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Combining antibiotics is a promising strategy for increasing

treatment efficacy and for controlling resistance evolution.

When drugs are combined, their effects on cells may be

amplified or weakened, that is the drugs may show synergistic

or antagonistic interactions. Recent work revealed the

underlying mechanisms of such drug interactions by

elucidating the drugs’ joint effects on cell physiology.

Moreover, new treatment strategies that use drug

combinations to exploit evolutionary tradeoffs were shown to

affect the rate of resistance evolution in predictable ways. High

throughput studies have further identified drug candidates

based on their interactions with established antibiotics and

general principles that enable the prediction of drug

interactions were suggested. Overall, the conceptual and

technical foundation for the rational design of potent drug

combinations is rapidly developing.
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Introduction
Drug combinations are increasingly used in the treatment

of many conditions and diseases including tuberculosis

and cancer [1,2]. The interaction between two drugs is

synergistic if the joint effect of the drugs is stronger than

an additive expectation and is antagonistic if it is weaker

[3,4] (Figure 1). Suppression is an extreme kind of antag-

onism in which one drug alleviates the effect of the other

(Figure 1). Synergistic antibiotic pairs such as the well-

known combination of trimethoprim with sulfonamides

have been applied for decades as they can reduce side-

effects and increase the potency of drugs that are inef-

fective alone [5]. Despite notable exceptions [6], the

discovery rate of new antibiotics is in decline while

antibiotic resistance in pathogens is rapidly increasing

[7–9]. Drug combinations offer potential strategies for
www.sciencedirect.com 
controlling the evolution of drug resistance [10–12,13�,
14,15��,16��,17,18]. They are further used in basic re-

search as a means of perturbing multiple cell functions to

reveal relationships in cell physiology [19,20], analogous

to genetic epistasis measurements [21].

Despite their growing biomedical relevance, fundamental

questions about drug interactions remain unanswered. In

particular, little is known about the underlying mecha-

nisms of most drug interactions. A strategy for designing

drug combinations that can slow resistance evolution also

remains elusive. Still, our understanding of how antibiotic

combinations affect microbes has advanced considerably

in recent years. Specifically, networks of pairwise inter-

actions for large numbers of drugs were quantified and in

a few cases, the underlying mechanisms of drug interac-

tions were characterized. Furthermore, new drug discov-

ery strategies identified candidates for drugs that

synergize with established antibiotics. Several studies

provided insights into the effects of drug combinations

on resistance evolution. Finally, general principles that

hold across drugs and target organisms promise the pos-

sibility to predict drug combination effects. This article

summarizes new developments in the investigation of

antimicrobial drug combinations and focuses on basic

research from the last three years; additional aspects

and earlier work in the field have been reviewed else-

where [22,23�,24–27].

Drug interaction networks and the underlying
mechanisms of drug interactions
Systematic measurements of drug interaction networks

revealed that drug interactions occur frequently and are

partly predictable. First, the entire network of pairwise

interactions between 20 antibiotics representing the

main modes of action was measured in Escherichia coli
[28]. This drug interaction network is highly structured:

the mode of action of the drugs that are combined largely

determines the interaction that occurs between them

(Figure 2). In principle, this property enables the iden-

tification of a new drug’s mode of action by simply

measuring its interactions with other drugs [28]. Analysis

of the interaction network of antifungal drugs in Saccha-
romyces cerevisiae revealed that certain drugs tend to form

network hubs, that is they have synergistic or antagonis-

tic interactions with many other drugs [29–31]. Multi-

plexed screening of �500 000 drug pairs against HIV

identified new synergistic pairs [32]. While such high-

throughput techniques are powerful, the systematic

investigation of all possible combinations of large numbers
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Figure 1
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Drug interactions are defined by the shape of lines of equal effect in two-drug concentration space. Schematics showing growth rate (grayscale)

and minimal inhibitory concentration (MIC) line (black, line of zero growth) in the two-dimensional concentration space of drugs A and B. The

additive reference is given by linear interpolation of the MICs of the individual drugs [3]. For synergistic and antagonistic drug interactions the MIC

line lies below or above this additive expectation, respectively. Suppression is a hyper-antagonistic case in which drug A alleviates the effect of

drug B. Insets: growth rates in the absence of drugs (‘0’), and at fixed concentrations of drugs A and B individually and combined (‘A+B’). The

dashed horizontal line in insets indicates the additive expectation [4].
of compounds quickly becomes infeasible due to a

