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Abstract: We consider Ising models in d = 2 and d = 3 dimensions with nearest
neighbor ferromagnetic and long-range antiferromagnetic interactions, the latter decay-
ing as (distance)−p, p > 2d, at large distances. If the strength J of the ferromagnetic
interaction is larger than a critical value Jc, then the ground state is homogeneous. It has
been conjectured that when J is smaller than but close to Jc, the ground state is periodic
and striped, with stripes of constant width h = h(J ), and h → ∞ as J → J−

c . (In
d = 3 stripes mean slabs, not columns.) Here we rigorously prove that, if we normalize
the energy in such a way that the energy of the homogeneous state is zero, then the
ratio e0(J )/eS(J ) tends to 1 as J → J−

c , with eS(J ) being the energy per site of the
optimal periodic striped/slabbed state and e0(J ) the actual ground state energy per site
of the system. Our proof comes with explicit bounds on the difference e0(J ) − eS(J )

at small but positive Jc − J , and also shows that in this parameter range the ground
state is striped/slabbed in a certain sense: namely, if one looks at a randomly chosen
window, of suitable size � (very large compared to the optimal stripe size h(J )), one
finds a striped/slabbed state with high probability.

1. Introduction and Main Results

We consider Ising models in two and three dimensions on the square lattice with the
formal Hamiltonian

H = −J
∑

〈x,y〉
(σxσy − 1) +

∑

{x,y}

(σxσy − 1)

|x − y|p
, (1.1)

where the first sum ranges over nearest neighbor pairs in Z
d , d = 2, 3, the second

over pairs of distinct sites in Z
d , and the exponent p is chosen to satisfy p > 2d, for
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reasons that will become clear below. For more general values of p, this model is used
to describe the effects of frustration induced in thin magnetic films by the presence of
dipolar interactions (p = 3) or in two-dimensional charged systems by the presence of an
unscreened Coulomb interaction (p = 1) [1,2,4–10,19,21–27,31,32], see also [3,12–
18] for a more detailed introduction to the subject, as well as for previous rigorous results.
The competition between short range ferromagnetic and long-range antiferromagnetic
interaction is believed to be responsible for the emergence of non-trivial “mesoscopic
patterns” in the ground and low-temperature states of the system. Let us be more specific.
As proved in [17], if J > Jc, with

Jc :=
∑

y1>0, y⊥∈Zd−1

y1

(y2
1 + |y⊥|2)p/2

, (1.2)

then there are exactly two ground states, σx ≡ +1 ∀x ∈ Z
d , and σx ≡ −1 ∀x ∈ Z

d .
Note that Jc is the value of the ferromagnetic coupling such that the energy of a straight
domain wall configuration, i.e., a configuration consisting of half the spins minus (those
at the left of a vertical straight plane) and half the spins plus (those at the right of
the same plane), vanishes. If J � Jc, the ground state is certainly non-homogeneous.
There is evidence that the transition to the ferromagnetic phase as J → J−

c takes
place via a series of “microemulsion phases” characterized by phase separation on a
mesoscopic scale that is large compared to the lattice and small compared to the scale of
the whole sample; see e.g. [20,28–30] for a discussion of this phenomenon in the case of
Coulomb (p = 1) and dipolar (p = 3) interactions. More precisely, at zero temperature,
the transition to the ferromagnetic state is expected to take place via a sequence of
transitions between periodic striped or slabbed states, depending on dimensionality,
consisting of stripes/slabs (either vertical or horizontal) all of constant width h(J ) and
of alternating sign. If we denote by es(h) the energy per site in the thermodynamic limit
of periodic striped/slabbed configurations consisting of stripes/slabs all of size h, the
optimal stripe/slabs width h(J ) can be obtained by minimizing es(h) over h ∈ N, and

turns out to be of the order (Jc − J )
− 1

p−d−1 . Let us denote by eS(J ) := es(h(J )) the
optimal striped/slabbed energy per site and by e0(J ) the actual ground state energy per
site in the thermodynamic limit. Our main result can be summarized in the following
theorem:

Theorem 1. Let us consider model (1.1) with p > 2d. As J → Jc from below, we have

lim
J→J−

c

e0(J )

eS(J )
= 1 . (1.3)

Equation (1.3) is a strong indication of the conjectured periodic striped/slabbed struc-
ture of the ground state. The proof of Eq. (1.3) comes with explicit bounds on the speed
of convergence to the limit, namely

e0(J )

eS(J )
= 1 + O

(
(Jc − J )

p−2d
(d−1)(p−d−1)

)
. (1.4)

It also comes with explicit bounds on the energy cost of the “corners”. This notion was
introduced in [17] for the two-dimensional case; every time that a domain wall bends by
90◦, hence creating a corner (or an edge corner, as we call it, in three-dimensions: this
is an edge where two plaquettes come together at 90◦), we pay a positive energy cost, at
least in the case that the corner density is sufficiently high. Combining this remark with
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our a priori bounds on the ground state energy, we find that the ground state has a density
of corners that is smaller than (Jc − J )d/(d−1): therefore, if we look in a random window

of proper side �′ (much larger than the optimal stripe/slab width h(J ) ∼ (Jc − J )
− 1

p−d−1 ,
and much smaller than the typical separation between corners ∼ (Jc − J )−1/(d−1)), the
ground state restricted to such a window is striped/slabbed, with stripes/slabs of width
close to the optimal size h(J ). Our proof presumably adapts to any dimension, e.g.,
d = 10, 11 or 26, and the interested reader can extend the arguments in Appendix D if
desired.

The logic of the proof goes as follows. We first derive an alternative representation
of the energy in terms of droplet self-energies and droplet–droplet interactions. Next,
for the purpose of a lower bound, we localize the energy into squares/cubes of side �

(to be optimized over), and we show that the localized self-energy of every droplet with
at least one corner along its boundary is positive; therefore, we can eliminate all such
droplets, after which we are left only with striped/slabbed droplets. Finally, reflection
positivity shows that the optimal striped/slabbed configuration is periodic.

