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Figure 1: Our method can efficiently compute a coarse pressure solve for high-resolution liquid simulations while taking
into account free-surface boundary conditions. Here, three images of a liquid simulation are shown. The pressure solve uses a
resolution (33 x 25 x 33) which is 16> times smaller than the resolution of the surface level-set (513 x 385 x 513). The coarse
pressure samples for a line along x are illustrated in yellow on the left.

Abstract

This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first
devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure
projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly,
regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational
complexity of the pressure solve without compromising free surface boundary conditions at the highest level of
detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large
liquid simulations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

In practical simulations of liquids at large resolutions, the
pressure projection quickly becomes the computational bot-
tleneck [LZF10]. Previous researchers have increased the
speed of this pressure solve (or removed it altogether) with
dimension-reduction techniques and clever changes of ba-
sis [TLPO6, DWLF12]. Unfortunately, these previous tech-
niques do not apply to liquids with a moving free surface.
The difficulty occurs because liquids exhibit unpredictable
changes in domain shape and topology, which leads to con-
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tinuously changing Dirichlet boundary conditions. These
distinctions tend to violate the assumptions of existing di-
mension reduction approaches, e.g. a fixed domain topol-
ogy or the presence of Neumann boundary conditions only.
Additionally, model reduced simulations are by construction
constrained by a precomputed basis.

In this paper, we present a method for simulating high
resolution liquids with a coarse grid pressure solver, while
avoiding many of the problems that hinder previous ap-
proaches. Our solution is a two step process that first down-
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samples the full problem into a space with fewer degrees of
freedom, while taking into account all boundary conditions
of the original problem. Second, when correcting the veloc-
ities with the pressure gradient from the reduced solve, we
ensure free surface boundary conditions are still enforced for
the original discretization. Our contributions are as follows:

e We devise a straightforward dimension-reduction tech-
nique that significantly reduces the cost of solving the
pressure projection. The approach is simple and flexible,
and it allows adaptive refinement of the pressure basis if
desired.

e We introduce a novel change of basis that exactly satisfies
high-resolution Dirichlet conditions at the free surface, re-
gardless of the resolution and accuracy of the pressure
solve.

When combined, these ideas dramatically reduce the com-
putational complexity of the pressure solve without compro-
mising free surface boundary conditions at the highest level
of detail. Our techniques are easy to parallelize, and they
effectively eliminate the computational bottleneck for large
liquid simulations.

2. Related Work

Eulerian solvers based on finite difference discretizations
are commonly used in the graphics community, and a good
overview can be found in the book by Bridson [Bri08].
Our work focuses on simulations that solve a linear sys-
tem for calculating the pressure. While we use a regular
Eulerian grid with level-set surface tracking [OF03], our
approach could be extended to mixed Eulerian-Lagrangian
solvers such as FLIP [ZB05] or even recently proposed SPH
solvers [CIPT14] (given a suitable method to generate a
coarse discretization based on the point samples).

Lentine et al. [LZF10] describe a pressure projection
that shares our goal of using a coarse grid. However, the
method was not designed specifically for liquid simulation,
and thus it requires an additional high-resolution pressure
solve around the surface to enforce free surface boundary
conditions. Several works in recent years have made use of
multi-grid methods [MCPNO8,MST10,CM11,JKNH13].

Multi-grid can theoretically achieve great efficiency solv-
ing Poisson problems, but in practice its convergence
strongly hinges on an accurate discretization of the problem
on the coarser grids in the hierarchy. Ferstl et al. [FWD13]
showed that regular grid multigrid schemes do not guarantee
convergence in general without significantly more compli-
cated data-structures. In contrast, our method does not share
these problems, because our dimension-reduction strategy is
guaranteed to converge and our surface-aware basis satisfies
Dirichlet boundary conditions exactly. Additionally, a vari-
ety of approaches reduce the degrees of freedom for fluid
simulations with model reduction. The approach of Treuille
et al. [TLPO6], was extended by modular bases, [WST09]

deforming domains [SSW*13], and more accurate advec-
tion [KD13]. Also, procedural bases have been proposed
[DWLF12], or were merged with basis functions from sim-
ulations [GKSB13].

