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Ancestral processes are fundamental to modern population genetics and spatial structure has been
the subject of intense interest for many years. Despite this interest, almost nothing is known about
the distribution of the locations of pedigree or genetic ancestors. Using both spatially continuous and
stepping-stone models, we show that the distribution of pedigree ancestors approaches a travelling wave,
for which we develop two alternative approximations. The speed and width of the wave are sensitive to
the local details of the model. After a short time, genetic ancestors spread far more slowly than pedigree
ancestors, ultimately diffusing out with radius ~ «/t rather than spreading at constant speed. In contrast
to the wave of pedigree ancestors, the spread of genetic ancestry is insensitive to the local details of the
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1. Introduction

There has long been interest in the flow of genes through
spatially structured populations, and in the ancestral relationships
between genes—classically, through the concept of identity by
descent (Wright, 1943; Jacquard, 1974), and more recently,
through the coalescent (Kingman, 1982; Hudson, 1983b). Yet, until
very recently, there has been little work on genealogies within
spatially extended populations, or on biparental ancestry, in which
the ‘pedigree’ ancestors of sexually reproducing individuals are
traced. Here, we combine these issues by following the spatial
locations of pedigree ancestors backwards through time.

The coalescent process describes the ancestry of single genes;
the extension to recombination on a linear genome is easily
stated (Hudson, 1983a), but leads to an ancestral recombination
graph (Griffiths and Marjoram, 1997) which has proved intractable.
Surprisingly, there has been little interest in pedigree ancestry, in
which each individual necessarily has two parents. The pedigree
keeps track of all ancestors of the individuals in our sample,

* Corresponding author.
E-mail addresses: jerome.kelleher@well.ox.ac.uk (J. Kelleher),
etheridg@stats.ox.ac.uk (A.M. Etheridge), amandine.veber@cmap.polytechnique.fr
(A. Véber), n.barton@ist.ac.at (N.H. Barton).

http://dx.doi.org/10.1016/j.tpb.2015.10.008

irrespective of whether they carry relevant genetic material. Yet,
we can now directly observe pedigree relatedness, over the past
few generations by inferring parentage, and up to ~10 generations
back, by finding long blocks of shared sequence (Browning and
Browning, 2011; Huff et al.,, 2011). This has allowed the decline
in pedigree relatedness with geographic distance to be estimated
(Ralph and Coop, 2013).

Chang (1999) showed that in a single well-mixed population,
pedigree ancestry mixes rapidly, so that it is almost certain that
log, N generations before the present, an individual existed who
is ancestral to the whole present-day population. At any time
more than ~1.77 log, N generations in the past, all individuals that
have any descendants in the present day population are almost
certainly ancestors of all present individuals: in this sense, we all
share the same ancestry in the relatively recent past. Nevertheless,
the relative contribution of each ancestor (that is, its reproductive
value) follows a broad distribution: this can be found explicitly,
and (conditional on survival) is somewhat less variable than an
exponential (Derrida et al., 1999, 2000; Barton and Etheridge,
2011).

This model of biparental inheritance can be seen as the limit
for an infinitely long genome. However, any one path through a
pedigree of depth t generations will on average transmit only a
fraction 27¢ of genes, and so even for a very long genome (for
example, the human genome, for which the effective population
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size times the total map length is N.R ~ 3 x 10°), most pedigree
ancestors may not be genetic ancestors (Donnelly, 1983). There
are many open questions concerning the distribution of genetic
ancestry, even in the simplest case of a single population.

Rohde et al. (2004) simulated a hierarchically structured
population, which aimed to represent human demography over
the past few millennia; they found that this structure does not
drastically slow the expansion of pedigree ancestry: under their
model, we are all likely to share the same ancestry a few thousand
years ago. In this paper, we examine a different structure, in which
dispersal is local, so that tracing backwards in time, ancestral
lineages diffuse out from the location of a sampled individual.
This process was first analysed by Wright (1943), for single
genes. Wright argued that as we trace back, we can suppose that
ancestral lineages follow a Gaussian distribution, with a variance
that increases linearly with time; the probability of identity t
generations back depends on the products of the densities of
these ancestral distributions. This argument cannot be strictly
correct: because density must be regulated, the reproduction of
nearby individuals must be negatively correlated, so that ancestral
lineages cannot move independently in a spatial continuum
(Felsenstein, 1975; Barton et al., 2002, 2010b).

This difficulty has traditionally been avoided by assuming a
discrete grid of demes, each of which has strictly constant size.
We shall consider two such models, a Wright-Fisher model and
a Moran model. We also model a truly continuous population,
in which reproduction occurs in ‘events’, which may affect a few
individuals, or a substantial fraction of the population. This has a
well-defined backwards process, which can readily be simulated,
and can include a wide range of biological processes. However,
we focus on a special case in which dispersal is strictly local and
the effective population density is very high. All three models are
defined in Section 2.

