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Abstract

We investigate the occurrence of rotons in a quadrupolar Bose—Einstein condensate confined to two
dimensions. Depending on the particle density, the ratio of the contact and quadrupole—quadrupole
interactions, and the alignment of the quadrupole moments with respect to the confinement plane,
the dispersion relation features two or four point-like roton minima or one ring-shaped minimum.
We map out the entire parameter space of the roton behavior and identify the instability regions. We
propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting
from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-
the-art experiments with ultracold homonuclear molecules.

1. Introduction

Roton excitations, inherent to non-ideal superfluids with finite-range interactions, were first discussed in the
seminal works of Landau [ 1], Feynman [2, 3], and Bogoliubov [4] on the theory of liquid *He, for which indeed
alocal minimum in the dispersion was observed. The existence of such a minimum in a non-monotonic
dispersion is in itself an intriguing scenario. Additionally, it can be seen as the precursor of a non-trivial order as
the roton softens. As the magnitude of the dispersion at the minimum approaches zero, the system tends to
develop an instability, typically towards density wave order. Furthermore, it was later speculated that this
instability not necessarily results in a suppression of superfluidity, meaning that the softening of the roton mode
would give rise to a supersolid [5-7]. While the occurrence of a supersolid phase in helium has been a subject of
active debate for more than 50 years [8, 9], no conclusive experimental evidence of supersolidity has been found
yet [10,11].

As opposed to liquid helium, whose properties can be controlled primarily through global, thermodynamic
quantities, such as pressure and temperature, ultracold quantum gases allow for a versatile tunability of the
microscopic Hamiltonian. As an example, a roton instability was predicted to arise in Bose—Einstein
condensates (BECs) of dipolar particles confined to one- and two-dimensional (2D) geometries [12-16], as well
asinaBEC of nonpolar atoms in the presence of an intense laser light [17] or Rydberg dressing [18].

Recently we introduced ultracold quantum gases of quadrupolar particles as a prospective platform for
studying many-body phenomena [19-21]. Quadrupolar particles, such as ultracold homonuclear dimers, are
prone to chemical reactions occurring for dipolar molecules [22]. On the other hand, since anisotropic
quadrupole—quadrupole interactions occur in the molecular ground state, the coherence time is not disturbed
by spontaneous emission, due to scattering of laser photons [17, 18]. Finally, although the quadrupole—
quadrupole interactions are of shorter range compared to the dipole—dipole ones [ 15], particles possessing
electric quadrupole moments, such as Cs, [23] or Sr, [24, 25], are readily available in experiments at higher
densities, compared to dipolar species. Among the exciting properties of the quadrupole—quadrupole
interactions is their peculiar anisotropy, which, combined with their broad tunability, paves the way to
observing novel quantum phases in ultracold experiments [19-21].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Two quadrupoles, aligned along a magnetic field B, are separated by a vector R. The resulting quadrupole—quadrupole
interaction, equation (1), is a function of their distance |R| and the angle & between R and B. If the tilting is along the x-axis, 6 can be
expressed via O and R. (b) Quadrupole—quadrupole interaction as a function of @ in the range of 0 to z/2, where it changes from
repulsive to attractive and back. The angles at which the interaction switches its sign are labeled as ¢, and @,. For comparison, we also
show the angular dependence of the dipole—dipole interaction, which has only one zero-crossing, and the monopole—monopole
interaction, which is constant. Adapted with permission from reference [21]. Copyright 2014 by the American Physical Society.

In this contribution we investigate the occurrence of roton instabilities due to the interplay of quadrupole—
quadrupole and contact interactions and explore the possibilities to detect the fingerprints of rotons in modern
experiments with ultracold molecules. The paper is organized as follows: in section 2 we introduce the system
geometry and two-body interactions and sketch the derivation of the excitation spectrum in the framework of
Bogoliubov’s theory. A discussion of the stabilization criteria, section 3, is followed by the classification and
occurrence of the rotons in the parameter space, section 4. In section 5 we describe the dynamics of a
quadrupolar BEC following a short, local perturbation of the density, which can serve as an experimental
detection tool for the roton instability in a BEC of homonuclear molecules. Finally, we conclude in section 6.

2. Quadrupolar condensates

We investigate a 2D, zero-temperature BEC of density . The bosons are interacting via quadrupole—quadrupole
interactions (QQI) as well as contact interactions, which can be tuned independently. For this system, we derive
the Bogoliubov spectrum and identify the roton excitations, which can be stabilized in this system. The most
interesting scenario of four roton minima is achieved by a competition of QQI and contact interaction and for a
large alignment angle 6.