The addition of high-resolution detail to low-resolution
simulations is common practice when animating smoke
[KTIGO8,NSCLO0S] as well as liquids [TWGT10,YWTY12,
KTT13]. Alternatively, vortex sheet models can simulate
small scale detail in combination with coarse pressure solves
[KSK09,BHW13].

Edwards and Bridson [EB14] use higher-order polyno-
mial bases for liquid simulation; while we use a simple and
fast tri-linear interpolation for our method, higher order in-
terpolations could also be integrated.

Nielsen and Bridson [NB11] use coarse simulations to
guide high-resolution fluid motion. While this work is
largely orthogonal to ours, such guiding approaches share
similar goals and would complement our algorithm well in a
practical setting.

3. A dimension-reduced pressure solver

We perform liquid simulation by discretizing the Euler equa-
tions

%’: +u-Vu= —%Vp+f,
where u is the liquid velocity, ¢ is time, p is pressure, p is
density, and f is body acceleration. These equations are sub-
ject to the boundary conditions p = 0 at the free surface and
u-n = v-n at solid obstacles, where n is the surface normal
of the obstacle, and v is the obstacle’s velocity. During each
simulation time step, we find the pressure field that mini-
mizes kinetic energy in the least squares sense [BBB07]

V-u=0 1)

2
ar dv 2)

u——Vp
p

argmin / P
p Jfluid 2
which results in a Poisson equation for the pressure field

A = (V)i 3)

Here # is the intermediate velocity after the advection, Ar
is the time step size, [V] is the discretized gradient oper-
ator, and [V2] = [V]7[V] is the discretized Laplacian op-
erator. We use the level set method to track the liquid free
surface [OF03], and we enforce the Dirichlet boundary con-
ditions with the ghost fluid method [GFCKO02].

To reduce the degrees of freedom in the pressure projec-
tion, we introduce the change of variables

p=Up “

where p is a pressure field sampled on a coarse grid, and
U is a sparse up-sampling matrix that interpolates p onto
the high resolution grid. We use linear interpolation in our
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Figure 2: From left to right: a naively down-sampled coarse pressure solver; our new dimension-reduced pressure solver
coupled with higher resolution levelset; a full resolution simulation. A resolution of 257 x 205 x 257 was used for velocity and
levelset in all cases, while the coarsened versions use a 17 x 13 x 17 grid for pressure (reduced by a factor of 16° ).

examples, though higher-order interpolation is also possible
at the expense of a denser matrix with poorer conditioning.

Directly applying this change of variables to Eq. (3) re-
sults in an overdetermined linear system. We instead substi-
tute Eq. (4) into Eq. (2) and solve for p, yielding the least
squares system

UT%[Vz]Uﬁ =

vt v a. (5)
The left-hand side represents a square, symmetric positive
definite matrix that can be solved with a standard precondi-
tioned conjugate gradient solver. Once we have a solution p,
we compute the gradient [V]p = [V]Up for use in Eq. (1).
The boundary conditions embedded into [V2] ensure that ve-
locities have reasonable behavior near the free surface and
solid obstacles.

The construction of the system matrix U7 % [V2U is triv-
ially parallelizable, so the only potentially serial part of this
algorithm is the linear system solve itself. We use an MIC(0)
preconditioned conjugate gradient method [BriO8]T, and the
solution time is negligible in practice. With such small di-
mensions, the conjugate gradient algorithm takes on the or-
der of 100 milliseconds even in our most complex examples.

Note that the linear system in Eq. (5) has a significantly
lower dimension than Eq. (3). This derivation is inspired by
model reduction techniques [TLP06], and shares the goal of
reducing dimensionality. However, a fundamental difference
is that we employ the reduction only for the pressure solve,
which allows us to use off-the-shelf algorithms as simulation
components for the other steps of the simulation.

Our approach is also different from a naive down-
sampling method, which would generate a low-resolution
velocity with up = U T, solve Eq. (3) on a coarse grid, and

T With MIC(0) parameters T = 0.97 and ¢ = 1.0, which we found
to give better convergence than the default values.
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then up-sample a corrected velocity with Uuz. Such an ap-
proach fares poorly, as can be seen on the left side of Fig-
ure 2. Instead, our reduced system in Eq. (5) is a denser
matrix that consists of interpolated versions of all the orig-
inal equations. It computes a solution that simultaneously
accommodates the high-resolution boundary conditions as
accurately as possible in the least squares sense.