In all that follows, we shall assume that individuals are haploid,
each with two parents. We consider a finite number [ of linearly
arranged loci, with recombination occurring with some probability
o between any pair of neighbouring loci during a reproduction
event (most of the time we shall take o = 1/2, but see Section 4.2).
We also assume that the population size is large but regulated in
such a way that, locally, it does not fluctuate much over time. For
simplicity we sample a single individual, from the origin of our
space at the present time, and we trace back the spatial distribution
of its ancestors as a function of time. We first consider its pedigree
ancestors. Since each individual has two parents, sitting in some
neighbourhood around it (see Section 2 for more details), initially
the population of ancestors behaves like a branching random walk
with every ancestor branching into two geographically close (but
different) ancestors at some given rate as we go backwards in
time. However, because local population sizes remain bounded
through time, when the density of ancestors becomes large enough
the chance that they all correspond to different individuals in
the past population decreases. At that moment, the ancestral
lineages that are close-by may either find a common parent and
coalesce, or they may escape from each other by having parents
that are farther and farther away from the bulk of the ancestral
population. We thus expect that the range of the population of
pedigree ancestors will expand at some positive speed due to the
regions of low density of ancestors at the edge that still develop
into the available space like a branching random walk. On the
other hand, the number of ancestors in the bulk should saturate to
some value due to coalescence. In other words, we expect that the
population of pedigree ancestors should behave like a travelling
wave and it is one of our main goals to describe this wave, how its
characteristics depend on the parameters of the models and to find
some appropriate approximations for it under the three models
of Section 2. In particular, we shall see that the wave speeds and
widths are heavily model dependent.

We then consider the subset of genetic ancestors, that is the
individuals that carry some genetic material which is ultimately
transmitted to our sampled individual. One of the main differences
from the pedigree ancestors is of course that there can be at most
| genetic ancestors by assumption. Again, at the beginning the
population of genetic ancestors will grow exponentially, but each
ancestor will carry less and less genetic material. Although the
coalescence of nearby ancestral lineages still occurs, they are less
and less likely as the ancestors become spread out in space (recall
that two lineages have to be geographically close to have a chance
to coalesce and that even then recombination will eventually split
them apart again). In the long run, we thus expect to see about
I independent lineages diffusing according to symmetric random
walks, giving rise to a wave of genetic ancestors expanding at
speed +/t instead of linearly in time. This is what we shall study
in Section 4, mostly through simulations. In contrast to the wave
of pedigree ancestors, we shall see that the spread of genetic
ancestors is almost independent of the underlying model, provided
that we fix certain parameters. More precisely, if we restrict
attention to genetic ancestors, then the distribution of ancestral
locations depends primarily on the effective population density, o,
and the dispersal rate, o2

In Section 2, we describe our three models and record expres-
sions (which are derived in Appendix A) for the corresponding
effective population density and dispersal rate. In Section 3 we
consider the location and density of pedigree ancestors in a one-
dimensional population, and show that, tracing backwards in time,
the ancestors form a wave of advance. We develop two approxima-
tions: one, based on Wright's (1943) idea that ancestors diffuse out
in a Gaussian distribution, and the other, based on a partial differ-
ential equation that approximates the continuum model. Both lead
to a travelling wave for pedigree ancestry. Using simulations, we
compare the waves that develop under our three models to one
another, and to these approximations. We also compare the be-
haviour to the travelling wave solution to the classical Fisher-KPP
equation. In Section 4 we extend this analysis by considering the lo-
cation and density of the genetic ancestors of a sample. Genetic an-
cestry soon lags behind pedigree ancestry, and spreads much more
slowly, as a diffusion rather than a travelling wave. Although we
focus almost exclusively on unlinked loci, we also briefly discuss
discrete loci on a linear genome. Following this, in Section 5 we
examine the corresponding process in two dimensions and see the
same qualitative behaviour. In Section 6 we conclude by discussing
these results in the context of previous work.

2. The models

In this section we describe the three different models that we
shall study and identify some key summary statistics which allow
us to compare them. Our main focus is one spatial dimension, but
we describe the continuum model in arbitrary dimensions as it is
on this model that the two-dimensional simulations of Section 5
are based.

2.1. Continuum model

In this model, individuals occupy a fixed location in a
continuous habitat during their lifetime. All movement, death and
reproduction occur as a consequence of replacement events, which
fall randomly throughout the habitat. Events span a range of scales,
from the regular process of reproduction within neighbourhoods
to large scale demographic shifts, in which substantial fractions
of the population are affected. A variety of different replacement
mechanisms may be employed (Barton et al., 2010b, 2013b), but
we concentrate on the well-studied ‘ball’ model (Etheridge, 2008;
Barton et al., 2010a, 2013a) here.



J. Kelleher et al. / Theoretical Population Biology 108 (2016) 1-12 3

As the basis of this model, we consider a population of
individuals distributed uniformly at random with density D on a
continuous range which we shall take to be the torus, T¢, of side L
in RY. This population evolves through replacement events, which
occur at some fixed rate AL%. At an event, we choose a centre
z uniformly at random within the range T¢. Then, we let S be
the set of individuals within distance r (the event ‘radius’) of z,
and (if S is non-empty) we choose a small number of parents v
uniformly from S. In this article we shall think of each event as a
single reproduction event and, since we are interested in biparental
mating systems, we shall fix v = 2. Once we have selected the
parents, we then Kkill a fraction u (the ‘impact’ of an event) of the
individuals in S. Finally, we repopulate the area by throwing down
a Poisson number of offspring, with mean DuV,(r) (where V,(r)
is the volume of the ball radius r in T¢), each at a location chosen
uniformly from the ball of radius r around z. (See Berestycki et al.,
2009 for more details of this prelimiting model in the uniparental
case.)

