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Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic
turbulence accompanied by drag enhancement due to elastic stress produced by flow-
stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity
El, a reduction in turbulent frictional drag is caused by an intricate competition between
inertial and elastic stresses. Here we explore the effect of inertia on the stability of
viscoelastic flow in a broad range of control parameters E/ and (Re, Wi). We present
the stability diagram of observed flow regimes in Wi-Re coordinates and find that the
instabilities” onsets show an unexpectedly nonmonotonic dependence on E!. Further, three
distinct regions in the diagram are identified based on E!. Strikingly, for high-elasticity
fluids we discover a complete relaminarization of flow at Reynolds number in the range
of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive
effects may be explained by a finite polymer extensibility and a suppression of vorticity at
high Wi. Our results call for further theoretical and numerical development to uncover the
role of inertial effect on elastic turbulence in a viscoelastic flow.
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I. INTRODUCTION

Long-chain polymer molecules in Newtonian fluid alter the rheological properties of the fluid;
the relation between stress and strain becomes nonlinear. Moreover, polymers being stretched by
a velocity gradient in shear flow engender elastic stress that modifies the flow via a feedback
mechanism. It results in pure elastic instabilities [1,2] and elastic turbulence (ET) [3], observed
at Re <« 1 and Wi > 1. Here Re is the ratio of inertial to viscous stresses, Re = U Dp/n, and
Wi defines the degree of polymer stretching Wi = AU /D, where U is the flow speed, D is the
characteristic length scale, A is the longest polymer relaxation time, and p and  are the density and
dynamic viscosity of the fluid, respectively [4].

Elastic turbulence is a spatially smooth, random-in-time chaotic flow, whose statistical, mean,
and spectral properties are characterized experimentally [3,5-11], theoretically [12,13], and numer-
ically [14—17]. The hallmark of ET is a steep power-law decay of the velocity power spectrum with
an exponent || > 3 indicating that only a few modes are relevant to flow dynamics [3,5,12,13].
Further, an injection of polymers into a turbulent flow of Newtonian fluid at Re >> 1 reduces the
drag and also has a dramatic effect on the turbulent flow structures [18]. In recent investigations, a
different state of small-scale turbulence associated with maximum drag reduction asymptotes was
observed in a pipe flow at Re > 1 and Wi > 1. This state is termed elasto-inertial turbulence (EIT)
and exhibits properties similar to ET despite the fact that it is driven by both inertial and elastic
stresses and their interplay defines EIT properties [19-21]. Thus, the fundamental question arises
how the inertial effect modifies ET in viscoelastic flow towards turbulent drag reduction.

Numerous studies were performed in various flow geometries to unravel the role of inertia on
the stability of viscoelastic flow, however contradictory results were obtained. In Couette-Taylor
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FIG. 1. Schematic of the experimental setup (not to scale). A differential pressure sensor, marked as AP,
is used to measure pressure drop across the obstacles. An absolute pressure sensor, marked as P, after the
downstream cylinder, is employed to obtain pressure fluctuations.

flow between two cylinders, the instability sets in at Wi, which grows with the elasticity number
El (=Wi/Re) saturating at sufficiently high El and reduces with increasing inertia [22-24]. In
contrast, the onset of instability Rey, is almost constant at very low E! and decreases with increasing
El, in a rather limited range, in agreement with numerical simulations [25,26]. Recent experiments
in the Couette-Taylor flow with both inner and outer co- and counterrotating cylinders at low
El show a weak smooth dependence on E! [27-29]. At moderate El, either stabilization or
destabilization of the first bifurcation depending on co- or counterrotation of cylinders is found
[27]. However, the general tendency in the dependences of the bifurcations on E! reported in
Refs. [22-24] was confirmed later in Refs. [27-29]. In contrast, a nonmonotonic dependence of the
first bifurcation in a wall-bounded plane Poiseuille flow on E! in its narrow range of low values was
revealed in numerical simulations using the Oldroyd-B constitutive equation. The reduced solvent
viscosity strongly modifies this effect: The smaller the polymer contribution to the viscosity, the less
pronounced the effect [30]. In extensional viscoelastic flow [31], e.g., planar flow with an abrupt
contraction and expansion, and in flow past a cylinder [32], the role of both elasticity and inertia
was investigated in a narrow range of Re and Wi and for only three E! values. In extensional flow,
the onset of the elastic instability Wi turns out to be independent of Re in the range of 0.1-40 for
three polymer solutions that correspond to EI = 3.8, 8.4, and 89. However, in the case of flow past a
cylinder [32] Wi, decreases with increasing Re. Recent numerical studies [33] on two-dimensional
viscoelastic flow past a cylinder reveal the phase diagram in (Wi, Re) coordinates and both drag
enhancement and drag reduction (DR) were observed in the ranges Wi &~ 0.2—10 and Re ~ 0.1-10°.
Thus, despite extensive theoretical and experimental efforts, the influence of inertia on viscoelastic
flow in a broad range of (Re, Wi) and E! is still not understood and a stability diagram of different
flow regimes is lacking.