Eq. (5) also can be regarded as a Galerkin-based coars-
ening scheme that is used for certain classes of multigrid
methods [FWD13]. In this context our approach represents
a modified 2-level scheme with a zero initial guess, and
a boundary-aware prolongation/interpolation operator, de-
scribed in the next section. We are unaware of any other
work that uses Galerkin-based coarsening as an approxima-
tion for the actual solution in this way, especially in com-
puter graphics.

4. A surface-aware pressure basis

When solving the original problem of Eq. (3), the degrees of
freedom in p near the liquid surface approximately match up
with those of the surface tracker; the detailed surface geome-
try imposes detailed Dirichlet conditions, which are satisfied
by the detailed pressure field p. When solving Eq. (5), how-
ever, p has far fewer degrees of freedom than the detailed
liquid surface. While p still satisfies all free-surface bound-
ary conditions optimally (in the least-squares sense), these
mismatched degrees of freedom can slightly violate Dirich-
let conditions near complex liquid surface geometry.

We introduce a novel surface-aware pressure basis to fix
this constraint violation. By representing the pressure in a
basis that satisfies high-resolution Dirichlet boundary con-
ditions by default, we make it impossible for the reduced
pressure field to violate free-surface boundary conditions.

In the absence of surface tension, p = 0 at the liquid sur-
face. We can force our reduced pressure to meet this con-
dition by directly leveraging our high-resolution surface ge-
ometry. Our first approach was to encode the pressure as a
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Figure 3: Waterdrop at 257 x 129 x 257 with our pressure
solver 17 x9 x 17 (a factor 0f163). The top row uses Eq. (9),
while the bottom row uses Eq. (5). Our surface-aware basis
allows the simulation to form a rounded crown and settle
down, while a surface-oblivious basis produces more grid
aligned artifacts and unphysically increases in energy.

scalar multiple of the signed distance function:
p=®Up (6)

where ¢ is a diagonal matrix representing the signed distance
function value ¢ at the location of each high-resolution pres-
sure sample. This way, the pressure can only equal zero at
the liquid surface, but it can have arbitrary values elsewhere.
Unfortunately, this approach fails to produce smooth pres-
sure functions, because the signed distance function ¢ is not
differentiable at the medial axis. We fix this problem by re-
placing & with a matrix that smoothly transitions between ¢
at the surface and an identity operation within the liquid:

p=%Up @

where the diagonal of & is given by the modified distance

function
(f):sin (gmin (1,%)) ®)

with the grid spacing Ax. Note that ¢ has the desirable
properties that it ranges between O and 1 monotonically
within the narrow-band of a liquid levelset, it is differen-
tiable within the domain, and it vanishes at the liquid sur-
face. Noting that & = &7 the Poisson problem is modified
accordingly:

UTfi:'H[Vz]tiUﬁ =uTdv) a. )
This form is used for all of our tests without surface ten-
sion, and is summarized in Figure 5. The importance of our
surface-aware basis is highlighted by the comparison in Fig-
ure 3.

4.1. Surface tension

For liquids with nonzero surface tension, the Dirichlet con-
dition changes to p = 6H, where © is surface tension, and
H= V2¢ is mean curvature. We modify our pressure basis

Figure 4: A surface tension simulation with a base resolu-
tion of 2573, The top row shows our pressure solver with a

resolution of 173, while the bottom row shows a Sfull resolu-
tion simulation.

by adding a surface tension term:
p=®Up+ (I -d)cH (10)

which equals 6H at the free surface and transitions to our

standard dimension-reduced pressure within the liquid. Sub-

stituting this pressure into Eq. (2) gives us a new minimiza-

tion problem

2
dav

ol 2l (e 0 drom) - & w1605
argmin /ﬂuid 5 H (u o Viu (I))GH) 5 [V]®U p
an

p

which can be solved in exactly the same way as Eq. (9) by
setting it +— it — % [V](I —®)GH and solving as normal. One
way to interpret this operation is that the surface tension acts
on the fluid velocity as a body acceleration integrated over a
time step Az. Eq. (9) then finds the unique pressure p which
minimizes the kinetic energy of the original velocity com-
bined with surface tension. Additional discussion and imple-
mentation details are available as supplementary material.