2.1. Quadrupole—quadrupole interaction

We consider a system of quadrupoles similar to the one described in [21]. However, here the particles are
bosonic rather than fermionic. The interaction between two particles having a quadrupole moment g separated
by the distance vector R and aligned via an external magnetic field B is

3 — 30 cos® @ + 35 cos* @
UR)=C, 2 (D

where G, = 3q2/( 6477.'80), R = |R|, and @is the angle between B and R (see figure 1(a)). The QQI can also be
writtenas U (R) = 167 G, Y} (6, 0) / ( 3R5), where Yf (6, @) is the fourth spherical harmonic. It changes its
sign twice, at the angles 8 = arccos+/ (15 + 2J30)/35 ~ 0.533and 6, = arccosy/ (15 — 2+/30)/35 ~ 1.224.
The interaction is repulsive for 8 € [0, 491) and 0 € (6’2, n/ 2] and attractive for 6 € (61, 02). In figure 1(b) we

show the angular dependence of the (QQI), in comparison to a dipole~dipole interaction, U o 1 — 3 cos® 8,
and a monopole-monopole interaction, U o 1.
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In a three-dimensional (3D) quadrupolar condensate, no roton minima occur, as discussed in appendix B.
Here, we consider a quasi-2D geometry, in which the motion of the particles in the z-direction is confined by a
harmonic potential, V. = mw?2%/2, where m is the particle mass and , the oscillator frequency. The oscillator
lengthis 4, = /7 /( / may ) . The 2D limit is achieved for Za, > u, where p is the chemical potential of the
system. In this limit, only the spatial ground state is occupied, and we factorize the single-particle operator as
' (R) = v (r)y (z) where y (z), reads as

B 1 z?
x(2) = W exp —JZZ . (2)

As discussed in [21], we integrate out the z-component, which leads to an effective 2D potential U,p, (r) given by

2
Unp(r) = (Zﬂ G fdzU<R>exp[ ,12) 3)

The full analytical expression for U,p(r) is given in appendix A. For |r| > 1., U,p(r) approaches the ~1/r°
behavior of the bare interaction. For |r| < 4, , the ~1/r> divergence is suppressed to alower power, which
makes U,p(r) sufficiently well behaved on short scales, so that no additional short range cut-off has to be
introduced (see reference [21]).

The Fourier transform of this interaction is given by

Vo (k ) = U (neir, @

where we expressed the momentum k in terms of its absolute value, k = |k|, and the angle between the vector
and the x-axis, f = arg k. The full analytic solution is sketched in appendix A.

Figure 2 shows V,p, (k, p) for different tilting angles 6 . The competition between attractive and repulsive
contributions in different regimes of momentum space leads to interesting quantum phases of quadrupolar
systems, as discussed in [19, 20].

Throughout this paper, we will work with the Fourier transform of the QQI, or the effective interaction
derived from it in the quasi-2D geometry above. The Fourier transform of equation (1) is
Vip (k) = 647 2Cq Y. (6, 0)k?/315. We note that for the van der Waals interaction, the Fourier transform is
usually replaced by an s-wave pseudopotential. For the QQI, however, the momentum dependence of the
Fourier transform coincides with the corresponding g-wave pseudopotential.

2.2. Contact interaction
In addition to the QQI, we account for a contact interaction between the particles, as described by
Viontact = %gm /[R3 dry" (R) ' (R)¥ (R)¥ (R). Here, the interaction strength is given by g, = 4x7 2a/m,
where a is the s-wave scattering length. We project this interaction onto two dimensions, by analogy to the QQI
of equation (3), which results in the term V.o = %gZD /[RZ dRy " (1) " () (r) (). The effective 2D
interaction strength g, is given by

NEY Y&

p = &p ‘/[I; dz |y (o) = T (5)

In experiment, this interaction strength can be controlled either by a Feshbach resonance [26, 27] or by changing
the confinement length scale 4, .