Here we perform experiments, over a broad range of (Re, Wi) and EI, in a channel flow of dilute
polymer solution hindered by two widely spaced obstacles (see Fig. 1 for the experimental setup).
Changing the solvent viscosity n, by two orders of magnitude allows us to vary the elasticity number
El = A(ns)ns/pD* ~ n*/pD? [34] by more than four orders of magnitude. Such an approach
enables us to investigate the role of inertia in viscoelastic flow in different flow regimes in a wide
range of (Re, Wi) and EI.

The main feature of viscoelastic flow at Re <« 1 between two widely spaced obstacles is an
elastic wake instability in the form of quasi-two-dimensional counterrotating elongated vortices
generated by a reversed flow [35]. The two vortices constitute two mixing layers with a nonuniform
shear velocity profile filling the interobstacle space. A further increase of Wi leads to chaotic
dynamics with properties similar to ET [11]. There are several reasons for the choice of the flow
geometry. (i) Since the blockage ratio D/w <« 1, the flow between the cylinders is unbounded, like
“an island in a sea” of otherwise laminar channel flow, contrary to all previous wall-dominated flow
geometries that were used to study ET (D and w are the cylinders’ diameter and channel width,
respectively) [3,5-9]. Therefore, we expect to observe mostly homogeneous, though anisotropic,
flow closer to that considered in theory [12,13] and numerical simulations [14—16]. By employing
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unbounded flow, we concentrate on variation in the bulk flow structures due to polymer additives,
which results in a significant frictional loss. (ii) Large Wi and Re can be reached in the same
system to scan the range from ET to DR. (iii) Several techniques can be simultaneously employed
to quantitatively characterize the flow.

II. EXPERIMENT

A. Experimental setup and materials

The experiments are conducted in a linear channel of L x w x h = 45 x 2.5 x 1 mm?, shown
schematically in Fig. 1. The fluid flow is hindered by two cylindrical obstacles of diameter D = 0.30
mm made of stainless steel separated by a distance of e = 1 mm and embedded at the center of the
channel. Thus the geometrical parameters of the device are D/w = 0.12, h/w = 0.4, and e/D =
3.3. The channel is made from transparent acrylic glass [poly(methyl methacrylate)]. The fluid is
driven by N, gas at a pressure up to ~60 psi and injected via the inlet into a rectangular channel. As
a fluid, a dilute polymer solution of high-molecular-weight polyacrylamide [PAAm, homopolymer
of molecular weight M,, = 18 MDa (Polysciences)] at a concentration ¢ = 80 ppm (c/c* ~ 0.4,
where ¢* = 200 ppm is the overlap concentration for the polymer used [34]) is prepared using water-
sucrose solvent with a sucrose weight fraction varying from 0 to 60% (see Table 1 in [36]). The
solvent viscosity 71, at 20 °C is measured in a commercial rheometer (AR-1000, TA Instruments).
An addition of polymer to the solvent increases the solution viscosity 7 of about 30%. The stress-
relaxation method [34] is employed to obtain A; for n; = 0.1 Pas solution, A is measured to be
10 £ 0.5 s. A linear dependence of A on 1 was shown in Ref. [34].

B. Pressure measurements and imaging system

High-sensitivity differential pressure sensors (HSC series, Honeywell) of different ranges are
used to measure the pressure drop AP across the obstacles and an additional absolute pressure
sensor (ABP series, Honeywell) of different ranges is used to measure the pressure P fluctuations
after the downstream cylinder at a sampling rate of 200 Hz, as shown schematically in Fig. 1. The
accuracy of the pressure sensors used is +0.25% full scale. We measure pressure drop for both
solvent and polymer solution as a function of flow speed, and the difference between these two
measurements provides information about the influence of polymers on the frictional drag.