These simple modifications guarantee that the pressure
satisfies Dirichlet boundary conditions at the highest resolu-
tion, even with extremely few degrees of freedom. Figure 4
shows that this basis allows a reduced pressure to exhibit
similar motion to a full resolution simulation.

4.2. Removing high-frequency divergence

Our dimension reduction approach finds the p which sat-
isfies the divergence-free constraint optimally in a least
squares sense. Unfortunately, the resulting velocity field is
not guaranteed to be divergence-free at the fine resolution,

eHEE 8 - eEED
b -

Figure 5: A graphical summary of how we construct the lin-
ear system for our dimension reduced pressure solve. Colors
indicate the matrix and vector sizes: blue denotes the dimen-
sion of the original system, yellow the reduced degrees of
freedom.
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because p does not have enough degrees of freedom to
satisfy all divergence constraints exactly. As a result, we
found that the high-resolution pressure field exhibits high-
frequency divergences.

In our experience, a post-process of only three Jacobi it-
erations of the high-resolution Poisson system Eq. (3) are
sufficient to remove these high-frequency artifacts and pro-
duce a pressure field that is qualitatively indistinguishable
from a full high-resolution solution.

5. Adaptive pressure reduction

Section 4 showed how we can enforce free surface boundary
conditions at the highest resolution using a novel surface-
aware basis. Our dimension reduction approach also handles
solid boundary conditions, but we have not yet found a pres-
sure basis that enforces solid boundaries exactly at the high
resolution, and we view this problem as future work.

In the mean time, if the exact enforcement of high-
resolution Neumann boundary conditions is still desired, we
can simply adaptively add pressure degrees of freedom to p
near boundaries. The corresponding modification of the up-
sampling matrix U is straightforward: we simply add iden-
tity matrix blocks for the high-resolution p samples. Fig-
ure 6 shows how this technique accurately computes pres-
sures near thin obstacles. The same technique can also be
used to add detail near the free surface or other interesting
flow areas, but we found this unnecessary in our examples.

This adaptive approach adds more degrees of freedom, so
the resulting problem increases in size. We found that adding
samples near boundaries added so few additional degrees of
freedom that the overhead was negligible. We did not ob-
serve any visual artifacts due to aggressive grading between
coarse and fine pressure samples, unlike most /-adaptive
simulation approaches.

If one does not adaptively add these pressure degrees of
freedom along solid obstacles, then the Neumann bound-
ary conditions will only be approximately enforced. Specifi-
cally, the zero-flux condition will not be guaranteed at every
point along a high-resolution solid boundary, leading to po-
tential changes in overall volume, as seen in Figure 9.

6. Algorithm overview

The fluid simulation method is summarized in Algorithm 1.
Within a simulation time step, the velocity is first advected as
normal. We then construct our reduced system matrix from
an up-sampling matrix U, a modified distance matrix &, and
the full resolution system matrix with boundary conditions
embedded. We then solve the reduced system and compute
the new pressure. As a post-process, we perform a few Ja-
cobi iterations on the high-resolution pressure field. Finally,
we update the velocity and advect the surface tracker. To re-
duce volume loss over time we also employ the method of
Kim et al. [KLL*07].

(© 2015 The Author(s)
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Figure 6: A 513 x 257 x 129 simulation with thin obsta-
cles. Our method without adaptivity (top), our method with
adaptivity (middle). A resolution of 33 x 17 x 9 pressure grid
is used as a coarse grid, and a band of 6 fine cells around
each cylinder is used for addtional adaptivity. The result is
visually similar to a full resolution simulation (bottom).

7. Results and Discussion

Figure 2 shows a comparison of a simple down-sampling
approach (as described in Section 3) with our method and a
full simulation. Here our pressure solve uses a resolution that
was 16 times lower than the initial resolution in each dimen-
sion, resulting in 4096 times fewer degrees of freedom. The
naive approach fails to capture any of the high-frequency dy-
namics expected from a 2573 resolution.

