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Abstract

Entomopathogenic fungi are potent biocontrol agents that are widely used against
insect pests, many of which are social insects. Nevertheless, theoretical investigations
of their particular life history are scarce. We develop a model that takes into account
the main distinguishing features between traditionally studied diseases and obligate
killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium
and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious
particles (conidiospores) only after host death and not yet on the living host. Second,
the killing rates of entomopathogenic fungi depend strongly on the initial exposure
dosage, thus we explicitly consider the pathogen load of individual hosts. Further,
we make the model applicable not only to solitary host species, but also to group
living species by incorporating social interactions between hosts, like the collective
disease defences of insect societies. Our results identify the optimal killing rate for
the pathogen that minimizes its invasion threshold. Furthermore, we find that the
rate of contact between hosts has an ambivalent effect: Dense interaction networks
between individuals are considered to facilitate disease outbreaks because of increased
pathogen transmission. In social insects, this is compensated by their collective dis-
ease defences, i.e., social immunity. For the type of pathogens considered here, we
show that even without social immunity, high contact rates between live individuals
dilute the pathogen in the host colony and hence can reduce individual pathogen
loads below disease-causing levels.

Keywords: epidemiological model | basic reproduction number | obligate killing entomopathogenic
fungi | social immunity | biological control
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1 Introduction

Obligate killing entomopathogenic fungi like the well-known green muscardine disease

(Metarhizium anisopliae, Zimmermann (2007)) and white muscardine disease (Beauve-

ria bassiana, Barbarin et al. (2012)) are frequently used in biocontrol of pest insects such

as, e.g., migratory locusts (Wilson et al., 2002) and mosquitoes (Blanford et al., 2005;

Scholte et al., 2005; Thomas and Read, 2007). They are also used against social insects

(e.g., termites Almeida et al. (1997) and ants (Jaccoud et al., 1999)), which are particularly

successful invasive species (Chapman and Bourke, 2001; Cremer et al., 2008) with a high

economic burden (Lowe et al., 2000; Pimentel et al., 2000).

Despite the wide application in biocontrol of the above mentioned entomopathogenic

fungi, there is a lack of epidemiological models covering the distinctive features of their

particular life history. Specific models are crucial to predict the effects of the use of these

fungi as biocontrol agents against pest insects. Most epidemiological models, e.g. the SI

model and its extensions, are based on the infection modes typical of diseases such as

malaria, influenza, and measles, where the pathogens multiply in the living host such that

an increased exposure dose can be spread between individuals.

Obligate killing fungi like Metarhizium and Beauveria, however, form infectious stages

(asexually produced conidiospores) only after having killed their host. These conidiospores

can then infect new hosts through direct contact of an insect with an sporulating (infec-

tious) cadaver, or by conidiospores being dispersed and then picked up mostly from the

soil around the cadaver. Conidiospores adhere to the insect body surface, germinate, and

penetrate the cuticle (Thomas and Read, 2007; Vestergaard et al., 1999). Inside the body,

the fungus grows and produces toxins to kill its host. After host death, fungal hyphae and

later also a new generation of conidiospores grow out of the dead body.

In addition to picking up the disease from infectious cadavers or from the soil, hosts can
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contract the pathogen by contact with other individuals at an early stage after exposure,

that carry conidiospores on their body which have not yet strongly adhered to the insect

cuticle (Vestergaard et al., 1999) and hence can still be transferred (Konrad et al., 2012).

However, there is no multiplication of infectious particles on the surface of a living host, so

that contact between two live hosts, at least one of which carries transferable conidiospores

on its body, can only lead to a redistribution of the existing conidiospores on both individ-

uals. Thus, transmission via social contact between live hosts leads to a transfer of usually

low numbers of infectious particles (Konrad et al., 2012), whereas contraction rates from

cadavers are typically very high, at least for ants (Hughes et al., 2004).

Exposure dosage is an important predictor for the likelihood of successful pathogen in-

fection of the host. The entomopathogenic fungi most widely used for biocontrol, Metarhiz-

ium and Beauveria, are host generalists rather than specialists Boomsma et al. (2013).

Hence, they require high conidiospore doses for successful host infection (Schmid-Hempel

and Frank, 2007). Low-level exposure can lead to micro-infections resulting in a protective

immune stimulation rather than disease (Konrad et al., 2012; Rosengaus et al., 1999).

The first aim of our work was therefore to develop a deterministic epidemiological model

that accounts for the particular life history of obligate killing entomopathogenic fungi like

Metarhizium and Beauveria. Our model captures their characteristics by deviation from

traditional models in a crucial aspect. New infectious particles are brought into the colony

by contact with individuals that died from the infection (infectious cadavers). Contact

between living hosts does not increase the total number of pathogen particles present in

the colony, but simply spreads them between hosts. This means that contact with infectious

cadavers leads to a high exposure dose, whereas contact with a live host typically leads to

a low exposure dose. As a consequence, we explicitly consider individual host pathogen

load by dividing the host colony into multiple exposure classes.

The second aim was to account for host sociality and to include the high interaction
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rates among group members as well as their collectively performed sanitary actions. As

social insects are characterised by groups of closely related individuals living in high densi-

ties and performing frequent social interactions, pathogens would be expected to be easily

transmitted across individuals and spread through the host colony Schmid-Hempel (1998).

To counteract this risk, social insects have developed a variety of collective disease defence

mechanisms, their social immunity (Cremer et al., 2007; Evans and Spivak, 2010; Wilson-

Rich et al., 2009), which complement the individual immunity of each group member. One

of the most important sanitary behaviours expressed against entomopathogenic fungi is

grooming, during which the insects remove infectious particles from the body surface of

either themselves (self-grooming) or their nestmates (allogrooming) (Hughes et al., 2002;

Rosengaus et al., 1999) and even chemically disinfect them (Tragust et al., 2012). Accord-

ingly, we consider the following factors that influence resistance against pathogens: First,

individual immunity comprises hygiene behaviour (e.g., self-grooming) and the immune

system of the hosts. Second, social contact may simply denote physical contact or food

exchange between individuals. In addition, it can include collective or mutually expressed

sanitary actions (e.g., allogrooming) and hence include social immunity into our model.

Note that even though we include social features in our model, it can be applied to solitary

insects by setting the corresponding parameters to zero.

After model establishment, we derive the conditions under which an entomopathogen

can invade a social insect colony. This is done by calculating a basic reproduction number

for the pathogen (Heesterbeek, 2002; May et al., 2001). If this number exceeds unity,

the disease can spread through the colony; if it is less than one, the colony is protected

from disease outbreak. This allows us to determine parameter regimes in which these

two scenarios occur. Our result allows for predictions on the evolution of killing rates of

obligate killing pathogens. To complete its life cycle, a certain killing rate is necessary for

the pathogen to persist. Furthermore, our results show that even in the absence of sanitary
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actions, increased contact between individuals is not necessarily to the disadvantage of the

host colony.

