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Abstract
We investigate the occurrence of rotons in a quadrupolar Bose–Einstein condensate confined to two
dimensions. Depending on the particle density, the ratio of the contact and quadrupole–quadrupole
interactions, and the alignment of the quadrupolemoments with respect to the confinement plane,
the dispersion relation features two or four point-like rotonminima or one ring-shapedminimum.
Wemap out the entire parameter space of the roton behavior and identify the instability regions.We
propose to observe the exotic rotons bymonitoring the characteristic density wave dynamics resulting
from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-
the-art experiments with ultracold homonuclearmolecules.

1. Introduction

Roton excitations, inherent to non-ideal superfluidswithfinite-range interactions, werefirst discussed in the
seminal works of Landau [1], Feynman [2, 3], and Bogoliubov [4] on the theory of liquid He4 , for which indeed
a localminimum in the dispersionwas observed. The existence of such aminimum in a non-monotonic
dispersion is in itself an intriguing scenario. Additionally, it can be seen as the precursor of a non-trivial order as
the roton softens. As themagnitude of the dispersion at theminimumapproaches zero, the system tends to
develop an instability, typically towards density wave order. Furthermore, it was later speculated that this
instability not necessarily results in a suppression of superfluidity,meaning that the softening of the rotonmode
would give rise to a supersolid [5–7].While the occurrence of a supersolid phase in heliumhas been a subject of
active debate formore than 50 years [8, 9], no conclusive experimental evidence of supersolidity has been found
yet [10, 11].

As opposed to liquid helium,whose properties can be controlled primarily through global, thermodynamic
quantities, such as pressure and temperature, ultracold quantumgases allow for a versatile tunability of the
microscopicHamiltonian. As an example, a roton instability was predicted to arise in Bose–Einstein
condensates (BECs) of dipolar particles confined to one- and two-dimensional (2D) geometries [12–16], as well
as in a BECof nonpolar atoms in the presence of an intense laser light [17] or Rydberg dressing [18].

Recently we introduced ultracold quantum gases of quadrupolar particles as a prospective platform for
studyingmany-body phenomena [19–21].Quadrupolar particles, such as ultracold homonuclear dimers, are
prone to chemical reactions occurring for dipolarmolecules [22]. On the other hand, since anisotropic
quadrupole–quadrupole interactions occur in themolecular ground state, the coherence time is not disturbed
by spontaneous emission, due to scattering of laser photons [17, 18]. Finally, although the quadrupole–
quadrupole interactions are of shorter range compared to the dipole–dipole ones [15], particles possessing
electric quadrupolemoments, such as Cs2 [23] or Sr2 [24, 25], are readily available in experiments at higher
densities, compared to dipolar species. Among the exciting properties of the quadrupole–quadrupole
interactions is their peculiar anisotropy, which, combinedwith their broad tunability, paves theway to
observing novel quantumphases in ultracold experiments [19–21].

OPEN ACCESS

RECEIVED

16December 2014

REVISED

20 February 2015

ACCEPTED FOR PUBLICATION

4March 2015

PUBLISHED

14April 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/4/045005
mailto:lmathey@physnet.uni-hamburg.de
http://dx.doi.org/10.1088/1367-2630/17/4/045005
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/045005&domain=pdf&date_stamp=2015-04-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/045005&domain=pdf&date_stamp=2015-04-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this contributionwe investigate the occurrence of roton instabilities due to the interplay of quadrupole–
quadrupole and contact interactions and explore the possibilities to detect thefingerprints of rotons inmodern
experiments with ultracoldmolecules. The paper is organized as follows: in section 2we introduce the system
geometry and two-body interactions and sketch the derivation of the excitation spectrum in the framework of
Bogoliubov’s theory. A discussion of the stabilization criteria, section 3, is followed by the classification and
occurrence of the rotons in the parameter space, section 4. In section 5we describe the dynamics of a
quadrupolar BEC following a short, local perturbation of the density, which can serve as an experimental
detection tool for the roton instability in a BECof homonuclearmolecules. Finally, we conclude in section 6.

2.Quadrupolar condensates

We investigate a 2D, zero-temperature BECof density n. The bosons are interacting via quadrupole–quadrupole
interactions (QQI) as well as contact interactions, which can be tuned independently. For this system, we derive
the Bogoliubov spectrum and identify the roton excitations, which can be stabilized in this system. Themost
interesting scenario of four rotonminima is achieved by a competition ofQQI and contact interaction and for a
large alignment angle θF .

2.1.Quadrupole–quadrupole interaction
Weconsider a systemof quadrupoles similar to the one described in [21].However, here the particles are
bosonic rather than fermionic. The interaction between two particles having a quadrupolemoment q separated
by the distance vector R and aligned via an externalmagnetic field B is

θ θ= − +
U C

R
R( )

3 30 cos 35 cos
(1)q

2 4

5

where πε= ( )C q3 64q
2

0 , = ∣ ∣R R , and θ is the angle between B and R (see figure 1(a)). TheQQI can also be

written as π θ= ( )U C Y RR( ) 16 ( , 0) 3q 4
0 5 , where θ ϕY ( , )4

0 is the fourth spherical harmonic. It changes its

sign twice, at the angles θ ≡ + ≈arccos (15 2 30 ) 35 0.5331 and θ ≡ − ≈arccos (15 2 30 ) 35 1.2242 .