As D tends to infinity, the forwards-in-time process of local
allele frequencies converges to the spatial A-Fleming-Viot process,
for which many results have been derived (Barton et al., 2013b).
In this limit, the evolution mechanism is essentially the same as in
the prelimiting model, except that now density is high enough to
ensure that there are always enough individuals in the set S from
which to choose parents. We can then define a simple coalescent
process, which can be simulated efficiently (Kelleher et al., 2013,
2014). In this coalescent, we begin with a sample of n genes and
trace their ancestry backwards in time, recording the effects of
events that intersect with ancestral lineages. At an event, any
lineage within the affected ball has a probability u of being an
offspring of the event, in which case the location of the lineage
jumps to the location of a parent of the event, which is uniformly
distributed within the ball. If two or more lineages are offspring of
the same parent of the same event, then they coalesce.

Recombination can be incorporated into this coalescent process
in a natural way (Etheridge and Véber, 2013; Barton et al., 2013a;
Kelleher et al., 2014). We now sample a set of n individuals with
I linearly arranged loci. Recombination occurs when two adjacent
loci derive from different parents at an event, which occurs with
probability ¢ between pairs of adjacent loci. In the coalescent
process, we proceed as before, moving backwards in time until
at least one ancestral lineage is an offspring of an event. Then,
we distribute the genetic material present in this individual to its
parents. The first locus is assigned to a parent (chosen at random).
Moving along the genome, all loci are assigned to the same parent
until we reach a recombination event (after a random number
of loci with a geometric distribution). After the recombination,
all loci are assigned to the other parent until we reach the next
recombination event when we flip back to the first parent, and so
on. Importantly, if we are only interested in genetic ancestry, then
if either of the parents does not carry any genetic material ancestral
to the sample, we do not trace its subsequent history.

On the other hand, if we wish to trace the history of the
pedigree ancestors of our sample, we always follow both parents
of each event in which at least one of the lineages we are
following is an offspring (even if one of them does not carry any
of the genetic material in which we are interested). This leads
to a rapidly growing population of ancestors, whose structure
we wish to understand. This is primarily investigated using
stochastic simulations of the ancestral processes just defined.
These simulations use the discsim Python module, which is
freely available at https://pypi.python.org/pypi/discsim. The large
effective densities and numbers of loci used in this article would
not be possible without recent advances in simulating these
ancestral processes (Kelleher et al., 2014). The code used to run the
simulations and generate the plots here is freely available under

the terms of the GNU General Public License at https://github.com/
jeromekelleher/ancestral-waves.

In the model, time proceeds by incrementing a global clock
by an exponentially distributed value with parameter ALY each
time an event occurs in TY. We refer to time measured in this
way as ‘model time’. For comparison to other models, it is natural
to measure time in terms of generations. One way in which we
might define a generation is as the average lifetime of an individual
(i.e., the amount of time between when they are born and when
they die). Events fall at rate AL¢ uniformly over a volume L¢ and
each event covers a volume of V,;(r), where V,;(r) is the volume of
a ball of radius r in d-dimensions. Thus, the expected time until
an event intersects with an individual is 1/(AVy(r)). Since the
individual has a probability u of dying in an event, we therefore
know that one generation corresponds to 1/ (AuVy(r)) units of
model time.

2.2. Wright-Fisher model

In the Wright-Fisher model, we have a set of L demes in
a (circular) one-dimensional array with deme spacing equal to
1. Each deme holds N individuals. We shall be interested in
the case in which we sample a single individual at the present
time, and then trace backwards in time generation-by-generation.
For the pedigree simulation, each individual in each deme is
represented by an integer which is 1 if the individual is ancestral
to the sampled individual and O if it is not. In a generation,
each individual, independently, chooses two parents at random.
Each parent (independently) is chosen from the deme in which
the individual is situated or one of the adjacent demes with
probabilities (m/2,1 — m, m/2). If an individual is a pedigree
ancestor, then both of its parents will also be pedigree ancestors.

An ancestral individual’s genetic material is distributed be-
tween its parents just as in the continuum model. However, since
we shall focus on unlinked loci (corresponding to o = 1/2), it
suffices to count the number of loci at which the genetic material
is ancestral to the sample; their location on the genome is unim-
portant. In this case, the value associated with an individual is the
number of ancestral loci it is carrying. Initially, we sample an indi-
vidual with I ancestral loci, and we track this ancestral material as
we proceed backwards in time. Now, after an individual has chosen
its parents, it must divide up its ancestral material between them.
Under the assumption of free recombination, if an ancestor carries
k ancestral loci, then the number of ancestral loci assigned to the
first parent is a random value with distribution Binom(k, 1/2) and
the other parent is assigned the remainder.