combinatorial explosion. This limitation becomes even

more severe if the drugs are administered in different

temporal sequences which can considerably improve

clearance compared to simultaneous administration

[33]. In the long run, large-scale screens for potent drug

combinations must be complemented by approaches

that characterize the effects of drug combinations on

cells in detail.
Figure 2
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One important approach is to characterize the underlying

mechanisms of drug interactions which are still largely

unknown. The constituent drugs’ modes of action and

pharmacodynamics alone cannot explain drug interactions

in an obvious way [34]. Drug interactions can be caused by

relatively simple uptake effects, for example synergism

results if one drug increases the permeability of the cell

envelope to another drug [35]. Indeed, such an uptake

effect likely causes the synergism between aminoglycoside
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are key antibiotic classes labeled by their main target or mode of

 that are typically observed in E. coli between the different antibiotic

own for additive interactions. Data compiled from [10,28,42] and

ore comprehensive network, see [28].
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Antimicrobial interactions Bollenbach 3
and beta-lactam antibiotics [36]. Drug interactions can also

be caused by direct physical interactions between the

drugs at their target; this mechanism is at work for the

antibiotics quinupristin and dalfopristin which both bind to

the ribosome at different sites and reciprocally stabilize

their binding [37]. For bactericidal antibiotics (which kill

bacteria), the definition of drug interactions shown in

Figure 1 is readily generalized to include negative growth

rates (i.e. killing rates). Interactions between bactericidal

and bacteriostatic antibiotics (which only inhibit growth)

were long hypothesized to be predominantly antagonistic

[35], as killing by bactericidal antibiotics often requires cell

growth which is prevented by bacteriostatic drugs. This

view was recently substantiated in research that found that

antagonistic interactions are significantly enriched for bac-

teriostatic–bactericidal pairs among all pairwise combina-

tions of 21 drugs [38].

Some drug interactions have more complex causes when

the drugs perturb cell physiology and cause cellular

responses which then affect the activity of the other

drugs. Specifically, one study compared the growth of

genome-wide E. coli deletion mutants [39] in the pres-

ence of trimethoprim and sulfonamides which target

enzymes that catalyze sequential steps in the folic acid

biosynthesis pathway (dihydrofolate reductase and dihy-

dropteroate synthetase, respectively). Based on these

data the authors provided evidence that the synergism

between these drugs is partly caused by secondary effects

on parallel branches of this pathway, downstream from

the main targets [40��]. Such an effect can amplify the

synergism that is expected from inhibiting the drugs’

primary targets [41]. Another study elucidated the causes

of suppressive drug interactions between DNA synthesis

inhibitors and translation inhibitors: by genetically ma-

nipulating ribosome production, it was shown that non-

optimal regulation of ribosome production under DNA

stress results in a costly, excessively high global protein

synthesis rate which is corrected by the translation inhib-

itor, causing suppression [42]. Such imbalances between

major cellular synthesis processes could be a more general

cause of other drug interactions [43]. In Staphylococcus
aureus, an explanation for the suppressive interaction

between vancomycin (which targets cell wall synthesis)

and colistin (which targets the cell membrane) was sug-

gested: colistin exposure triggers global gene expression

changes that are similar to those in vancomycin resistant

mutants, indicating that this response to colistin protects

the cell from vancomycin [44]. Overall, there is an in-

creasing number of drug interactions with partly charac-

terized mechanism, but in many cases these mechanisms

remain to be identified.

A long-term goal is the development of a systematic

approach for unraveling the underlying causes of any

given drug interaction. Identifying which genes effect

drug interactions would be a major step forward [40��,42].
www.sciencedirect.com 
Mutant libraries enabling the study of genome-wide gene

deletion and overexpression effects are available in E. coli
[39,45] and an increasing number of other microbes [46].

Recently, the E. coli gene deletion library was used

together with high-throughput techniques for measuring

bacterial growth to identify cellular functions that control

drug interactions; intriguingly, the same cellular func-

tions, in particular LPS synthesis and ATP synthesis,

were found to affect diverse drug interactions [47��].
Further, methods for quantifying the growth effects of

genome-wide double-gene deletions have been devel-

oped in yeast and E. coli [21,48,49]. The genetic inter-

actions between different cellular pathways that will be

uncovered using these methods, together with existing

chemical genomics data of single drug effects [40��,50],

will suggest new hypotheses for drug interaction mecha-

nisms which can then be tested in detail.