2.3.Bogoliubov spectrum
We derive the spectrum of the system within the Bogoliubov approximation. The Hamiltonian of the system is

f1o = zﬁz

ay ay + — 2 ak+ a (p)dgdx (6)
kqp

where 4 is the annihilation operator of mode k and the Fourier transform of the single particle operator i, 7 is
Planck’s constant, and A is the system area. The interaction V (k) = Vip (k, ) + g, contains both the QQ,
equation (4), and the contact interaction, equation (5). We perform a Bogoliubov transformation of the form

bk = updy — vka k where the Bogoliubov functions are glven by uk = (ﬁwk + 25 pav (k) )/( Zﬁa)k) and
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Figure 2. Fourier transform of the quadrupole—quadrupole interaction Vs, (k, f) for different values of the tilting angle 0 . Here, the
quadrupoles are tilted along the x-axis. (a) For ¢ = 0 the interaction is rotationally symmetric and repulsive for all momenta. For

O > 0 the rotational symmetry is broken. (b) For 6z = 0.08, this symmetry breaking is barely visible on this scale. However, even for
this angle the parameters can be tuned such that point-like rotons appear in the spectrum. (c) For 6r = 0.9 the interaction is attractive
for small momenta. The anisotropy is clearly visible. (d) For 6 = 1.55 the low-momentum limit is repulsive again. As it is clearly
visible on the right-hand side, there are four distinct directions in momentum space for which the interaction is attractive. We make
use of this feature to create a novel condensate state with four distinct roton minima.

Ty = fiwg + Y feoicby by 7)
K0

where the dispersion relation of the quasi-particles is

2\? 2

Due to the anisotropy of the QQ], the dispersion relation depends not only on the absolute momentum, k = |k|,
butalso on its direction, f = arg k.
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3. Stability of the condensate

Our main goal is to identify the parameter regime in which the dispersion relation (8) is non-monotonic and
displays one or several roton minima. Furthermore, the dispersion at the roton minimum can become
imaginary, indicating a roton instability, which is often a precursor of a new, non-trivial order of the system. For
example, as shown in reference [28], a roton instability of 2D dipolar Bose gases precedes the formation of a
striped phase. Below, we identify the roton instabilities for a quadrupolar condensate. However, two other types
of instabilities are present in the system. The first one occurs at large momenta and is due to the strongly
attractive behavior of the QQI at the short range, and the second one belongs to small momenta and is
accompanied by the collapse of the condensate.

3.1. Stability criterium atlarge momenta
For large momenta, k — oo, the Fourier transform of the QQI reads
Vip (k = o0, f) = REIAS cos (4p) sin* (6p) A 2K )
12 1}
Note that it scales as k% and therefore does not become negligible compared to the kinetic energy, as opposed to
the contact interaction g, . In this case, the quantum depletion is proportional to the volume of the momentum
space. For a consistent Bogoliubov approach, the magnitude of the quantum depletion has to be finite and small.
In order to satisfy this, we have to introduce a short-wavelength cut-off of the QQI, which regularizes this
quantity at large momenta. This is allowed, since the mean-particle distance, n~'/2, is large compared to the
atomic scale. Further, we can assume the cut-off to be much larger than the momentum corresponding to the
roton minima. Thus, it will push the upper limit density, defined below, to larger values but does not affect the
roton character.
The term in equation (9) is non-zero for any 0 # 0. For cos (4f8) = —1, this term achieves its largest,
negative value and competes with the kinetic part of equation (8). As a result, the system becomes unstable for
k — oo. This can be expressed as an upper limit for the density,

n(0) < nesin™ (6f), (10)
where the critical density is defined as

T \/ECqm'

We note that, since n. « 4,, strong confinement decreases the critical density.

As we demonstrate below, 1, also defines the scale for the parameter regime in which rotons exist. In
order to give a quantitative example, we consider Cs,, with g = 27.9 a.u. [29] and m = 266 a.u. We
assume a trapping frequency of @, = 10 MHz, corresponding to 4, = 4.6 nm. With these values, the
critical density is 1, = 522 u m 2. For a molecule of the same mass with a larger quadrupole moment of,
e.g., q=50a.u. or g=100a.u, we find n. = 162 y m > and n, = 41 y m?, respectively. This indicates
that the scenario considered in this contribution is relevant for current experiments.

3.2. Stability criterium for small momenta
In addition to the short-range instability, the system can also undergo a collapse, which is characterized by an
instability at small momenta. In this limit, the analytic expression of the Fourier-transformed QQI reads

C
VzD(k—>0)=@

B 7}(3 — 30 cos® (6r) + 35 cos* (Gp)). (12)

We note that (12) is independent of # and k. The dispersion relation for small k is given by ay_,¢ = ¢ k with the
sound velocity

n
csz\/—(VZD(k—>0)+g2D). (13)
m
Therefore, the system is stable if Vo, (k — 0) + g, > 0. The contact interaction can prevent collapse if it fulfills
the requirement

C
S = _%72(3 — 30 cos® (6r) + 35 cos* (Hp)). (14)

Depending on &, the lower bound might be positive, which is the case for 9 € (6, 6,), or negative.
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Figure 3. The dispersion relation for the four cases, in which the rotons are present. (a) Example of a ring-shaped roton for the special
case of @ = 0, at which the system has rotational symmetry. The densityis n = 17.8 n. and the relative contact interactionis = 0.2.
(b) Example of two rotons on k-axis: 6z = 1.55, n = 0.57 #. and 5 = 0.825. (c) Example of two rotons on k-axis: 6z = 0.08,

n = 17.8 n. and n = 0.2. (d) Example of four point-like rotons: 6 = 1.55, n = 0.8 1. and 5 = 0.725.