2.3. The Moran model

In the Moran model, we also have L demes with N individuals
in each. Now, we proceed backwards in time event-by-event.
Each event corresponds to the birth of exactly one individual to
replace an individual chosen uniformly at random from the whole
population. As for the continuum model, we choose the rate of
events in such a way that the expected lifetime of an individual,
that is the expected time that it waits before it is replaced by the
offspring of an event, is one unit of time. Thus events occur at
rate LN. When an individual is born, its parents are chosen in the
same way as in the Wright-Fisher model. Thus, in the pedigree
simulation, we choose two parents independently at random. Each
parent is chosen from the deme in which the offspring was born
with probability 1 — m, otherwise it is picked from one of the
adjacent demes (with equal probabilities). Once again, we sample
a single individual from the whole present population (in deme 0,
say), and trace back the locations of its ancestors. For the pedigree
simulation we label individuals ancestral to the sampled individual
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with a 1 and all other individuals are labelled 0. At a reproduction
event, parents of an individual labelled 1 will change their label to
1. On the other hand, the individual that was replaced in the event
is necessarily not an ancestor and so is labelled 0.

For the genetic simulations, genetic material is distributed
between parents exactly as in the Wright-Fisher model above.

2.4. Definitions of some key parameters

We define ‘effective population density’, p., and the ‘dispersal
rate’, or ‘rate of diffusion’, o2. For the former, for the continuous
time models, we let h(x) be the instantaneous rate at which two
ancestral lineages currently at separation x coalesce. Then

1
= / h(x)dx,
2p. T4

for the continuum model, and

L > hi)

2. -

for the Moran model (where the sum runs over demes in the
discrete torus). For the Wright-Fisher model, h(i) is replaced by
the probability that two ancestral lineages coalesce in the previous
generation. The dispersal rate is the mean square displacement of
an ancestral lineage after one generation. We sometimes call it the
‘rate of diffusion’ as over large spatial scales the motion of a single
ancestral lineage can be approximated by a Brownian motion with
this rate of diffusion.

We are interested in populations at high density, corresponding
to large N in the discrete models, or small u in the continuum
model. In this setting, the number of pedigree ancestors of a single
ancestor sampled from the origin, say, will increase to high density
and spread out in a ‘wave’. In the ‘bulk’ of the wave (close to the
origin), the density of pedigree ancestors will reach a stationary
distribution. The mean of this equilibrium will be approximated
by a quantity that we shall denote by p*.

Values of the parameters pe, 02 and p* are recorded in the table
below, with derivations deferred to Appendix A.

‘ ‘ Continuum ‘ Wright—Fisher‘ Moran
o? 2r%/3 m m
De = N/2 N/2
p* 206w 20ew N¢(m, N),
where
W(—2e™?
w=1+ !,

2
with W the Lambert W function, and

2, 20—-m%)  2(1-m)?
1+ (1 - m) + - N TN

34 (1 —m)? — 2=m?

o(m,N) =

3. Pedigree ancestors

In this section we outline some analytic approximations to
the wave of pedigree ancestors of our sampled individual before
comparing simulations of our three models. We concentrate on one
spatial dimension.

3.1. The Gaussian approximation

Following Wright's (1943) argument, we expect that any single
lineage will diffuse out in a Gaussian distribution with variance

o?t, as we trace it back t generations into the past. At that time,
there will be 2¢ pedigree ancestors, and so the density of pedigree
ancestry at a distance x from the location from which we took our
sample is:

2tefx2/(2(72t)
T
(Znazt) /2

where d is the dimension. Because local population sizes remain
bounded through time, the number of distinct ancestors in a
given region cannot grow indefinitely and even for modest t this
density will far exceed the actual density of ancestral individuals. A
crude approximation is as follows. We suppose that the population
density is p. Consider a small neighbourhood of the point x. If we
trace the pedigree of our sampled individual back t generations,
then there are on average ¥ (x) routes through that pedigree that
end at location x. Each such route must lead to an individual
that was alive at the point x at time t before the present. If we
assume that, for each route, the corresponding individual was
picked independently and uniformly at random from those at x,
then the total number of times that a given individual at x is picked
is approximately Poisson(y (x)/p)-distributed. In particular, the
probability that it is picked at least once is approximately 1 —
e ¥®/r The expected density of pedigree ancestors is then
approximated by p(1 — e"¥®/#),In fact, since reproductive value
varies considerably, pedigree ancestry will tend to be concentrated
into a smaller number of individuals, and so p(1 — e ¥®/?) s
probably an overestimate of the density of pedigree ancestry; this
effect might be included by using some p, < p.

