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Abstract. Extensionality axioms are common when reasoning about data collec-
tions, such as arrays and functions in program analysis, or sets in mathematics.
An extensionality axiom asserts that two collections are equal if they consist of
the same elements at the same indices. Using extensionality is often required to
show that two collections are equal. A typical example is the set theory theorem
(Vz)(Vy)x Uy = y Ux. Interestingly, while humans have no problem with prov-
ing such set identities using extensionality, they are very hard for superposition
theorem provers because of the calculi they use. In this paper we show how ad-
dition of a new inference rule, called extensionality resolution, allows first-order
theorem provers to easily solve problems no modern first-order theorem prover
can solve. We illustrate this by running the VAMPIRE theorem prover with exten-
sionality resolution on a number of set theory and array problems. Extensionality
resolution helps VAMPIRE to solve problems from the TPTP library of first-order
problems that were never solved before by any prover.

1 Introduction

Software verification involves reasoning about data collections, such as arrays, sets,
and functions. Many modern programming languages support native collection types or
have standard libraries for collection types. Many interesting properties of collections
are expressed using both quantifiers and theory specific predicates and functions. Unless
these properties fall into a decidable theory supported by existing satisfiability modulo
theories (SMT) solvers or theorem provers, verifying them requires a combination of
reasoning with quantifiers and collection-specific reasoning.

For proving properties of collections one often needs to use extensionality axioms
asserting that two collections are equal if and only if they consist of the same elements
at the same indices. A typical example is the set theory theorem (Vz)(Vy)zUy = yUw,
asserting that set union is commutative and therefore the union of two sets x and y is the
same as the union of y and x. To prove this theorem, in addition to using the definition
of the union operation (see Section 2), one needs to use the property that sets containing
the same elements are equal. This property is asserted by the extensionality axiom of
set theory.
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Interestingly, while humans have no problem with proving such set identities us-
ing extensionality, they are very hard for superposition-based theorem provers because
of the calculi they use. The technical details of why it is so are presented in the next
section. To overcome this limitation, we need specialized methods of reasoning with ex-
tensionality, preferably those not requiring radical changes in the underlying inference
mechanism and implementation of superposition.

In this paper we present a new inference rule, called extensionality resolution, which
allows first-order theorem provers to easily solve problems no modern first-order theo-
rem prover can solve (Section 3). Our approach requires no substantial changes in the
implementation of superposition, and introduces no additional constraints on the order-
ings used by the theorem prover. Building extensionality resolution in a theorem prover
needs efficient recognition and treatment of extensionality axioms. We analyze various
forms of extensionality axioms and describe various choices made, and corresponding
options, for extensionality resolution (Section 4).

We implemented our approach in the first-order theorem prover VAMPIRE [15] and
evaluated our method on a number of challenging examples from set theory and rea-
soning about arrays (Section 5). Our experiments show significant improvements on
problems containing extensionality axioms: for example, many problems proved by the
new implementation in essentially no time could not be proved by any of the existing
first-order provers, including VAMPIRE without extensionality resolution. In particular,
we found 12 problems from the TPTP library of first-order problems [21] that were
never proved before by any existing prover in any previous edition of the CASC world
championship for automated theorem proving [22].

2 Motivating Examples

In this section we explain why theories with extensionality axioms require special treat-
ment in superposition theorem provers.

We assume some basic understanding of first-order theorem proving and the super-
position calculus, see, e.g. [3, 16] or [15]. Throughout this paper we denote the equality
predicate by = and the empty clause by (1. We write s # ¢ to mean —(s = ¢), and simi-
larly for every binary predicate written in infix notation. Superposition calculi deal with
selection functions: in every non-empty clause at least one literal is selected. Unlike [3],
we impose no restrictions on literal selection.

Set Theory. We start with an axiomatization of set theory and will refer to this axiom-
atization in the rest of the paper. The set theory will use the membership predicate €
and the subset predicate C, the constant & denoting the empty set, and operations U
(union), N (intersection), — (difference), A (symmetric difference), and complement,
denoted by over-lining the expression it is applied to (that is, the complement of a set
is denoted by Z). An axiomatization of set theory with these predicates and operations
is shown in Figure 2. We denote set variables by x, y, z and set elements by e.

Example 1. The commutativity of union is a valid property of sets and a logical conse-
quence of the set theory axiomatization:

(Vz)(Vy) zUy =y U . (1)
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(Vz)(Vy)((Ve)(e e x <3 e€y) =z =1) (extensionality)

(Vz)(Vy)(x Cy + (Ve)le ez — e €y)) (definition of subset)

(Ve)(e & @) (definition of the empty set)
(Vz)(Vy)(Ve)(e e xUy > e€xVe€y) (definition of union)
Vz)(Vy)(Ve)(e ez Ny e €z Ne€y) (definition of intersection)
(Vz)(Vy)(Ve)(e€cx —yre€xzhedy) (definition of set difference)
(Vz)(Vy)(Ve)(e € zAy <> (e €z > e € y)) (definition of symmetric difference)
(Vx)(Ve)(e €T <> e & x) (definition of complement)

Fig. 1. Set Theory Axiomatization.