Figure 1 shows high-resolution (513 x 385 x 513) lig-
uid splashing through complex obstacles, with a 16° times
coarser pressure solve (33 x 25 x 33). The simulation was
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Algorithm 1: One simulation time step

input : High resolution grid G, velocity field u,
signed distance function ¢,
vector of mean curvatures H = V2¢

-

Advect u to get intermediate velocity i;

2 Construct modified distance matrix & according to
Eq. (8);

3 Apply surface tension force i < it — % [V](I - ®)oH;

4 Choose a coarse subset of (adaptive) sample locations
C;

s Construct full-resolution matrices [V] and %[Vz},
embedding boundary conditions as normal;

6 Construct up-sampling matrix U which interpolates C to
get G;

7 Construct system matrix U TdMPU in parallel;

8 Construct right hand side U7 [V i;

9 Solve the reduced system (9) for p using your method
of choice;

10 Compute high-resolution pressure p = U p;

11 Perform 3 Jacobi iterations of (3) to improve p;

12 Update velocity u = it — % Vlp;

13 Extrapolate velocity;

14 Advect liquid surface and recompute signed distance ¢;

run on a workstation with an Intel Core i7-3960X (6 core)
CPU with 3.30GHz.

The average time for assembling the dimension-reduced
matrix was 12.16 seconds, while solving the pressure system
took 110 milliseconds on average. The high-resolution solve,
on the other hand, required 4.54 minutes on average to calcu-
late the pressure. Adding the additional solving steps (diver-
gence computation etc.) for our algorithm, the full pressure
solve required 25.36 seconds on average, and thus was ca.
11 times faster than a high-resolution pressure solve. For the
whole simulation this lead to a speed-up factor of 4.3.

We also compared our method to an algebraic multi-
grid preconditioned conjugate gradient method in Figure 7.
While the method is much faster than a MIC(0) precondi-
tioned conjugate gradient method, it is still about four times
slower than our approach. Figure 7 also illustrates the per-
formance of our method at different coarsening resolutions.

Simulations with surface tension forces and obstacle in-
teractions can be seen in Figure 4, Figure 6, and Figure 1,
respectively. In each case, our method is able to generate
fine wave motions and splashes that are much finer than the
sparsely placed pressure samples.

7.1. Discussion

One of the key strengths of our method is its compatibility
with existing fluid solvers based on regular grids. Our al-
gorithm does not require any data structures that are more
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Figure 7: Projection timings for Figure 1 at full resolution
and various reduced resolutions. The timings include steps 2
to 12 from Algorithm 1 for our method, and matrix setup and
a MIC(0) conjugate gradient solve for the full resolution.

complicated than a regular grid. Simply replacing a stan-
dard pressure solve with the steps 3 to 12 of Algorithm 1
can yield significant speed-ups for large resolutions. Addi-
tionally, our method represents a simple yet powerful way
to realize adaptivity. Important regions with high-resolution
can be solved in a fully coupled fashion with regions using
very coarse pressure samples. In such cases the regular data-
structures lead to a substantially simpler implementation that
when resorting to algorithms that require trees or more com-
plex meshes.

We also found that the Jacobi smoothing is important to
merge the low-resolution pressure and high-resolution sur-
face basis into a desirable solution. Without this “’glue” com-
ponent, high-frequency errors can accumulate over time to
give undesirable dynamics. However, when Jacobi smooth-
ing is activated, we have found that three iterations are
enough to give excellent results for a wide variety of simu-
lation setups and resolutions. Interestingly, only performing
Jacobi iterations without the surface-aware pressure basis of
Section 4 has little effect, so the combination of both is cru-
cial to achieve high quality results.

The algorithm presented in section 3 of our paper can
be interpreted as a two-level Galerkin coarsening multigrid
scheme, so we would like to highlight some benefits that our
“special case” algorithm has over general multigrid meth-
ods. Multigrid techniques are typically associated with a full
hierarchy of levels that must remain topologically consistent
for convergence. The notion of a conditional convergence
is not directly applicable to our scheme, because the coarse
solve is a symmetric positive definite system, and the subse-
quent transfer of information to the full resolution grid is not
an iterative process. High resolution boundary conditions are
embedded in the coarse solve by construction, so errors due
to topological differences between coarse and fine levels do
not lead to noticeable visual artifacts in our examples.

