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Abstract

We investigate the relation between Bose—Einstein condensation (BEC) and superfluidity in the
ground state of a one-dimensional model of interacting bosons in a strong random potential. We
prove rigorously that in a certain parameter regime the superfluid fraction can be arbitrarily small
while complete BEC prevails. In another regime there is both complete BEC and complete super-
fluidity, despite the strong disorder.

1. Introduction

One of the intruiging issues in the theory of superfluidity is the question of its relation to Bose—Einstein
condensation (BEC). A precise formulation of this question requires precise definitions of the concepts. In the
case of BEC, the universally accepted definition is in terms of the macroscopic occupation of some one particle
state, measured by the largest eigenvalue of the one particle density matrix of the many body state [1]. In the case
of superfluidity, on the other hand, the definition is not so clear cut. As emphasized by Leggett [2] one must
distinguish between dynamical aspects such as frictionless flow at a finite speed, and the response of the system
to an infinitesimally small imposed velocity field, e.g. through slow rotation of a container. The latter is easier to
handle mathematically and in the following we shall use the customary definition of the superfluid fraction as
the second derivative with respect to the velocity at zero of the energy per particle [3]. This definition can
equivalently be formulated in terms of twisted boundary conditions.

For liquid helium 4 there is experimental and numerical evidence for almost complete superfluidity near
absolute zero while the BEC fraction is less than 10% [4]. Also, a one-dimensional hard-core Bose gas is an
example of a system that is superfluid in the ground state but where BEC is absent. In general it has been argued,
see e.g. [5], that neither condition is necessary for the other, and that disorder may destroy superfluidity while
BEC prevails [6-9]. A mathematical investigation of this question, however, is hampered by the fact thata
rigorous proof of BEC in a system of interacting Bosons is a notoriously difficult problem that has only been
solved in a few special cases. One such case is the proof of both complete BEC and complete superfluidity in the
ground state of a dilute Bose gas in a smooth trapping potential in the Gross Pitaevskii (GP) limit [10, 11].

In recent years the interplay between interactions and disorder in many body systems has been studied in
many works, both theoretically and experimentally. It is not the intention here to give a review of the subject but
we mention the references [ 12-24] as a representative sample. In [25] (see also [26]) a one-dimensional model
of an interacting Bose gas was studied and it was shown that complete BEC in the ground state may survive a
strong random potential in an appropriate limit. On the other hand, the random potential may have drastic
effects on the wave function of the condensate and this can be expected to influence the superfluid behavior. In
this paper we analyze the density distribution of the condensate in this model in some detail and its implications
for superfluidity. Our main result is a rigorous proof that in a certain parameter regime the superfluid fraction
can be arbitrarily small although complete BEC prevails, while in another regime there is both complete BEC
and complete superfluidity.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The model we consider is the Lieb—Liniger model [27] of bosons with contact interaction on the unit interval
but with an additional external random potential V,. We shall, however, not make any use of the solution via
Bethe-ansatz in [27] of the model without random potential. The Hamiltonian on the Hilbert space
L%([0, 1], dz)®mN of square integrable symmetric wave functions of (i ,..., zx ) with0 < z; < 1is

N
H= 3 (0% + Vi(z)) + - X6 (2~ 7)), (1)
i=1

i<j

wherey > 0 and we shall take periodic boundary conditions for the kinetic energy operator. Units have been
chosen such that Planck’s constant 7 is 1 and the particle mass is1/2. The random potential is taken to be

V, (2) =626(z—zf’) (2)
j

witho > 0 independent of the random sample @ while the obstacles{z ’ } are Poisson distributed with density

v > 1,i.e., their mean distance isz . The Hamiltonian (1) can be defined rigorously via the quadratic form on
the Sobolev space H' ([0, 1]®N) given by the expression on the right hand side of (1), noting that functions in the
Sobolev space can be restricted to hyperplanes of codimension 1. (The Sobolev space H! ([0, 1]) consists of
functions on [0, 1]that together with their first derivative are square integrable.)