2 The model

In this section, we set up a model that describes the dynamics between obligate killing

pathogens and a social host colony. This model is similar to traditional SI models in divid-

ing the host colony into multiple compartments. The difference to existing, e.g. age struc-

tured, models lies within the interactions and transitions between the different compart-

ments. For x = 0, 1, ..., xmax, let nx(t) denote the number of hosts carrying pathogen load

x at time t. With this notation, n0 is the class of unexposed individuals and {n1, ..., nxmax}

can be pooled into what is usually the class of exposed individuals. Useful abbreviations

will be N(t) =
∑xmax

x=0 nx(t) for the total number of live individuals and n(t) = (nx(t))
xmax

x=0

for the vector displaying the composition of the colony into the classes of different exposure

levels. Suppose that the colony is sufficiently large and well mixed in order to use mass

action assumptions in the modelling below (i.e., the rate of interactions between two classes

x1 and x2 is proportional to the product nx1 · nx2 , see Hethcote (2000)).

Individual immunity and social interactions: The host dynamics We distinguish

between individual immunity and social interactions. Individual immunity summarizes the

immune system of each individual, as well as individual sanitary behaviour. Social contact

comprises interactions between individuals that may or may not include sanitary actions.

Assume that any given individual undertakes individual immunity measures at rate

rs (for simplicity, let all parameters be independent of exposure level). Then, let a host

that carries z conidiospores and performs individual immunity measures have a chance

of 0 ≤ Gx
z ≤ 1 to end up with x conidiospores. Thus, the individual immunity vectors
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Gx = (Gx
z)
xmax

z=0 (for x = 0, ..., xmax) must have the property
∑xmax

x=0 Gx
z = 1 (i.e., the matrix

consisting of the {G1, ...,Gxmax} is stochastic) and Gx
z = 0 for x > z, since pathogen load

does not increase by individual immunity.

Let rc be the rate of social contact between individuals and let Sxzy denote the probability

that an individual carrying pathogen load z ends up with pathogen load x given that it

has social contact with an individual having pathogen load y. These values are collected

into social interaction matrices Sx =
(
Sxzy
)xmax

z,y=0
(for x = 0, ..., xmax) which must fulfil∑xmax

x=0 Sxyz = 1, since the matrices Sx are probability matrices. Furthermore, total pathogen

load must not increase by social contact. As a consequence, Sxzy = 0 for x > z+ y, but this

is not sufficient. Note that interactions between hosts always spread the pathogen among

individuals (social contact), but only if sanitary actions are taken, it decreases the host

colony’s total pathogen load.

Including the pathogen The above considerations cover all interactions between the

classes nx, x = 1, ..., xxmax . The rates at which hosts with pathogen load x die from the

pathogen are denoted by the killing rate σx, and we collect them in a vector σ = (σx)
xmax

x=0 .

Naturally, the σx are increasing in x. By ν(t), we denote the number of dead individuals.

Since obligate killing entomopathogenic fungi proliferate growing out of their hosts’ cadav-

ers, ν(t) gives the number of infectious cadavers that determines the primary exposure risk

in the colony. Sporulating cadavers decay at rate η, i.e., their average infectious time is

1/η time units. This parameter is determined by external biological factors, e.g., weather

conditions.

Assuming an unstructured colony, any host may encounter infectious cadavers at rate c

per cadaver; that is, each individual is expected to encounter cν(t) infectious cadavers per

time unit. Usually, infectious cadavers carry huge numbers of infectious particles and thus

large amounts of pathogen are transferred upon contact. Therefore, if an individual has
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contact with an infectious cadaver, we set its pathogen load to the maximum level xmax,

independently of its original exposure level.

The differential equation model Assuming that newborns are unexposed, the birth

rate λ(n) describes the influx of newborns (amount per time unit) into the class n0. The

precise form of λ(n) will not be of importance here. Casting all our assumptions into a set

of ordinary differential equations gives

ṅx = λ(n)δ0(x) + cν (Nδxmax(x)− nx) + G̃x.n +
rc
N

(n.Sx.n) (1a)

ν̇ = σ.n− ην, (1b)

where G̃x = rsG
x − (σx + rs + rc) ex+1 and ei denotes the ith unit vector in Rxmax+1.

(The index i+ 1 comes from the fact that we denoted unexposed individuals by n0, hence

the exposure class i is the (i + 1)th equation of (1a).) The function δi(x) stands for the

Kronecker delta function

δi(x) =

 1 : x = i

0 : x 6= i
.

An overview of the parameters is given in Table 1.

Interpretation of equation (1b) is straightforward: The number of hosts dying from the

pathogen each time unit is σ.n(t) =
∑xmax

x=0 σxnx(t), and the decay of cadavers is given

by ην(t). Note that no natural death of hosts is included in the model. The structure of

equation (1a) is explained as follows. The first term on the right hand side of equation (1a)

gives the influx of newborn individuals; it only appears if x = 0. The second term describes

the effect of new exposures. Upon contact with infectious cadavers, individuals are removed

from their class (−cνnx) and added to the class of maximal exposure level (cνNδxmax). The

third term, G̃x.n, describes the remaining linear interactions. Individuals are removed from

7

http://dx.doi.org/10.1016/j.jtbi.2015.02.018


Accepted Manuscript, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2015.02.018

λ ... birth rate rc ... contact rate
c ... rate of encountering an infectious

cadaver
rs ... rate of performing individual immu-

nity measures
σ ... vector of σx, the rates of dying from

the pathogen
Sxzy ... probability of z 7→ x upon contact

with y
η ... rate of decay of cadavers Gx

z ... probability of z 7→ x by means of
individual immunity

Table 1: Overview of parameters.

exposure class x if they die, perform individual immunity measures, or enter social contact

(−(σx + rs + rc)nx), and they enter it if starting out in a higher class and losing enough

conidiospores by individual immunity measures (rsGx.n). The last (quadratic) term in

equation (1a) comprises all pairwise interactions that add individuals to exposure class x

due to contact between hosts, possibly including sanitary actions. Note that in the model

(1) no variable can become negative, given non-negative starting conditions. Furthermore,

with no hosts or no pathogen initially, neither hosts nor pathogen will emerge de novo.