Combinations of antibiotics with other
compounds
Drug interactions can also occur between antibiotics and

compounds that have no antimicrobial activity alone but

can, for instance, amplify the effect of an antibiotic [24].

Well-known examples are combinations of antibiotics

with inhibitors of their resistance mechanisms which

can ‘revive’ old antibiotics. This approach was success-

fully adopted in the famous ‘augmentin’ combination, in

which a beta-lactam is combined with an inhibitor of the

resistance enzyme beta-lactamase [51]. While, in the long

run, bacteria also evolve resistance to such beta-lactamase

inhibitors [52], they are a ray of hope in the otherwise dire

situation in new antibiotic approvals. Motivated by the

prior success of this approach, considerable efforts to

develop new beta-lactamase inhibitors are underway

and several such inhibitors are currently in clinical trials

[53]. New compounds inhibiting enzymes conferring

resistance to carbapenem beta-lactams and aminoglyco-

sides were identified by screening natural products from

environmental microorganisms [54��] and using a struc-

ture-guided approach [55], respectively. In both cases, the

identified compounds were previously known for entirely

different activities on plant leaves and as eukaryotic

protein kinase inhibitors, respectively, highlighting the

potential for repurposing drugs. Together, these results

suggest that existing compound libraries offer an enor-

mous, virtually untapped reservoir of candidate drugs that

can synergize with antibiotics.

Exploring this idea, a recent screen tested over 1000 ap-

proved drugs for synergistic activity against bacteria when

combined with the antibiotic minocycline (a translation

inhibitor) and identified several new synergistic combi-

nations with verified in vivo activity [56�]. In one case that

was investigated in more detail, synergism was due to

increased uptake of minocycline. A related screen of

30 000 compounds identified some that render the ami-

nocoumarin antibiotic novobiocin, which usually only
Current Opinion in Microbiology 2015, 27:1–9
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inhibits Gram-positive bacteria, effective against Gram-

negatives [57]; again, synergism was likely due to effects

on cell envelope permeability which facilitated novobio-

cin uptake. Furthermore, a study on methicillin-resistant

S. aureus (MRSA) revealed that ticlopidine, an antiplate-

let drug, synergizes with the beta-lactam cefuroxime by

perturbing wall teichoic acid biosynthesis, a promising

drug target in MRSA [58]. Synergism was also observed in

E. coli between the antibiotic vancomycin and several

established antibiotics — an unexpected effect as Gram-

negative bacteria are usually resistant to vancomycin [59].

Similarly, silver, the antimicrobial activity of which is long

known, was found to synergize with various antibiotics in

Gram-negative bacteria by a mechanism that involves

increased membrane permeability and other effects [60].

An analogous screen in yeast identified compounds that

synergize with the antifungal fluconazole which inhibits

ergosterol biosynthesis [61]. Finally, motivated by the

idea to revive old drugs in new combinations, it was

shown that bicyclomycin, an old inhibitor of the Rho

transcription terminator with limited bactericidal activity

[62], efficiently kills bacteria when combined with one of

the bacteriostatic antibiotics tetracycline, chlorampheni-

col, or rifampicin [63]. These results highlight that the full

potential of old drugs and other compounds with little

apparent clinical value may be unlocked when deployed

in strategic combinations with other drugs.

Signaling molecules and metabolites produced by

microbes and plants provide an enormous reservoir of

compounds that may show synergism or other interactions
Figure 3
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when combined with antibiotics. For instance, E. coli can

use the signaling molecule indole to communicate the

presence of antibiotics between cells in a population

which then protect themselves by expressing drug efflux

pumps and other mechanisms [64]. In Salmonella typhi-
murium indole triggers a similar protective mechanism

against antibiotics involving the oxidative stress response

[65]. The plant metabolite salicylate (the main active

component of aspirin) causes a related phenomenon in

that it antagonizes antibiotics by triggering the multiple-

antibiotic resistance (mar) operon which leads to in-

creased expression of the AcrAB-TolC multidrug efflux

pump [66,67]. In contrast, specific metabolites, including

several sugars and pyruvate, were shown to enhance the

killing efficiency of aminoglycoside antibiotics against

persister bacteria [68�] — a subpopulation of cells that

has phenotypically switched into a dormant state and is

notoriously hard to eradicate [69–71]. Similarly, the addi-

tion of metabolites like glucose and alanine restores the

ability of the aminoglycoside kanamycin to kill otherwise

antibiotic-resistant bacteria by increasing the proton mo-

tive force (PMF) which stimulates aminoglycoside up-

take [72] (Figure 3). The interactions between antibiotics

and metabolites identified so far are certainly only the tip

of the iceberg, highlighting the need to explore such

interactions more systematically.