We introduce the relative interaction strength,

&p

=-—) 15
Vap (k — 0) ()

=
Il

which depends on  through Vs (k — 0). = 0 refers to zero contact potential. # = 1 correspondstoa
vanishing speed of sound, ¢ = 0, which indicates the onset of collapse. We note that in this representation for
any 7, the contact interaction is set to have an opposite sign with respect to Vop (k — 0). If V;p (k — 0)is
repulsive (i.e., 6 < 6,01 6 > 65), ¢Z > 0isensured bysetting 7 < 1, which is a smaller and attractive contact
interaction. However, if V;p (k — 0) is attractive (for 6, < 6r < 6,), alarger repulsive contact interaction, and
thus n > lisrequired, in order to avoid the collapse of the condensate.

4,Rotons

Now we identify the rotons that exist in the system, and their parameter regime, by determining the number and
properties of the dispersion minima. We find four different types of stable rotons (see figure 3).

For the special case 6z = 0, for which the system has a rotational symmetry, a ring-shaped roton minimum
occurs, as shown in figure 3(a). Away from this rotationally symmetric case, the dispersion relation can possess
either two or four point-like minima. The two point-like minima can either be on the k,-axis, as shown in
figure 3(b), or on the k,-axis, as shown in figure 3(c). As reported recently [30], similar scenarios occurina
dipolar system. An intriguing case, which is specific to quadrupolar interactions, is the occurrence of four point-
like roton minima, as shown in figure 3(d).

In figures 4 and 5 we show the parameter regime in which these types of rotons can occur.

The case of pure QQI and no contact interaction, = 0, is shown in figure 4(a). For large densities, the
system displays a short-range instability, according to equation (10). For 6; < 0 < 6,, the total interaction is
attractive for small momenta, leading to the phonon instability in equation (14). On the other hand, at small
tilting angles, 6r < 6, the system shows three regimes: (i) the dispersion is monotonic and has no roton minima
for small densities. (ii) Two minima appear on the k-axis as the density is increased. (iii) These rotons become
unstable at even larger densities. For large tilting angles, 8 > 6,, (i) the system is always monotonic, and no
rotons are present.
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Figure 4. The roton properties as a function of the tilting angle @z and density n. Panels (a)—(e) correspond to five values of the relative
contact interaction ;7. Note that for fixed 77 the contact interaction g, is not a constant but is chosen such that the ratio of equation (15)
iskept fixed. For 6z < 6, and 6 > 0, the contact interaction is attractive; for 6; < 0r < 0, itis repulsive. Different regimes are
labeled with (i)—(v) (refer to the text). A detailed version of panels (c) and (e) is given in figure 5.

We now modify this scenario by turning on a contact interaction. The two casesof 7 = 0.2 and 5 = 0.725
describe a weakly attractive contact interaction for 6r < 8, and 6z > 6,. For r < 0, the regimes (i) and (ii)
move to smaller densities. Furthermore, close to the region of short-range instability, a new regime (iv) of a
roton instability, in which the dispersion is imaginary for four regions of momentum space, occurs.

For sufficiently strong contact interaction, > 0.5, anew regime occurs for 6 > 65, inadditionto (i'). As
the density is increased, the system develops as a new regime: (v) four point-like roton minima for large tilting
angles (see first panel of figure 5(a)). As the density is increased further, these turn into a roton instability (iv’).
The axes of the quadrupoles are almost entirely tilted into the plane of the system. While dipolar particles would
only be attractive along the dipole axis, quadrupoles have attractive interactions along two directions, both of
which are at a non-zero angle to the axis of the quadrupole. If the repulsive parts of the QQI are sufficiently
suppressed, this leads to the development of four roton minima rather than two. As we show in the second panel
of figure 5(a), the regime of stable rotons (v) moves to smaller densities when the contact interaction is increased
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Figure 5. Detailed view for a few parts of figure 4. (a) 8, < 6 < z/2 for n = 0.725 and 0.825, which is indicated in figure 4(c). This
parameter range contains a regime in which the system has four stable, point-like rotons. (b) ) < 6z < 0, for n = 1.05, which is
indicated in figure 4(e). (c) ¢ = 0, as a function of density n and contact interaction strength 7. Here, the dispersion features a ring-
shaped roton minimum.

further. However, as the density is lowered, the two pairs of rotons merge into (ii’) two rotons on the k,-axis.
Therefore the minimal density to create stable roton minima in this regime is around 0.6 #,.