3 Results

Our results are mostly concerned with identifying conditions under which a healthy colony

is able to resist the invasion of a pathogen. We assume a healthy colony that has equili-

brated at a steady state, which we denote by a pathogen-free equilibrium E. If a small

amount of pathogen (e.g., a single infectious cadaver) is introduced, the colony can either

successfully drive out the pathogen, or the disease is able to spread. In the first case, we say

that the colony is protected from the pathogen, in the latter we speak of the outbreak of the

disease. Mathematically, this corresponds to evaluating the stability of the pathogen-free

equilibrium: If the pathogen-free equilibrium E is asymptotically stable, the dynamics (1)

will converge back to E under small perturbations, hence the colony is protected from the

pathogen. The following Section 3.1 considers the simplest possible exposure class archi-
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tecture. In Section 3.1.1, a condition for asymptotic stability of E is derived in terms of a

basic reproduction number R̃0. Section 3.1.2 provides a technical comment that puts R̃0 in

mathematical context, and Section 3.1.3 discusses the implications of successful pathogen

invasion. Finally, Section 3.2 relaxes the stringent assumptions of Section 3.1. Permitting

more general exposure class structures, we extend our analytic results using numerical sim-

ulations and show in which area of the parameter space the colony is protected from the

pathogen.

3.1 Analytical results

3.1.1 Invasion of the pathogen

Consider the following case: There are only three classes of pathogen load, i.e., we distin-

guish between unexposed (x = 0), lightly exposed (x = 1), and severely exposed (x = 2)

hosts. By setting σ0 = σ1 = 0 and σ2 = σ̄ > 0, we make sure that only hosts that

carry a large pathogen load die from the pathogen. With no pathogen present (i.e.,

n1 = n2 = ν = 0), the host colony will evolve according to ṅ0(t) = λ(n). For any

positive stable fixed point of ṅ0(t) = λ({n0(t), 0, 0}), i.e., λ({K, 0, 0}) = 0 for K > 0, we

can define a pathogen-free equilibrium, E, by

n0 = K, n1 = n2 = ν = 0.

Since E is assumed to be a stable equilibrium of the healthy colony, we have ∂λ
∂n0
|E < 0.

Upon linearisation of the equations (1) at the pathogen-free equilibrium with the above
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simplifications, we obtain the Jacobian

J =



∂λ
∂n0
|E ∗ ∗ cK

0 −Λ ∗ 0

0 0 −ζ − σ̄ cK

0 0 σ̄ −η


(2)

(the order of the variables is {n0, n1, n2, ν}), where the asterisks comprise information

about individual and social immunity efficiency that is not relevant for the investigations

to follow, and

Λ = rc
(
1−

(
S1
01 + S1

10

))
+ rs

(
1−G1

1

)
,

ζ = rc
(
1−

(
S2
02 + S2

20

))
+ rs

(
1−G2

2

)
.

The terms Λ and ζ are positive Before proceeding, we argue that Λ and ζ are positive.

Both Λ and ζ reflect the host colony’s innate ability to reduce its pathogen load or spread

pathogens between individuals. As stated in Section 2, social interactions and individual

immunity do not increase the total pathogen load in the host colony. Thus, we must

exclude the case that, e.g., a healthy individual meets a heavily exposed individual and

becomes exposed without changing the state of its contact partner. In other words, the

probability that the healthy host becomes heavily exposed can be at most the probability

that the other individual does not stay heavily exposed, i.e., S2
02 ≤ 1− S2

20. Therefore, we

get S2
02 + S2

20 ≤ 1 and, for the same reason, S1
01 + S1

10 ≤ 1. Since the Gx
z are probabilities,

it follows that Λ ≥ 0 and ζ ≥ 0.

The magnitude of Λ displays the effectiveness in curing lightly exposed individuals.

Since a slight exposure does not entail the risk of dying in this simplistic model, the value

of Λ has no qualitative influence on the invasion condition (as long as Λ is truly positive).
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The interesting quantity is ζ, which measures the propensity to get individuals out of the

critical exposure class.

The basic reproduction number For the pathogen-free equilibrium to be asymptot-

ically stable (i.e., a small amount of pathogen cannot destabilize the colony), we require

all four eigenvalues of J to have negative real parts — if just one eigenvalue has positive

real part, the equilibrium is unstable and the slightest amount of pathogen will lead to a

outbreak of the disease. Due to the simple structure of J, its first two eigenvalues, ∂λ
∂n0
|E

and −Λ, can be read directly from its diagonal. As stated above, ∂λ
∂n0
|E and −Λ are neg-

ative. Thus, we can focus on the two remaining eigenvalues, which are contained in the

2× 2-submatrix −ζ − σ̄ cK

σ̄ −η

 .

Directly evaluating negativity of the eigenvalues of this matrix is relatively intricate, but

applying the Routh-Hurwitz criterion (Hurwitz, 1895; Routh, 1877) produces a very simple

condition for the stability of the system: The remaining eigenvalues have negative real parts

if

1 >
σ̄

ζ

(
cK

η
− 1

)
. (3)

Equivalently, in tradition of theoretical epidemiology, this can be written as a basic repro-

duction number,

R̃0 =
cK

η

σ̄

σ̄ + ζ
. (4)

Thus, if R̃0 < 1, the pathogen-free equilibrium is asymptotically stable and the colony

is protected from pathogen invasions. Conversely, R̃0 > 1 means that the pathogen suc-

cessfully enters the colony. Note that R̃0 takes the same form for xmax > 2 if σx = 0 for

x < xmax.
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Formally, calling R̃0 a basic reproduction number is not perfectly correct, since the for-

mal derivation of R0 produces a slightly different result. We added a tilde in equation (4) to

symbolize the distinction from the strict mathematical definition of the basic reproduction

number R0. In the following section, Section 3.1.2, we argue that the difference between

R0 and R̃0 it is irrelevant in the present case. Verbally, we keep denoting R̃0 by the basic

reproduction number of the pathogen for the sake of simplicity.

Upon closer examination of (4), the structure of R̃0 provides interesting insight. It

separates the efficiency of primary exposures from infectious cadavers and the effectiveness

with which the pathogen kills its host. For the pathogen to be able to invade, it is necessary

that, on average, each infectious cadaver kills at least one host. This is reflected in R̃0,

which is the product of net infection rate, cK/η, times the probability that a host does

not recover from the pathogen, σ̄/(σ̄ + ζ). Since the latter is bounded by one, the total

exposure rate, cK, needs to exceed the decay rate of cadavers, η. Furthermore, a high

killing rate σ̄ increases the value of R0, which can be counteracted by an efficient (social)

immune system described by ζ.

Note that even without individual and social immunity, i.e., with social contact alone,

ζ is positive. Hence, the propensity to quickly spread the pathogen in the colony has a

similar effect as the actual removal of infectious particles. This will be made clearer in

Section 3.2.