The interaction is repulsive for θ θ∈ )0, 1
⎡⎣ and θ θ π∈ ( , 22

⎤⎦ and attractive for θ θ θ∈ ( ),1 2 . Infigure 1(b)we

show the angular dependence of the (QQI), in comparison to a dipole–dipole interaction, θ∝ −U 1 3 cos2 ,
and amonopole–monopole interaction, ∝U 1.

Figure 1. (a) Two quadrupoles, aligned along amagnetic field B, are separated by a vector R . The resulting quadrupole–quadrupole
interaction, equation (1), is a function of their distance ∣ ∣R and the angle θ between R and B. If the tilting is along the x-axis, θ can be
expressed via θF and R. (b)Quadrupole–quadrupole interaction as a function of θ in the range of 0 to π 2, where it changes from
repulsive to attractive and back. The angles at which the interaction switches its sign are labeled as θ1 and θ2. For comparison, we also
show the angular dependence of the dipole–dipole interaction, which has only one zero-crossing, and themonopole–monopole
interaction, which is constant. Adaptedwith permission from reference [21]. Copyright 2014 by the American Physical Society.
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In a three-dimensional (3D) quadrupolar condensate, no rotonminima occur, as discussed in appendix B.
Here, we consider a quasi-2D geometry, inwhich themotion of the particles in the z-direction is confined by a
harmonic potential, ω=V m z 2zc

2 2 , wherem is the particlemass and ωz the oscillator frequency. The oscillator

length is λ ω=  m( )z z . The 2D limit is achieved for ω μ≫ z , where μ is the chemical potential of the

system. In this limit, only the spatial ground state is occupied, andwe factorize the single-particle operator as
Ψ ψ χ= zR rˆ ( ) ˆ ( ) ( )where χ z( ), reads as

χ
πλ λ

= −
( )

z
z

( )
1

exp
2

. (2)

z z2 1 4

2

2

⎛
⎝⎜

⎞
⎠⎟

As discussed in [21], we integrate out the z-component, which leads to an effective 2DpotentialU r( )2D given by

∫
πλ λ

= −
( )

U zU
z

r R( )
1

2
d ( ) exp

2
. (3)

z z
2D

2 1 2

2

2

⎛
⎝⎜

⎞
⎠⎟

The full analytical expression forU r( )2D is given in appendix A. For λ∣ ∣ ≫r z ,U r( )2D approaches the ∼ r1 5

behavior of the bare interaction. For λ∣ ∣ ≪r z , the ∼ r1 5 divergence is suppressed to a lower power, which
makesU r( )2D sufficiently well behaved on short scales, so that no additional short range cut-off has to be
introduced (see reference [21]).

The Fourier transformof this interaction is given by

∫β = −V k U r r( , ) ( )e d , (4)r k
2D 2D

i ·

wherewe expressed themomentum k in terms of its absolute value, ≡ ∣ ∣k k , and the angle between the vector
and the x-axis, β ≡ karg . The full analytic solution is sketched in appendix A.

Figure 2 shows βV k( , )2D for different tilting angles θF . The competition between attractive and repulsive
contributions in different regimes ofmomentum space leads to interesting quantumphases of quadrupolar
systems, as discussed in [19, 20].

Throughout this paper, wewill workwith the Fourier transformof theQQI, or the effective interaction
derived from it in the quasi-2D geometry above. The Fourier transformof equation (1) is

π θ=V C Y kk( ) 64 ( , 0) 315q3D
3 2

4
0 2 .We note that for the van derWaals interaction, the Fourier transform is

usually replaced by an s-wave pseudopotential. For theQQI, however, themomentumdependence of the
Fourier transform coincides with the corresponding g-wave pseudopotential.

2.2. Contact interaction
In addition to theQQI, we account for a contact interaction between the particles, as described by

∫ Ψ Ψ Ψ Ψ=


V g R R R R Rd ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )contact
1

2 3D
† †

3 . Here, the interaction strength is given by π= g a m43D
2 ,

where a is the s-wave scattering length.We project this interaction onto two dimensions, by analogy to theQQI
of equation (3), which results in the term ∫ ψ ψ ψ ψ=


V g R r r r rd ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )contact

1

2 2D
† †

2 . The effective 2D

interaction strength g2D is given by

∫ χ π
λ

= = 


g g z z
a

m
d ( )

8
. (5)

z
2D 3D

4
2

In experiment, this interaction strength can be controlled either by a Feshbach resonance [26, 27] or by changing
the confinement length scale λz .

