable calculations.

4.1.2 Example: Heterogeneous Gene Flow and Population Density

To demonstrate the generality and computational tractability of this discrete numerical
approach, we used it to implement a scenario where migration and population densi-
ties vary across a linear interface in a two-dimensional population (Fig. 4.1). In this
model, individuals occupy a grid of demes, and migrate between them. Left of the lin-
ear interface, the migration kernel has axial variance σ2

L and the number of individuals
per deme is given by Dl

e, whereas the parameters are different on the right hand side
of the barrier (σ2

R and Dr
e).
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Figure 4.1: Spatial heterogeneous model: There are two different regimes in a two-
dimensional population. Two areas with different population densities(Dl

e/Dr
e) and

diffusion constants (σl/σr) are separated by a linear divide. We simulate this model by
using a stepping stone model demes, in which neighboring demes exchange migrants
at a ratem− resp.m+, and demes contain N− resp. N+ individuals.

Figure 4.2: Spread of ancestry in numerical simulation compared to analytical formu-
lae. Spread of ancestry was simulated for a two-dimensional discrete stepping stone
model. The figure shows the marginal density summed up along the axis parallel to
the linear divide. The analytical formula is a solution for skew Brownian motion (Har-
rison and Shepp, 1981).
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Figure 4.3: We ran 180 simulations of block sharing between of 10 chromosomes of
length 5000 cM from 24 population spaced on a 6 × 4 grid symmetric around the di-
vide. The spacing between neighboring sampled populations was 4 demes along each
axis. The underlying grid consisted of 200 × 200 demes with a number of diploid in-
dividuals calculated from the population density function De · t−γ . We simulated 20
independent replicates of 9 different scenarios - the lines mark the parameters used
in the simulations. The dots are the best estimates for each simulation, the error bars
visualize 95 % confidence intervals based on the curvature of the numerically inferred
likelihood surface.
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Results on simulated data

We simulated data using the same simulation scheme developed in Chapter 2, by trac-
ing ancestral parts of chromosomes back in time. It was straightforward to update the
existing simulation engine, since it is already based on a model of grid of demes that
exchange migrants. By updating the dispersal kernel resp. the migration matrix to-
gether with a model for past population density model, in principal arbitrary complex
scenarios can be simulated with this powerful engine.

We ran a number of IBD block sharing simulations.We used different demographic
parameters for dispersal rates, population densities and a global population growth
parameter, and then inferred these parameters based on observed pairwise IBD block
sharing. The calculations are now computationallymore challenging than in Chapter 2,
as ancestry has to be traced back numerically. Therefore, we heavily utilized the cluster
at IST Austria to run simulations and inference on replicate scenarios in parallel on
many nodes.

Our results demonstrate that our inference scheme can robustly recover the demo-
graphic parameters used in the simulated data sets. It can infer population density
and growth as well as dispersal. There are slight estimation biases for some scenarios,
which require further investigation. But overall, the method can robustly distinguish
between different population densities and dispersal distances on different sides of
the divide. These first tests of this scheme on simulated data are promising. However
further thorough testing is needed to fully confirm that the inference scheme and the
numerical implementation work as intended.

4.1.3 Further Directions

The scenario of a heterogenous habitat represents merely a first showcase application.
The numerical schemewe presented here can be used to calculate and fit block sharing
for many other interesting scenarios. For instance, it can be used to infer linear barriers
to gene flow. But also more complex shapes of divides can be fit. This will be of much
use in cases where the geographic shape of the barrier is known a priori, for instance
in the case of mountain ridges or rivers. In principle any habitat can be discretized,
and as long as the migration matrix and the past population densities can be supplied
by a parametric model, these parameters can be fit by using our composite likelihood
approach. Inference schemes like this will hopefully open a completely new avenue for
demographic inference.

One salient goal is to apply these more complex IBD block sharing models to the
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human data that was already analyzed in Chapter 2. There, we found systematic large
scale deviations from the best fit of simple diffusion of ancestry (Fig. 2.8), with more
block sharing toward the southeastern part of Europe. It is a tempting task to test
whether one can further disentangle the causes of these spatially heterogeneity, and
check whether it can be explained better by a model of differential migration or differ-
ential population density. The spatially heterogeneous model will help to yield inter-
esting novel insights into this question.