3.1.2 A technical comment on R̃0

The basic reproduction number R0 is defined as the expected number of secondary infec-

tions caused by a single primary infection in a susceptible colony. Diekmann et al. (2010)

provide a procedure for calculating the basic reproduction number for any compartmental

model as the spectral radius of the “next-generation matrix” K. Following their procedure
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to construct K shows that its spectral radius is

R0 = max

{
rcS

1
0,1

Λ + rcS1
0,1

,
cKσ̄ + rcηS

2
0,2

η
(
σ̄ + ζ + rcS2

0,2

)} . (5)

First and most importantly, this expression and our definition of R̃0 in equation (4) produce

the same critical threshold between invasion and extinction of the pathogen. Second, it is

worth noting that the first argument of the max function in equation (5) can be greater

than the second (e.g. if η is large and Λ is small). However, in this case none of the two

arguments can be greater than unity. Third, assuming S2
0,2 = 0 can be justified since it

corresponds to an unexposed individual picking up all the pathogens of its heavily exposed

interaction partner. Thus, the two hosts swap infection classes without a net effect on

the state of the system. With this additional specification, the second argument of the

max function equals our definition of R̃0. Overall, we hence stick to the relatively simple

expression of equation (4), referring to R̃0 as the basic reproduction number for our system.

3.1.3 The endemic equilibrium

If R̃0 > 1, the pathogen can invade the host colony and the system becomes endemic. In

theory, equations (1) can be solved explicitly for endemic equilibria with the specifications

of this section, see Section 3.1.1. However, the complexity of the resulting analytic ex-

pressions prevents a deeper understanding of the system. Numerical simulations, however,

suggest that whenever R̃0 > 1, the dynamics converge to a unique, globally stable endemic

equilibrium solution.

How much does a small amount of pathogen impact a healthy host society and how

does it scale with increasing basic reproduction number R̃0? To answer this question, we

performed numerical simulations without the recruitment of newborn hosts (i.e., λ ≡ 0).

The reduction in colony size after the system equilibrates is a measure for the impact of the

13

http://dx.doi.org/10.1016/j.jtbi.2015.02.018


Accepted Manuscript, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2015.02.018

Figure 1: The fraction of surviving hosts after a pathogen invasion. To obtain each of the
100, 000 data points, values for c, η, and σ̄ were drawn randomly from a uniform distribution
on [0, 1]. Then, R̃0 was evaluated and the dynamics following pathogen invasion were
simulated until they reached their equilibrium. For R̃0 < 1, the size of the host colony
remains virtually unchanged. Above the threshold R̃0 > 1, the fraction of surviving hosts
decreases approximately exponentially. The individual data points do not lie on a single
curve, hence the exact parameter composition rather than R̃0 alone matter for the result.
The remaining parameter values are λ ≡ 0, rc = rs = 1, and K = 1. Sxzy and Gx

z were
specified such that ζ = 0.2.

pathogen. Clearly, there can be only two possible outcomes in the absence of births: Either,

the pathogen eradicates the host colony and thus dies out itself, or the pathogen becomes

extinct first and leaves a healthy colony of reduced size. Our simulation results, depicted

in Figure 1, show that the latter is always the case in our deterministic model. As the size

of the colony decreases in the course of a simulation, the number of new primary infections

is reduced. Eventually, this number of new infections does not sustain the persistence of

the pathogen, such that it is cleared from the host colony.

As Figure 1 clearly shows, the decline in colony size, and hence the impact of the

pathogen, is largely determined by the value of R̃0. We observe an approximately expo-

nential reduction of colony size once the basic reproduction number exceeds its threshold

R̃0 = 1. However, the impact of the pathogen is not solely determined by R̃0, but depends

on the individual parameters in the model, see Figure 1.
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3.2 Higher numbers of exposure classes

The result of the previous section has been derived under very rigid assumptions. As soon

as more than one class of exposed hosts can die from the pathogen, analytical investigations

analogously to those in Section 3.1 become infeasible. With the following simulations, we

aim to relax the preconditions on the number of exposure classes to xmax > 2 and indicate

that an invasion condition similar to (3) holds in more general cases.

Specifications Suppose that there is some critical pathogen load xcrit, the infective dose,

above of which hosts die at constant rate σ̄. As long as the threshold σ̄ is not exceeded,

hosts do not die from the pathogen. In short, this means

σx =

 0 : x ≤ xcrit

σ̄ : x > xcrit

.

To simulate the model (1), we specify Gx by equation (A.1), Sx by equation (A.4) in A.

The former, equation (A.1), is given by a binomial distribution where exposure classes are

reduced independently. The latter, equation (A.4), describes the redistribution of spore

classes between the two interacting individuals, on top of which spore classes can be lost

by allogrooming. The rather cumbersome rule for Sx ensures that exposure loads do not

fall below zero or exceed xmax. The growth rate λ(n) follows a logistic growth model.

Furthermore, we set xmax = 10 and xcrit = xmax/2 = 5. This particular exposure class

architecture, xcrit = xmax/2, will be relaxed below.

Initially, the host colony is assumed to be unexposed at its pathogen-free equilibrium E

(given by n0(0) = K, nx(0) = 0 for 0 < x ≤ xmax, ν = 0). The effect of a small perturbation

away from E is investigated by numerically evaluating the Jacobian of system (1) to test

if the pathogen-free equilibrium is stable. This reveals the transition in parameter space

between the pathogen being cleared out of the colony and being able to persist in the long
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run. Invoking the notion of the basic reproduction number, this transition is given by

R0 = 1.

Comparison with the analytic result Figure 2 shows the simulation results of the

area in which the pathogen can invade the host colony depending on the total rate of

cadaver contact, cK, and the decay rate of cadavers, η, for various configurations of the

remaining parameters. Within the light grey area, the host colony is protected from the

pathogen, whereas in the dark area it is not. In concordance with the linear relationship

between cK and η in R̃0, see equation (4), these regions are separated by a straight line;

the slope of the line decreases with increasing σ̄. Notably, even for high killing rates σ̄

and small defence parameters, the line never drops below the diagonal cK = η. Hence,

it is given by cK = η(1 + k) for some k > 0, which is a function of σ̄ and the remaining

parameters. Rearranging terms produces

1 =
cK

η

1

1 + k
. (6)

In the simplistic case of Section 3.1 leading to equation (4), we have k = ζ/σ̄, but evaluating

k for several values of σ̄ reveals that its structure is more complicated in the general case.

For large σ̄ or weak defensive mechanisms of the host (small ζ in the above diction), k

converges to zero. However, its exact form depends on the details of the model and is hard

to determine. In particular, 1/k is not linear in σ̄ in general.

Simulations depicted in Figure 3 show the invasion ability of the pathogen in dependence

on σ̄ and the relative exposure rate α = cK/η. This compound parameter measures the

overall rate of primary exposures (cK) relative to the decay rate of infectious cadavers.

Clearly, increasing the hosts’ defensive mechanisms (e.g. by increasing rc and rs) enlarges

the area in which the host colony is protected from pathogen invasion (Figures 3a and 3b).