2.3. Bogoliubov spectrum
Wederive the spectrumof the systemwithin the Bogoliubov approximation. TheHamiltonian of the system is

 ∑ ∑= + + −
 k

m
a a

A
a a V a apˆ

2
ˆ ˆ

1

2
ˆ ˆ ( ) ˆ ˆ (6)

k

k k

k q p

k p q p q k0

2 2
†

, ,

† †

where âk is the annihilation operator ofmode k and the Fourier transformof the single particle operator ψ̂ ,ℏ is
Planck’s constant, andA is the system area. The interaction β= +V V k gk( ) ( , )2D 2D contains both theQQI,
equation (4), and the contact interaction, equation (5).We perform aBogoliubov transformation of the form

= − −b u a v aˆ ˆ ˆk k k k k
† where the Bogoliubov functions are given by ω ω= + +  ( )u nV k( ( )) 2k

mk k k
2

2

2 2

and

ω ω= − + + v nV k( ( ))/ (2 )k

mk k k
2

2

2 2

, respectively. This results in a linearizedHamiltonian
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 ∑ω ω= +
≠

  b bˆ ˆ ˆ (7)
k

k k k0 0

0

†

where the dispersion relation of the quasi-particles is

ω β= + + ( )k

m

nk

m
V k g

2
( , ) . (8)k

2
2 2 2

2D 2D

⎛
⎝⎜

⎞
⎠⎟

Due to the anisotropy of theQQI, the dispersion relation depends not only on the absolutemomentum, = ∣ ∣k k ,
but also on its direction, β = karg .

Figure 2. Fourier transformof the quadrupole–quadrupole interaction βV k( , )2D for different values of the tilting angle θF . Here, the
quadrupoles are tilted along the x-axis. (a) For θ = 0F the interaction is rotationally symmetric and repulsive for allmomenta. For
θ > 0F the rotational symmetry is broken. (b) For θ = 0.08F , this symmetry breaking is barely visible on this scale. However, even for
this angle the parameters can be tuned such that point-like rotons appear in the spectrum. (c) For θ = 0.9F the interaction is attractive
for smallmomenta. The anisotropy is clearly visible. (d) For θ = 1.55F the low-momentum limit is repulsive again. As it is clearly
visible on the right-hand side, there are four distinct directions inmomentum space forwhich the interaction is attractive.Wemake
use of this feature to create a novel condensate state with four distinct rotonminima.
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3. Stability of the condensate

Ourmain goal is to identify the parameter regime inwhich the dispersion relation (8) is non-monotonic and
displays one or several rotonminima. Furthermore, the dispersion at the rotonminimumcan become
imaginary, indicating a roton instability, which is often a precursor of a new, non-trivial order of the system. For
example, as shown in reference [28], a roton instability of 2Ddipolar Bose gases precedes the formation of a
striped phase. Below,we identify the roton instabilities for a quadrupolar condensate. However, two other types
of instabilities are present in the system. Thefirst one occurs at largemomenta and is due to the strongly
attractive behavior of theQQI at the short range, and the second one belongs to smallmomenta and is
accompanied by the collapse of the condensate.

3.1. Stability criterium at largemomenta
For largemomenta, → ∞k , the Fourier transformof theQQI reads

β π
λ

β θ λ→ ∞ =V k
C

k( , )
2

12
cos (4 ) sin ( ) . (9)

q

z
F z2D 3

4 2 2

Note that it scales as k2 and therefore does not become negligible compared to the kinetic energy, as opposed to
the contact interaction g2D. In this case, the quantumdepletion is proportional to the volume of themomentum
space. For a consistent Bogoliubov approach, themagnitude of the quantumdepletion has to befinite and small.
In order to satisfy this, we have to introduce a short-wavelength cut-off of theQQI, which regularizes this
quantity at largemomenta. This is allowed, since themean-particle distance, −n 1 2, is large compared to the
atomic scale. Further, we can assume the cut-off to bemuch larger than themomentum corresponding to the
rotonminima. Thus, it will push the upper limit density, defined below, to larger values but does not affect the
roton character.

The term in equation (9) is non-zero for any θ ≠ 0F . For β = −cos (4 ) 1, this term achieves its largest,
negative value and competes with the kinetic part of equation (8). As a result, the systembecomes unstable for

→ ∞k . This can be expressed as an upper limit for the density,

θ θ⩽ −n n( ) sin ( ), (10)F Fc
4

where the critical density is defined as

λ
π

≡


n
C m

3

2
. (11)z

q
c

2

Wenote that, since λ∝n zc , strong confinement decreases the critical density.
As we demonstrate below, nc also defines the scale for the parameter regime in which rotons exist. In

order to give a quantitative example, we consider Cs2, with =q 27.9 a.u. [29] and =m 266 a.u. We
assume a trapping frequency of ω = 10 MHz,z corresponding to λ = 4.6 nmz . With these values, the
critical density is μ=n 522c m−2. For a molecule of the same mass with a larger quadrupole moment of,
e.g., =q 50 a.u. or =q 100 a.u., we find μ=n 162c m−2 and μ=n 41c m−2, respectively. This indicates
that the scenario considered in this contribution is relevant for current experiments.