Since our model is formulated in the fixed interval [0, 1]the particle density p tends to infinityas N — co.
Equivalently, we could have considered the model in an interval[-L/2, L/2]and taking Nand L — oo with
p = N/L fixed, as done for instance in [24]. As explained in [26], section 4.4, the two viewpoints are connected
by simple scaling. For the purpose of the present investigation we find it convenient to stick to the model in the
unit interval. Physically, this can also be regarded as a model of a gas in a very thin circular annulus.

In addition to the particle number N the model (1) has three parameters: v, y and 6. The limiting case 6 = oo
amounts to requiring the wave function to vanish at the positions of the obstacles z;”. In [25] it is shown that as
N — oo for fixed values of the parameters BEC takes place in the ground state. The ground state energy and the
wave function of the condensate are described by a GP energy functional (see below, equation (6)). In [25] itis
furthermore proved that the corresponding energy becomes deterministic, i.e., independent of w in probability,
if the parameters satisfy the conditions

12 12

v>1, y»——, o» ———————.
(Inv) 1+ln(1+1/2/y)

(3)

In [25] itis explained why these conditions are also necessary in order to obtain a deterministic energy and they
will be presupposed in all statements about the model in the following.
Our new findings about the model can be summarized as follows.

Main Results:

o Ify S 12 thesuperfluid fraction is arbitrarily small, i.e., it goes to zero in the limit (3).
o Thesameholds forv* < y < v* provided o > (y/v?)*y'/.

o Ify > (ov)? thereis complete superfluidity, i.e., the superfluid fraction tends to 1.

The estimates that lead to these assertions are contained in equations (5), (60) and (63) below. Figure 1
illustrates the parameter regions with and without superfluidity. (Note that we are concerned with asymptotic
parameter regimes and the boundaries of the colored areas are not meant to indicate sharp transitions.)

We now describe briefly the organization of the paper. In the following section 2 we first recall from [25] the
description of the ground state properties of the Hamiltonian (1), in particular BEC, in terms of a GP functional.
For this it is not necessary to assume the special potential (2), and we can state the results for an arbitrary
nonnegative potential V. The same holds in section 2.2 where we show that superfluidity in the ground state of
the many body Hamilonian is, in the large N limit, equivalent to superfluidity described in terms of the GP
theory. In section 3 we shall derive a closed formula for the superfluid fraction p*t:

Pt = ( JAZE] ‘2dz)_l, )

where y is the minimizer of the GP energy functional.
A further general result (for an arbitrary nonnegative potential V) that we prove in section 4 is an estimate for
the deviation of the density from 1 in the sup norm|| - ||o:

2
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log(o)/log(v)

log(y)/log(v)

Figure 1. Red: absence of superfluidity. Green: complete superfluidity.

2
llyol? = 111 232 pi
<_
L+ gl = 11, V7 7o

(5)

When applied to V = V,, this leads immediately to the sufficient criteriony > (ov)* for complete superfluidity.
The absence of superfluidity in the random potential for weak interactions and/or high density of scatterers
is derived in section 5.

2. BEC and superfluidity in the GP limit

2.1.BEC

An important fact about the Hamiltonian (1) that was proved in [25] is BEC in the ground state in the limit when
N — oo andyisfixed (GP limit), or does not grow too fast with N. This holds in fact also if V,, is replaced by an
arbitrary positive potential V. The wave function of the condensate (eigenfunction to the highest eigenvalue of
the one particle density matrix) is the minimizer y;, of the GP energy functional

1
eyl = f ( W @F + V@ WP + ) |4)dz (6)
with the normalization fo ' ly> = 1. The minimizer yy, is also the ground state of the mean field Hamiltonan

1
h==0l+ V() +7lwf - L f0 Iy (7)

with eigenvalue ey = E°P [y, ]. The average occupation of the one particle state y, in the many-body ground state

¥ of His Ny = (¥, a' (y,)a (y,) %) witha' (y,) and a (y,) the creation and annihilation operators for y,. BEC
is expressed through the estimate

€0

No —1/3 . : 1/2
(1 - W) < (const. ) N min {}/ , y}, (8)

€1 — €

where e, is the second lowest eigenvalue of the mean field Hamiltonian (7). Moreover, the ground state energy
per particle of H converges to the GP energy e, see equations (14) and (17) below.