We now increase 7 further. The case of = 1isa marginal case (see figure 4(d)), for which the entire regime
of F is stable, and the low-momentum behavior of the dispersion is quadratic instead of linear. In this case, the
contact interaction cancels the low-momentum part of the QQI identically. For values of  larger than 1, such as
n = 1.05 shown in figure 4 (e), the regime of the phonon instability is reversed, compared to < 1. The
attractive contact interaction for §r < 6yand 8¢ > 6, is now too large and overcompensates the QQI. However,
for 6, < Oz < 6, the contact interaction is now repulsive enough to compensate the attractive QQI and prevent
collapse. This regime is depicted on a larger scale in figure 5(b). We find a large regime with a monotonic
dispersion and a regime with a roton instability of two rotons. Between these two regimes is a small region of
stable rotons.

Finally, we show the case of rotational symmetry with 6z = 0 in figure 5(c). As mentioned above, for > 1
the system is unstable and collapses. For # < 1, three regimes are visible. For smaller densities, the dispersion is
monotonic. As the density is increased, the system develops a ring-shaped roton minimum. This minimum
becomes unstable, as the density is increased further. The density at the transitions between these regimes
depends strongly on the value of 7. Stable rotons for densities near n. are achieved for 5 near 1.
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5. Proposed measurement in real space

A well-established technique based on two-photon Bragg scattering allows us to measure the dynamic structure
factor and thereby study the dispersion relation and the roton minima [31, 32]. In this section we discuss an
alternative scheme that demonstrates the existence of roton minima in the dispersion and highlights the
properties of rotons. We consider an experimental setup similar to the one used in reference [33], measuring the
speed of sound in a stirred BEC. During a short time At, the system is perturbed with an off-resonant laser beam,
which we model as an external potential

Vo r?
Uy(r) = exp| - — (16)
i) 270 p( 202]

with a strength Vy and a spatial width . If the system has a linear dispersion at small momenta and is probed with
awidth o that is large enough to only probe the low-momentum regime of the dispersion, this perturbation
results in an outgoing circular density wave traveling at the speed of sound.

However, for a non-trivial dispersion possessing roton minima, this behavior is modified in a qualitative
manner. In particular, the dispersion will necessarily contain regions in which the group velocity is negative.
This will result in density waves that propagate towards the location of the perturbation, rather than away from
it. Furthermore, the directions of the flow pattern indicate the location and number of roton minima. The
perturbation term has the form

ﬂf=/ﬁauﬂﬁux (17)

where 71 (r) is the particle density. We linearize the density 77, in momentum space within the Bogoliubov

. . . . N N AT . .
approximation, which gives fix = /Ny (ux + vi) (b_x + by ), where Ny is the number of condensed particles.
With this expression, equation (17) is linearized and given by

7:[1=ZSk(uk+Vk)(l;_k+l;kT). (18)
k

Here, Sy is the Fourier transform of the Gaussian potential, S = %e‘kz"z/ 2, With this term being turned

on briefly at time ¢ = 0, the Bogoliubov operator l;k (t) evolves in time as
bi(t) = bie ! + A (1), (19)

where Ay () is zero for t < 0,and
— i —iwxt _
A (t) = —ﬁSk<uk+vk)<e k I)At (20)

for t > 0. We now use this solution for the Bogoliubov operator in the linearized expression for the density,
which can be written as 71y, = 7o, (£) + 71,k (t), where 7ig i (¢) is the unperturbed density and 7, i (¢) is the
density perturbation that we are interested in. It is given by

21
miA Wk 21)

Ak (f) = =

Using this solution, we construct the density perturbation in real space via 7i; (r) = Y, 7 j e K™,

In figure 6 we show two pairs of examples for this time evolution of the density. The time sequence in (a) is
for the two-roton example that was given in figure 3(c), where 6 = 0.08, 7 = 0.2,and n = 17.8 n,. Panel (b)
corresponds to the same values of 6z and 7, but a reduced density, n = 13.3 n.. We choose the spatial size of the
Gaussian perturbation to be o = 2 4, . In the time sequence (a), the density peak at the center initially splits up
and moves outward along the x-axis. Later, two peaks appear on the y-axis at a similar distance from the origin,
however moving inward. This indicates the occurrence of roton minima on the k,-axis for these parameters. For
comparison, we show the time sequence (b), where no rotons are present. Here, a density wave propagates
outward in the shape of an elliptic ring, indicating that the dispersion is monotonic.