Let us use the above approximation to describe the spatial
distribution of pedigree ancestors at time ¢t in the past. For x small
enough, we have {¥(x) > p and so the density of pedigree
ancestors saturates at p. When v (x) becomes of the order of p,
the density of ancestors starts decreasing and we reach the edge of
the wave. Solving for the x at which ¢ (x) = p will thus give us the
location of the front of the wave. This yields

og (1 (ov2m) )

tlog2

v(x) = (1)

Xx~oty/2log2 |1—

or approximately, as t becomes large,

d
lo ( 2 t)
g (10 o Y4 ) N o (lOg t)Z
2Tog?2 t '

Using the same approximation, p(1 — e~¥/?), for the shape
of the expanding wave of pedigree ancestors, we use o times
the inverse of the maximum slope (in absolute value), which we
denote by wy, as a proxy for the width of the wave. Since the slope
is y'e"¥/? we have

_ o
max |w/(x)e—1//(x)/,0| ’
X

oty/2log2 —o

The maximum is attained at the point of inflection which, using
our previous calculation, we expect to be at x & ot+/2log 2. This
yields

o 1
V2Tog2 Q log(1/Q)’

where Q = e~ ¥/# at the inflection point. Since we expect Q ~ 1/2
there, this suggests that the width will converge to a definite value.
Note that the speed of a Fisher-KPP wave with the same intrinsic
growth rate is 04/2 log 2, as in Eq. (2).

Suppose that there are [ unlinked loci; we can imagine these as
being thrown down independently onto the pedigree. That is, the
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ancestral lineages at each of these loci start in the same individual
(our sample) and at each time in the past when a pedigree lineage
splits into two ancestral lineages, the genetic material that this
lineage carries is split between the two parental lineages in such
a way that distinct loci ‘choose’ their ancestors independently.
Note that when several pedigree lineages find a common ancestor
and merge into a single lineage, that ancestor may thus gather
the genetic material corresponding to different loci, leading to a
coalescence of some genetic ancestral lineages too. When 2! « [,
pedigree ancestry and genetic ancestry coincide. However, once
I « 2%, the number of genetic ancestors approaches I, and using
the same approximation, is ~ 1 —¥*/p, where 1* is defined as {
but with 2° replaced by I in Eq. (1). Once ¥* < p at the origin,
the distribution of genetic ancestry will diffuse outwards, with
radius ~o +/t. This is because over sufficiently long timescales, the
ancestral material will spend most of the time scattered across [
distinct ancestors, each with ancestral genetic material at exactly
one locus, which move according to independent random walks
until they are in the same deme. When in the same deme, they
have a small chance of coalescing (since N is large), but with high
probability they move apart again. Even if they do coalesce, we only
expect to wait a short time until the ancestral material is once again
split apart into two separate ancestors.

3.2. Approximating the continuum model

We continue to work in one spatial dimension; that is we
take a continuous circular range of circumference L. Once again
we sample a single individual from the origin and follow the
pedigree ancestors as we trace backwards in time. All movements
and reproduction occur as a consequence of replacement events,
and so we can reconstruct the entire history of the sample by
examining the effects of events that ‘hit’ the sampled individual
and its pedigree ancestors.

For the purposes of this analysis, we fix some of the parameters
of the model. In particular, we suppose that the event radiusr = 1
and the rate per unit area at which events fall A = 1. These
parameters can simply be seen as scaling factors for the size of
the range L and time, respectively. In our simulations, we use a
range size L = 1000 throughout, and unless stated otherwise,
an effective density of p. = 100 (corresponding to an impact of
u = 1/200). As explained in Section 2.1, in order to view our model
in units of generation time, we must rescale time by a factor 1/(2u).

We wish to quantify the local size of the population of pedigree
ancestors at a given time, and so we let N(t,x) be a random
variable counting the number of individuals within distance 1
of position x at time t. Note that this is the total number of
individuals in an interval of length two and, in particular, is not
the same as the density of individuals. The reason for this choice
becomes clear in the derivation in Appendix B; we can approximate
the expected value of this quantity through an autonomous
partial differential equation, whereas considering, for example, the
expected density of pedigree ancestors would require an integro-
differential equation. The full distribution of N (¢, x) is complicated,
and we therefore simplify by considering its expectation, n(t, x) =
E[N(t, x)].

As derived in Appendix B, measuring time in units of
generations, we approximate n by the solution to

3°n 3)
ax2’

Fig. 1 compares the result of numerical solutions of Eq. (3) with
simulation data. For small t, the approximation is very accurate,
and the PDE captures the dynamics of the wave very well. However,
as the local population size reaches equilibrium near the origin
and the wave front becomes established, the numerical solution

on 2 2
= _n Z(1—eun Zemun
o + u( ) + 3

— Continuous
-- PDE
\\
, \
10° F
10! |
=
!
| =64
|
|
|
10° \
\ \
\ |
\ |
1 “‘ !
10° -
0 100 120 140

Fig. 1. Comparison of numerical solutions of Eq. (3) with the expected wave from
simulations after 4, 32 and 64 generations. Simulation values are the mean n(t, x)
over 10 000 replicates. Eq. (3) was solved numerically using FiPy (Guyer et al., 2009)
version 3.1. The apparent widening of the simulated waves is an artefact of the way
that replicates were averaged (see text).

and observed values begin to diverge. After 64 generations, the
numerical solution is well in advance of the observed wave, and
becomes less and less accurate over time. The apparent widening
of the simulated waves is due to the fact that the results of different
replicates have simply been averaged to give an ‘expected wave’.
Fluctuations in the wave speed for the different replicates lead to a
widening of the distribution with time. Fig. 2 shows the true shape
of the wave front, obtained by averaging wave shapes which are
measured relative to their centres. Note that there is no widening
effect in the approximation to the expected wave (3) because the
fluctuations of the wave speed are lost in the approximation of the
nonlinear term.