2.2. Superfluidity
To discuss superfluidity we modify the kinetic term of the Hamiltonian, replacingid byid + v with a velocity
v € R." We thus consider

More correctly, v stands for mass times velocity and with our choice of units the mass is1/2, so v is really half the physical velocity.

3
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N ) v
HV=Z{<iaZj+V) +V(Zj)} +N25(Zi_zj) 9)

=1 i<j

-

on LX([0, 1], dz)®¥m with periodic boundary conditions. Note that we could equivalently consider the
Hamiltonian without v in the kinetic term if we impose twisted boundary conditions on the wave function in
eachvariable z; i.e.

Y’(...,zj_l, 1, zj+1,...) = exp (—iv)'{’(..., zj_1, 0, zj+1,...>. (10)

The unitary transformation between a periodic wave function ¥, and the corresponding twisted wave function
thwist is

Prwist (2150 ZN) = €Xp (—iv(21 + -+ ZN))%er(zl,...,zN). (11)

Let EXM (v) denote the ground state energy of (9) and let e, (v) denote the corresponding ground state energy
of the modified GP functional

eyl = [ (Iiv/(z) Fw@F + V) WP + §|w<z>|4)dz. (12)

For small enough v, £, has a unique minimizer, denoted byy;, and e, (v) is equal to the ground state energy of the
mean field Hamiltonian

A 2 2 _ 7 S
he=(ioo+0) + V@ +yw@P - L [t (13)

Taking y/V@N as trial function for the Hamiltonian H, we obtain
EMW)/N < eg(v). (14)

For the lower bound we write in the same way as equation (7) in [25]

H, = %{(1 - Nﬂ:rle)(iazj + V>2 + V(zj)}
=1
+%Z[§((i6zi+v)2 + (iazj+v)2)+y5(z,-—zj)]. (15)

i<j

We may now use the diamagnetic inequality ([28], page 193) to bound an expectation value of the second term
with respect to any wave function ¥ from below by the expectation value of

VEl5(-s - o) o)
i<j

with respect to| ¥ |. Proceeding exactly as in [25], equations (12)—(17), we can thus bound H, from below in
terms of the mean field Hamiltonian with controlled errors terms, arriving at the lower bound for the ground
state energy

EM()/N > eo(v)<1 — (const)N~'3 min {y”z, y}) (17)
We conclude that in the GP limit the superfluid fraction
P = lim— lim— (B () — E(0)) (18)
v=>0yp N-ooo N

is the same as the corresponding quantity derived from the GP energy, i.e.

P = lim—(eo(v) - e0(0)). (19)
v—=0y
Note that in (18) the order in which the limits are taken is important in general. Also, there is no factor 2 on the
right side of (18) because with our choice of units the mass is1/2. Using the GP minimizer for v =0 as a trial state
for (12) we see that p* < 1. Note also that the error term in (17) is independent of V and uniformly small in y for
y < N??3 Finally, we remark that the energy defined by (12) with periodic boundary conditions is the same as
the energy defined by the functional without v in the kinetic term, i.e., (6), but with twisted boundary conditions.
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3. Proof of equation (4)

In this section we shall prove the formula (4) for the superfluid density. We start with the variational equation for
w, which is