As the second pair of examples, we show the case of four local rotons, which was given in figure 3(d), for
0r = 1.55and n = 0.725. The densityin (c)is n = 0.8 n.,and in (d) itis n = 0.6 n, . The spatial size of the
perturbation is 6 = 0.6 4,. In the time evolution shown in figure 6(c) we now see two incoming density peaks
that move towards the x-axis, merge, and then propagate further towards the origin. The peaks before and after
the merging move with different speeds along the axes. This reflects the curvature of the dispersion relation near
the roton minima. A large (small) curvature corresponds to a large (small) effective mass, which implies that the
quasi particles move slower (faster). In other words, the density wave will preferably propagate in the direction
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Figure 6. Time evolution of the density in a quadrupolar BEC following a short perturbation at t = 0 at the origin. (a) Example as
shown figure 3(c) with two roton minima on the k,-axis: 6z = 0.08, = 0.2, n = 17.8 n.. Additional density waves travel along the y-
axis towards the origin. (b) Similar configuration as in (a) but with a reduced density, n = 13.3 1., where no roton minima are
present. All density waves are moving outward from the origin. (c) Example as shown figure 3(d) with four roton minima: 6y = 1.55,
n = 0.725, n = 0.8 n.. Density waves form an interference pattern propagating toward the origin. (d) Similar configuration as in (c)
but with a reduced density, n = 0.6 7., where no roton minima are present. The time evolution of the density consists of outgoing
waves only. In the supplementary material we provide an animated version of the time evolution for these four cases, in which these
features are immediately apparent.

of the smallest gradient in the dispersion relation, which is not towards the origin but pointing towards the k-
axis at an angle. Thus, the density waves created at the roton minima first merge on the x-axis, interfere with the
outgoing density wave, and finally merge at the origin. For the lower density, n = 0.6 #., no rotons are present,
and the density waves always propagate outwards (see figure 6(d)).

6. Conclusion

We have demonstrated that a quadrupolar 2D condensate can support stable rotonic excitations as well as roton
instabilities, which suggest that the system might develop a non-trivial order. Depending on the alignment angle
of the quadrupoles with respect to the system plane, the density, and the magnitude of an additional contact
interaction, we identify three types of roton minima. If the quadrupoles are aligned perpendicularly to the plane,
the roton minimum is ring-shaped, which reflects the rotational symmetry of this state. If the quadrupoles are
aligned ata non-perpendicular angle, the dispersion features either two point-like rotons, or, most interestingly,
four point-like rotons which occur for the alignment almost lying within the system plane. Each of these roton
types can develop into a roton instability, meaning that the dispersion becomes imaginary at the minimum.

We study the response of a quadrupolar condensate to a sudden, local perturbation of the density. We
demonstrate that there is a qualitative difference in the response of a condensate with a monotonic dispersion
and a condensate with a roton minimum. For the monotonic case, the system displays outgoing density waves,
whereas the roton minima imply that there are parts of momentum space with negative group velocity. This
results in density waves that travel towards the local perturbation rather than away form it. Furthermore, the
patterns of these in-flowing density waves indicate which type of roton scenario is present in the system. These
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results pave the way to observing exotic roton excitations in the condensates of ultracold homonuclear
molecules.
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Appendix A. Fourier transform of U, (r)
The quadrupole—quadrupole interaction in a quasi-2D geometry under a tilting 8 along the x-axis is given by

Uyp (1, a) = —16u0<g4 + 4QZ)K0[%2)eg42f1(0F, a) + 8u0<g4 —20° + 6) KO(%Z)lefz(eF, a)

+ o (0" + 60% + 6)Ko(%2]e(ff3 (6, @) + 16u0(0* + 207 — z)Kl(%z]e"fﬁ (65, a)

—8uo (0" — 407 + 16 — 48@‘2)K1(%2)egjf2(91:, a) = uo(e* + 402)K1(%2]e‘f]§(9F, a) (A1)

wherer = |r| = A, 0, a = arg (1), uy = Cq/( 384/2x /125) is a constant energy scale, and K, (x) are the modified
Bessel functions of the second kind. Furthermore, we expressed the dependencies on 6r and  through the
following functions:

fi (HF, a) = sin® (HF ) (7 cos (291:) + 5) cos (2a) (A.2a)
f (HF, a) = sin? (HF) cos (4a) (A.2b)
5 (Qp, a) = 20 cos (ZHF) + 35 cos (49p) + 9. (A.20)