4.2 Software Package for IBD Block Analysis

The abovedescribed inferencemethodswere designedwith the long termgoal to be ap-
plied to real data. However, as of now the methods have to be deployed by directly in-
teractingwith code, and this burden is likely too prohibitive formany other researchers
who are not experts in programming and computational analysis. Removing this hur-
dle will likely lead to a much more widespread application of the methods developed
here.

Therefore, I plan to implement the above methods to simulate and fit IBD block
sharing in a versatile Python package. This program will likely include a Graphical
User Interface (GUI), that helps to reduce the interaction of the userwith the underlying
code. I plan to use the Python package management system pip for distributing this
software.

The foundation of this package will be the following two main features:

1. Run custom block sharing simulations With this feature, the user can simu-
late IBD block data sets with the simulation engine outlined in Chapter 2. He
can place samples on a grid of demes, and run numerical simulations that yield
the IBD sharing between these samples. Moreover, the user will be enabled to
supply his own demographic scenario, as outlined in subsection 4.1.2. He can
choose custom migration matrices and population densities, which he can sup-
ply to the package in form of python functions. In combination with running
inference schemes on this simulated data sets (see below), these custom scenar-
ios will help researchers to determine the power of the inference scheme given
a specified sampling scheme and some likely demographic scenarios. Such tests
will help researchers to determine the ideal sampling scheme for each specific
inference task.

2. Fit custom demographic scenarios A main part of this program will be the im-
plementation of the inference method of Chapter 2. In addition, I plan to give the
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user the opportunity to supply custom demographic scenarios. The user will be
able to fit arbitrary scenarios with the method outlined in subsection 4.1.2. He
can provide custom parametrized migration matrices and population densities,
and the programwill find the parameters that best fit observed IBD block sharing
patterns. To obtain uncertainty estimates, the user will be given the confidence
intervals obtained by the likelihood surface, and also the possibility to get boot-
strap estimates.

To be most useful for the user, such a package should ideally possess the following
key properties:

• Graphical presentation of the results: An appealing visualization of the results
will be helpful. Presenting the results in an informative way will aid the user to
quickly explore the fit of the model to the data, and help him to obtain a better
overview of the results of the analysis.

• Sample files: Accompanying sample files will help the user to get an overview
about the execution speed, the presentation of the results and the range of com-
putations the method can perform.

• A detailed user manual: A user manual will inform the user about the possibil-
ities of the program, and can be consulted in case help is needed.

However, while these featureswill provide a better experience for the user, theywill
not empower him to use the software package in a black boxmanner. Hewill always be
required to make himself familiar with the underlying theory paper (Ringbauer et al.,
2017a), and the overall limitations of the method to avoid interpretation errors and
inconsistent program settings.

4.3 Outlook

Demographic inference based on IBD blocks is likely the future of demographic infer-
ence. In the era of population genomics, datasets that allow one to reliably call long
IBD blocks will become more and more widespread. As one can study the direct ge-
netic traces of distant relatedness, this signal is ideally suited for the inference of recent
demographic structure. IBD blocks contain all genetic signals of relatedness in the re-
cent history of a population, and therefore the full genetic information for the inference
of recent population structure.
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As of now, calling IBD blocks is only feasible for humans and a few model organ-
isms. However, in light of the falling costs of next-generation sequencing technologies,
such studies will soon become common in many other organisms as well. This foresee-
able advancewill makemethods based on IBD blocks, such as the one introduced here,
a powerful tool to infer population structure. As outlined above, possible applications
go far beyond the simple analytical model that has been treated in Chapter 2. One can
use this signal to fit more complex structure, such as heterogeneities across the habitat
or barriers to gene flow. The methods outlined here are only a first step in a journey
to a better understanding of the demographic structure of natural populations. But I
hope that they will provide a solid foundation for future work, and that this work will
become a valuable building block in the wall of human knowledge.
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