. 2
(i0: + v) % (2 + V@ (2) + v (2P, (2) = pay (2). (20)
We multiply this by i, and take the imaginary part, to obtain
0. (v Iw(2)P =3[ (2)du (2)/dz ] ) = o. (21)
Hence there exists a constant C € R such that
3w (2w, (2)/d2] = v ()P - C. (22)
Since
1
deo (v)/dv = 2v — 2 / 3 vy () dy, (2)/dz | dz (23)
0

weactually see that C = 1/2 de, (v)/dv. Sincey, depends continuously on v for small vand is without zeros for
v=0, italso has no zeroes for small v. Hence we can divide by|y(z)|* and obtain

fw@dn@ia] o

S'(2) -
ly; (2)[* [y (2)[*

(24)

Since §' is, in fact, the derivative of the phase of y;, i.e., y;, (z) = |y, (2)| els@

boundary conditions

, we have, for a system with periodic

fl S'(z)dz = 2an (25)
0

forn € Z. Appealing again to continuity of y;, in vand the fact that y, is a real function for v = 0, we conclude that
n=0 for small enough v. Therefore

v= C[)l y;,(2)| 72 dz. (26)
We plug this into (23), to obtain
e)(v) = 2C = 21/( /0 1 |%(z)|‘2dz)_l. (27)
With
P = lim 2 Y (28)
v=0 2v

this leads to the formula (4).

4. Proof of equation (5)

We now derive the bound (5) which quantifies the deviation of the GP minimizer from a constant in terms of the
average value of the random potential and the interaction strength.

Functions fin the Sobolev space H ([0, 1]) are continuous, and hence fo ! f = 0implies that f (z) = 0 for
somez € [0, 1]. For such f, we have

fre =2 S P Of 5)dy (29)

and hence

1% <2111k, (30)

where|| - || is the sup norm and|| - ||, the L*-norm. We apply this to f (x) = |y (x)|? — 1for an L>-normalized
function . This gives
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Nyl = 11 <4yl P =1k <4 1wiilylel P = 1. (31)
We further bound||w|, < 1 + || |w]> = 1]l and hence find

2
IHwl? = 111,

, 1
[y, 1 |l//|2 =1, = Z > .
J1+ vl = 1l

(32)

In particular, fory > 0
32 4 /1 4 112 7 2 2 14
+4 = + L -1 + =
(K715 >/ lwl* = 11wl 5 Il v I, 5
4 y
Z N Nl Hwl? = 1l

2
Iyl = 1l
>Z+£ | | ) (33)

3/2 '
2027 1+l - 1l

ForV > 0 the GP minimizer y, satisfies (takey = 1as a trial function)

1 1 1 1
g 2 + L lwol* < Ny II2 + V(2) lyy(2)|Pdz + L lyol* < v+ L, (34)
2 2Jo 2 0 2 Jo 0 2

SO

2
ol — 2 1
ol = 111, 2
By
0

<= (35)
L el = 10, V7

Since /0 V,, is close to vo with high probability, in the sense that the ratio converges to 1 in probability, we see

that|y|* and hence also |y, | converges uniformly to 1 ify > (ov)? as the parameters tend to c0. Thus the
superfluid fraction is equal to 1 by equation (4).

5. Absence of superfluidity

If T is any (measurable) subset of[0, 1]with length|T | it follows from equation (4) and the Cauchy—Schwarz
inequality that

J; lw(2)Pdz
g (36)
TG

To prove that superfluidity is small we have therefore to identify subsets such that /1 |y, (2)]%dz is small, while
|Z|is not too small.
The random points z j’" split the interval [0, 1]into subintervals Z; = [z", z ]»"4’_1 ] of various lengths

¢; = zi{, — z;’. Thelengths are independent random variables’ with identfc,al probability distribution
dp,(¢) = ve™ d7. (37)
We anticipate that intervals of small lengths have small occupation and shall therefore take
1= U 1, (38)
jiti<?

with a suitably chosen 7. The average length of  is

L=y[ff&ﬂf%:l—(L+@@)€”. (39)

In particular it tends to 1 ifand only ifZ > v~

With the notation

anP = ﬂj lwy(2)[>dz (40)

Strictly speaking, because of the fixed endpoints 0 and 1, the interval lengths are not quite independent, but since the number of intervals is
very large this does not affect the estimates.
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we define

Now= [ luaPdz = ¥ nf". (41)

ti<t

Note thaty, andn J-GP also depend on @ but we have suppressed this in the notation for simplicity.
Our estimate on N; ,, is based on estimates on the GP energy that were derived in [25]. These involve some
auxiliary quantities that we now recall.