The same pattern is observed when increasing only the rate of contact between individuals,
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rc, in the absence of immune defence mechanisms, i.e., if Gx
z = 0 for x 6= z and Sxzy = 0

for x 6= y + z (Figures 3c and 3d). Hence, as predicted from the structure of ζ in a

previous section, Section 3.1.1, increased contact between host individuals increases the

basic reproduction number and hence hinders pathogen invasion in this scenario.

In the case of equation (4), R̃0 = 1 shows a hyperbolic dependence between α and σ̄.

According to the above finding that 1/k is non-linear in σ̄, the separation between the

areas of pathogen invasion and the colony being protected is not a perfect hyperbola in

Figure 3. However, varying c, K, and σ̄ such that α remains constant leaves the numerical

results unchanged. Hence, these parameters indeed enter R̃0 only through the combination

cK/η.

Overall, our simulations demonstrate that the essential structure of the basic repro-

duction number (4) is maintained in more general cases than treated in Section 3.1. In

particular, if the pathogen can invade, the exposure rate from infectious cadavers must

exceed their decay rate (cK > η), i.e., infectious cadavers expose on average more than

one host to the pathogen during their infectious period. Furthermore, R̃0 increases with

σ̄, hence a high killing rate is to the benefit of the pathogen.

The infective dose xcrit Both our analytical results and the simulation results above

were obtained for a particular exposure class architecture, xcrit = xmax/2. This choice

of the infective dose xcrit, however, is at a threshold for more complicated behaviour.

While xcrit > xmax/2 qualitatively leads to the same results xcrit = xmax/2 (simulations

not shown), the picture is different for xcrit < xmax/2. The reason for this phenomenon

is explained as follows: If the infective dose is above the threshold of xmax/2, a single

exposure to an infectious cadaver does not have the potential to kill more than one host.

Therefore, from the perspective of the pathogen, infectious particles should exhibit high

killing rates σ̄ to prevent being diluted in the colony and ensure the death of the primarily
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Figure 2: Stability of the pathogen-free equilibrium in the η-cK-plane with increasing σ̄.
In the light grey area, the colony is protected from the pathogen, while in the dark area,
the pathogen can invade. These areas are separated by a straight line. Its slope decreases
with increasing σ̄, enlarging the dark grey area. Hence, a high killing rate increases the
ability of the pathogen to invade the host colony. However, the separating line never drops
below the diagonal cK = η. Thus, cadaver contact must occur at a minimal threshold
rate even if the killing rate is high. The slope of the separating line gradually decreases as
σ̄ increases from (a) 0.25 to (b) 1.0 (intermediate values are not shown). The remaining
parameters are rc = rs = 1, xmax = 10, and xcrit = 5. Consult the appendix for the
specifications of λ, Sxzy and Gx

z . Values of cK and η range from 0 to 5 at a resolution of
100 points.
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Figure 3: Stability of the pathogen-free equilibrium in the σ̄-α-plane, where α = cK/η,
with increasing contact rate rc and individual immunity rate rs: In the light grey area, the
colony is protected from the pathogen, while in the dark area, the pathogen can invade.
High killing rate σ̄ decreases the threshold for pathogen invasion on α to a minimal value of
α = 1, i.e., cK = η (compare Figure 2). We increase the host’s immune defence mechanisms
by increasing rc and rs simultaneously from (a) 1.0 to (b) 4.0. As expected, this leads to a
larger area in which the colony is protected from the pathogen by increasing the threshold
on α. Similarly, the area of protection grows if we assume no immune defence mechanisms
(Gx

z = 0 for x 6= z and Sxzy = 0 for x 6= y + z) and increase rc alone from (c) 2.0 to (d) 4.0.
The variables σ̄ and α range from 0 to 5 at a resolution of 100 points and the remaining
parameters are specified as in Figure 2.
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exposed host. Contrariwise, if the infective dose is low, xcrit < xmax/2, interactions between

hosts following a single initial exposure can lead to more than one individual exceeding

the infective dose. Accordingly, there is an optimal killing rate σ̄opt for the pathogen in the

sense that it maximizes the area in which it can invade. This optimal value trades off the

ability of the pathogen to kill its host with the chance to cause secondary infections.

The existence of an optimal killing rate is shown in Figure 4a. The threshold R̃0 = 1

that separates the region where the pathogen invades the host colony from the region

where the host colony is protected from the pathogen now clearly extends below α = 1.

At its minimum is the optimal killing rate for the pathogen, σ̄opt. This shows that even

if infectious cadavers on average cause less than one primary exposure, a pathogen with

adjusted killing rate may be able to invade the colony, since the number of critical secondary

exposures can compensate for the low transmission rate from cadavers. Note that for large

killing rate σ̄, the threshold R̃0 = 1 again converges towards α = 1, i.e., towards one

exposure per infectious cadaver on average. Hence, if hosts die from the pathogen before

being able to spread infectious particles, only a positive net primary exposure rate matters

for the success of the pathogen.

Further simulations with low infective dose xcrit reveal an ambivalent effect of high

contact between individuals. A change of contact rates between individuals, rc, lowers the

threshold in some parameter domains and increases it in others. If the killing rate is above

its optimal level σ̄opt, hosts die before the optimal pathogen spread is reached. In this case, a

denser contact network facilitates pathogen spread and thus makes invasion into the colony

easier for the pathogen. Conversely, if the killing rate is below its optimal level, increased

contact rates raise the invasion threshold for the pathogen, making pathogen invasion into

the colony more difficult by diluting pathogen dose. This can be seen comparing Figure 4b

with Figure 4a: As the contact rate between individuals (rc) increases, the optimal killing

rate σ̄opt shifts to the right. Left of σ̄opt, the threshold for pathogen invasion is raised, while
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to its right it is lowered.

In the case of xcrit ≥ xmax/2 above, we found a simple sufficient condition for the

colony being protected from pathogen invasion in terms of pathogen transmission rates

from infectious cadavers; if α < 1, the colony was protected independently of the other

parameters. Here, if xcrit < xmax/2, the existence of such a threshold remains valid but

its value may change. There is a positive relative exposure rate, αmin in Figure 4a, below

which the host colony is sure to be protected from pathogen invasions. This threshold

depends on the architecture of exposure classes, i.e., on xcrit and xmax. It displays the

minimal rate of primary exposures from infectious cadavers necessary for the outbreak of

the disease, given that the killing rate is adjusted optimally to the realities. Note that

in both cases, xcrit < xmax/2 and xcrit ≥ xmax/2, the parameters c, K, and η enter the

invasion condition only through the combined parameter α = cK/η. That is, changing

their values such that α remains constant did not change the invasion condition in any of

our simulations.