Our surface-aware basis is novel; it further minimizes dif-
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Figure 8: Changing pressure solver accuracy from left to right: 129 x 103 x 129 (factor 0f23), 33 x 26 x 33 (factor 0f83) and
9 x 7 x9 (factor of 323 ) resolutions. A resolution of 257 x 205 x 257 was used for the level set and velocity.

ferences near the free surface, which is a crucial ingredient
for a large coarsening factor between levels. Otherwise we
would require far more Jacobi iterations or could only use
our coarse solve as a preconditioner for a more complete
full-resolution solve. Our supplemental video shows an ex-
ample of extreme coarsening between levels (up to 323),
a strategy which proves counterproductive in a traditional
multigrid scheme that relies on small differences between
consecutive levels. While there are similarities, our proposed
approach is not an obvious extension of existing multigrid
literature, and it is far simpler to implement than general
multigrid methods.

7.2. Limitations

We stress that our method is not designed to solve the Pois-
son equation exactly at the high resolution, and as such
our method can exhibit artifacts that scale with the down-
sampling factor. Figure 8 shows how these artifacts develop
for more and more extreme coarsening factors. Very large
factors tend to lead to an increasing settling speed of the liq-
uid, and fewer small scale dynamics. However, the surface-
aware pressure basis allows small scale detail to form de-
spite the sparse pressure samples. Extreme coarsening can
also show seams resulting from linear interpolation during
up-sampling. This problem can be alleviated in a variety of
ways, e.g., by less aggressively coarsening, adding fine de-
grees of freedom (as described in Section 5), or by investing
more time for a narrow-band pressure solve [LZF10].

In the absence of our surface-aware basis functions, the
hydrostatic solution in a curved bowl yields a linear pres-
sure function. Our coarse solve embeds the high-resolution
boundaries and obtains this linear solution easily. The so-
lution is then transferred to the high resolution grid with a
linear interpolation. The analytical solution is perfectly rep-
resented, and simulations do not introduce volume loss. Our
surface-aware basis actually makes the solution non-linear,
which adds subtle errors to intermediate frequencies that are
not perfectly represented by the coarse solve or removed by
Jacobi iterations. Consequently, this simulation without vol-
ume correction features some volume loss over time (Fig-
ure 9). However, the errors do not introduce any noticeable
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noise or waves into the simulation, so a simple volume cor-
rection scheme is sufficient to remove all visual artifacts.

Our coarse pressure solve optimizes the divergence-free
nature of the velocity field in the least-squares sense, and
it does not have enough degrees of freedom to satisfy a per-
fectly divergence-free velocity field. Thus, this approach can
produce weak velocity sources and sinks at the finest scales
which average out to zero divergence on the coarser scales.
Subsequent Jacobi iterations reduce this phenomena.

Although our approach can make the pressure solve more
than an order of magnitude faster (see Figure 7), the total
simulation speed also depends on other simulation compo-
nents, such as advection and extrapolation. Thus, if a solver
is primarily busy with work outside of the pressure solve,
our method will have less impact due to Amdahl’s law. The
pressure solve took 85% of one time step in Figure 1 at full
resolution, leading to the aforementioned factor of 4.3 com-
pared to using a standard pressure projection.

8. Conclusion and outlook

This paper presented an algorithm can significantly speed
up liquid simulations, and it can be readily combined with
any existing fluid solver that makes use of a pressure pro-
jection. Our reduced pressure solver is easily parallelize-
able and straightforward to implement, and it clearly outper-
forms naive coarsening approaches. Our surface-aware pres-
sure basis is the first method for producing a reduced fluid
basis that exactly accounts for Dirichlet boundary conditions
at any resolution. When combined, these ideas reduce the
computational degrees of freedom by an unprecedented fac-
tor of 163 in the examples throughout this paper, leading to
a dramatic reduction in computation time.

Although this paper focuses entirely on liquid simulation,
we believe this algorithm also has potential for high impact
in other applications with costly Poisson solves, such as the
Poisson editing of high-definition images. The method may
also be extendable to non-Cartesian domains, with potential
benefits in point cloud surface reconstruction or heat kernel
calculations on triangle meshes.
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Initial simulation step After 5 seconds

Figure 9: Without any volume correction, this hydrostatic
standing pool in a curved bowl with a coarsening factor
of 83 results in slight volume loss due to the reduced accu-
racy at boundaries. However, the errors do not create erro-
neous surface waves, so a simple volume correction scheme
[KLL*07] fixes the problem.
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