5.1. The energy between obstacles
The energy in an interval where the obstacles are placed only at the endpoints is given by suitable rescaling of the
energy functional

1
Eaalo) = [ ax (|¢/<x>|2 + §|¢<x)|4) + 2 (leOF + lo()P) (42)
withk > Oanda > 0.Lete (k, a) denote the auxiliary GP energy
ek, @) = inf Ecalg). (43)
llpll, =1

The corresponding energy for an interval of length £ with mass fl

sverva @7 = 1, coupling constant y and

strength o of the obstacle potential is then, by scaling

%e (nty, £6). (44)

We shall use the following bounds on e (x, «) that were derived in [25], equations (32) and (41):
e(x, ) > e(x, a) > e(x, 0)(1 - Ka ') (45)

and

Ca
+a.

e(k, a) =2 e(0,a) > n (46)

with constants K and Cindependent of x and a.

5.2. The interval density functional
Withn (#£) > 0amass distribution on intervals of various lengths # we define an ‘interval density functional’, see
[25], equation (42), as

e n() =v [ 4RO XL etn0)6r, ) (47)
with corresponding energy
ePF (v, y) = inf{ EP¥n()]:v /Oco dB,()n(¢) = 1}. (48)
This energy (denoted bye, (y, v)) isin [25], theorem 3.1, proved to be the deterministic limit (in probability) of

the GP energy under the conditions (3). The minimization problem (48) is conveniently treated by introducing
a Lagrange multiplier y for the normalization condition on# (£). In [25], equations (45)—(47), it is shown that

u~rf (), (49)
where f: Ry — R, denotes the function
1 forx< 1
f=q X forx > 1. (50)
(1 4 Inx)?

Alsoe™t (y, v) ~ y f (1*/y). A further result derived in [25] is that the minimizing 7 (£) of the interval density
functional is nonzero ifand only if u#? > 2. We can therefore expect that the mass (40) is small in intervals T i
such that#; < (const.) / J# and we shall make use of this in the following considerations.

5.3. Absence of superfluidity fory < v°
The first step is to split the GP energy efP (7, v, 0), which is the minimum energy of (6) with V, in place of V,
into contributions from ‘large’ and ‘small’ intervals:

7
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GP GP
n; n;
eu(;vP(},, v, 0) > Z_?e<”]@fj% z,”jo') + Z_?e(anpij’ fj"’): (51)
tze Y] G<t Yi
where
=slJu (52)

with a suitable s to be chosen later, and (by (49) and (50))