This identity is problem 2 in our problem suite of Section 5. Proving such properties
poses no problem to humans. We present an example of a human proof.

(1) Take two arbitrary sets a and b. We have to prove a Ub = b U a.

(2) By extensionality, to prove (1) we should take an arbitrary element e and prove that
ec€aUbifandonlyife € bUa.

(3) We will prove that e € a U b implies e € b U a, the reverse direction is obvious.

(4) To this end, assume e € a U b. Then, by the definition of union, e € a or e € b.
Again, by the definition of union, both e € a implies e € bU a and e € b implies
e € bU a. In both cases we have e € b U a, so we are done.

The given proof is almost trivial. Apart from the application of extensionality (step 2)
and skolemization (introduction of constant a, b, €), it uses the definition of union and
propositional inferences.

What is interesting is that this problem is hard for first-order theorem provers. If
we use our full axiomatization of set theory, none of the top three first-order provers
according to the CASC-24 theorem proving competition of last year [22], that is VAM-
PIRE [15], E [20] and TPROVER [14], can solve it. If we only use the relevant axioms,
that is extensionality and the definition of union, these three provers can prove the prob-
lem, however not immediately, with runtimes ranging from 0.24 to 27.18 seconds.

If we take slightly more complex set identities, the best first-order theorem provers
cannot solve them within reasonable time. We next give such an example.

Example 2. Consider the following conditional identity:
Vo) (Vy)(V2)(z Ny CzA2CazUy — (zUy)N(ZTU2) =yU2) 2)

The above formula cannot be proved by any existing theorem prover within a 1 hour
time limit. This formula is problem 25 in our problem suite of Section 5.

It is not hard to analyze the reason for the failure of superposition provers for ex-
amples requiring extensionality, such as Example 2: it is the treatment of the extension-
ality axioms. Suppose that we use a superposition theorem prover and use the standard
skolemization and CNF transformation algorithms. Then one of the clauses derived
from the extensionality axiom of Figure 2 is:

flxy) daV flv,y) gyVae=y. 3)
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Here f is a skolem function. This clause is also required for a computer proof, since
without it the resulting set of clauses is satisfiable.

Independently of the ordering used by a theorem prover, x = y will be the smallest
literal in clause (3). Since it is also positive, no superposition prover will select this
literal. Thus, the way the clause will be used by superposition provers is to derive a new
set identity from already proved membership literals s € ¢ by instantiating z = y. Note
that it will be used in the same way independently of whether the goalisaUb=0bUa
or any other set identity. This essentially means that the only way to prove aUb = bUa
is to saturate the rest of the clauses until x Uy = y U x is derived, and likewise for
all other set identities! This explains why theorem provers are very inefficient when an
application of extensionality is required to prove a set identity.

Arrays. We now give an example of extensionality reasoning over arrays. The standard
axiomatization of the theory of arrays also contains an extensionality axiom of the form

(V) (Vy) (Vi) select(x,i) = select(y,i)) = x =1y), 4

where x, y denote array variables, ¢ is an array index and select the standard select/read
function over arrays. Note that this axiom is different from that of sets because arrays
are essentially maps and two maps are equal if they contain the same elements at the
same indices.

Example 3. Consider the following formula expressing the valid property that the result
of updating an array at two different indices does not depend on the order of updates:

i1 # iy — store(store(a, iy, v1),i2,v2) = store(store(a, iz, v2),i1,v1). (5)

Here, store is the standard store/write function over arrays.

Again, this problem (and similar problems for a larger number of updates) is very
hard for theorem provers, see Section 5. The explanation of why it is hard is the same
as for sets: the extensionality axiom is used in “the wrong direction” because the literal
x = y in axiom (4) is never selected.

Solutions? Though extensionality is important for reasoning about collections, and
collection types are first-class in nearly all modern programming languages, reasoning
with extensionality is hard for theorem provers because of the (otherwise very efficient)
superposition calculus implementation.

The above discussion may suggest that one simple solution would be to select x = y
in clauses derived from an extensionality axiom. Note that selecting only x = y will
result in a loss of completeness, so we can assume that it is selected in addition to
the literals a theorem prover normally selects. It is not hard to see that this solution
effectively makes provers fail on most problems. The reason is that superposition from
a variable, resulting from selecting z = y, can be done in every non-variable term. For
example, consider the clause

ecx—yVeecxVedgy, (6)
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obtained by converting the set difference axiom of Figure 2 into CNF and suppose that
the first literal is selected in it. A superposition step from the extensionality clause (3)
into this clause gives

flea—y,2)€dx—yV flr—y,2)¢dzVeczVeczVedy. @)

Note the size of the new clause and also that it contains new occurrences of x — ¥, to
which we can apply extensionality again.

From the above example it is easy to see that selecting x = y in the extensionality
clause (3) will result in a rapid blow-up of the search space by large clauses. The solu-
tion we propose and defend in this paper is to add a special generating inference rule for
treating extensionality, called extensionality resolution, which requires relatively simple
changes in the architecture of a superposition theorem prover.