2. Droplets and Self-Energies

Defining τ := 2(J − Jc), the optimal periodic striped energy per site has the form:

eS(J ) = −Cs(τ )|τ |(p−d)/(p−d−1), (2.1)

with Cs(τ ) = Cs(0) + O(|τ |2/(p−d−1)) asymptotically for τ → 0−, for a suitable
Cs(0) > 0. This result follows from the explicit minimization of es(h), see Appendix A,
and can also be understood in terms of a balance between “line” or “plane” energies and
line-line or plane-plane interactions, see [17, Section II]. We note that the computation
in Appendix A also shows that the optimal stripe/slab width is

h∗ = argmin es(h) = C̃s(τ )|τ |−1/(p−d−1), (2.2)

with C̃s(τ ) = C̃s(0) + O(|τ |2/(p−d−1)) asymptotically for τ → 0−, for a suitable
C̃s(0) > 0. Of course, e0(J ) ≤ eS(J ). Our purpose is to get a comparable lower bound,
of the form

e0(J ) ≥ −Cs(0)|τ |(p−d)/(p−d−1)
(
1 + O(|τ |β)

)
, (2.3)

for some positive β. The strategy borrows some ideas from those in [17, Appendix A].
From now on, for the purpose of simplicity of exposition, we restrict ourselves to two

dimensions. We shall explain how to adapt the proof to three dimensions in Appendix D.
We need to recall the definitions of contours and droplets. Let us first define the finite
volume Hamiltonian for our system:

H�(σ�) = −J
∑

〈x,y〉:
x,y∈�

(σxσy − 1) +
∑

{x,y}:
x,y∈�

(σxσy − 1)

|x − y|p
+ B�(σ�|σ ∗). (2.4)

Here � ⊂ Z
2 is a square box, σ� = {σx}x∈� ∈ {±1}� is the spin configuration in �,

σ ∗ = {σ ∗
x }x∈Z2 ∈ {±1}Z2

is a boundary condition and

B�(σ�|σ ∗) = −J
∑

x∈�, y∈�c:
|x−y|=1

(σxσy − 1) +
∑

x∈�, y∈�c

(σxσy − 1)

|x − y|p
. (2.5)
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Fig. 1. In the case that 4 sides of the closed polygon �(�) meet at a vertex v, we slightly deform �(�) so that
the two squares containing a − spin become disconnected from the vertex itself. Case a represents the situation
where the minus spins are located at NE and SW of v, before and after the “chopping”. Case b represents the
situation where the minus spins are located at NW and SE of v, before and after the “chopping”

In the discussion below, we shall consider + boundary conditions: this means that σ ∗ =
{+1}Z2

.
Given σ�, we define � to be the set of sites at which σx = −1, i.e., � = {x ∈ � :

σx = −1}. Around each x ∈ � we draw the 4 sides of the unit square centered at x and
suppress the sides that occur twice: in this way we obtain a closed polygon �(�) which
can be thought of as the boundary of �. Each side of �(�) separates a point x ∈ � from
a point y �∈ �. At every vertex of �(�) ∩ (Z2)∗, with (Z2)∗ the dual lattice of Z

2, there
can be either 2 or 4 sides meeting. In the case of 4 sides, we deform the polygon slightly
by “chopping off” the edge from the squares containing a − spin. See Fig. 1.

When this is done�(�) splits into disconnected polygons�1, . . . , �r which are called
contours. Note that, because of the choice of + boundary conditions, all the contours
are closed. The definition of contours naturally induces a notion of connectedness for
the spins in �: given x, y ∈ � we shall say that x and y are connected if and only if
there exists a sequence (x = x0, x1, . . . , xn = y) such that xm, xm+1, m = 0, . . . , n − 1,
are nearest neighbors and none of the bonds (xm, xm+1) crosses �(�). The maximal
connected components δi of � will be called droplets and the set of droplets of � will
be denoted by D(�) = {δ1, . . . , δs}. Note that the boundaries �(δi ) of the droplets
δi ∈ D(�) are all distinct subsets of �(�) with the property: ∪s

i=1�(δi ) = �(�).
Given the definitions above, let us rewrite the energy H�(σ�) of σ� with + boundary

conditions as

H�(σ�) = 2J
∑

�∈�(�)

|�| +
∑

δ∈D(�)

U (δ) +
∑

(δ,δ′)
W (δ, δ′), (2.6)

where, if δc = Z
2\δ,

U (δ) := −2
∑

x∈δ

∑

y∈δc

1

|x − y|p
(2.7)

is the self-energy of the droplet δ, which is negative. Moreover, the third sum on the
r.h.s. of Eq. (2.6) runs over unordered pairs of distinct droplets, and

W (δ, δ′) := 4
∑

x∈δ

∑

y∈δ′

1

|x − y|p
(2.8)

is the droplet–droplet interaction, which is positive. Note that the choice of + boundary
conditions implies that all the droplets are closed and within �.

Our first goal is to get a lower bound on the droplet’s self-energy, which is suitable
for later localization of the energy into small squares of side �, with � � h∗, where h∗
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is the optimal stripe width, see Eq. (2.2). For this purpose, given a droplet δ ∈ D(�)

and the corresponding boundary �(δ), we define the notion of “bonds facing each other
in δ”, in the following way. Let us suppose for definiteness that b ∈ �(δ) is vertical and
that it separates a point xb ∈ δ on its immediate right from a point yb = xb − (1, 0) �∈ δ

on its immediate left. Consider the bond b′ ∈ �(δ) such that: (i) b′ is vertical; (ii) b′
separates a point xb′ ∈ δ on its immediate left from a point yb′ = xb′ + (1, 0) �∈ δ on its
immediate right; (iii) the points xb and xb′ are at the same height, i.e., [xb]2 = [xb′ ]2, and
all the points on the same row between them belong to δ: in other words, xb + ( j, 0) ∈ δ,
for all j = 0, . . . , [xb′ ]1 − [xb]1. We shall say that b′ faces b in δ, and vice versa.
An analogous definition is valid for horizontal bonds. Note that in the presence of +
boundary conditions all the bonds in �(δ) come in pairs b, b′, facing each other in δ.