One reason why Eq. (3) overestimates the true wave speed
is that under this approximation, instead of following a random
walk, a single ancestral lineage will follow a Brownian motion. In
Appendix D we shall see an analogous effect when we compare
the wave speeds for discrete and continuous space versions of the
classical Fisher-KPP equation.

3.3. Shape of the wave front

For all our models we expect the pedigree ancestors to spread
out as a travelling wave. In all cases, the wave’s behaviour should
be at least qualitatively similar to a travelling wave solution to
the classical Fisher-KPP equation with the same dispersion and
intrinsic growth rate. In Appendix C we show how to calculate
the shape of the wave-front in that case. In Fig. 3, we compare
the mean wave shapes in our three models to that predicted by
the Fisher-KPP equation. We see that they are all quite different,
suggesting that the shape of the front is very sensitive to the details
of the local reproduction mechanism.

3.4. Estimating wave statistics

It is hard to quantify the shape of the front for the waves
of pedigree ancestors, so instead we investigate some simple
summary statistics. We define p(x) to be the size of the population
at x relative to the mean size of the population at the origin. We can
then make the following definitions of wave centre z and width w:

z= /p(x) dx w = 4/p(x)(l — p(x)) dx.

When calculating the width for pedigree waves, we use an arbi-
trary cutoff to prevent fluctuations in the bulk from accumulating
and distorting the calculated width.
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Fig. 2. Profile of the pedigree waves in the continuum, Wright-Fisher and Moran models. Simulations for the three models with p. = 100 and o = 1/+/2 were run for 20
generations over 1000 replicates each. For each replicate we then calculated the wave centre and plotted the wave front relative to this. Also shown in plain lines are the
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Fig. 3. Mean wave shapes for the data outlined in Fig. 2 along with theoretical
predictions. On the x-axis is distance relative to the front centre, and on the y-axis
(on a logarithmic scale) is p(x)/(1 — p(x)), where p(x) is the ancestral population
size relative to the mean size at the origin. (A logistic curve would be linear.) Also
shown is the predicted wave shape for the Gaussian approximation along with a
solution to the Fisher-KPP equation.

In Fig. 4 we show simulations of wave centre and width for our
three models for three different effective densities. The dispersal
rates are chosen to match between the three models. As we would
expect from travelling wave solutions, after an initial period as
the wave establishes, the centre moves linearly with time and
the width remains ‘tight’. Note that for all three models these
statistics are insensitive to the effective population density. That
the speed of the wave should be independent of p, is expected;
the wave is a ‘pulled’ wave, like the travelling wave solution to the
classical Fisher-KPP equation, and so its speed is determined by the
behaviour in the ‘tip’ where the density of ancestors is very low and
so we do not feel the effect of p,.

We can also ask about the speed of the wave relative to that of
the Fisher-KPP equation. In Appendix D we show how to estimate
the speed of the travelling wave solution to a discrete deme version
of the Fisher-KPP equation. It is dramatically slower than that
obtained for the classical continuum version (0.78 vs. 1.177 for the
parameters used in Fig. 4) and provides a good fit for the speed
of the wave in our simulations under the Wright-Fisher model, as
shown qualitatively in Fig. 4. The continuum estimate is close to
the simulated speed for the Moran model, so this slowdown is a
result of discretisation of time as well as space.

4. Genetic ancestors
4.1. Unlinked loci

In the standard coalescent with recombination, the number
of ancestors carrying genetic material ancestral to the sample
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Fig. 4. Estimated pedigree wave centre and width for a range of effective densities
in the continuum, Wright-Fisher and Moran models. The mean wave centre
and width are estimated from 1000 replicate simulations. For each replicate, we
estimate the centre and width independently and then take the mean of these
values over all replicates.

grows until a steady state is reached. At this equilibrium, the
increase in the number of ancestors caused by recombination is
balanced by the decrease caused by coancestry. Wiuf and Hein
(1997) showed that with a linear genome, the mean number of
ancestors at equilibrium is approximately R/ log(1 + R), where
R is the scaled recombination rate. Derrida and Jung-Muller
(1999) obtained more precise results for the expected number of
ancestors at equilibrium, although these results are only valid for
small chromosome or population sizes.

In this section we are concerned with the same question.
What is the number of genetic ancestors of an individual for a
given number of loci and recombination rate over time? Clearly,
we cannot have more genetic ancestors than pedigree ancestors
and we cannot have more genetic ancestors than the number of
discrete loci. At each event, the ancestral material from one or more
individuals is distributed among the two parents. A parent is then a
genetic ancestor only if it is assigned at least some material which
is ancestral to the sample.