3 Reasoning in First-Order Theories with Extensionality Axioms

In this section we explain our solution to problems arising in reasoning with extension-
ality axioms. For doing so, we introduce the new inference rule extensionality resolution
and show how to integrate it into a superposition theorem prover.

Suppose that we have a partial function ext_rec, called extensionality recognizer,
such that for every clause C, ext_rec(C) either is undefined, or returns the single posi-
tive equality among variables z = y from C'. We will also sometimes use ext_rec as a
boolean function, meaning that it is true iff it is defined. We call an extensionality clause
any clause C' for which ext_rec(C) holds. Note that every clause derived from an ex-
tensionality axiom contains a single positive equality among variables, but in general
not every clause containing such an equality corresponds to an extensionality axiom,
see Section 4.

The extensionality resolution rule is the following inference rule:

xr=yvC s#tvD
Cov D ®)

where

1. ext_rec(r =y Vv C) = (z =y), hence, z = y V C'is an extensionality clause;
2. s#tisselectedins £tV D;
3. 0 is the substitution {z — s,y — t}.

Note that, since equality is symmetric, there are two inferences between the premises
of (8); one is given above and the other one is with the substitution {z — ¢,y — s}.

Example 4. Consider two clauses: clause (3) and the unit clause a Ub # bU a. Suppose
that the former clause is recognized as an extensionality clause. Then the following
inference is an instance of extensionality resolution:

fly) gaVflry) gyVe=y aUb#bUa
flaUbbUa) €aUbV flaUb,bUa) €bUa
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input: init: set of clauses;
var active, passive, unprocessed : = &: set of clauses;
var given, new: clause;
unprocessed := init;
loop
~ while unprocessed # &
new : =pop(unprocessed);
if new = [ then return unsatisfiable;

if retained (new) then (* retention test *)
simplify new by clauses in active U passive ; (* forward simplification *)
if new = [ then return unsatisfiable;
if retained (new) then (* another retention test *)
delete and simplify clauses in active and (* backward simplification *)

passive using new;
move the simplified clauses to unprocessed;
add new to passive;
if passive = @ then return satisfiable or unknown;

given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed : =forward _infer(given, active); (* forward generating inferences *)

add backward_infer(given, active) to unprocessed; (* backward generating inferences *)

Fig. 2. Otter Saturation Algorithm.

Given a clause with a selected literal s # ¢, which can be considered as a request
to prove s = t, extensionality resolution replaces it by an instance of the premises
of extensionality. This example shows that an application of extensionality resolution
achieves the same effect as the use of extensionality in the “human” proof of Example 1.

Let us now explain how extensionality resolution can be integrated in a saturation
algorithm of a superposition theorem prover. The key questions to consider is when
the rule is applied and whether this rule requires term indexing or other algorithms to
be performed. The implementation is similar for all saturation algorithms; for ease of
presentation we will describe it only for the Otter saturation algorithm [15]. For an
overview of saturation algorithms we refer to [18, 15].

A simplified description of the Otter saturation algorithm is shown in Figure 2. It
uses three kinds of inferences: generating, which add new clauses to the search space;
simplifying, which replace existing clauses by new ones, and deletion, which delete
clauses from the search space. The algorithms maintains three sets of clauses:

1. active: the set of clauses to which generating inferences have already been applied;
2. passive: clauses that are retained by the prover (that is, not deleted);
3. unprocessed: clauses that are in a queue for a retention test.

At each step, the algorithm either processes a clause new, picked from unprocessed,
or performs generating inferences with the so-called given clause given, which is the
clause most recently added to active.

All operations performed by the saturation algorithm that may take considerable
time to execute are normally implemented using ferm indexing, that is, by building a
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input: init: set of clauses;
var active, passive, unprocessed : = &: set of clauses;
var given, new: clause;
v'var neg_equal, ext : = @: set of clauses;
unprocessed := init;
loop
while unprocessed # @
new : =pop(unprocessed);
if new = [J then return unsatisfiable;

if retained (new) then (* retention test *)
simplify new by clauses in active U passive ; (* forward simplification *)
if new = [J then return unsatisfiable;
if retained (new) then (* another retention test *)
delete and simplify clauses in active and (* backward simplification *)

passive using new;
move the simplified clauses to unprocessed;
add new to passive;
if passive = & then return satisfiable or unknown;

given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed : =forward _infer(given, active); (* forward generating inferences *)
v if given has a negative selected equality then
V' add given to neg_equal;
V' add to unprocessed all conclusions of extensionality resolution inferences
v between clauses in ext and given;
add backward _infer(given, active) to unprocessed; (* backward generating inferences *)
v if ext_rec(given) then
v’ add given to ext;
v/ add to unprocessed all conclusions of extensionality resolution inferences
v between given and clauses in neg_equal;

Fig. 3. Otter Saturation Algorithm with Extensionality Resolution parts marked by v'.

special purpose index data structure that makes the operation faster. For example, all
theorem provers with built-in equality reasoning have an index for forward demodula-
tion.

Extensionality resolution is a generating inference rule, so the relevant lines of the
saturation algorithm are the ones at the bottom, referring to generating inferences. The
same saturation algorithm with extensionality resolution related parts marked by v is
shown in Figure 3.