The Fourier-transformed interaction is formally given by
S 2z .
Vio(k p) = [ rdr [ daUsn (o2, a)emivecostep) (A3)
0 0

where we introduced the dimensionless quantity p = A, k. The angular dependence can be evaluated by

integrating the functions f (Gp, a) over a,

E (PQ, p— (0F) = AZ” daﬁ (ep, a) e—ipe cos (a=p) (A.4)
We find
F (po, B) = —2x sin? (Hp ) (7 cos (ZHF) + 5) cos (2f) . (po) (A.5a)
Fx(pe, ) = 2a sint (6 ) cos (4<ﬂ>>l(1 - ;;) )Io(pa) - [% - (;5)3 )h (PQ)] (A5b)
F5(po, ) = 2x (20 cos (201;) + 35 cos (40F) + 9) Jo(po). (A.5¢)

The modified Bessel functions of the second kind can be defined as K, (x) = /0 ® e=x cosh (1) coh (vt)dt. Usinga

substitution #?> = cosh (t) — 1, we find

ﬁ QZ /-oo _é( b (1)— (e 2 _iz
erKo| == e~ (cosh (¢) l)dtzf ————-e +"du, (A.6a)
0(4] 0 O Nur+42

2

2(w2+1)

2 e /°° @ (oosh (11— % &
eiKy| —|= e~ a(osh (=D cosh (¢ dt=/ ———"e " du. A.6b
1( . ] ; (1) ; =, (A.6D)
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We introduce an integral of the following form:

()!

m!

2
m+ 1, — p—z] (A7)
u

Qum (1) = /°° " (PQ)e_QZ"ZMdQ = QnHlpmy~(m+n+2)
0

where the analytic solution is valid for m > 0and m + n > — 1. Using the recurrence identities of the Bessel
functions J,,, Ju(2) = 2(m + 1)],u41(2)/2 = Jns2(2)and J,,,(z2) = 2(m = 1)],—1(2)/z = Jpu—2(2), we find
equivalent relations for Q,, ,»

2(m + 1)

Qn,m (u) = Qn—l,m+1 (u) — Qn,m+2 (u), (A.8a)
Qn,m (M) = MQ”—I,WI—I (Ll) - Qn,m—Z (M) (A8b)
Furthermore, we define
————Qum (w)du

s

Iu+ DI Cu+ 2)r(—”T+l)

p" 3 p
T utmil 3 2Fz(ﬂ+lu+lm+1;4 5?)
I'(m+ I)F(u + 5)
27)3203# 111 1
Sy %) oFs E,E;E—M,m—pwg% (A9)
Pl — — F(m —pu+ —)
p (2 M) pE 3

where we set m + n = 2u, and the solution of the integral is valid for 4 > —1. Similar to that, we find

u+1

__ P p—1 1 p
- {r<2u+ 1>r(—T)r<m[ ze[y p Lt L 7]

Qn,m (u)du

3 2
_Zuze(,u+l u+1;m+ 1, y+5 %”
Qmd22 (1 1 1 1 p?
_lﬂ F - - - — b - _;
+ (=1) p2”+1 22 2505 M, m ﬂ+2 5

pr (1 3 3 3 p?
— B s s m— = A.10
222(222” /422]]} ( )

where we setagain m + n = 2y, and the solution of the integral is valid for 4 > 0. Since the integral is linear,
the same recurrence identities as for Q, ,,, apply for B, ,, and R, ,,, respectively. Finally, the Fourier transformed
interaction potential can be written as

Vap (k, ) = 32muof, (0, B)[ Puz + 4Bp — Rap = 2Ro + 2R, |
+ 167uof, (6, ﬂ)[a,o — (24p + 2) By + (48p™ + 6) Ryp + 144p™ Py, — 8p7'By,
+ (48p~2 + 16p7" )Ry — (96p™ + 48p™ ) Py — Rug + (24p72 + 4) Ry + 8p~'Rs
—(48p™ + 32p™")Riy + (96p™ + 16) Ro + 48R4 — 96p—1R_1,3]

+ 2mtiof, (0p, B)[ Pro + 6Po + 6Ryo — Rag — 4Rag | (A.11)

Note that we made use of the recurrence identities above, since not all combinations of n and m fulfill the
conditions on the expressions equations (A.9) and (A.10), and terms might diverge if considered separately.
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Appendix B. Remarks on 3D quadrupolar BECs