We can find an elementary bound on the probability that in the
case of unlinked loci an ancestor will carry material ancestral to
the sample at more than one locus: imagine that at time t there
are 2' pedigree ancestors and that for each locus, independently,
the ancestral material is in an ancestor chosen uniformly at
random among all pedigree ancestors. Then the probability that no
pedigree ancestor carries ancestral genetic material at more than
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which, by Stirling’s formula is approximately
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This quantity is small as long as 2¢ is at most of order [>. However for
times bigger than around 2 log, [ we expect the genetic material of
our sampled individual to be separated into [ distinct ancestors and
the genetic ancestors then evolve as independent random walks. In
fact this approach will somewhat overestimate the chance that all |
genes are descended from different ancestors, because of variation
in reproductive value.

When large numbers of loci are sampled, the waves of genetic
and pedigree ancestors are qualitatively very similar, as we see in
Fig. 5. In this figure, we simulate the history of the pedigree ances-
tors as before, and also simulate the history of 10° freely recom-
bining loci. In both cases, the population of ancestors around the
origin grows until it reaches the equilibrium density, and then
forms a wave of advance. In this example, the waves are indistin-
guishable after 5 generations, but are beginning to diverge after
10. After 20 generations, both waves have reached the equilibrium
density, but the pedigree wave has advanced much farther than
the wave of genetic ancestors. Note that 210 « 10° « 2%, so this
matches our heuristic argument. This is only a single example of
a genetic wave, however, since we have used a particular number
of loci. In general, the parameters describing the evolution of the
centre and of the width of a genetic wave depend logarithmically
on the number of loci (see Fig. 6). Indeed, the time at which ge-
netic ancestry falls behind pedigree ancestry should be of order at
most log, [, since the ancestral material can be spread over at most
I pedigree ancestors.

The summary statistics for genetic waves are shown in Fig. 6,
where we plot the wave centre and width against time for different
numbers of freely recombining loci. As we would expect from a
diffusion, the wave spreads as a+/t for a constant a. In contrast
to the pedigree wave (see Fig. 4), for the genetic wave the three
different models match one another very closely.

On a finite range, the wave will continue to collapse and flatten
until ancestors are distributed uniformly throughout the range.
However, given the slow rate of advance of the genetic wave,
the time scale over which ancestors are uniformly distributed is
quite large (order L?). On an infinite range, ancestors spread out
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Fig. 6. Estimated wave centre and width for the genetic ancestors for different
numbers of loci under free recombination (p, = 100). Also shown here in dots
is a4/t fitted for each value of .

indefinitely and the wave becomes more and more diffuse over
time.

The lack of ancestral material at the tip of the wave helps to
explain the differences in wave speed between the pedigree and
genetic waves. In the pedigree wave, if a single individual is born
in an event, then we are guaranteed that there will be an increase
in the local population as there are exactly two parents in each
event. For the genetic wave, however, there must be sufficient
ancestral material present to share between two parents. Clearly,
if the individual only carries one piece of ancestral material, then
recombination cannot occur and the population does not grow.

The expected amount of ancestral material is only part of
the picture however; the variation around this value is also
very important. Fig. 7 also shows the coefficient of variation
(i.e., the standard deviation divided by the mean) for the amount
of ancestral material per ancestor. This plot shows that, even
with free recombination, there is a great deal of variation in
the amount of ancestral material the ancestors carry, and that
this variation changes with respect to the position of the wave
front. At the very tip of the wave there is almost no variation in
the amount of ancestral material individuals carry, and variation
quickly increases with the local density of ancestors.

It is this variation that makes extending the analysis of
Section 3.2 problematic. It is not difficult to write down a system
of differential equations in which we track both n(x) and a(x),
defined to be the expected number of genetic ancestors within
distance 1 of x. We can then write down the increase and decrease
in population size using the probability that a given event results
in one or two parents, and the change in n(x) and a(x) that results.
As we saw, however, tracking the expectation of these values leads
to substantial errors due to the nonlinear nature of the system. The
variation in the amount of ancestral material per ancestor through
space makes this approach unfruitful.

4.2. Linked loci

Free recombination is an interesting limit, but we must also
consider the effects on the genetic wave of lower levels of
recombination. In Fig. 8 we see the wave of genetic ancestors for a
linear genome, along with the expected number and size of blocks
of ancestry. The number of blocks follows a similar pattern to
the total amount of ancestral material seen in Fig. 7. The size of
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Fig. 7. The amount of ancestral material present around a given location as a
function of distance and the variation in this value for free recombination. We
simulate the genetic ancestry of two individuals with 10° loci with a recombination
probability of o = 1/2 under the continuum model for 20 generations. We
show n(x) and the mean amount of ancestral material per ancestor in the interval
[x — 1,x + 1] on the left hand axis. The right-hand axis shows the coefficient of
variation of the amount of ancestral material in the interval [x — 1, x+ 1]. The mean
and variance of the amount of ancestral material in each interval were calculated

by accumulating the amount of ancestral material falling in each interval over 1000
replicates.
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Fig.8. The number and size of blocks of shared ancestry after 100 generations, with
10° loci and a recombination probability of p = 10~>. A block of shared ancestry
is defined as a set of contiguous loci sharing the same genealogy. The expected
number and length of blocks within the interval [x — 1,x + 1] were calculated
by accumulating blocks within the interval over 10° replicates. A large number of
replicates are required here to obtain an accurate estimate of the mean length of

blocks at the tip of the wave, where there are necessarily only a few individuals in
each replicate.

blocks is approximately constant until we reach the tip of the wave.
This suggests that methods developed to understand the wave of
genetic ancestors under free recombination may extend to cover
more general recombination rates.