As one can see from the algorithm in Figure 3, extensionality resolution is easy to
integrate into superposition theorem provers. The reason is that it requires no sophis-
ticated indexing to find candidates for inferences: extensionality resolution applies to
every extensionality clause and every clause with a negative selected equality literal.

Therefore, we only have to maintain two collections: neg_equal of active clauses
having a negative selected equality literal and ext of extensionality clauses as recog-
nized by the function ext_rec. Another addition to the saturation algorithm, not shown
in Figure 3, is that deleted or simplified clauses belonging to any of these collections
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should be deleted from the collections too. An easy way to implement this is to ignore
such deletions when they occur and instead check the storage class of a clause (that is
active, passive, unprocessed or deleted) when we iterate through the collection during
generating inferences. If during such an iteration we discover a clause that is no more
active, we remove it from the collection and perform no generating inferences with it.

4 Recognizing Extensionality Axioms

One of the key questions for building extensionality reasoning into a theorem prover
is the recognition of extensionality clauses, i.e. the concrete choice of ext_rec. Every
clause containing a single positive equality between two different variables z = y is a
potential extensionality clause.

To understand this, we analyzed problems in the TPTP library of about 14,000 first-
order problems [21] . It turned out that the TPTP library contains about 6,000 different
axioms (mainly formulas, not clauses) that can result in a clause containing a positive
equality among variables. By different here we mean up to variable renaming. One can
consider other equivalence relations among axioms, such as using commutativity and
associativity of A or V, or closure under renaming of predicate and function symbols, for
which the number of different axioms will be smaller. Anyhow, having 6,000 different
axioms in about 14,000 problems shows that such axioms are very common.

The most commonly used examples of extensionality axioms are the already dis-
cussed set and array extensionality axioms. In addition to them, set theory axiomatiza-
tions often contain the subset-based extensionality axiomz Cy Ay Cx — x = y.

Contrary to these intended extensionality axioms, there is one kind of axioms which
is dangerous to consider as extensionality: constructor axioms, describing that some
function symbol is a constructor. Constructor axioms are central in theories of al-
gebraic data types. For example, consider an axiom describing a property of pairs
pair(z1,x2) = pair(y1,y2) — T1 = Y1, or a similar axiom for the successor func-
tion succ(xz) = succ(y) — = = y. If we regard the latter as an extensionality ax-
iom, extensionality resolution allows one to derive from any inequality s # ¢ the in-
equality succ(s) # succ(t), which, in turn, allows one to derive succ(succ(s)) #
succ(suce(t)) and so on. This will clutter the search space with bigger and bigger
clauses. Hence, clauses derived from constructor axioms must not be recognized as
extensionality clauses. We achieve this by excluding clauses having a negative equality
of the same sort as z = y. However, in unsorted problems, i.e. every term has the same
sort, we would for example also lose the array extensionality axiom.

The clause i = j V select(store(z,i,¢e),j) = select(z, j) from the axiomatization
of arrays is also certainly not intended to be an extensionality axiom. From this example
we derive the option to exclude clauses having a positive equality other than the one
among variables.

Another common formula is the definition of a non-strict order: x < y <> = <
y V x = y. We did not yet investigate how considering this axiom as an extensionality
axiom affects the search space, and consider such an investigation an interesting task
for future work.

In addition to the above mentioned potential extensionality axioms, there is a large
variety of such axioms in the TPTP library, including very long ones. One example,
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coming from the Mizar library, is

(Vao) (V1) (Vaz) (Vas)(Vaa)

((v1 _funct_1(z1) A vl _funct_2(x1, k2_zfmisc_1(zo, To), To) A
vl _funct_1(x2) A vl _funct_2(x2, k2_zfmisc_1(x0, o), o) A
ml_subset_1(x3,x0) A ml_relset_1(x1, k2 _zfmisc_1(xo, x0), To) A
ml _subset_1(z4,x0) N\ m1_relset_1(x2, k2_zfmisc_1(zo, zo), To)) —
(Voa)(Vae) (Var) (Vas) (Voo ) (
g3 -vectsp_1(xo, 1, T2, T3, Ts) = g3_vectsp_1 (x5, xe, T7, T8, Tg) —>

(xo =I5 ANT1 =T NTo =x7 \NT3z = T8 \ T4 ng))).

Another example comes from problems generated automatically by parsing natural lan-
guage sentences:

x4 = 6 V $8SkCO V —in(xe, x7) V —front(z7) V —furniture(zz) V —seat(z7) V
—fellow(xze) V ~man(xs) V —young(xe) V —seat(xs) V —furniture(zs) V —front(xs) V
—in(z4, x5) V myoung(za) V ~man(zs) V ofellow(z4) V —in(x2, x3) V —city(zs) V
—hollywood(x3) V —event(z2) V —barrel(z2,z1) V ~down(z2, xo) V —old(z1) V
—dirty(z1) V ~white(x1) V —ear(z1) V —chevy(z1) V —street(zo) V ~way(zo) V
—lonely(zo).