The fluid exiting the channel outlet is weighed instantaneously W (#) as a function of time ¢
by a PC-interfaced balance (BA210S, Sartorius) with a sampling rate of 5 Hz and a resolution of
0.1 mg. The time-averaged fluid discharge rate Q is estimated as AW/At. Thus the flow speed is
calculated as U = Q/pwh. For flow visualization, the solution is seeded with fluorescent particles
of diameter 1 um (Fluoresbrite YG, Polysciences). The region between the obstacles is imaged
in the midplane via a microscope (Olympus IX70), illuminated uniformly with light-emitting
diode (Luxeon Rebel) at 447.5-nm wavelength and two CCD cameras attached to the microscope,
(1) GX1920 Prosilica with a spatial resolution of 1936 x 1456 pixels at a rate of 50 frames/s (fps)
and (ii) a high-resolution CCD camera XIMEA MC124CG with a spatial resolution of 4112 x 3008
pixels at a rate of 1 fps, are used to record the particles’ streaks.

II1. RESULTS

Frictional drag f for each E! is calculated through the measurement of pressure drop across
the obstacles AP (see Fig. 1) as a function of U and is defined as f = 2D,AP/pU?L.; D, =
2wh/(w + h) = 1.43 mm is the hydraulic radius and L, = 28 mm is the distance between locations
of A P measurement [35]. Figure 2 shows variation of f with Re for three E! values and a sequence
of transitions can be identified for each El. These transitions are further illustrated through a high-
resolution plot of the normalized friction factor f/fi,m versus Re and Wi presented in the top and
bottom insets of Fig. 2, respectively. Three flow regimes characterized by different scaling exponents
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FIG. 2. Friction factor f versus Re for three values of El. The dashed line fi,, ~ 1/Re represents the
laminar flow. The top inset shows the normalized friction factor f/fi.m versus Re. The bottom inset shows the
same data presented as f/fium versus Wi with the fits marked by dashed lines in two regions: f/ fiam ~ Wi%>
above the elastic instability and f/fium ~ Wi%? in the ET regime. Note that the drag reduction for EI = 2433
occurs at Re ~ 0.5 and Wi & 1216 and continues until the flow relaminarizes.

are identified. (i) The first drag enhancement above the elastic instability follows f/ fium ~ Wi’ for
all values of E/ explored; for high E1 it is associated with a growth of two elongated vortices (or two
mixing layers) [35]. (ii) Further drag enhancement at high El occurs due to ET [11] characterized
by a steep algebraic decay both in the power spectra of velocity and pressure fluctuations with
exponents greater than ~3 (discussed in the following) and in intensive vorticity dynamics and
a growth of average vorticity as @ ~ Wi’? and f/fium ~ Wi%2, typical for ET [11]. For low El,
either a saturation or a reduction of the friction factor with Re or Wi marks the DR regime. (iii)
For both high and intermediate E/, the DR regime with decreasing f/fiam at increasing Re or Wi
is observed and at low E! the drag enhancement is noticed. Another striking finding is a complete
relaminarization of flow, i.e., 100% drag reduction, that occurs for El = 2433 (also for El = 1070
and 3704; data not shown), where f/fi.m returns to the laminar value at Re &~ 4 (Wi ~ 10%). With
decreasing El, the transition points are shifted to a higher value of Re and Wi, and remarkably even
at Re > 1 both drag enhancement and DR regimes can be recognized.