3.2. Stability criterium for smallmomenta
In addition to the short-range instability, the system can also undergo a collapse, which is characterized by an
instability at smallmomenta. In this limit, the analytic expression of the Fourier-transformedQQI reads

π
λ

θ θ→ = − +( )V k
C

( 0)
2

12
3 30 cos ( ) 35 cos ( ) . (12)

q

z
F F2D 3

2 4

Wenote that (12) is independent of β and k. The dispersion relation for small k is given by ω =→ c kk s0 with the
sound velocity

≡ → +( )c
n

m
V k g( 0) . (13)s 2D 2D

Therefore, the system is stable if → + ⩾V k g( 0) 02D 2D . The contact interaction can prevent collapse if it fulfills
the requirement

π
λ

θ θ⩾ − − +( )g
C2

12
3 30 cos ( ) 35 cos ( ) . (14)

q

z
F F2D 3

2 4

Depending on θF , the lower boundmight be positive, which is the case for θ θ θ∈ ( , )F 1 2 , or negative.
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We introduce the relative interaction strength,

η ≡ −
→

g

V k( 0)
, (15)2D

2D

which depends on θF through →V k( 0)2D . η = 0 refers to zero contact potential. η = 1corresponds to a
vanishing speed of sound, =c 0s , which indicates the onset of collapse.We note that in this representation for
any η, the contact interaction is set to have an opposite signwith respect to →V k( 0)2D . If →V k( 0)2D is
repulsive (i.e., θ θ<F 1or θ θ>F 2), ⩾c 0s

2 is ensured by setting η ⩽ 1, which is a smaller and attractive contact
interaction.However, if →V k( 0)2D is attractive ( θ θ θ< <for F1 2), a larger repulsive contact interaction, and
thus η ⩾ 1 is required, in order to avoid the collapse of the condensate.

4. Rotons

Nowwe identify the rotons that exist in the system, and their parameter regime, by determining the number and
properties of the dispersionminima.Wefind four different types of stable rotons (see figure 3).

For the special case θ = 0F , for which the systemhas a rotational symmetry, a ring-shaped rotonminimum
occurs, as shown infigure 3(a). Away from this rotationally symmetric case, the dispersion relation can possess
either two or four point-likeminima. The two point-likeminima can either be on the kx-axis, as shown in
figure 3(b), or on the ky-axis, as shown infigure 3(c). As reported recently [30], similar scenarios occur in a
dipolar system. An intriguing case, which is specific to quadrupolar interactions, is the occurrence of four point-
like rotonminima, as shown infigure 3(d).

Infigures 4 and 5we show the parameter regime inwhich these types of rotons can occur.
The case of pureQQI and no contact interaction, η = 0, is shown infigure 4(a). For large densities, the

systemdisplays a short-range instability, according to equation (10). For θ θ θ< <F1 2, the total interaction is
attractive for smallmomenta, leading to the phonon instability in equation (14).On the other hand, at small
tilting angles, θ θ<F 1, the system shows three regimes: (i) the dispersion ismonotonic and has no rotonminima
for small densities. (ii) Twominima appear on the ky-axis as the density is increased. (iii) These rotons become
unstable at even larger densities. For large tilting angles, θ θ>F 2, (i′) the system is alwaysmonotonic, and no
rotons are present.

Figure 3.The dispersion relation for the four cases, inwhich the rotons are present. (a) Example of a ring-shaped roton for the special
case of θ = 0F , at which the systemhas rotational symmetry. The density is =n n17.8 c and the relative contact interaction is η = 0.2.
(b) Example of two rotons on kx-axis: θ = 1.55F , =n n0.57 c and η = 0.825. (c) Example of two rotons on ky-axis: θ = 0.08F ,

=n n17.8 c and η = 0.2. (d) Example of four point-like rotons: θ = 1.55F , =n n0.8 c and η = 0.725.
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Wenowmodify this scenario by turning on a contact interaction. The two cases of η = 0.2 and η = 0.725
describe aweakly attractive contact interaction for θ θ<F 1 and θ θ>F 2. For θ θ<F 1, the regimes (i) and (ii)
move to smaller densities. Furthermore, close to the region of short-range instability, a new regime (iv) of a
roton instability, inwhich the dispersion is imaginary for four regions ofmomentum space, occurs.

For sufficiently strong contact interaction, η ⩾ 0.5, a new regime occurs for θ θ>F 2, in addition to (i′). As
the density is increased, the systemdevelops as a new regime: (v) four point-like rotonminima for large tilting
angles (see first panel offigure 5(a)). As the density is increased further, these turn into a roton instability (iv′).
The axes of the quadrupoles are almost entirely tilted into the plane of the system.While dipolar particles would
only be attractive along the dipole axis, quadrupoles have attractive interactions along two directions, both of
which are at a non-zero angle to the axis of the quadrupole. If the repulsive parts of theQQI are sufficiently
suppressed, this leads to the development of four rotonminima rather than two. Aswe show in the second panel
offigure 5(a), the regime of stable rotons (v)moves to smaller densities when the contact interaction is increased

Figure 4.The roton properties as a function of the tilting angle θF and density n. Panels (a)–(e) correspond to five values of the relative
contact interaction η. Note that forfixed η the contact interaction g2D is not a constant but is chosen such that the ratio of equation (15)
is kept fixed. For θ θ<F 1 and θ θ>F 2 the contact interaction is attractive; for θ θ θ< <F1 2 it is repulsive. Different regimes are
labeledwith (i)–(v) (refer to the text). A detailed version of panels (c) and (e) is given infigure 5.