These examples give rise to an option for limiting the number of literals in an exten-
sionality clause.

Based on our analysis in this section, there are a number of options for recognizing
extensionality clauses. In Section 5 we show two combinations of these options are
useful for solving distinct problems.

5 Experimental Results

We implemented extensionality resolution in VAMPIRE. Our implementation required
about 1,000 lines of C++ code on top of the existing VAMPIRE code. The extended
VAMPIRE is available as binary at [1] and will be merged in the next official release
of VAMPIRE. In the sequel, we refer to our extended VAMPIRE implementation as
VAMPIRE®.

In this section we report on our experimental results obtained by evaluating exten-
sionality resolution on three collections of benchmarks: (i) handcrafted hard set theory
problems, (ii) array problems from the SMT-LIB library [6], and (iii) first-order prob-
lems of the TPTP library [21]. Our results are summarized in Tables 1-3, and detailed
below.

On the set theory problems our implementation significantly outperforms all theo-
rem provers that were competing in the last year’s theorem proving system competition
CASC-24 [22]. VAMPIRE®® efficiently solves all the set theory problems, while every
other prover including the original VAMPIRE solves less than half of the problems (Ta-
ble 1). We also tried the SMT solver Z3, which failed to prove any of our set theory
problems.

When evaluating VAMPIRE®™ on array problems taken from the SMT-LIB library,
VAMPIRE®* solved more problems than all existing first-order theorem provers (Ta-
ble 2). The SMT solver Z3 outperformed VAMPIRE®™ if we encode these array prob-
lems as problems from the theory of arrays with extensionality, in which case Z3 can
use its decision procedure for this theory.
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LL.zNny=yNz 20. zAy = (z —y)U (y — x)
2.x2Uy=yUx 21. (zLy) Dz = aAN(yAz)
3znNy=(zVUy) —(z—-y) —(y—z) 22 (zAy)hz=((z—(yU=2))U(y—(zU
L@ =2 D) U (= — (2 Uy)) U (&N (g 2))
S52=zN(zUy) 23. (zVUy)N(TU2) =(y—z)U(zNz)
6.z=xzU(zNy) 24. (Az)(((zUy)N(TU2)) =yUz)
T.(xNy)—z=(x—2)N(y—=2) 25.(zNy) C2z2C (zUy) = ((zUy)N
8.zUy=2Ny (ZTUz2)=yUz
9.zNy=xUY 2602 Cy—(z—x)—y=z—y
102U (yNz)=(xUy)N(zUz) 2lzCy—(z—y)—z=2—y
I.zN(yUz)=(zNy)U(zNz) 28.xCy—z—(yUz)=2—y
R.zCy—>zUy=y 29.2Cy—z—(yNz)=z—=x
B.xzCy—axnNy==x 30.2Cy—=(z—y)Nz=40
M4zCy—ao—y=0 3l.zCy—=(z—z)Ny=2N(y—2)
52Cy—y—z=y—(zNy) R.2CyCz—(z—z)Ny=y—=z
16.zUy Cz—2z—(zAy) =(zNy) U B.r—y=zNy

(z = (xzUy)) 4.z2n0=10
17.20y=0—2z=y 5. 200 =z

18. z— (zAy) = (zN(yN2))U(z—(zUy)) 36.xCy— (F2)(y —2z=1z)
19.(z—y)N(zhy) =zNy

Fig. 4. Collection of 36 handcrafted set theory problems. All variables without explicit quantifi-
cation are universally quantified.

On the TPTP library, VAMPIRE®® solved 84 problems not solved by the CASC
version of VAMPIRE (Table 3). Even more, 12 of these problems have rating 1, which
means that no existing prover, either first-order or SMT, can solve them.

The rest of this section describes in detail our experiments. All results were obtained
on a GridEngine managed cluster system at IST Austria. Each run of a prover on a
problem was assigned a dedicated 2.3 GHz core and 10 GB RAM with the time limit
of 60 seconds.

Set Theory Experiments. We handcrafted 36 set identity problems given in Figure 4,
which also include the problems presented in Section 2. For proving the problems, we
created TPTP files containing the set theory axioms from Figure 2 as TPTP axioms and
the problem to be proved as a TPTP conjecture.

Table 1 shows the runtimes and the number of problems solved by VAMPIRE®X
compared to all but two provers participating in the first-order theorems (FOF) and
typed first-order theorems (TFA) divisions of the CASC-24 competition.! The only
provers which we did not compare with VAMPIRE®* were PROVERY and SPASS+T,
for the following reasons: PROVERY depends on the directory structure of the CASC
system and the TPTP library, thus it did not run on our test system; SPASS+T only
accepts problems containing arithmetic. Since not all provers participating in CASC-24
support typed formulas, we have also generated untyped versions of the problems. As

!'We used the exact programs and command calls as in the competition, up to adaptions of the
absolute file paths to our test system.
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Table 1. Runtimes in seconds of provers on the set theory problems from Figure 4. Empty entries
mean timeout after 60 seconds. The first row indicates whether the prover was run on typed (TFF)
or untyped (FOF) problems. The last row counts the number of solved problems.