In Appendix B we show that the self-energy U (δ) can be bounded from below as

U (δ) ≥ −
∑

i=1,2

∑

b∈�i (δ)

∑

n �=0

min{|ni |, db(δ)}
|n|p

+ 21− p
2 Nc(δ) + 4

∑

{x,y}∈P(δ)

1

|x − y|p
,

(2.9)

where:

• �i (δ) is the subset of �(δ) consisting of bonds orthogonal to the i-th coordinate
direction.

• db(δ) is the distance between b and the bond b′ facing it in δ.
• Nc(δ) is the number of corners of �(δ).
• P(δ) is the set of unordered pairs of distinct sites in δ such that both Chv

x→y and Cvh
x→y

cross at least two bonds of �(δ). Here Chv
x→y is the path on the lattice that goes from x

to y consisting of two segments, the first horizontal and the second vertical. Similarly,
Cvh

x→y is the path on the lattice that goes from x to y consisting of two segments, the
first vertical and the second horizontal (note that the two paths can coincide, in the
case that xi = yi for some i ∈ {1, 2}). See Fig. 2 below for an illustration of these
paths.

The lower bound in Eq. (2.9) is very convenient for localization of the energy into
small boxes, as shown explicitly in the next section. More specifically, it will be used for
estimating U (δ) in terms of a sum of local self-energies, depending only on the droplet
configurations within small boxes; see Eq. (3.2) below and following comments. Let
us remark that, if desired, the first term on the r.h.s. of this inequality can be further
bounded from below as

−
∑

i=1,2

∑

b∈�i (δ)

∑

n �=0

min{|ni |, db(δ)}
|n|p

≥ −
∑

i=1,2

∑

b∈�i (δ)

∑

n �=0

|ni |
|n|p

= −2Jc|�(δ)|.

(2.10)

3. Localization and Minimization

We introduce a partition of the big box � into squares Q of side �, to be optimized in
the following. Our purpose is to localize the energy into these squares, and to minimize
the energy exactly in each small box, thus deriving a lower bound on the global energy
of the system. Given a droplet configuration D and δ ∈ D, we say that b ∈ �(δ) belongs
to Q if either it belongs to the interior of Q, or it belongs to the boundary of Q and
separates a site x ∈ δ ∩ Q from a site y �∈ δ. Note that with this definition every bond
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in �(δ) belongs to exactly one square Q. The set of bonds b ∈ �(δ) belonging to Q
will be denoted by �Q(δ). The notion that we just introduced induces a partition of
�(δ) into disjoint pieces assigned to different squares: �(δ) = ∪Q�Q(δ). Moreover, if

δQ = δ ∩ Q, we define δ̄
(1)
Q , . . . , δ̄

(m Q(δ))

Q to be the maximal connected components of

δQ , and �̄
(1)
Q , . . . , �̄

(m Q(δ))

Q to be the portions of �Q(δ) belonging to the boundary of

δ̄
(1)
Q , . . . , δ̄

(m Q(δ))

Q , respectively. We shall refer to the pair (δ̄
(i)
Q , �̄

(i)
Q ) as to a bubble in Q

originating from δ. We shall indicate by B̄Q(δ) the set of bubbles in Q originating from
δ, and by B̄Q = ∪δ∈DB̄Q(δ) the total set of bubbles in Q.

Given β̄ = (δ̄, �̄) ∈ B̄Q , note that in general �̄ is a union of disjoint polygonal
curves, each of which can be either closed or open. If one of these curves is open,
then its endpoints must belong to the boundary of Q. Given an endpoint v of an open
component of �̄ such that: (1) v is not at a corner of Q, (2) the bond b ∈ �̄ exiting from
v belongs to the boundary of Q; then we shall say that �̄ has a “boundary corner” at v.
The corners of �̄ formed by two orthogonal bonds that are both in �̄ will be called “bulk
corners”. Moreover, we shall denote by N̄c(β̄) the total number of corners of �̄, i.e., the
number of its boundary corners plus the number of its bulk corners. Note that

∑

Q

∑

β̄∈B̄Q(δ)

N̄c(β̄) ≤ Nc(δ). (3.1)

This is an inequality (rather than an equality), in general, because δ could have corners
located exactly at the corners of the squares Q. We now derive a lower bound on the
total energy in terms of a sum of local energies involving the bubbles we just introduced.
First of all, using Eqs. (2.9) and (3.1), we bound the self-energy U (δ) from below as

U (δ) ≥
∑

Q

{ ∑

β̄∈B̄Q(δ)

UQ(β̄) +
1

2

∑

β̄,β̄ ′∈B̄Q(δ)

β̄ �=β̄ ′

W (β̄, β̄ ′)
}
, (3.2)

where the first term on the r.h.s. (the sum of the effective local self-energies of the bubbles
originating from δ) comes from the first two terms on the r.h.s. of (2.9), while the second
(the interaction between the pairs of distinct bubbles originating from δ) comes from
the last term on the r.h.s. of (2.9). The functions UQ and W are defined as follows: if
β̄ = (δ̄, �̄), β̄ ′ = (δ̄′, �̄′),

W (β̄, β̄ ′) = 4
∑

x∈δ̄
y∈δ̄′

1

|x − y|p
, (3.3)

while

UQ(β̄) = −
∑

i=1,2

∑

b∈�̄i

∑

n �=0

min{|ni |, d Q
b (δ̄)}

|n|p
+ 21− p

2 N̄c(β̄). (3.4)

In the last formula, �̄i is the subset of �̄ consisting of bonds orthogonal to the i-th
coordinate direction, and d Q

b (δ̄) is the distance between b and the bond b′ ∈ �(δ) facing
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it in δ, if both b and b′ belong to �̄, otherwise it is infinite. In a similar manner, we can
bound the droplet–droplet interaction from below as

W (δ, δ′) ≥
∑

Q

{ ∑

β̄∈B̄Q(δ)