7

New J. Phys. 17 (2015) 045005 MLahrz et al



further.However, as the density is lowered, the two pairs of rotonsmerge into (ii′) two rotons on the kx-axis.
Therefore theminimal density to create stable rotonminima in this regime is around n0.6 c .

We now increase η further. The case of η = 1 is amarginal case (see figure 4(d)), for which the entire regime
of θF is stable, and the low-momentumbehavior of the dispersion is quadratic instead of linear. In this case, the
contact interaction cancels the low-momentumpart of theQQI identically. For values of η larger than 1, such as
η = 1.05 shown infigure 4(e), the regime of the phonon instability is reversed, compared to η < 1. The
attractive contact interaction for θ θ<F 1 and θ θ>F 2 is now too large and overcompensates theQQI.However,
for θ θ θ< <F1 2 the contact interaction is now repulsive enough to compensate the attractiveQQI and prevent
collapse. This regime is depicted on a larger scale infigure 5(b).Wefind a large regimewith amonotonic
dispersion and a regimewith a roton instability of two rotons. Between these two regimes is a small region of
stable rotons.

Finally, we show the case of rotational symmetry with θ = 0F infigure 5(c). Asmentioned above, for η > 1
the system is unstable and collapses. For η ⩽ 1, three regimes are visible. For smaller densities, the dispersion is
monotonic. As the density is increased, the systemdevelops a ring-shaped rotonminimum. Thisminimum
becomes unstable, as the density is increased further. The density at the transitions between these regimes
depends strongly on the value of η. Stable rotons for densities near nc are achieved for ηnear 1.

Figure 5.Detailed view for a few parts offigure 4. (a) θ θ π< < 2F2 for η = 0.725 and 0.825, which is indicated infigure 4(c). This
parameter range contains a regime inwhich the systemhas four stable, point-like rotons. (b) θ θ θ< <F1 2 for η = 1.05, which is
indicated in figure 4(e). (c) θ = 0F , as a function of density n and contact interaction strength η. Here, the dispersion features a ring-
shaped rotonminimum.
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5. Proposedmeasurement in real space

Awell-established technique based on two-photon Bragg scattering allows us tomeasure the dynamic structure
factor and thereby study the dispersion relation and the rotonminima [31, 32]. In this sectionwe discuss an
alternative scheme that demonstrates the existence of rotonminima in the dispersion and highlights the
properties of rotons.We consider an experimental setup similar to the one used in reference [33],measuring the
speed of sound in a stirred BEC.During a short time Δt , the system is perturbedwith an off-resonant laser beam,
whichwemodel as an external potential

πσ σ
= −U

V r
r( )

2
exp

2
(16)1

0

2

2

2

⎛
⎝⎜

⎞
⎠⎟

with a strengthV0 and a spatial width σ. If the systemhas a linear dispersion at smallmomenta and is probedwith
awidth σ that is large enough to only probe the low-momentum regime of the dispersion, this perturbation
results in an outgoing circular density wave traveling at the speed of sound.

However, for a non-trivial dispersion possessing rotonminima, this behavior ismodified in a qualitative
manner. In particular, the dispersionwill necessarily contain regions inwhich the group velocity is negative.
This will result in density waves that propagate towards the location of the perturbation, rather than away from
it. Furthermore, the directions of the flowpattern indicate the location and number of rotonminima. The
perturbation termhas the form

 ∫= U nr r rˆ d ( ) ˆ ( ), (17)1 1

where n rˆ ( ) is the particle density.We linearize the density n̂k inmomentum spacewithin the Bogoliubov

approximation, which gives = + +−n N u v b bˆ ( )( ˆ ˆ )k k k k k0
†
, whereN0 is the number of condensed particles.

With this expression, equation (17) is linearized and given by

 ∑= + +−( )( )S u v b bˆ ˆ ˆ . (18)
k

k k k k k1
†

Here, Sk is the Fourier transformof theGaussian potential, = π σ−S e
V

A
k

k
2 20 2 2

.With this termbeing turned

on briefly at time t= 0, the Bogoliubov operator b tˆ ( )k evolves in time as

= +ω−b t b A tˆ ( ) ˆ e ( ), (19)t
k k k

i k

where A t( )k is zero for ⩽t 0, and

Δ= − + −ω−
 ( )( )A t S u v t( )
i

e 1 (20)t
k k k k

i k

for >t 0.We nowuse this solution for the Bogoliubov operator in the linearized expression for the density,
which can bewritten as = +n n t n tˆ ˆ ( ) ˆ ( )k k k0, 1, , where n tˆ ( )k0, is the unperturbed density and n tˆ ( )k1, is the
density perturbation thatwe are interested in. It is given by

π Δ ω

ω
= − σ−


( )

n t
N V t

m A
k

t
ˆ ( )

2
e

sin
. (21)k

k

k

k
1,

0 0 2 22 2

Using this solution, we construct the density perturbation in real space via = ∑ −n nrˆ ( ) ˆ ek k
k r

1 1,
i · .