Drug combinations that minimize resistance
evolution
Slowing the evolution of drug resistance is a key motiva-

tion for using drug combinations. In some cases, this goal
ke
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can be achieved simply because several independent

mutations are required to become resistant against a

combination of drugs with different cellular targets.

Microbes offer unique possibilities for studying resistance

evolution in well-controlled experiments [73] because

their generation times are short, population sizes in

laboratory cultures are large, and the genomes of evolved

strains can be re-sequenced affordably. Rates of resis-

tance evolution vary considerably between antibiotics for

reasons that are largely unknown [8,74]. Understanding

the causes of differences in the propensity for evolving

resistance to different drugs remains a challenge. Several

studies investigated the effects of antibiotic combinations

with different drug interactions on spontaneous resistance

evolution and revealed a general trend that antagonistic

drug combinations lead to slower resistance evolution

than synergistic ones [11,12]. However, recent work on

S. aureus suggested that this trend may not hold generally

when bacteria evolve higher levels of resistance as the

drug interactions themselves might change due to resis-

tance mutations [75].

An alternative strategy for reducing spontaneous resis-

tance evolution is to exploit evolutionary tradeoffs in

which bacteria that evolved resistance to one drug be-

come more sensitive to another [26]. Numerous studies

explored such tradeoffs for large sets of antibiotics. Two

effects can occur: resistance to drug A may confer cross-

resistance to drug B; alternatively, the strain resistant to

drug A may have become more sensitive to drug B — a

phenomenon termed ‘collateral sensitivity’. By evolving

bacteria for resistance to a large set of drugs and quanti-

fying the sensitivity of these evolved strains to the entire

set of drugs, networks of cross-resistance and collateral

sensitivity were mapped [15��,16��,17,18,76]. These stud-

ies consistently found that strains evolved for aminoglyco-

side resistance became more sensitive to various other

antibiotics. Based on the genes that are mutated in the

aminoglycoside-resistant strains, an intriguing mecha-

nism for this effect was proposed: since aminoglycoside

uptake requires the PMF, resistance typically evolves by

diminishing the PMF; reduced PMF in turn impairs the

function of multidrug efflux pumps that use the PMF to

expel antibiotics from the cell, causing increased sensi-

tivity to these antibiotics [16��] (Figure 3). It was further

shown that differences in the extent of resistance devel-

opment observed for different antibiotic combinations

can be rationalized based on collateral sensitivity and

cross-resistance of the constituent drugs [14,77]. Specifi-

cally, resistance mutations causing collateral sensitivity

were suppressed under the corresponding drug combina-

tions which slowed resistance evolution [14].

Collateral drug sensitivity networks may further serve as a

basis for designing treatments in which multiple antibiotics

are cycled over time. While harder to implement in prac-

tice, such drug cycling strategies may have advantages,
www.sciencedirect.com 
such as lower toxicity, compared to combination treat-

ments where drugs are applied simultaneously. Systemat-

ically exploring drug cycling strategies is challenging since,

in addition to the choice of drugs and their concentrations,

the frequency of drug switching can be varied. Neverthe-

less, recent work made progress in elucidating the effects of

cycling pairs of antibiotics. For the aminoglycoside genta-

micin and the beta-lactam cefuroxime, it was validated that

strains evolved for resistance to each of these drugs indi-

vidually were outcompeted by the wild type in the pres-

ence of the other drug, respectively, as predicted from their

collateral sensitivity profile [15��]. A study investigating

three antibiotic pairs in S. aureus found that daily switching

between two drugs typically reduces the rate of resistance

evolution and selects for different mutations than the

corresponding single drug treatments [13�]. These effects

could be rationalized from tradeoffs between the mutations

conferring resistance to the individual drugs. In a related

approach using targeted mutagenesis in multiple selection

cycles, the adaptation of the resistance enzyme TEM-1

beta-lactamase to the beta-lactam antibiotics cefotaxime

and ceftazidime was studied when the drugs were applied

individually, in combination, or alternating over time;

indications for evolutionary constraints were identified

but, overall, the simultaneous or alternating application

of the drugs had limited effects on resistance evolution

[78].