TFF FOF FOF TFF FOF TFF FOF FOF FOF FOF FOF TFF FOF FOF
g f » » 2
= ¢ ¢ ¢ &2z & CN - B B
: f :z £ & & § ¢ : £ % ¢ gk
< < ~ ~ < < > = SRS o ) i

# > > = a - > > 8} m = N& m m  mT

1 0.02 008 1370 7.78 7.61 0.10

2 001 0.02 7.92 822 41.54

3 006 0.29

4 002 0.07 1.47 9.36 945 0.21 0.24 30.24 1.38  0.65

5 002 025 0.89 17.19 14.64 1.92 56.05 3398 0.10

6 002 025 0.29 1541 1097 54.40

7 0.03 0.03

8§ 0.02 0.08

9 0.02 0.09

10 0.04 0.09

11 0.04 027

12 002 025 0.58 15.36 14.66 0.39 040 50.52

13 0.02 0.02 1.10 1523 15.13 0.14  0.17 30.34 0.35 0.09

14 0.02 0.07 2.44 7.80 8.09 0.02  0.03 0.07 0.09 1059 6.85 7.88

15 0.02 0.03 13.80 855 8.04 0.12 0.15 32.15 1.55

16 341 4.14

17 0.01 0.09 0.02  0.02 3094 2431 0.44

18 094 1.08

19 0.03 0.04

20 0.02 0.25

21 0.03 0.25

22 1.73 1.76

23 024 0.50

24 0.15 042 043  0.26

25 0.05 0.05

26 0.05 0.10

27 0.03 0.08 11.80 25.80 20.97 52.47

28 0.06 0.31 11.80 33.73 37.05 0.80 0.72 3432

29 0.03 0.04 38.63 0.22 026 31.33 1.64

30 0.02 0.08 332 1236 1153 0.06  0.07 27.54 0.11 23.30

31 0.03 0.27

32 0.04 0.09

33 0.02 0.01 2328 20.92 21.00

34 0.02 0.01 0.50 6.71 6.71 0.02  0.02 3029 0.03 0.08 0.59 222 221

35 0.02 0.02 8.23 6.87 724 0.23 0.25 30.34 30.23

36 0.02 0.03 1.50 20.86 21.01 44.77
36 36 16 15 15 14 13 13 11 7 4 2 2 0

a result, theorem provers supporting typed formulas were then evaluated on both typed
and untyped problems.

Our results show that only VAMPIRE®™* could solve all problems, and 17 problems
could not be solved by any other prover. Moreover, VAMPIRE®® is very fast: out of the
36 typed problems, only 5 took more than 0.1 seconds and only 2 took more than 1
second.

In our experiments with typed formulas, type information reduces the number of
well-formed formulas and therefore the search space. Hence VAMPIRE® is generally
faster on typed problems, in our experiments by 4.18 seconds in total. The total run-
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Table 2. Evaluation of extensionality resolution on array problems. Runtimes are in seconds.

Prover solved runtime
VAMPIRE"™® 154  1193.85
VAMPIRE 107  1020.76
E 81 600.01
BEAGLE 16 185.44
ZIPPERPOSITION 15 49.27
PRINCESS 10 35.02
IPROVER 9 47.13
CVC4 8 0.36
E-KRHYPER 8 1.26
MUSCADET 4 0.41
73 277 64.25

time of VAMPIRE® on all typed problems was 7.33 seconds. Among the problems also
solved by VAMPIRE, VAMPIRE® is always faster.

Finally, Table 1 does not compare VAMPIRE®* with SMT solvers for the reason that
these set theory problems use both quantifiers and theories. We however note that the
use of quantifiers in the set theory axiomatization caused SMT solvers, in particular Z3,
to fail on all these examples. Z3 provides a special encoding [11] for sets that allows
some of the problems to be encoded as quantifier free and we believe that a comparison
with this encoding is unfair.

Array Experiments. For evaluating VAMPIRE®® on array problems, we used all the
278 unsatisfiable problems from the QF_AX category of quantifier-free formulas over
the theory of arrays with extensionality of SMT-LIB. We translated these problems into
the TPTP syntax. Table 2 reports on the results of VAMPIRE®® on these problems and
compares them to the results obtained by the other first-order provers and the SMT
solver Z3, which solves all of them but one using a decision procedure for the theory.
However, we feel that arrays with extensionality are not very interesting for applica-
tions, since we failed to find natural examples of problems that require such extension-
ality, apart from those that state that the results of updating arrays at distinct indexes
does not depend on the order of updates (for example, all problems in the QF_AX cate-
gory of SMT-LIB are such problems).

For array experiments we were interested whether VAMPIRE®* can outperform first-
order provers without extensionality resolution. Table 2 shows that the number of array
problems it solves is significantly larger than that of all other first-order provers, thus
confirming the power of our approach to extensionality reasoning.

The TPTP Library Experiments. VAMPIRE uses a collection of strategies to prove
hard problems and our new inference rule adds new possible options in the reper-
toire of VAMPIRE. Based on the discussion of Section 4, we introduced two new op-
tions for the VAMPIRE strategies to control the recognition of extensionality clauses
in VAMPIRE®, namely known and all. The option known only recognizes clauses
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Table 3. Experiments with various options for recognizing extensionality clauses in VAMPIRE"™®.