β̄ ′∈B̄Q(δ′)

W (β̄, β̄ ′)
}
. (3.5)

Inserting Eqs. (3.2)–(3.5) into Eq. (2.6) gives

H�(σ�) ≥
∑

Q

EQ(B̄Q), (3.6)

where

EQ(B̄Q) =
∑

β̄=(δ̄,�̄)∈B̄Q

[
2J |�̄| + UQ(β̄)

]
+

1

2

∑

β̄,β̄ ′∈B̄Q

β̄ �=β̄ ′

W (β̄, β̄ ′). (3.7)

Now consider a bubble β̄ = (δ̄, �̄) such that N̄c(β̄) > 0, i.e., δ̄ is not a stripe. We want to
show that its local energy 2J |�̄|+UQ(β̄) is positive, provided the box Q is not too large.
Roughly speaking, this follows from the fact that every corner costs a finite constant,
while every straight portion of the contour �̄ within Q gives a gain that is at most τ�;
this can be made smaller than every pre-fixed constant, by choosing � � |τ |−1. The
technical implementation of this idea is a consequence of Eqs. (2.9)–(2.10), and goes as
follows. Proceeding as in Eq. (2.10), we can bound UQ(β̄) as

UQ(β̄) ≥ −2Jc|�̄| + 21− p
2 N̄c(β̄). (3.8)

Therefore,

2J |�̄| + UQ(β̄) ≥ τ |�̄| + 21− p
2 N̄c(β̄). (3.9)

Note that, in order for �̄ to be very long, the number of corners must be sufficiently
large: in formulae,

|�̄| ≤ 2� + 2�N̄c(β̄). (3.10)

[The reason is: (a) �̄ (which, in general, is a disjoint union of polygonal curves) can
have at most two exactly straight lines, and this accounts for the 2�. (b) Associated with
each corner is an ell-shaped open curve, completely contained in Q, with the corner at
the apex of the curve. The length of this curve is at most 2�, and it is clear that the union
of all these curves covers the remaining part of �̄. This accounts for the 2�N̄c(β̄).]

If, as we are assuming, N̄c(β̄) > 0, then N̄c(β̄) + 1 ≤ 2N̄c(β̄), so that

N̄c(β̄) ≥ |�̄|
4�

. (3.11)

Inserting this back into Eq. (3.9) gives

2J |�̄| + UQ(β̄) ≥ 21− p
2
|�̄|
4�

(1 − 4 · 2
p
2 −1|τ |�), (3.12)
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which is positive as soon as |τ |� < 21− p
2 /4. Therefore, for � shorter than 21− p

2 /(4|τ |),
we can decrease the local energy EQ(B̄Q) by erasing all the bubbles with at least one
corner. Denoting by S̄Q ⊆ B̄Q the subset of B̄Q consisting of bubbles without corners

(i.e., consisting of stripes), this means that, if � < 21− p
2 /(4|τ |),

EQ(B̄Q) ≥ EQ(S̄Q). (3.13)

Let now S̄Q = {β̄1, . . . , β̄m}, and let us assume without loss of generality (w.l.o.g.)
that the stripes β̄i = (δ̄i , �̄i ), i = 1, . . . , m, are vertical, and are numbered in a way
compatible with their order, from left to right. Let us also assume w.l.o.g. that Q =
[1, �]2 ∩ Z

2. If m = 1 and β̄1 = (Q,∅), then EQ(S̄Q) = 0. Let us then assume
that �̄1 �= ∅. Note that the contours �̄i consist of two vertical parallel lines, for all
2 ≤ i ≤ m − 1. If i = 1, the contour �̄1 can either consist of one or two vertical parallel
lines; in the first case, δ̄1 = [1, y1] × [1, �] ∩ Z

2 for some integer 1 ≤ i1 ≤ �, �̄1 is
the vertical line located at the horizontal coordinate y1 + 1

2 , and we shall say that Q has
− boundary conditions on the left; in the second case, δ̄1 = [y0, y1] × [1, �] ∩ Z

2 for
some integers 1 ≤ y0 < y1 ≤ �, �̄1 is the pair of vertical lines located at the horizontal
coordinates y0 − 1

2 , y1 + 1
2 , and we shall say that Q has + boundary conditions on the left.

Similar definitions are valid for �̄m and for the boundary conditions on the right. Note
that we can always reduce ourselves to the case where both the left and right boundary
conditions are +, up to an error term that is negligible provided that � � h∗. In fact,
suppose that the boundary conditions on the left (say) are −: then we can change them
to + by erasing the bubble β̄1, thus increasing the energy by at most |τ |�. This error term
is much smaller than �2eS(J ) � �2|τ |(p−2)/(p−3) if � � h∗. Calling S̃Q ⊆ S̄Q the set
of stripes obtained from S̄Q after the possible erasing of β̄1 and β̄m , we then have

EQ(S̄Q) ≥ EQ(S̃Q) + 2τ�. (3.14)

By construction, S̃Q consists of k vertical stripes, with k ∈ {m − 2, m − 1, m}, whose
contours are located at the horizontal coordinates 1

2 ≤ x1 < x2 < · · · < x2k ≤ �+ 1
2 . We

define hi = xi+1 − xi , with i = 1, . . . , 2k − 1. At this point we can utilize the reflection
positivity (RP) of the kernel |x − y|−p on Z

d , which is valid for p > 0 in d = 2 and
for p ≥ 1 in d = 3, see [11,17]. [In particular, [11, Lemma 2.1] contains the proof of
the RP of |x − y|−p on the d-dimensional continuum R

d , for 0 < p < d if d = 1, 2,
and for d − 2 ≤ p < d if d ≥ 3; the adaptation of the proof to the case p > 0 on
the 2-dimensional lattice Z

2 is spelled out in [17, Appendix B]; a similar argument can
be easily reworked out for the case p ≥ 1 on the 3-dimensional lattice Z

3]. The RP of
|x − y|−p implies the chessboard estimate proved in [12,13,15] that, in turn, yields the
inequality (see Appendix C for details)