4 Discussion

We present an epidemiological model for a pathogen that does not replicate on the liv-

ing host, but kills the host before setting free the next generation of infectious particles.

This occurs, e.g., in the obligate killing entomopathogenic fungi Metarhizium and Beau-

veria. For these pathogens, the total number of infectious particles present in the host

colony – like that of insect societies, which remove their dead from the nest – can only

be increased by bringing them in from outside the colony, mostly by foraging individuals

getting exposed by contact to infectious cadavers. Contact between living hosts only leads

to redistribution of infectious particles, whereby a reduction in pathogen load of one indi-

vidual is linked to the equivalent increase of pathogen load in the interacting individual.
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Figure 4: Stability of the pathogen-free equilibrium in the σ̄-α-plane, where α = cK/η,
for low infective dose, xcrit = xmax/5 = 2. In the light grey area, the colony is protected
from the pathogen, while in the dark area, the pathogen can invade. (a) The drop of
the separating line between these areas below α = 1 gives rise to an optimal killing rate
for the pathogen, σ̄opt. If α is lower than a threshold αmin, the host colony is protected
from pathogen invasion independent of the other parameters. (b) Increasing the rate of
contact between individuals, rc, shifts the optimal killing rate σ̄opt to the right. Thereby,
it raises the threshold for pathogen invasion to the left and increases it the right of σ̄opt.
For parameter values, confer A.2.
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While no increase in the number of infectious particles can occur inside the colony, hosts

can actively reduce the pathogen load by active behavioural defences, such as individual

self- and social allogrooming. Group living can thus reduce the individual risk of infection

through reduction of the exposure dose by (i) the dilution effect caused by a redistribution

of infectious particles through social contact (in the absence of social immunity) and (ii)

an additional mechanical removal and/or chemical disinfection of infectious particles by

active host defences. We study the ability of such a pathogen to invade a colony of social

insect hosts.

To consider varying exposure levels and dose-dependent killing rates, our model groups

hosts into several exposure classes. The exposure class architecture is determined by the

number of exposure classes, xmax, and a infective dose, xcrit. The former determines the

resolution of exposure differences between hosts and sets a scale for the rates at which hosts

traverse between classes (Sxzy and Gx
z). These rates directly influence individual and social

host defences and hence have an effect on the host-pathogen dynamics that are independent

of the other parameters. Our qualitative results, however, are independent of the specific

choice of xmax.

Pathogen-induced mortality is typically a sigmoidal function that connects a baseline

value for no pathogen exposure with doses inflicting maximal mortality, as determined in

several laboratory-based studies (Hughes et al., 2004; Milutinović et al., 2013; Vestergaard

et al., 1995). In principle, our model can capture any form of dose-dependent mortality by

assigning a killing rate σx to every exposure class x. Here, we chose a threshold-type of

dose dependence that assumes a critical exposure class xcrit, where the killing rate switches

from zero to a constant positive value σ̄. This is a simplification of natural conditions that

is only justified if mortality induction changes sufficiently abruptly, which seems valid in

our Metarhizium-and model system (Hughes et al., 2004), but has to be evaluated for each

particular host-pathogen system. Simulations with gradually increasing σ̄ (not shown)
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indicate that our qualitative results fully apply if xcrit is considered the lowest exposure

class for which σx is positive. Moreover, using such threshold-type dose dependence involves

that the choice of xcrit has quantitative implications on the dynamics. Yet, the qualitative

pattern of the invasion condition for the pathogen only changes as xcrit falls below xmax/2

(see below).

Our analysis rests on the concept of the basic reproduction number, R0, to determine

the ability of the pathogen to invade a healthy host colony (Heesterbeek, 2002): If R0 < 1,

the host colony is protected from the pathogen, whereas the disease breaks out if R0 > 1.

For many pathogens, the basic reproduction number can be written as the product of the

infection rate and the average duration of infectiousness of hosts (May et al., 2001). Here,

we find a similar separation for the basic reproduction number of our system, R̃0: It is the

product of the relative rate of primary exposures, α = cK/η, and the probability of a host

dying from the pathogen, σ̄/(σ̄ + ζ), see equation (4).

If the basic reproduction number exceeds unity, the pathogen can invade the host colony

and an endemic equilibrium is attained. The impact of the pathogen on the host colony

can be measured in terms of the reduction in colony size following a pathogen invasion. We

find that the impact of the pathogen on the host colony scales approximately exponentially

with the basic reproduction number, see Figure 1. Hence, the basic reproduction number is

a meaningful proxy for the long-term consequences of an outbreak of the disease. Notably,

however, the pathogen never eradicates the host colony in our model, even if there is no

recruitment of newborn hosts.

Focussing on conditions for pathogen invasion, we find that individual and social host

defences are effective against the invasion of obligate killing entomopathogenic fungi into

the colony. Elevated individual and social immunity or increased contact rates increase the

parameter ζ in equation (4) and hence reduce the basic reproduction number. Figure 3

shows that this diminishes the region of pathogen invasion by imposing stronger conditions
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on the remaining parameters. We made similar observations in the simulations leading to

Figures 2 and 4.

From the expression of the basic reproduction number, equation (4), we furthermore

see that R̃0 cannot exceed unity if the rate of contact with infectious cadavers, cK, is below

the cadaver decay rate η. In the setting of our simulations (Section 3.2), the same holds

true if xcrit ≥ xmax/2, i.e., if being in the lower half of exposure classes does not entail

the risk of dying from the pathogen. This is reflected by Figure 2: Below the diagonal,

i.e., if cK < η, the host colony is always protected from pathogen invasion, independent of

the other parameters, i.e., σ̄ and the parameters contained in ζ. Equivalently, in Figure 3

the area of invasion never extends below α = cK/η = 1. If xcrit ≤ xmax/2, we still find

a minimal value αmin > 0, that depends on xcrit and xmax, such that the area of invasion

never extends below αmin (see Figure 4). Overall, this shows that the transmission rates

from infectious cadavers need to exceed a threshold set by the duration of infectiousness of

infectious cadavers and the relation between the average amount of pathogen transmitted

from infectious cadavers and the infective dose given by xmax and xcrit.

The basic reproduction number R̃0 in equation (4) furthermore indicates that the suc-

cess of the pathogen is basically determined by the product of the efficiency of causing new

exposures and the probability of the host dying from the pathogen. Hence, high killing

rates should increase the probability of pathogen invasion. In particular, Figure 2 shows

that increased killing rates enlarge the region in which the disease breaks out. However,

this is due to the choice of the infective dose as xcrit ≥ xmax/2. With this specification,

no more than one host can exceed the critical pathogen level from a single primary expo-

sure. Hence, from the perspective of the pathogen, the dilution of its infectious particles

through redistribution among hosts between individuals is detrimental, therefore selecting

for a higher killing rate or lower infective dose to assure host killing. Yet, if the infective

dose is low compared to the maximum pathogen load, xcrit < xmax/2, secondary exposures
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from a primarily exposed host potentially exceed the infective dose. Therefore, an inter-

mediate killing rate, σ̄opt, is optimal for the pathogen (see Figure 4); it arises from the

tradeoff between the chance of critically exposing multiple hosts and the pathogen’s ability

to ensure the killing of its hosts before its pathogen load on individual hosts drops too low.