Strategies solved uniquely solved
original 4015 156
original+known 3870 8 34
original+all 3747 50

obtained from the set and array extensionality axioms, as well as the subset-based set
extensionality axiom. The option a1l applies the criteria given in Section 4.

We ran experiments on all 7224 TPTP problems that may contain an equality be-
tween variables. Our results are summarized in Table 3, where the first row reports on
using VAMPIRE®® with the original collection of strategies of VAMPIRE. The second
row uses VAMPIRE®® in the combination of the option known and the original strate-
gies of VAMPIRE, whereas the third row uses the option a1l with the original strategies
of VAMPIRE.

The original strategies solved 4015 problems, and 156 were uniquely solved by
these collection of strategies. The original+known and original+all solved
3870 and 3747 problems, respectively. They uniquely solved 8 and 50 problems re-
spectively. Using however original+known and original+all in combination,
VAMPIREF* solved 84 problems which were not solved by the original collection of
strategies original. We have listed these 84 problems in Table 4. Out of these 84
solved problems, 12 problems are rated with difficulty 1 in the CASC system competi-
tion. That is, these 12 problems were never solved in any previous CASC competition
by any existing prover, including all existing first-order provers and the SMT solvers
73 and CVC4 [5]. VAMPIRE®™® hence outperforms all modern solvers when it comes
to reasoning with both theories and quantifiers.

Note that for first-order theorem provers the average number of problems solved by
a strategy does not mean much in general. The reason is that these provers show the
best performance when they treat problems by a cocktail of strategies. Normally, if a
problem is solvable by a prover, there is a strategy that solves it in nearly no time, so
running many short-lived strategies gives better results than running a small number
of strategies for longer times. When we introduce a new option to a theorem prover,
the main question is, if this option can complement the cocktail of strategies so that
more problems are solved by these strategies all together. This means that an option
that solves many unique problems is, in general, much more valuable than an option
solving many problems on the average.

Our results indicate that the use extensionality resolution in first-order theorem
proving can solve a significant number of problems not solvable without it. Therefore
it is a powerful addition to the toolbox of first-order theorem proving methods. Fur-
ther extensive experiments with combining extensionality resolution with various other
options are required for better understanding of how it can be integrated in first-order
provers.
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Table 4. Fields and ratings of TPTP problems only solved by VAMPIRE with extensionality res-
olution.

Field Subfield Problem Rating
Computer Science ~ Commonsense Reasoning CRS075+6 0.97
Computer Science ~ Commonsense Reasoning CRS076+2 0.97
Computer Science ~ Commonsense Reasoning CRS076+6 1.00
Computer Science ~ Commonsense Reasoning CRS076+7 1.00
Computer Science ~ Commonsense Reasoning CRS078+2 1.00
Computer Science ~ Commonsense Reasoning CRS079+6 0.97
Computer Science ~ Commonsense Reasoning CRS080+1 0.97
Computer Science ~ Commonsense Reasoning CRS080+2 1.00
Computer Science ~ Commonsense Reasoning CRSO081+4 0.93
Computer Science ~ Commonsense Reasoning CRS083+4 0.90
Computer Science ~ Commonsense Reasoning CRS083+6 0.97
Computer Science ~ Commonsense Reasoning CRS084+2 0.93
Computer Science ~ Commonsense Reasoning CRS084+4 0.93
Computer Science ~ Commonsense Reasoning CRS084+5 0.93
Computer Science ~ Commonsense Reasoning CRS088+1 0.97
Computer Science ~ Commonsense Reasoning CRS088+2 1.00
Computer Science ~ Commonsense Reasoning CRS088+4 0.93
Computer Science ~ Commonsense Reasoning CRS088+6 1.00
Computer Science ~ Commonsense Reasoning CRS089+6 1.00
Computer Science ~ Commonsense Reasoning CRS092+6 1.00
Computer Science ~ Commonsense Reasoning CRS093+4 0.93
Computer Science ~ Commonsense Reasoning CRS093+6 1.00
Computer Science ~ Commonsense Reasoning CRS093+7 1.00
Computer Science  Commonsense Reasoning CRS094+6 0.97
Computer Science ~ Commonsense Reasoning CRS109+6 0.93
Computer Science ~ Commonsense Reasoning CRS118+6 0.97
Computer Science ~ Commonsense Reasoning CSRO57+5 0.97
Computer Science  Software Creation SWC021-1 0.64
Computer Science  Software Creation SWC160-1 0.93
Computer Science  Software Verification SWV474+1 0.83
Computer Science  Software Verification SWV845-1 0.86
Computer Science  Software Verification Continued =~ SWW284+1  0.87
Logic Combinatory Logic COLO8I-1 0.64
Mathematics Algebra/Lattices LAT298+1 0.90
Mathemati Algebra/Lattices LAT324+1 0.80
Mathemati Category Theory CAT009-1 0.00
Mathematics Category Theory CATO10-1 0.00
Mathematics Graph Theory GRA007+1 0.60
Mathematics Graph Theory GRA007+2 0.63
Mathematics Number Theory NUM459+1 0.70
Mathematics Number Theory NUM493+1 0.87
Mathematics Number Theory NUM493+3 097
Mathematics Number Theory NUM495+1 0.60
Mathematics Number Theory NUM508+3  0.63
Mathematics Number Theory NUMS515+1  1.00
Mathematics Number Theory NUMS15+3 1.00
Number Theory NUM517+3  0.70
Mathematics Number Theory NUMS535+1 0.63
Mathematics Number Theory NUMS542+1 0.83
Mathematics Number Theory NUMS544+1 0.90
Mathematics Set Theory SET018+1 0.90
Mathematics Set Theory SET041-3 0.36
Mathematics Set Theory SET066-6 1.00
Mathematics Set Theory SET066-7 1.00
Mathematics Set Theory SET069-6 0.93
Mathematics Set Theory SET069-7 0.93
Mathematics Set Theory SET070-6 0.93
Mathematics Set Theory SET070-7 0.93
Mathematics Set Theory SET097-7 0.64
Mathematics Set Theory SET099+1 0.87
Mathematics Set Theory SET128-6 0.71
Mathematics Set Theory SET157-6 0.71
Mathematics Set Theory SET262-6 0.86
Mathematics Set Theory SET497-6 0.71
Mathematics Set Theory SET510-6 0.43
Mathematics Set Theory SET606+3 0.53
Mathematics Set Theory SET613+3 0.83
Set Theory SET634+3 0.67
Set Theory SET671+3 0.90
Mathematics Set Theory SET673+3 0.90
Mathematics Set Theory SET674+3 0.90
Mathematics Set Theory SET831-1 0.86
Mathematics Set Theory SET837-1 0.93
Mathematics Set Theory Continued SEU007+1 1.00
Mathematics Set Theory Continued SEU049+1 0.87
Mathematics Set Theory Continued SEU058+1 0.93
Mathematics Set Theory Continued SEU059+1 0.97
Mathematics Set Theory Continued SEU073+1 1.00
Mathematics Set Theory Continued SEU194+1 0.70
Mathematics Set Theory Continued SEU205+1 0.97
Mathematics Set Theory Continued SEU265+2 0.97
Mathematics Set Theory Continued SEU283+1 0.73
Mathematics Set Theory Continued SEU384+1 0.90