Infigure 6we show two pairs of examples for this time evolution of the density. The time sequence in (a) is
for the two-roton example that was given infigure 3(c), where θ = 0.08F , η = 0.2, and =n n17.8 c . Panel (b)
corresponds to the same values of θF and η, but a reduced density, =n n13.3 c .We choose the spatial size of the
Gaussian perturbation to be σ λ= 2 z . In the time sequence (a), the density peak at the center initially splits up
andmoves outward along the x-axis. Later, two peaks appear on the y-axis at a similar distance from the origin,
howevermoving inward. This indicates the occurrence of rotonminima on the ky-axis for these parameters. For
comparison, we show the time sequence (b), where no rotons are present. Here, a density wave propagates
outward in the shape of an elliptic ring, indicating that the dispersion ismonotonic.

As the second pair of examples, we show the case of four local rotons, whichwas given infigure 3(d), for
θ = 1.55F and η = 0.725. The density in (c) is =n n0.8 ,c and in (d) it is =n n0.6 c . The spatial size of the
perturbation is σ λ= 0.6 z . In the time evolution shown infigure 6(c)we now see two incoming density peaks
thatmove towards the x-axis,merge, and then propagate further towards the origin. The peaks before and after
themergingmovewith different speeds along the axes. This reflects the curvature of the dispersion relation near
the rotonminima. A large (small) curvature corresponds to a large (small) effectivemass, which implies that the
quasi particlesmove slower (faster). In otherwords, the density wavewill preferably propagate in the direction
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of the smallest gradient in the dispersion relation, which is not towards the origin but pointing towards the kx-
axis at an angle. Thus, the density waves created at the rotonminima firstmerge on the x-axis, interfere with the
outgoing density wave, and finallymerge at the origin. For the lower density, =n n0.6 c , no rotons are present,
and the density waves always propagate outwards (see figure 6(d)).

6. Conclusion

Wehave demonstrated that a quadrupolar 2D condensate can support stable rotonic excitations aswell as roton
instabilities, which suggest that the systemmight develop a non-trivial order. Depending on the alignment angle
of the quadrupoles with respect to the systemplane, the density, and themagnitude of an additional contact
interaction, we identify three types of rotonminima. If the quadrupoles are aligned perpendicularly to the plane,
the rotonminimum is ring-shaped, which reflects the rotational symmetry of this state. If the quadrupoles are
aligned at a non-perpendicular angle, the dispersion features either two point-like rotons, or,most interestingly,
four point-like rotonswhich occur for the alignment almost lyingwithin the systemplane. Each of these roton
types can develop into a roton instability,meaning that the dispersion becomes imaginary at theminimum.

We study the response of a quadrupolar condensate to a sudden, local perturbation of the density.We
demonstrate that there is a qualitative difference in the response of a condensate with amonotonic dispersion
and a condensate with a rotonminimum. For themonotonic case, the systemdisplays outgoing density waves,
whereas the rotonminima imply that there are parts ofmomentum space with negative group velocity. This
results in density waves that travel towards the local perturbation rather than away form it. Furthermore, the
patterns of these in-flowing density waves indicate which type of roton scenario is present in the system. These

Figure 6.Time evolution of the density in a quadrupolar BEC following a short perturbation at t=0 at the origin. (a) Example as
shown figure 3(c) with two rotonminima on the ky-axis: θ = 0.08F , η = 0.2, =n n17.8 c . Additional density waves travel along the y-
axis towards the origin. (b) Similar configuration as in (a) but with a reduced density, =n n13.3 c , where no rotonminima are
present. All density waves aremoving outward from the origin. (c) Example as shownfigure 3(d)with four rotonminima: θ = 1.55F ,
η = 0.725, =n n0.8 c . Density waves form an interference pattern propagating toward the origin. (d) Similar configuration as in (c)
but with a reduced density, =n n0.6 c , where no rotonminima are present. The time evolution of the density consists of outgoing
waves only. In the supplementarymaterial we provide an animated version of the time evolution for these four cases, inwhich these
features are immediately apparent.
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results pave theway to observing exotic roton excitations in the condensates of ultracold homonuclear
molecules.
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AppendixA. Fourier transformof U (r)D2

The quadrupole–quadrupole interaction in a quasi-2D geometry under a tilting θF along the x-axis is given by

α ϱ ϱ ϱ θ α ϱ ϱ ϱ θ α

ϱ ϱ ϱ θ α ϱ ϱ ϱ θ α

ϱ ϱ ϱ ϱ θ α ϱ ϱ ϱ θ α

= − + + − +

+ + + + + −

− − + − − +−

ϱ ϱ

ϱ ϱ

ϱ ϱ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

U r u f u f

u f u f

u f u f

( , ) 16 4 K
4

e , 8 2 6 K
4

e ,

6 6 K
4

e , 16 2 2 K
4

e ,

8 4 16 48 K
4

e , 4 K
4

e , (A.1)

F F

F F

F F

2D 0
4 2

0

2

1 0
4 2

0

2

2

0
4 2

0

2

3 0
4 2

1

2

1

0
4 2 2

1

2

2 0
4 2

1

2

1

2

4

2

4

2

4

2

4

2

4

2

4

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where λ ϱ= ∣ ∣ =r r z , α = rarg ( ), π λ= ( )u C 384 2q z0
5 is a constant energy scale, and ν xK ( ) are themodified

Bessel functions of the second kind. Furthermore, we expressed the dependencies on θF andα through the
following functions:

θ α θ θ α= +( )( ) ( ) ( )f a, sin 7 cos 2 5 cos (2 ) (A.2 )F F F1
2

θ α θ α=( ) ( )f b, sin cos (4 ) (A.2 )F F2
4

θ α θ θ= + +( ) ( ) ( )f c, 20 cos 2 35 cos 4 9. (A.2 )F F F3

The Fourier-transformed interaction is formally given by

∫ ∫β α ϱλ α=
π

ϱ α β
∞

− −( )V k r r U( , ) d d , e , (A.3)z
p

2D
0 0

2

2D
i cos ( )

wherewe introduced the dimensionless quantity λ=p kz . The angular dependence can be evaluated by

integrating the functions θ α( )f ,i F over α,

∫ϱ β φ α θ α− =
π

ϱ α β− −( ) ( )F p f, d , e . (A.4)i F i F
p

0

2
i cos ( )

Wefind

ϱ β π θ θ β ϱ= − +( )( ) ( )F p p a( , ) 2 sin 7 cos 2 5 cos (2 )J ( ) (A.5 )F F1
2

2

ϱ β π θ β
ϱ

ϱ
ϱ ϱ

ϱ= − − −( )F p
p

p
p p

p b( , ) 2 sin cos (4( )) 1
24

( )
J ( )

8 48

( )
J ( ) (A.5 )F2

4
2 0 3 1

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ϱ β π θ θ ϱ= + +( )( ) ( )F p p c( , ) 2 20 cos 2 35 cos 4 9 J ( ). (A.5 )F F3 0

Themodified Bessel functions of the second kind can be defined as ∫ ν=ν
∞ −x t tK ( ) e cosh ( )dx t

0
cosh ( ) . Using a

substitution = −u tcosh ( ) 1,2 wefind

∫ ∫ϱ = =
+

∞
− −

∞
−ϱ ϱ ϱ

t
u

u ae K
4

e d
2

2
e d , (A.6 )t u

0

2

0

(cosh ( ) 1)

0 2

2

4

2

4

2

4
2

⎛
⎝⎜

⎞
⎠⎟

∫ ∫ϱ = =
+

+

∞
− −
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−ϱ ϱ ϱ( )

t t
u

u
u be K

4
e cosh ( )d

2 1

2
e d . (A.6 )t u

1

2

0

(cosh ( ) 1)

0

2

2

2

4

2

4

2

4
2

⎛
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⎠⎟
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We introduce an integral of the following form:

∫ ϱ ϱ ϱ= = + + + −ϱ
∞

+ − + − + +
+( )

Q u p p u
m

m n
m

p

u
( ) J ( )e d 2

!

!
F

2

2
, 1, , (A.7)n m

n
m

u n m m n

m n

,
0

1 4 1 ( 2) 2
1 1

2

2

2 2
⎛
⎝⎜

⎞
⎠⎟

where the analytic solution is valid for ⩾m 0 and + ⩾ −m n 1. Using the recurrence identities of the Bessel
functions Jm, = + −+ +z m z z zJ ( ) 2( 1)J ( ) J ( )m m m1 2 and = − −− −z m z z zJ ( ) 2( 1)J ( ) J ( )m m m1 2 , wefind
equivalent relations for Qn m, ,

= + −− + +Q u
m

p
Q u Q u a( )

2( 1)
( ) ( ), (A.8 )n m n m n m, 1, 1 , 2

= − −− − −Q u
m

p
Q u Q u b( )

2( 1)
( ) ( ). (A.8 )n m n m n m, 1, 1 , 2

Furthermore, we define

∫

Γ μ Γ μ Γ μ

Γ Γ μ
μ μ μ

π

Γ μ Γ μ
μ μ

=
+

=
+ + − +

+ +
+ + + +

+ −
− − +

− − +

μ

μ
μ
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∞

+ +

+
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Q u u
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p
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wherewe set μ+ =m n 2 , and the solution of the integral is valid for μ > −1. Similar to that, we find

∫
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⎤
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⎫
⎬
⎭

wherewe set again μ+ =m n 2 , and the solution of the integral is valid for μ > 0. Since the integral is linear,
the same recurrence identities as for Qn m, apply for Pn m, and Rn m, , respectively. Finally, the Fourier transformed
interaction potential can bewritten as

β π θ β

π θ β

π θ β

= + − − +

+ − + + + + −

+ + − + − + + +

− + + + + −

+ + + − −

− − −
−
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−
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( ) ( ) ( )
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V k u f P P R R R

u f P p P p P p P p P

p p P p p P R p R p R
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2,2
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3 1
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2
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3 1
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⎡⎣
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Note that wemade use of the recurrence identities above, since not all combinations of n andm fulfill the
conditions on the expressions equations (A.9) and (A.10), and termsmight diverge if considered separately.