EQ(S̃Q) ≥ �

2k−1∑

i=1

hi
[
es(hi ) − Ch3−p

i �−1] + τ� − C�4−p, (3.15)

where es(h) is the specific energy of the periodic striped configuration with stripes all
of size h, defined in the introduction, and C > 0 is a suitable constant. In order to get a
lower bound on the r.h.s. of (3.15), we can minimize the expression in square brackets
over hi ≤ �:

min
hi ≤�

[
es(hi ) − Ch3−p

i �−1] ≥ eS(J )
(
1 + (const.)�−1|τ |−1/(p−3))

)
, (3.16)
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which follows from the explicit expressions of es(h) and eS(J ) computed in Appendix A,
provided that � � h∗. The minimum is attained at h̄(�) = h∗(1 + O(h∗/�)) with h∗
given by Eq. (2.2). Inserting (3.16) into (3.15), and using the fact that

∑
i hi ≤ �, we get

EQ(S̃Q) ≥ �2eS(J )
(
1 + (const.)�−1|τ |−1/(p−3)) + τ� − C�4−p, (3.17)

where eS(J ) = −Cs(τ )|τ |(p−2)/(p−3) is the optimal striped energy per site in the ther-
modynamic limit.

Putting things together, we find that, for � < 21− p
2 /(4|τ |),

H�(σ�)

|�| ≥ eS(J )(1 + O(�−1|τ |−1/(p−3))). (3.18)

The optimal choice of � is � ∼ |τ |−1, which gives (recalling that e0(J ) is the actual
ground state energy per site of our problem):

e0(J )

eS(J )
≥ 1 − (const.)|τ |(p−4)/(p−3). (3.19)

This proves Eqs. (1.3)–(1.4) and is our final result in two dimensions. In three dimensions
we can repeat a completely analogous proof, see Appendix D, the final result being

e0(J )

eS(J )
≥ 1 − (const.)|τ |(p−6)/(2p−8). (3.20)

��
To conclude, let us remark that the proof above also shows that the more there are

corners, the larger the energy becomes: in formulae,

H�(σ�) − |�|eS ≥ c1 Nc − C1(|�||τ |d/(d−1) + |∂�|), (3.21)

where Nc is the total number of corners associated with σ� and c1, C1 > 0 are two
suitable constants. Therefore, in the ground state, irrespective of the boundary conditions,
if |�| is large enough, Nc ≤ (const.)|�||τ |d/(d−1). In other words, by partitioning the
macroscopic box into squares of side �′ � |τ |−1/(d−1), only a fraction (|τ |1/(d−1)�′)d

of these squares contains a corner of σ�, i.e., the large majority of these squares are such
that the corresponding restriction of the ground state is striped or slabbed. A similar
argument shows that most of these striped/slabbed restrictions consist of stripes or slabs
all of a width very close to the optimal width h∗.
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A. Computation of the Energy of the Optimal Periodic State

The specific energy of a periodic striped/slabbed configuration in our two- or three-
dimensional system is the same as the specific energy of a periodic striped configuration
in an effective one-dimensional system with formal Hamiltonian

H = −J
∑

〈x,y〉
(σxσy − 1) +

∑

x<y

(σxσy − 1)v(x − y), (A.1)

where, for all x �= 0,

v(x) =
∑

n∈Zd−1

1

(x2 + |n|2)p/2 . (A.2)

The interaction potential v(x) can be conveniently rewritten as v(x) = V (x) + R(x),
where

V (x) =
∫

Rd−1

dy
(x2 + |y|2)p/2 = 1

|x |p−d+1

∫

Rd−1

dy
(1 + y2)p/2 =: κp

|x |p−d+1 , (A.3)

and R(x) is a rest, which decays to zero at infinity exponentially fast (as one can prove
by using Poisson’s summation formula). The energy of a one-dimensional periodic state
consisting of blocks all of the same size h and alternating sign is straightforward to
compute, and the computation gives (see [12, Eq. (17)]):

es(h) = 2J

h
− 2

h

∫ ∞

0
dα μv(α)

e−α

(1 − e−α)2 tanh
αh

2

= τ

h
+

2

h

∫ ∞

0
dα μv(α)

e−α

(1 − e−α)2 (1 − tanh
αh

2
), (A.4)

where μv(α) is the inverse Laplace transform of v(x), i.e., the function such that
v(x) = ∫ ∞

0 dα μv(α)e−αx , ∀x > 0. Of course, μv(α) can be rewritten as μv(α) =
μV (α) + μR(α), according to the decomposition v(x) = V (x) + R(x), with μV (α) =

κp
�(p−d+1)

α p−d and μR(α) is zero for α sufficiently small. Plugging this into Eq. (A.4)
and computing the resulting integral asymptotically as h → ∞ gives

es(h) = τ

h
+

Ad(p)

h p−d
+ O(

1

h p−d+2 ),

Ad(p) = κp

�(p − d + 1)
2p−d

∫ ∞

0
dα α p−d−2(1 − tanh α). (A.5)

Finally, optimizing over h gives

h∗ = argmin es(h) =
[ (p − d)Ad(p)

|τ |
] 1

p−d−1 (
1 + O(|τ | 2

p−d−1 )
)

eS(J ) = es(h
∗) = − p − d − 1

[
(p − d)p−d Ad(p)

]1/(p−d−1)
|τ | p−d

p−d−1
(
1 + O(|τ | 2

p−d−1 )
)
,

(A.6)

which proves Eqs. (2.1)–(2.2).
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Fig. 2. An illustration of the geometric objects introduced after Eq. (B.3). The grey area is the droplet δ. The
two dotted paths connecting x with y are Chv

x→y and Cvh
x→y. The intersection of the two paths with the boundary

�(δ) defines the two special bonds b1 = b1(x, y) and b2 = b2(x, y). Every such bond is associated with a
point in δ, denoted by zbi and located on the path Chv

x→y or Cvh
x→y, which can coincide or not with x

B. Proof of Eq. (2.9)

We start by proving a weaker version of Eq. (2.9), namely

U (δ) ≥ −
∑

i=1,2

∑

b∈�i (δ)