To elucidate further, the critical values of the respective transitions for each EI is mapped in
Re-EI! [Fig. 3(a)], Wi-EI [Fig. 3(b)], and Wi-Re [Fig. 3(c)] coordinates. In the range explored for
(Re, Wi), three different transitions are observed, which are associated with elastic instability, drag
enhancement, and DR as shown in Figs. 3(a) and 3(b). These transitions persist for all elasticity
values and the elastic instability occurs first, followed by the other two transitions. In addition,
the complete flow relaminarization is observed only for El = 1070, 2433, and 3704. Interestingly,
the sequence of DR and drag enhancement changes as El varies from low to high values; DR
is followed by drag enhancement at low E! and this sequence reverses at high E/, as described
above. This change in the sequence occurs in the intermediate range of elasticity at El ~ 149.
Furthermore, three regions in Figs. 3(a)-3(c) can be identified based on variation of the critical
values (Rey, Wiy) with El. For low elasticity (El < 20), Re,, is independent of El, while for high
elasticity (El > 300), Re,, drops sharply with El. For intermediate elasticity (20 < El < 300), Rey,
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FIG. 3. Stability diagram of different flow regimes in (a) Re-El, (b) Wi-El, and (c) Wi-Re coordinates.
The colors of the symbols signify different transitions: black, first elastic instability; green, DR; blue, drag
enhancement; and red, flow relaminarization. The gray band in (a)—(c) indicates the region of intermediate El.
Solid lines of different colors in (c) are used as a guide to the eye to track the transition in different regions.

shows a weak dependence on EIl [see Fig. 3(a)]. In Fig. 3(b) the dependence of Wi, on EI is
nonmonotonic: a strong growth with El at low EI, a sharp decrease at high E/, and a gradual
growth at intermediate E!l. The transitions are further mapped in the Wi-Re plane for different El
to emphasize the role of inertia on the stability of a viscoelastic fluid flow. The same three regions
are identified: At high El, Wi, grows with Re, with a stabilizing effect of inertia, at low E! there
is a steep drop of Wiy with Rey;, and in the intermediate region Wi, decreases with increasing Rey,
with the destabilizing effect of inertia [see Fig. 3(c)].

Long-exposure particle streak images in Fig. 4 illustrate the flow structures in three regions of
elasticity and at different Re and Wi above the transitions’ values (see also the corresponding movies
SM1-SMO in [36]). In low- and intermediate-elasticity regions, a large-scale vortical motion appears
above the elastic instability; however, in DR and drag enhancement regimes, small-scale turbulent
structures dominate and the large-scale vortical motion vanishes (top and middle panels in Fig. 4).
In a high-elasticity region, e.g., E/ = 14803, an unsteady pair of vortices [35] spans the region
between the obstacles (e.g., Re = 0.005 and Wi = 74) and at higher-Re small-scale vortices emerge
with an intermittent and random dynamics (e.g., Re = 0.03 and Wi = 444) that constitutes the ET

Re=54.3, EI=10 = ‘ Re=303.4, E/=10
e _’x, —1,-, — : £

" Re=10, EI=62.3 .+ - Re=30, £/=62.3

-
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FIG. 4. Representative snapshots of flow structures in the three regions, above the transitions, at E/ = 10
(top panel), El = 62.3 (middle panel), and E/ = 14803 (bottom panel); see also the corresponding movies
SM1-SM9 in [36]. The scale bars are 100 pm.
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FIG. 5. Pressure power spectra S(P) versus normalized frequency Av in the drag enhancement regime at
various Re and Wi and in three regions of elasticity (a) El = 1.4, (b) El = 149, and (c¢) El = 14803. The
dashed line shows power-law decay with an exponent § specified beside the line.

regime [11], whereas in the DR regime (e.g., Re = 0.57 and Wi = 8438) a much smoother spatial
scale and less vortical motion are found (bottom panel of Fig. 4). However, a quantitative analysis
of the velocity field at low and intermediate values of E! requires serious technical effort and is
beyond the scope of the present investigation.