We assume an unconfined 3D condensate with quadrupole—quadrupole interactions, as is defined in

equation (1). In addition, we again introduce contact interactions with the interaction strength g,;,. In this
section we will show that no stable rotons can occur in such a system. Due to symmetry, we can fix the magnetic
field B along the z-axis and choose the polar angle to be zero, @ = 0. Then, the Fourier transform of the QQI is
given by

4
Vip(k, B, 7) = %Cq (3 — 30 cos® y + 35 cos? y) k2, (B.1)

where y is the azimuthal angle in momentum space. It is proportional to k*, with a prefactor which can be either
positive or negative, depending on y. Equivalent to equation (8), the dispersion relation can be formulated in the
following form:

2\? 2
wp = [@] + ﬂ(V3D(k> py) + g3D) = Tk* + Gk, (B.2)
2m m

where T = /‘12/(2m)2 + 47nG, (3 — 30 cos® y + 35 cos? y)/(lOSm) and G = ng,;,/m. On the one hand, the

small momenta limit, w;_,o = /G k, demands a repulsive contact interaction, G = ¢ > 0, to avoid phonon
instability. On the other hand, the large momenta limit @y_, o, = ~/Tk?* demands the kinetic energy to be larger
than or equal to any attractive QQI, T > 0. In conclusion, the dispersion relation, a)lf = Tk* + Gk?, does not
have aminimum at k # 0, and hence no stable rotons exists in a 3D quadrupolar condensate.

Appendix C. Details of the real-space dynamics

In this section we explain the calculations of section 5 leading to equation (21) in more detail. The annihilation
(creation) operator in Fourier space is given by dy. (dy)). Then, the spectral density is given by

iy = Zﬁﬁﬂaﬁk' = a)dg + aday + Zﬁlz+k’ﬁk“ (C.1)
% K'#0

Since we assume a BEC with the occupation number of the condensed mode k = 0 much larger than the total

population of the excited states, Ny > Zk;ﬁo N, we can (i) replace dq and ézJ by /Np, and (ii) neglect the terms

which are not atleast proportional to /Ny . Applying the Bogoliubov transformation, following the same

. A " AT .. . .
arguments as above, we obtain 71y = /Np (ux + vi) (b_x + by). The perturbation in the Hamiltonian,

= / drUj (r)7i (r), is now expressed in terms of the Fourier representations of density 7 (r) and interaction,
U; (1), as follows

T, = /erV{(k) e_ik'ankfe_ik,'r. (C.2)
k K’

Pluggingin Vi (k) = / drUj (r) exp (ir - k)/A and 7y, respectively, we find
= Z (uk + vk) (l;_kf + ka) Ee_"z"z/2 /dre_i(k“")'r. (C.3)
kK’ A

Making use of the Fourier representation of the §-distribution, 2zé(k) = / dr exp (Hk - r), and the fact that
the QQI is mirror-symmetric and thus w_y = wy, directlyleads to equation (18). We now solve the equation of
motion,

ind, by (1) = [z}k(t), Ho] + [ék(t), Hl], (C.4)

by inserting the ansatz given in equation (19). Using the expressions for the undisturbed Hamiltonian,
equation (7), the first commutator on the right-hand side becomes

I:l;k(t), ﬂo] = [ bremx + A (1), &0 + ka' 51:1;1('] = e_iwktsz'[ék, Bljék’] = eToxlg by, (C.5)
k'#0 kK'#0

where we applied bosonic commutator relations. Similary, by inserting the perturbation of equation (18), the
second commutator on the right-hand side gives
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I:l;k(t), 7:[1] = I;ke_imkt + A (1), Zsk'(uk’ + Vk'> (l;_k’ + bAkT/)
Y

— ekt sz,(uk, + Vk,)[ék, l;—k’ + l;]j] = e_i'”ktSk(uk + Vk)- (C.6)
©

However, if we consider the ansatz from equation (19) directly, we find another expression for the left-hand side
of the equation of motion, that is

i7d, by (1) = g bre @t + 140, Ay (t). (C.7)

Note that the first term is equal to the right-hand side of equation (C.5). Thus, the second term must
coincide with the right-hand side of equation (C.6), resulting in a first-order differential equation for Ay (¢), that
is

I l —iwit
Ay () = }?Sk(uk + vy ) e, (C.8)
Since we assume only a very short quench within some time interval A¢, we can linearize the integral and find
— i —iwxt _
Ap(t) = ﬁSk(uk + Vk)(e k 1)At. (C.9)

We chose the integration constant in such a way that the boundary condition A (¢ = 0) = 0, and thus
by (t = 0) = by is fulfilled. This is the solution given in equation (20).
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