∑

n �=0

min{|ni |, db(δ)}
|n|p

. (B.1)

Later we will show how to improve (B.1) to (2.9). Let us rewrite the droplet self-energy
as follows:

U (δ) = −
∑

n �=0

Nn(δ)

|n|p
, (B.2)

where Nn(δ) is the number of ways in which n = (n1, n2) may occur as the difference
y − x or x − y with x ∈ δ and y �∈ δ. Let �i (δ) be the subset of �(δ) orthogonal to the
i-th coordinate direction. Our claim is that

Nn(δ) ≤
2∑

i=1

∑

b∈�i (δ)

min{|ni |, db(δ)}, (B.3)

from which Eq. (B.1) readily follows. If n1 = 0 or n2 = 0, then the proof of (B.3) is
elementary, and we leave it to the reader. Let us consider explicitly only the case that
both n1 and n2 are �= 0. We need to define a few geometric objects, which are illustrated
in Fig. 2.

Consider a pair of points x, y such that x ∈ δ and y �∈ δ. Draw the oriented lattice
path Chv

x→y that goes from x to y and consists of two segments, the first horizontal and

the second vertical. Let b1 = b1(x, y) be the first bond in �(δ) crossed by Chv
x→y; b1

separates a site xb1 ∈ δ from a site yb1 �∈ δ. Moreover, let x′ be the corner of Chv
x→y; we
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define zb1(x, y) = x if b1 is between x and x′, or zb1(x, y) = x′ if b1 is between x′ and y.
This construction allows us to associate the pair (b1, zb1) with (x, y). Similarly, drawing
the oriented lattice path Cvh

x→y that goes from x to y and consists of two segments, the first
vertical and the second horizontal, we can associate with (x, y) a second pair (b2, zb2).
By construction, in both cases the distance of zbi from ybi is ≤ min{|x ji − y ji |, dbi (δ)},
where ji = 1 if bi is vertical, and ji = 2 if bi is horizontal. We write F(x, y) =
{(b1(x, y), zb1(x,y)(x, y)), (b2(x, y), zb2(x,y)(x, y))}. Vice versa, if we assign an integer
vector n �= 0, a bond b ∈ �i (δ) separating xb ∈ δ from yb �∈ δ, and a site zb ∈ Zb(n, δ)

(here Zb(n, δ) is the set of allowed locations of zb, namely, is the set of points zb ∈ δ

belonging to the same column/row as b depending on whether b is horizontal/vertical,
with the property that |zb − yb| ≤ min{|ni |, db(δ)} and all the sites between zb and xb
belong to δ), then the set Gn(b, zb) = {(x, y) ∈ F−1(b, zb) : x − y ∈ {±n}} has at most
two elements. This fact immediately implies Eq. (B.3). In fact, if χ(condition) is the
function = 1 when condition is verified, and = 0 otherwise,

Nn(δ) =
∑

x∈δ
y �∈δ

χ(x − y ∈ {±n})

= 1

2

∑

x∈δ
y �∈δ

χ(x − y ∈ {±n})
2∑

i=1

∑

b∈�i (δ)
zb∈Zb(n,δ)

χ((b, zb) ∈ F(x, y))

= 1

2

2∑

i=1

∑

b∈�i (δ)
zb∈Zb(n,δ)

∑

x∈δ
y �∈δ

χ((x, y) ∈ Gn(b, zb))

≤
2∑

i=1

∑

b∈�i (δ)

min{|ni |, db(δ)}, (B.4)

where in the last inequality we used the facts that |Gn(b, zb)| ≤ 2 and |Zb(n, δ)| ≤
min{|ni |, db(δ)}.

Let us now discuss how to improve (B.1) into (2.9). First of all, from its proof, it is
clear that (B.3) overcounts the pairs in P(δ) (for the definition of P(δ), see the fourth
item after (2.9)). Therefore, we can freely subtract from the r.h.s. of (B.3) the additional
contribution coming from these pairs, so that

Nn(δ) ≤
2∑

i=1

∑

b∈�i (δ)

min{|ni |, db(δ)} − 2|Pn(δ)|, (B.5)

where Pn(δ) = {{x, y} ∈ P(δ) : x − y ∈ {±n}}. Inserting (B.5) into (B.2) gives

U (δ) ≥ −
∑

i=1,2

∑

b∈�i (δ)

∑

n �=0

min{|ni |, db(δ)}
|n|p

+ 4
∑

{x,y}∈P(δ)

1

|x − y|p
, (B.6)

which is almost what we are after, up to the term in (2.9) proportional to Nc(δ). In order
to get it, let us consider the special case of n such that |n1| = |n2| = 1. Note that if
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|n1| = |n2| = 1, then Zb(n, δ) consists of a single point, ∀b ∈ �(δ). The key remark is
that for every bond b ∈ �(δ) adjacent to exactly one corner of �(δ), we have

1

2

∑

n: |n1|=|n2|=1

|Gn(b, zb)| ≤ 3, (B.7)

while for every bond b ∈ �(δ) adjacent to two corners of �(δ)

1

2

∑

n: |n1|=|n2|=1

|Gn(b, zb)| ≤ 2. (B.8)

Of course, in the last two equations zb is the unique element of Zb(n, δ). Note that
in general (B.7) is an inequality (rather than an equality), because the corner which b
is adjacent to could actually be a “double-corner” like one of those in Fig. 1, rather
than a standard one; in fact, if b adjacent to exactly one double-corner of �(δ), then
1
2

∑
n: |n1|=|n2|=1 |Gn(b, zb)| = 2. A similar comment is valid for Eq. (B.8).