Finally, we characterize the observed flow regimes through frequency power spectra of absolute
pressure fluctuations for various Re and Wi in three regions of elasticity. The pressure spectra are
presented as a function of normalized frequency Av to signify the timescales involved in flow with
respect to 1. Figure 5 shows pressure power spectra S(P) in the drag enhancement regime for three
El values. For low elasticity, the S(P) decay exponent 8 evolves from —1.3 to —3 with increasing
Re and Wi and in the range of Av ~ 0.2-1 [shown in Fig. 5(a) for El = 1.4]. It is worth noting that
B ~ —3 is reached at the highest Re and Wi. In the intermediate range of elasticity, the exponent
value B = —1.3 is obtained in the range of Av ~ 0.1-1, the same as for low E! [shown in Fig. 5(b)
for El = 149], whereas for high El, S(P) exhibits steep decay with 8 ~ —3 in a higher-frequency
range Av ~ 1-10 for all Re and Wi values for EI = 14 803 [Fig. 5(c)]. This value of g is one
of the main characteristics of the ET regime [8,11]. The value Av =1 at high EI is a relevant
frequency to generate ET spectra with § & —3 at higher frequencies [8], as the stretching-and-
folding mechanism of elastic stresses due to the velocity field redistributes energy across the scales
[12,13]. Similar scaling of S(P) is observed in numerical simulations in the dissipation range of
the turbulent drag reduction regime [17]. For low E/, the S(P) decay at Av > 0.1 up to 1 is caused
by the inertial effect. In the drag reduction regime, S(P) demonstrates completely different scaling
behavior with Av, shown in Fig. 6. For low El, one finds a steep decay of S(P) at high frequencies
Av > 1 with a scaling exponent ~—3.4 and a rather slow decay with an exponent between —0.5 and
—1 at Av < 1 [Fig. 6(a) for El = 1.4], in accord with numerical simulations [17]. For high El, the
spectra S(P) decay steeply at high frequency Av ~ 10, and at low frequencies 0.1 < Av ~ 10 a slow
decay with an exponent ~—1 is observed [shown in Fig. 6(c) for El = 14 803]. In the intermediate
range of E/, the decay exponent varies between —1.8 and —2.5 [shown in Fig. 6(b) for El = 149] in
the frequency range 0.1 < Av ~ 10. To highlight the scaling dependences of S(P) between different
flow regimes in each El region, we present the same data in Fig. S1 in [36] for various Re and Wi
and for three regions of El.

For comparison we present f as well as f/fjam as a function of Re in the range between ~6
and ~900 for two Newtonian fluids, water (n; = 1 mPas) and a solution of 25% sucrose in water
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FIG. 6. Pressure power spectra S(P) versus Av in the DR regime at various Re and Wi and in three regions
of elasticity (a) El = 1.4, (b) El = 149, and (c) E! = 14 803. The dashed line shows power-law decay with an
exponent specified beside the line.

(ns = 3 mPas) (see Fig. S2 in [36]). The dependences of both f and f/fiam on Re are smooth and
growing at Re 2 70, which differs significantly from that found for polymer solutions at low EI. It
is also rather different from the dependence of f on Re in a channel flow past an obstacle, which
is studied extensively. Thus, we can conclude that in viscoelastic flow, we observe inertia-modified
elastic instabilities, contrary to inertial instabilities modified by elastic stress. This conclusion is
further supported by the measurements of the power spectra of pressure fluctuations in a Newtonian
fluid flow that exhibit a power-law exponent ~—1.6 at high Re (see Fig. S3 in [36]), in contrast to
those presented in Figs. 5 and 6.

IV. DISCUSSION AND CONCLUSION

Polymer degradation is often encountered under strong shear and in particular at high elongation
rates due to velocity fluctuations at Re >> 1 and Wi > 1 [37]. As a result of degradation, the
influence of polymers on the flow becomes ineffective. To ensure that the drag enhancement and
DR we observe in our experiments at Re > 1 are not the result of polymer degradation, we reuse
the polymer solutions (after performing the experiment with two obstacles) in experiments on a
channel flow with a single obstacle. Indeed, we observe elastic instability, drag enhancement, and
DR with a single obstacle for EI = 14803 (see, e.g., Fig. S4 in [36]). Moreover, the problem
of polymer degradation was addressed in detail in our paper on turbulent drag reduction in a
large-scale swirling flow experiment conducted at Re < 2 x 10° [38]. It was pointed out that “the
main technical achievement in the experiment was long term stability of polymers in turbulent flow
that allowed us to take large data sets up to 10 data points for up to 3.5 hours at the highest Re
without a sign of polymer degradation.” Thus, we conclude that the observed flow regimes in our
experiments are not caused by polymer degradation.

The presented results on the friction coefficient and the pressure power spectra obtained in a
wide range of controlled parameters exhibit two remarkable features: (i) the presence of three flow
regimes with distinctive and different scaling behavior in both f/fi,,, and S(P) and (ii) three regions
on the stability diagrams in the planes of Re, Wi, and E[ parameters depending on the value of fluid
elasticity. In spite of the fact that rather high values of Re are reached, inertial turbulence is not
attained in the region between the obstacles and channel flow outside this region. As known from
the literature, turbulence in a flow past an obstacle is attained at much higher Re [39].