A particularly promising approach for identifying drug

combinations that minimize resistance evolution is to use

competition experiments between drug-sensitive and

resistant strains early in the drug-screening and combina-

tion design process. The potential of this approach is

highlighted by the observation that suppressive drug

interactions can invert selection: a drug-sensitive E. coli
strain was shown to rapidly outcompete a doxycycline-

resistant strain under the suppressive combination of

doxycycline and ciprofloxacin — an effect that occurred

for different resistance mechanisms and should hold more

generally for suppressive drug interactions [10]. These

observations motivated the development of an innovative

screening technique, using neutral labeling of sensitive

and resistant bacteria with different fluorophores to iden-

tify natural products that can select against drug resis-

tance [79].

Perspectives
A fundamental problem in exploring the effects of drug

combinations is the enormous number of experiments

that are required to systematically explore all possible

combinations of a set of drugs: testing all pairwise com-

binations of N drugs at one fixed concentration requires

�N2 experiments; investigating large numbers of drugs

and combinations of more than two drugs rapidly

becomes prohibitive due to a combinatorial explosion.

Quantitative principles that can predict drug combination

effects from fewer measurements could remedy this
Current Opinion in Microbiology 2015, 27:1–9
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situation. Interestingly, such general principles may in-

deed exist. Specifically, an entropy maximization ap-

proach was used to derive a formula that successfully

predicts the growth response to combinations of more

than two antibiotics from the responses to the constituent

drugs and their pairwise combinations alone [80�]. Relat-

ed work provided evidence that the global transcriptional

response to antibiotic combinations follows general rules

that enable its prediction from the responses to the

individual drugs [81]; similar observations were made

in cancer cells [82]. Such insights could be applied in

advanced treatment strategies that use drug combinations

to control the gene expression state of cells. While these

principles need to be validated more broadly, they could

play a key role in the future design of potent drug cock-

tails.

A limitation of current studies of drug combinations is

that they typically focus on one or a few bacterial strains.

However, even bacteria from the same species can show

diverse responses to antibiotics; for instance, just a few

mutations conferring resistance to one antibiotic can

entirely change the cell’s response to other drugs. This

raises the question to what extent drug interactions are

conserved in mutants and across microbial species. Sev-

eral studies showed that drug interactions are often con-

served in resistant mutants, but they might also change

considerably [10,83]. The latter would be a challenge for

the optimization of multidrug treatments [14,84]. Scaling

laws that enable predicting the responses of resistant

mutants or gene deletion mutants to two drugs based

on few measurements were recently suggested [47��,83].

It remains to be seen how far drug interactions are robust

to other genetic perturbations and to what extent they are

conserved across species.

Conclusions
Drug combinations have great potential for improving

antimicrobial chemotherapy. The field made consider-

able progress in developing high throughput techniques

for identifying potent drug combinations, in understand-

ing the underlying mechanisms of drug interactions and

their potential to minimize resistance evolution, and in

identifying general principles for the prediction of drug

combination effects. Many future challenges remain. In

particular, coarse-grained whole-cell models based on

bacterial ‘growth laws’, which succeeded in quantitative-

ly describing and predicting responses to individual

antibiotics targeting the ribosome [85–89], should be

extended to other drug classes. This approach could

enable a more quantitative understanding of drug com-

bination effects on cell physiology. On the experimental

side, a key challenge is to develop techniques for the

investigation of drug combination effects on bacterial

communities rather than on individual strains in isola-

tion. Specifically, community resistance mechanisms in

which members of microbial communities protect each
Current Opinion in Microbiology 2015, 27:1–9 
other from the presence of an antibiotic [90] can possibly

be outsmarted by suitable drug combinations that remain

to be identified. Another problem is that drug interac-

tions and their consequences on resistance evolution can

depend on environmental conditions. Thus, more ex-

pensive and time-consuming in vivo studies on the most

worrisome pathogens need to be performed to validate

central insights gained from basic research on non-path-

ogenic laboratory strains.

The rapidly emerging new concepts and experimental

techniques for the investigation and optimization of drug

combinations in microbes can become a driver of progress

in other fields including cancer chemotherapy where drug

combinations are extensively used [91]. Interdisciplinary

research on drug combinations will lead to further excit-

ing advances in microbiology, evolutionary biology, sys-

tems biology, and other fields.
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