To study the effect of the density of the contact network in the host colony, we can fix

immune defence parameters and vary the rate of contact, rc. Since the parameter ζ in the

basic reproduction number R̃0 increases with contact rate rc, increased contact rates have

an effect similar to increased immunity and hence reduce R̃0. In the case of low infective

dose, however, our numerical simulations indicate that this is only true if the killing rate

of the pathogen is below its optimum, σ̄opt (see Figure 4). In the other case, σ̄ > σ̄opt,

increased contact rates lower the basic reproduction number and hence facilitate disease

spread. Note that any effect of the contact rates between hosts on the basic reproduction

number is a dilution effect that spreads pathogen load between hosts. It can have a similar

effect as, but should not be confused with mechanisms of individual or social immunity.

These findings lead to our main conclusions. First, social immunity is an effective

mechanism to prevent disease outbreaks in host societies. This is not surprising given the

sophisticated collective behaviours described in empirical studies of social insects (reviewed

by Cremer et al. (2007); Evans and Spivak (2010); Wilson-Rich et al. (2009)). However,

social immunity is contained in our parameter ζ, which also includes individual immunity

and the dilution of pathogens due to physical contact between individuals. Hence, in our

model, social and individual immunity feed into the same quantity ζ and thus complement

each other in an overall immunity. Therefore, our remaining results also apply to host

species without social immune defence mechanisms. They are not specific to social species

but consequences of the particular life history of the obligate killing pathogens studied

here.

Second, successful invasion of the pathogen is determined by two factors: successful
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infection and killing of the host. This is in close analogy to the most common models

of disease dynamics, where the basic reproduction number can be written as a product

of the infection rate and the average duration of infectiousness (May et al., 2001). Con-

cerning successful host infection, we find a minimal pathogen transmission rate required

for pathogen invasion. If the total infective rate per infectious cadaver, cK, relative to its

decay rate, η, is below the threshold cK/η = αmin, the pathogen cannot invade the host

colony independently of the other parameters (i.e., σ̄, rc, rs, Sx, Gx). The value of αmin

depends on the exposure class architecture described by xcrit and xmax. More precisely,

the critical exposure threshold (i.e. the infective dose), above which the pathogen becomes

lethal for its host, determines the minimal number of primary exposures one infectious

cadaver must cause on average. For example, if contact between a single host and an

infectious cadaver transfers just enough pathogenic particles to bring the host above the

infective dose (xcrit ≥ xmax/2), a cadaver must, on average before decaying, expose (and

reliably kill) more than one host for the disease to break out. Lower infective doses make

it possible that the minimal exposure rate from infectious cadavers, αmin, is below one,

since one primary exposure has the potential to cause several hosts deaths.

The second factor for successful invasion of the pathogen is its ability to kill its host.

Thus, it is not surprising that obligate killing pathogens require substantial killing rates.

This is confirmed by our model: If the infective dose is at least half the maximal exposure

level (xcrit ≥ xmax/2), an increasing killing rate always decreases the threshold of pathogen

invasion. For lower infective doses, there is a non-zero optimal killing rate for the pathogen

that trades off the ability to kill its host with the possibility to cause additional critical

exposures.

In earlier disease dynamics models, invasion conditions are sometimes given in terms of

a critical colony size above which the pathogen can invade the host colony (Anderson and

May, 1979). Large colonies with a dense interaction network should therefore be particu-
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larly susceptible to pathogen invasions. These aspects enter our basic reproduction number

in two ways: Via the colony size K and the contact rate rc, contained in the combined

parameter ζ. Clearly, the total contact rate with infectious cadavers, cK, will increase with

colony size. The linear dependence on colony size K comes from our assumption that the

host colony is sufficiently well mixed (see Section 2). However, nest architecture, and social

and demographic structure of the colony is known to ameliorate the effect of colony size

on pathogen transmission risk (Hock and Fefferman, 2012; Mersch et al., 2013; Pie et al.,

2004). In realistic scenarios, the basic reproduction number (4) will not depend linearly

on colony size; rather, K should be interpreted as an effective colony size that leads to cK

cadaver contacts per infectious cadaver in one time unit.

High contact rates between individuals are an integral aspect of social insects and lead

to a facilitated spread of pathogens through the colony. Our results show an ambivalence

in the effect of high contact rates on the risk of a disease outbreak, since they need not

increase the risk of an outbreak of the disease, but, on the contrary, can be to the advantage

of the host colony. If the killing rate of the pathogen is below its optimal level, an increase

of contact rates rc among individuals dilutes the pathogen load in the colony. Individuals

are thus less likely to exceed the infective dose and the risk of disease outbreak is decreased.

Therefore, for some parameter combinations, physical contact between individuals can have

a dilution effect and thus prevent the outbreak of a disease even in the absence of social

immunity. This is likely to be an issue in biocontrol since the applied pathogens are often

generalists and hence require high infective doses to kill their hosts. In these situations,

predictions from traditional departmental models, e.g., Naug and Camazine (2002); Pie

et al. (2004), are reversed.

Overall, our findings confirm many empirical studies on social immunity by corroborat-

ing the effectiveness of social immune defence mechanisms in host colonies. The dynamics

of fungal infections and natural epidemics in host field populations are difficult to study.
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Moreover, the particular life history of obligate killing entomopathogenic fungi has rarely

been treated analytically (Stroeymeyt et al., 2014). Although there are many experimental

studies describing the different mechanisms of social immunity Cremer et al. (2007), they

are only very rarely linked to determining whether the pathogen can actually spread in a

colony Stroeymeyt et al. (2014). Experimental studies often use small colonies, but the ef-

fect of entomopathogenic fungi at the population level that is relevant for biocontrol is only

poorly understood. Hence, theoretical approaches can greatly benefit our understanding

of disease dynamics of these pathogens.

5 Conclusion

Obligate killing entomopathogens are potent biocontrol agents, yet their characteristics

are not adequately considered in theoretical models. Traditional compartmental models of

disease dynamics suggest that successful pathogens evolve to become less deadly. However,

our model predicts that obligate killing entomopathogenic fungi must induce a considerable

risk of death in order to be evolutionarily successful. Their life histories make the killing

rates and the rate at which the pathogens spread through the host colony important

predictors for the pathogen’s success in invading a host colony. The latter is determined

by the rate of contact between hosts and their individual and social immune defences.