Using the same rewriting as in Eq. (B.4), together with (B.7)–(B.8), we find

1

2

∑

n: |n1|=1,
|n2|=1

Nn(δ) = 1

4

∑

n: |n1|=1,
|n2|=1

2∑

i=1

∑

b∈�i (δ)
zb∈Zb(n,δ)

∑

x∈δ
y �∈δ

χ((x, y) ∈ Gn(b, zb))

≤ 1

2

∑

n: |n1|=1,
|n2|=1

∑

i=1,2
b∈�i (δ)

min{|ni |, db(δ)} − Nc(δ). (B.9)

Moreover, if we also take into account the presence of double-corners, as discussed after
(B.8), then we can further improve (B.9) into

1

2

∑

n: |n1|=1,
|n2|=1

Nn(δ) ≤ 1

2

∑

n: |n1|=1,
|n2|=1

∑

i=1,2
b∈�i (δ)

min{|ni |, db(δ)} − Nc(δ) −
∑

{x,y}∈P(δ):
|x1−y1|=|x2−y2|=1

2.

(B.10)

Combining (B.10) with Eqs. (B.2) and (B.5) finally gives Eq. (2.9).

C. Proof of Eq. (3.15)

Let S̃Q = {β̄1, . . . , β̄k} be a bubble configuration consisting of k vertical stripes, with
+ boundary conditions on the left and right sides of Q. We assume that the bubbles’
contours are located at the horizontal coordinates 1

2 ≤ x1 < x2 < · · · < x2k ≤ � + 1
2 ,

and we let hi = xi+1 − xi , with i = 1, . . . , 2k − 1. Given the spin configuration
σ̃Q in Q = [1, �]2 ∩ Z

2 corresponding to S̃Q , we can naturally extend it to the strip
�2L ,� = [−L + 1, L] × [1, �] ∩ Z

2, by filling the portions of �2L ,� to the left and
to the right of Q by + spins; we denote the resulting spin configuration by σ̃�2L ,�

. By
construction, the droplets’ boundaries within �2L ,� are still located at x1 < · · · < x2m .
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In terms of these definitions, we can rewrite the energy EQ(S̃Q) as follows:

EQ(S̃Q) = 4Jk� − 2�

k∑

i=1

∑

n �=0

min{|n1|, h2i−1}
|n|p

+ 4
∑

1≤i< j≤k

∑

x∈δ̄i
y∈δ̄ j

1

|x − y|p

= 4Jk� − 2
k∑

i=1

∑

x∈δ̄i
y∈δ̄c

i \Si

1

|x − y|p
+ 4

∑

1≤i< j≤k

∑

x∈δ̄i
y∈δ̄ j

1

|x − y|p
, (C.1)

where in the second line δ̄c
i = Z

2\δ̄i and Si is the infinite vertical strip of width h2i−1

containing δ̄i , i.e., Si = [
(x2i−1, x2i )∩Z

]×Z. It is convenient to rewrite δ̄c
i \Si = Ai ∪Bi ,

where Ai = Z
2\(Si ∪ �∞,�) and Bi = �∞,�\δ̄i . Correspondingly, we can rewrite:

EQ(S̃Q) = 4Jk� − 2
∑

i=1,...,k
x∈δ̄i , y∈Bi

1

|x − y|p
+ 4

∑

1≤i< j≤k
x∈δ̄i , y∈δ̄ j

1

|x − y|p
+

k∑

i=1

A�(h2i−1)

= lim
L→∞ Hper,0

�2L ,�
(̃σ�2L ,�

) +
k∑

i=1

A�(h2i−1), (C.2)

where Hper,0
�2L ,�

is the finite volume Hamiltonian (2.4) with periodic boundary conditions
in the horizontal direction and open boundary conditions in the vertical direction (of
course, the choice of boundary conditions in the horizontal direction is arbitrary in the
limit L → ∞), and

A�(h2i−1) = −2
∑

x∈δ̄i
y∈Ai

1

|x − y|p
= −8

∑

−h2i−1<x1≤0
−�<x2≤0

∑

y1,y2>0

1

|x − y|p
. (C.3)

Note that, for h ≤ �,

A�(h) = −κ + O(h4−p), (C.4)

where κ is a positive constant independent of � and h (it coincides with the “corner
energy” defined in [17, Eq. (3)]). The spin configuration σ̃�2L ,�

we are interested in is
quasi-1D, i.e., the value of σ̃(x1,x2) is independent of x2. We shall write σ̃(x1,x2) = σ̄x1

and σ̃�2N L ,�
= σ̄�2L , with �2L = [−L + 1, L] ∩ Z. Correspondingly,

Hper,0
�2L ,�

(̃σ�2L ,�
) = �H̄per;�

�2L
(σ̄�2L ), (C.5)

where

H̄per;�
�2L

= − J
∑

−L<x≤L

(σxσx+1 − 1) +
∑

−L<x<y≤L

φ�(x − y)(σxσy − 1),

φ�(x − y) =1

�

∑

q∈Z

�∑

m,n=1

1
[
(x − y + 2q L)2 + (m − n)2

]p/2 ,

(C.6)
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is a one-dimensional spin Hamiltonian with a reflection positive long-range interaction
and periodic boundary conditions, of the class considered in [12,13]. Therefore, we
can apply the chessboard estimate proved e.g. in the Appendix of [13]. As a result,
using [13, Eq. (A5)] and recalling the fact that the periodic spin configuration σ̄�2L

consists of blocks of alternating sign, of size h1, . . . , h2k−1, h2k , where h2k = h2k(L) =
2L + � + x1 − x2k , we get

H̄per;�
�2L

(σ̄�2L ) ≥
2k∑

i=1

hi ē�(hi ), (C.7)

where ē�(h) is the energy per site (as computed from H̄per;�
�2L

, in the limit L → ∞) of
the infinite periodic configuration consisting of blocks all of the same size h, and of
alternating sign. Inserting Eqs. (C.4) and (C.7) into Eq. (C.2), we find:

EQ(S̃Q) ≥
2k−1∑

i=1

[
�hi ē�(hi ) − κ

2
+ O

( 1

h p−4
i

)]
− κ

2

+� lim
L→∞ h2k(L)ē�

(
h2k(L)

)
. (C.8)

Now we observe the following:

�hes(h) = �hē�(h) − κ

2
+ O(

1

h p−4 ) + O(
1

�p−4 ), (C.9)

where es(h) is the specific energy of the infinite periodic striped configuration defined
in the introduction. Moreover, recalling that limL→∞ h2k(L) = +∞ and using (C.9)
together with (A.5), we see that limh→∞ hē�(h) = τ + κ

2�
+ O(�3−p). Therefore, for a

suitable constant C > 0,

EQ(S̃Q) ≥ �

2k−1∑

i=1

hi
[
es(hi ) − Ch3−p

i �−1] + τ� − C�4−p, (C.10)

which proves Eq. (3.15).