1/2

po— (53)
(1 + ln(uz/y»
Note that, sinces > v/(1 + In (1 + v%/y)) we have
o> 1 (54)
fory S 12
We estimate the sum over the small intervals using equations (46) and (52):
GP GP GP
1’1]' ( Gp 1’1]' nj C fjﬂ
Z—e n> ¢y, f»a) > Z—e(O, ﬂo-) > Z—
2 i i 2 j 2 ‘
t<t fj t<t fj t<t fj L+ o
Co C of
ZNyw ———~ =New 4t — = (55)
(1 + 7o) 2 1+ o7
For the sum over the large intervals we use (45) to estimate
= (" i) S Ze(ntin i)
GP .
—e|n;> ¢y, fio)> _ inf —el|nty, o
2 j bt tjo) =z - 2 jtir> tj
szg f] Z"i—l—Ns,mszgbﬂj
. n; - \—1/2
ZZn,Lnlf—Ns,wZZe(njfj% oo)(l —K(fa) ) (56)
j J
Apart from the factor (1 — K (£6)~'/?) the right side is the GP energy for 6 = co with normalization
f [w]* =1 — N,,, instead of / |w]* = 1.Bysimple scaling thisis1 — N; , times the the GP energy with
normalization 1 and y replaced by (1 — N, )y, which in turn is not smaller than (1 — N, )? times
eSP (v, v, ). We can further estimate
2
(1= Now) eSP (v, ) > (1 = 2Ny )eS¥ (7, v, 0) (57)
and putting (55), (56) and (57) together we obtain
GP > GP
e > Us C 4 e , Uy - \=1/
M?M,w‘_ o ~+(1_2NM))M(1_K(50)12). (58)
U s2 1 +of u

GP

(0]

If v, y and o tend to infinity under the constraints (3), theratioe,;” (y, v, 0)/u stays bounded (in probability)

according to theorem 3.11in [25]. Moreover, for ify < v? we have by (53) and (3)
of = sol Ju > 1. (59)
ForC/s® > 2eSF (y, v, 6)/uwe thus arrive at an estimate for the mass in the small intervals:

GP 1/4
N, < (const. )%’”’") L (60)
[0}

and since, by (59)
ue'? < 1 (61)

we have shown that N, , — 0 in probability ify < v* and the conditions (3) holds.
Now according to (36) the superfluid fraction is bounded from above by N; ,, /L2 where L,, is the total length
of intervals of length <7. The latter converges in probability to the expectation value

L=1/f:fdPD(zf’)=1—(1+(1/3))e‘”2, (62)
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provided the fluctuations remain small. Fory < v? wehaveZv > 1 (by (53)) and the length L converges to 1 as
v — oo, while fory ~ 12 the length stays bounded away from 0 because Z is O (1). The fluctuations are
O (v~'/2). Hence the superfluid fraction tends to 0 in probability fory < v2.

5.4.The casey > 1°
Here u ~ y andwetakeZ ~ u~/? ~ y7™12 < 171, We need inany case 67 > 1,i.e.,c > y'/?, whichis
compatible with the conditions (3). In the same way as above we obtain (60), this time with g ~ y.

Sincev? ~ v/y'/? < 1, however, the average length of the small intervals is now L ~ (v/y'/?)?> < 1rather
than O (1) asfory S v2. To exclude superfluidity we need

Ny /12 ~ (714 /61/2)<y/1/2)2 <1 (63)
which holds for
o> (y/y2)4y1/2. (64)
This condition is still not sufficient, however, because the estimate L,, ~ (v/y'%)? can only be claimed to be true

in probability as long as the fluctuations of the random variable L, = )} ¢<ptiare small compared to its average

value, L. A sufficient condition for this is that v fo ‘ £2dB, (¢) < L* whichholds fory < v*. Altogether we
conclude that the superfluid fraction tends to 0 in probability, if (64) together with1? < y < v* hold.

6. Concluding remarks

We have studied superfluidity in the ground state of a one-dimensional model of bosons with a repulsive contact
interaction and in a random potential generated by Poisson distributed point obstacles. In the GP limit this
model always shows complete BEC, but depending on the parameters, superfluidity may or may not occur. In
the course of the analysis we derived the closed formula (4) for the superfluid fraction, expressed in terms of the
GP wave function.

The advantage of this model is that it is amenable to a rigorous mathematical analysis leading to
unambiguous statements. It has its limitations: nothing is claimed about positive temperatures and the proof of
BEC requires that the ratio between the coupling constant for the interaction and the density tends to zero as
N — 0. Nevertheless, to our knowledge this is the only model where a Bose glass phase in the sense of [9], i.e.,
complete BEC but absence of superfluidity, has been rigorously established so far.
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