12

New J. Phys. 17 (2015) 045005 MLahrz et al



Appendix B. Remarks on 3Dquadrupolar BECs

Weassume an unconfined 3D condensate with quadrupole–quadrupole interactions, as is defined in
equation (1). In addition, we again introduce contact interactions with the interaction strength g3D. In this
sectionwewill show that no stable rotons can occur in such a system.Due to symmetry, we can fix themagnetic
field B along the z-axis and choose the polar angle to be zero, α = 0. Then, the Fourier transformof theQQI is
given by

β γ π γ γ= − +( )V k C k( , , )
4

105
3 30 cos 35 cos , (B.1)q3D

2 4 2

where γ is the azimuthal angle inmomentum space. It is proportional to k2, with a prefactor which can be either
positive or negative, depending on γ. Equivalent to equation (8), the dispersion relation can be formulated in the
following form:

ω β γ= + + = + ( )k

m

nk

m
V k g Tk Gk

2
( , , ) , (B.2)k

2
2 2 2

3D 3D
4 2

⎛
⎝⎜

⎞
⎠⎟

where π γ γ≡ + − + ( )T m nC m(2 ) 4 3 30 cos 35 cos (105 )q
2 2 2 4 and ≡G ng m3D . On the one hand, the

smallmomenta limit, ω =→ G kk 0 , demands a repulsive contact interaction, = ⩾G c 0s , to avoid phonon
instability. On the other hand, the largemomenta limit ω =→∞ T kk

2 demands the kinetic energy to be larger
than or equal to any attractiveQQI, ⩾T 0. In conclusion, the dispersion relation, ω = +Tk Gkk

2 4 2, does not
have aminimumat ≠k 0, and hence no stable rotons exists in a 3Dquadrupolar condensate.

AppendixC.Details of the real-space dynamics

In this sectionwe explain the calculations of section 5 leading to equation (21) inmore detail. The annihilation
(creation) operator in Fourier space is given by âk (âk

†). Then, the spectral density is given by

∑ ∑= = + +
′

+ ′ ′ −
′≠

+ ′ ′n a a a a a a a aˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (C.1)k

k

k k k k k

k

k k k
† †

0 0
†

0

†

Sincewe assume a BECwith the occupation number of the condensedmode =k 0much larger than the total
population of the excited states, ≫ ∑ ≠N Nk k0 0 , we can (i) replace â0 and â0

† by N ,0 and (ii) neglect the terms

which are not at least proportional to N0 . Applying the Bogoliubov transformation, following the same

arguments as above, we obtain = + +−n N u v b bˆ ( ) ( ˆ ˆ )k k k k k0
†
. The perturbation in theHamiltonian,

 ∫= U nr r rˆ d ( ) ˆ ( )1 1 , is now expressed in terms of the Fourier representations of density n rˆ ( ) and interaction,
U r( )1 , as follows

 ∫ ∑ ∑= −

′
′

− ′V nr kˆ d ( )e e . (C.2)
k

k r

k

k
k r

1 1
i · i ·

Plugging in ∫=V U Ak r r r k( ) d ( ) exp (i · )1 1 and n̂k , respectively, wefind

 ∫∑= + + σ

′
− ′ ′

− − + ′( )( ) ( )u v b b
V

A
rˆ ˆ ˆ e d e . (C.3)k

k k

k k k k
k k r

1

,

† 0 2 i ·2 2

Making use of the Fourier representation of the δ-distribution, ∫πδ = −k r k r2 ( ) d exp( i · ), and the fact that
theQQI ismirror-symmetric and thus ω ω=−k k , directly leads to equation (18).We now solve the equation of
motion,

 = + b t b t b ti d ˆ ( ) ˆ ( ), ˆ ˆ ( ), ˆ , (C.4)t k k k0 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

by inserting the ansatz given in equation (19). Using the expressions for the undisturbedHamiltonian,
equation (7), thefirst commutator on the right-hand side becomes

 ∑ ∑ε ε ε ε= + + = =ω ω ω−

′≠
′ ′ ′

−

′≠
′ ′ ′

−b t b A t b b b b b bˆ ( ), ˆ ˆ e ( ), ˆ ˆ e ˆ , ˆ ˆ e ˆ , (C.5)t
k

t t
k k k

k

k k

k

k k k k k k0
i

0

0

† i

0

† ik k k⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

wherewe applied bosonic commutator relations. Similary, by inserting the perturbation of equation (18), the
second commutator on the right-hand side gives
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∑

= + + +

= + + = +

ω
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′
′ ′ ′ − ′ ′

−

′
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( )( )
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However, if we consider the ansatz from equation (19) directly, we find another expression for the left-hand side
of the equation ofmotion, that is

ε= + ∂ω− b t b A ti d ˆ ( ) ˆ e i ( ). (C.7)t k
t

tk k k
i k

Note that the first term is equal to the right-hand side of equation (C.5). Thus, the second termmust
coincidewith the right-hand side of equation (C.6), resulting in afirst-order differential equation for A t( )k , that
is

∂ = − + ω−
 ( )A t S u v( )
i

e . (C.8)t
t

k k k k
i k

Sincewe assume only a very short quenchwithin some time interval Δt , we can linearize the integral and find

Δ= − + −ω−
 ( )( )A t S u v t( )
i

e 1 . (C.9)t
k k k k

i k

Wechose the integration constant in such away that the boundary condition = =A t( 0) 0, and thus
= =b t bˆ ( 0) ˆ

k k is fulfilled. This is the solution given in equation (20).
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