Biocontrol of social insects may be particularly complex. Their close interactions facil-

itate the spread of diseases through the colony if the pathogen can overcome collective and

individual immune defences. However, these same interactions can dilute pathogen levels

in the colony and hence reduce individual pathogen load below critical values. Even more,

low-level infections may interfere with the predictions. Recently, it was shown that low-

level infections with Metarhizium acquired by social contact in social insect colonies can

lead to a protective immune stimulation Konrad et al. (2012). This may well be true also for
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solitary individuals. However, in contrast to social insects where high contact rates lead to

an increased spread of infectious particles, reduced contact between individuals in solitary

insects will lead to a lower likelihood of contraction of such protective mini-infections.

Given the abundant use of obligate killing entomopathogens in biocontrol, it is crucial

to understand the multitude of in part contrasting effects that come along with their

particular life histories. A key for developing this understanding will be a combination of

empirical studies and further specific epidemiological modelling.
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A Simulation settings

A.1 Matrix specifications

In simulations, each entry of the vectors Gx and matrices Sx needs to be specified. To

reduce this enormous number of parameters to three only (ps, pa and ra, see below), we

specify the Gx and Sx as follows.

The individual immunity vectors Gx By means of individual immunity, hosts have

a chance to reduce their own pathogen load. For xmax large enough, it makes sense to

assume a binomial model. If Xs denotes the number of pathogens removed by means of

individual immunity and ps the chance of removing a particular conidiospore, then

Pz[Xs = k] =

(
z

k

)
pks (1− ps)z−k

is the probability for an individual carrying z conidiospores to remove k conidiospores.

Thus

Gx
z := Pz[Xs = z − x] (A.1)

is the transition probability from reducing a pathogen load of z to x (z ≥ x) by individual

immunity.

The social matrices Sx Contact between individuals leads to a spread of the pathogen.

Ignoring the possibility of sanitary actions, let κxzy denote the probability that a host, that

has contact with an individual with pathogen load y, is moved from the class of pathogen

load z to the class of pathogen load x. On both individuals, a certain number of infectious

particles, kz and ky, detach. A certain amount of those, determined by the random variable

V , reattach to the focal individual, whereas the remaining particles attach to the second
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individual. Therefore, set

κxzy =
z∑

kz=0

y∑
ky=0

P[Uz = kz]P[Uy = ky]P [V = x− z + kz] , (A.2)

where Ui ∼ B(i, pc), i.e., the random variables Ui are binomially distributed with i trials

and success probability pc, the probability that one particular unit of infectious particles

detaches, and V follows a hypergeometric distribution

P[V = s] =

(
xmax−z+kz

s

)(
xmax−y+ky
kz+ky−s

)(
2xmax−(z+y)+kz+ky

kz+ky

) .

This choice of distributions ensures that the total pathogen load has the tendency to spread

out, but it remains constant and no individual ends up with a pathogenic load higher than

xmax.

Social contact can be accompanied by sanitary actions. Let τxzy denote the probability

that a host, that has contact with and is treated by an individual with exposure load y, is

moved from the class of pathogen load z to the class of pathogen load x. Set

τxzy =
∑
j

P[Yz = j]κx+jzy , (A.3)

where Yz ∼ B(z, pa), i.e., the random variables Yz are binomially distributed with z trials

and success probability pa, the probability that one particular unit of pathogen is removed

by social immunity measures.

Finally, define ra as the fraction of contact events between two hosts that involve

sanitary actions. Then, the social interaction matrices are obtained from weighting (A.2)

and (A.3) accordingly. They take the form

Sxjk = (1− ra(j))κxjk + ra(j)g
x
jk. (A.4)

36

http://dx.doi.org/10.1016/j.jtbi.2015.02.018


Accepted Manuscript, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2015.02.018

A.2 Simulation parameters

For all simulations, we specified λ(n) = λ0N(K − N) by a logistic growth function with

free growth rate λ0. For Figures 2 to 4, Gx
z and Sxzy are given by equations (A.1) and (A.4),

respectively.

Figure 1 The simulations were initialized by setting n0(0) = 1, n1(0) = n2(0) = 0,

ν(0) = 10−5. Values for c, η, and σ2 were chosen randomly between zero and one to obtain

105 independent data points. The remaining parameters are:

λ = 0, σ0 = σ1 = 0, rc = rs = 1,

G0 =


1

0.01

0.0001

 , G1 =


0

0.99

0.01

 , G2 =


0

0

0.9899

 ,

S0 =


1 0.99 0.99

0.1 0.099 0.108

0.1 0.108 0.117

 , S1 =


0 0.01 0.0099

0.9 0.892 0.88308

0.09 0.0892 0.088308

 ,

S2 =


0 0 0.0001

0 0.009 0.00892

0.81 0.8028 0.794692

 .

Figure 2 The stability of the Jacobian matrix at the pathogen-free equilibrium E, given

by n0(0) = K, nx(0) = 0 for 0 < x ≤ xmax, and ν = 0, is evaluated numerically for η and

cK ranging from 0 to 5 at a resolution of 100 points. The killing rate is (a) σ̄ = 0.5 and

(b) σ̄ = 5. The remaining parameters are xmax = 10, xcrit = 5, K = 1, λ0 = 1, rc = rs = 1,
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ra = 0.75, pc = ps = 0.1, and pa = 0.2.

Figure 3 The stability of the Jacobian matrix at the pathogen-free equilibrium E, given

by n0(0) = K, nx(0) = 0 for 0 < x ≤ xmax, and ν = 0, is evaluated numerically for σ̄ and

α = cK/η ranging from 0 to 5 at a resolution of 100 points. In (a), rc = ra = 1, while

in (b), rc = ra = 4. The remaining parameters for (a) and (b) are xmax = 10, xcrit = 5,

K = 1, λ0 = 1, η = 1, ra = 0.75, pc = ps = 0.1, and pa = 0.2.

For (c) and (d), we set all parameters connected to active disease defence (i.e., rs, ra, ps,

and pa) to zero. Furthermore, we set (c) rc = 2 and (d) rc = 4. The remaining parameters

remain unchanged.

Figure 4 The stability of the Jacobian matrix at the pathogen-free equilibrium E, given

by n0(0) = K, nx(0) = 0 for 0 < x ≤ xmax, and ν = 0, is evaluated numerically for σ̄ and

α = cK/η ranging from 0 to 5 at a resolution of 200 points. The rates of contact are (a)

rc = 1 and (b) rc = 3. The remaining parameters are xmax = 10, xcrit = 2, K = 1, λ0 = 1,

η = 1, rs = 1, ra = 0, pc = 0.9, ps = 0.1, and pa = 0.
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