D. Three Dimensions

In this Appendix we adapt the argument spelled out above for two dimensions to the
case of three dimensions, by introducing droplets and contours analogous to the two-
dimensional ones. Note that now bonds separating a + from a − spin are replaced by
plaquettes. Droplets now are three-dimensional regions whose boundaries are unions of
plaquettes. The energy still admits the representation (2.6). The first issue to be discussed
is the lower bound on the self energy of the droplets, which should be replaced by the
analogue of (2.9), namely

U (δ) ≥ −
3∑

i=1

∑

b∈�i (δ)

∑

n �=0

min{|ni |, db(δ)}
|n|p

+ 21− p
2 Nc(δ) + 4

∑

{x,y}∈P(δ)

1

|x − y|p
,

(D.1)
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where now the label b ∈ �i (δ) is associated with a plaquette of the boundary of δ,
orthogonal to i-th coordinate direction, and db(δ) is the distance between b and the
plaquette b′ facing it in δ. Moreover, Nc(δ) is the number of edge corners belonging to
�(δ). By ‘edge corner’ we mean an edge that is common to two orthogonal plaquettes
of �(δ). Note that an edge corner has length 1. Finally, P(δ) is the set of unordered pairs
of distinct sites in δ such that each of the paths C123

x→y, C231
x→y and C312

x→y cross at least two

bonds of �(δ). Here Ci jk
x→y is the path on the lattice that goes from x to y and consists of

three segments, the first in coordinate direction i , the second in coordinate direction j
and the third in coordinate direction k.

The proof of (D.1) follows the same lines as the proof in Appendix B. The only
relevant differences are the following. When constructing the set F(x, y) we have to
draw the three disjoint lattice paths C123

x→y, C231
x→y and C312

x→y, so that F(x, y) consists of
exactly three elements. Similarly, the set Gn(b, zb) consists of at most three elements.
From these considerations, the analogue of (B.4) immediately follows.

The proof of (B.5) is unchanged, and the proof of (B.10) does not even need to be
repeated or adapted. Indeed, the analogue of the l.h.s. of (B.10) that we now want to
estimate is

1

2

∑

|n1|=|n2|=1
n3=0

Nn(δ) +
1

2

∑

|n1|=|n3|=1
n2=0

Nn(δ) +
1

2

∑

|n3|=|n2|=1
n1=0

Nn(δ). (D.2)

Note that the n vectors involved in these sums are all the vectors whose length is
√

2. The
first sum, for example, is really a sum over the contributions from horizontal sections of
δ, at constant x3; each of these can be estimated in exactly the same way as in (B.10).
The same holds for the second and third sums above. Putting all these together allows
us to estimate (D.2) from above by

1

2

∑

n: |n|=√
2

∑

i=1,2,3
b∈�i (δ)

min{|ni |, db(δ)} − Nc(δ) −
∑

{x,y}∈P(δ):
|x−y|=√

2

2, (D.3)

which is the desired analogue of (B.10).
The next step is localization into boxes of side �. The relevant definitions remain

unchanged (with certain obvious changes, e.g., the summation over i = 1, 2 in (3.4)
should become i = 1, 2, 3), and the key estimates (3.7)–(3.9) are still valid without
alteration. The symbol β̄ = (δ̄, �̄) will still indicate a bubble (i.e., a pair consisting of
a droplet and its contour; the bars are meant to remind the reader that both the droplet
and the contour are localized into a finite box); similarly, N̄c(β̄) will still be the total
number of corners of �̄, i.e., the number of its boundary corners plus the number of its
bulk corners; see the lines preceding (3.1). The first estimate to be changed is (3.10),
which should be replaced by

|�̄| ≤ 2�2 + 2�N̄c(β̄). (D.4)

The reason is completely analogous to the one explained after (3.10). Inserting (D.4)
into (3.9) gives

2J |�̄| + UQ(β̄) ≥ 21− p
2 N̄c(β̄)

(
1 − 2

p
2 |τ |�2

N̄c(β̄)
− 2

p
2 |τ |�

)
. (D.5)
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If N̄c(β̄) ≥ 1, then

2J |�̄| + UQ(β̄) ≥ 21− p
2 N̄c(β̄)

(
1 − 21+ p

2 |τ |�2), (D.6)

which is positive as soon as � < 2− 1
2 − p

4 |τ |−1/2.
Under this condition, therefore, for the purpose of a lower bound, we can erase all the

bubbles with one or more corners, and obtain the analogue of (3.13). It is at this point
that columns are excluded, because a column has many edge corners. From this point on,
the proof is very similar to the one of the two-dimensional case: We can assume without
loss of generality that our bubble configuration of interest consists of a collection of
straight slabs. Moreover, we may reduce ourselves to + boundary conditions, up to an
error of the order τ�2, thus obtaining the analogue of (3.14), with 2τ�2 replacing 2τ�

on the right hand side. Now we are in conditions to apply reflection positivity, the result
being the analogue of (3.15), namely

EQ(S̃Q) ≥ �2
2k−1∑

i=1

hi
[
es(hi ) − Ch4−p

i �−1] + τ�2 − C�5−p, (D.7)

where now es(h) denotes the energy per site of the periodic slab energy. Minimization
of this expression under the required constraints on hi and � leads to our final result,

e0(J )

eS(J )
≥ 1 − (const.)|τ | p−6

2(p−4) . (D.8)
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