Social Sciences Social Choice Theory SCT162+1 0.87
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6 Related Work

Reasoning with both theories and quantifiers is considered as a major challenge in the
theorem proving and SMT communities. SMT solvers can process very large formulas
in ground decidable theories [10,5]. Quantifier reasoning in SMT solvers is imple-
mented using trigger-based E-matching, which is not as powerful as the use of uni-
fication in superposition calculi. Combining quantifiers with theories based on SMT
solving is described in [17, 19].

Unlike SMT reasoning, first-order theorem provers are very efficient in handling
quantifiers but weak in theory reasoning. Paper [4] introduces the hierarchical superpo-
sition calculus by combining the superposition calculus with black-box style theory rea-
soning. This approach has been further extended in [7] for first-order reasoning modulo
background theories under the assumption that theory terms are ground. A similar ap-
proach is also addressed in the instantiation-based theorem proving method of [12, 14],
where quantifier-free instances of the first-order problem are generated. These ground
instances are passed to the reasoning engine of the background theory for proving un-
satisfiability of the original quantified problem. In case of satisfiability, the original
problem is refined based on the generated ground model and new instances are next
generated. All mentioned approaches separate the theory-specific and quantifier rea-
soning. This is not the case with our work, where theory reasoning using extensionality
is a natural extension of the superposition calculus.

Our work is dedicated to first-order reasoning about collections, such as sets and
arrays. It is partially motivated by program analysis, since collection types are first-class
types in many programming languages and nearly every programming languages has
collection libraries. While there has been a considerable amount of work on deciding
universal theories of collection types, including using superposition provers [2] and
decidability or undecidability of their extensions [9, 13], our work is different since
we consider collections in first-order logic with quantifiers. As many others, we are
trying to bridge the gap between quantifier and theory reasoning, but in a way that is
friendly to existing architectures of first-order theorem provers. Unlike [2], we impose
no additional constraints on the used simplification ordering and can deal with arbitrary
axioms on top of array axioms.

In a way, our approach is similar to the one of [8], where it is proposed to extend
the resolution calculus by theory-specific rules, which do not change the underlying
inference mechanisms. Indeed, our implementation of extensionality resolution requires
relatively simple changes in saturation algorithms.

7 Conclusion

We examined why reasoning with extensionality axioms is hard for superposition-based
theorem provers and proposed a new inference rule, called extensionality resolution, to
improve their performance on problems containing such axioms. Our experimental re-
sults show that first-order provers with extensionality resolution can easily solve prob-
lems in reasoning with sets and arrays that were unsolvable by all existing theorem
provers and, also much harder versions of these problems. Our results contribute to one
of the main problems in modern theorem proving: efficiently solving problems using
both quantifiers and theories.
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