103302-7



ATUL VARSHNEY AND VICTOR STEINBERG

The different scaling dependences of S(P) in three flow regimes and in three regions of elasticity
indicate the intricate interaction between elastic and inertial stresses. A two-way energy transfer
between turbulent kinetic energy and elastic energy of polymers also results in a modification of
the velocity spectra’s scaling exponents at Re > 1 [20,21]. The effect of inertia at Re ~ 100 on
the scaling behavior of velocity power spectra with the exponent || & 2.2 instead of ~3.5 in pure
ET was observed experimentally in the Couette-Taylor viscoelastic flow [6] and later confirmed
numerically [40]. What is remarkable is that in the drag enhancement regime about the same scaling
exponent 8 &~ —3 in S(P) is found for low and high E! at close values of Wi and a three order of
magnitude difference in Re values. This indicates the elastic nature of drag enhancement regimes
at both low and high El. Indeed, the scaling exponents of the pressure power spectrum decay for
El = 1.4 [Fig. 5(a)] show |B] = 3 at Re >~ 845 and Wi >~ 1220. The observations of scaling
f/fiam ~ Wi%2, the exponent of the pressure spectrum decay |8| ~ 3, and the exponent of the
velocity spectrum decay || ~ 3.5 are characteristics of ET flow [11]. Thus, the drag enhancement
regime in low- E! regions is typical of ET.

A striking and unanticipated observation in the high-elasticity region is a significant DR and a
complete flow relaminarization at Wi > 1000 and Re ~ O(1) (see Figs. 2 and 3). The obtained
result is different from turbulent DR observed at Re >> 1, where Reynolds stress exceeds the elastic
stress prior to the onset of turbulent DR and becomes comparable to elastic stress at the onset.
A similar effect of the saturation and even weak reduction of f/fjam Was observed and discussed
in the planar geometry with an abrupt contraction and expansion of a microfluidic channel flow,
where the saturation of f/fi,m at higher polymer concentrations ¢ and even its reduction at lower
¢ < c* were revealed in the range 0 < Wi < 500 for three polymer solutions of different polymer
concentrations [31]. For the highest ¢, f/fiam reached a value of ~3.5 at high Wi, in agreement with
the early measurements in a pipe flow with an axisymmetric contraction and expansion at much
lower Wi < 8 [41].

To find a possible explanation of DR in a wide range of El and (Re, Wi), we discuss the effect
in details. At low EI between 1.4 and 31, either drag saturation or weak DR occurs just before the
drag enhancement regime associated with ET and discussed above. It is worth mentioning that, due
to the intricate interplay between elastic and inertial stresses, the strength of DR is a nonmonotonic
function of E!l and depends on the relation between Wi and Re. The higher the Wi and the lower
the Re, the more pronounced the DR regime at low El. The range of Re observed in the DR regime
corresponds to the vorticity suppression by elastic stress generated by polymer additives injected
into a Newtonian fluid flow [42-44], which is indeed confirmed by the snapshots at El = 10 and
Re = 54 and 153, shown in Fig. 4.

At high EIl in the range 149 < El < 14803 and Re <~ 70, f/flam reduces significantly.
However, the complete flow relaminarization is observed only at E/ = 1070, 2433, and 3704,
where Wi < 10* and Re < 10. This means that high values of Wi and Re stabilize DR prior to the
relaminarization due to finite polymer extensibility. The snapshot at E/ = 14803 and Re = 0.57 in
Fig. 4 shows a vorticity-free flow, in contrast to the snapshots at the same E! and low Re. Thus,
at Re ~ O(1) and high Wi, the inertial effects are negligible to suppress the growth of f/fiam,
whereas at Re > 70 and intermediate values of Wi, the drag can be saturated, as seen, for example,
at E/ = 31. As suggested in Ref. [31], the saturation of f/fj.m observed for high EI is probably a
consequence of polymer chains attaining their finite-extensibility limit at very-high-Wi values. Here
we emphasize again that the DR observed at low E! and high Re is not related to the turbulent drag
reduction realized in a turbulent flow at higher values of Re than achieved in our experiment.

The theory of ET and the corresponding numerical simulations do not consider the inertial effects
and their role in ET and therefore they are unable to explain the DR and flow relaminarization. Thus,
the results reported call for further theoretical and numerical development to uncover inertial effects
on viscoelastic flow in a broad range of (Re, Wi) and El.
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