5. Two dimensions

The previous sections have discussed the ancestral wave in
the context of a one dimensional continuous habitat, which is
of limited interest biologically. Many more species occupy a two
dimensional continuum, and so we briefly extend our analysis
to illustrate that very similar patterns arise in this case. We
concentrate on the wave of pedigree ancestors, and show that
the methods derived for a one-dimensional wave generalise quite
simply to two dimensions.

The population evolves on a two-dimensional torus of side L,
and we sample an individual at the origin at the present time, as
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Fig. 9. Comparison of the summary statistics for the waves of pedigree ancestors
in one and two dimensions under the continuum model, based on simulations.
Here we plot the wave centre and width for the wave in 1D with effective density
equal to 100, and the waves in 2D for this effective density and also the value of u
corresponding to an effective density of 100 in 1D.

before. We then consider the location of its ancestors as we trace
backwards in time. The population of ancestors forms a wave of
advance spreading radially from the origin. To quantify the size of
the local population, we let N(t, X) be a random variable counting
the number of individuals within a disc of radius 1 centred at point
x on the torus. (For convenience, we do not distinguish notationally
between this and the one dimensional versions of this function
from the preceding sections.)

Since the wave is radially symmetric about the origin, it is
convenient to consider the expected population size at a given
radial distance. Therefore, we let n(t, x) be the expectation of
N(t, x), where ||x|| = x. Using this definition, we can then directly
compare the waves of ancestors in one and two dimensions.

The results of estimating wave centre and width over time from
simulation data for a range of effective densities are shown in
Fig. 9. In this figure we also show the corresponding estimated
summary statistics for the 1D wave for comparison. The 2D wave
starts somewhat more slowly that the 1D wave, but it does appear
to move at approximately the same constant speed as the 1D wave.
At least asymptotically, once again one expects this to be true by
analogy with the Fisher-KPP equation. We also see that, over the
time scale considered, there is very little difference in the wave
speeds for the different effective densities.

The behaviour of the genetic wave is captured in Fig. 10. In
two dimensions, once ancestral material is separated into distinct
pedigree ancestors, it is very unlikely that two individual carrying
material ancestral to the sampled individual will become geo-
graphically close again and coalesce, so we expect that the genetic

wave will rapidly look like | independent random walkers.

6. Discussion

The number of pedigree ancestors of an individual doubles
with each generation, so that it takes surprisingly few generations
for every individual to share the same ancestry. Chang (1999)
showed that in a single population, all individuals share the same
ancestry by ~1.77 log, N generations into the past; Rohde et al.
(2004) simulated a hierarchical model of migration to show that
population subdivision need not substantially slow the sharing of
ancestry. Here, we use a different model, in which migration is
local, and can be approximated by diffusion. The distribution of
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Fig. 10. Summary statistics for genetic waves in 2D for the continuum model with
pe = 100 and disc radius r = 1. Solid lines show the mean values estimated from
1000 replicate simulations. Dots show the result of fitting a+/t to the data in each
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pedigree ancestors then spreads as a travelling wave, with a speed
that depends on the local details of the model, but even in the
fastest case (the Moran model) the speed is approximately one
dispersal range per generation (o /2 log 2). This is far slower than
the rate of mixing simulated by Rohde et al. (2004), whose model
allowed long-range migration from one region to another, so that
the whole range could be crossed in a few steps.

We simulated three different models, and found that wave
speed and shape differ somewhat between them: this is because
the speed and shape of such a travelling wave are determined by
details of the reproduction of individuals right at the tip. In such
a wave, around the original location from which our present day
individual was sampled, there are many pedigree ancestors, each
represented by very many routes through the pedigree; but at the
tip of the wave, individuals are typically ancestors only via a single
route. Because pedigree ancestry spreads as a wave with constant
speed, approximately equal to the dispersal distance, ancestry will
be shared much deeper into the past than would be the case in
a single population. For our own species, assuming a dispersal
distance of a few kilometres, it would take some thousands of
generations for ancestors to spread world-wide—much longer than
the hundreds of generations taken in the model of Rohde et al.
(2004). However, occasional long-range movements can greatly
accelerate spread, and so the actual time may lie between these
extremes. Moreover, all these times are far more recent than
the timescale for coalescence of lineages in shared ancestors at
individual loci.

Because the number of pedigree ancestors increases very
rapidly, as 2¢, it soon becomes much larger than the number of
discrete genetic loci, or the number of unrecombined ancestral
blocks on a linear genome. Thus, the location of ancestors that
actually contribute genetic material to their descendants spreads
more slowly than the pedigree ancestors, who become far more
numerous: crucially, while the distance of pedigree ancestors from
the origin increases linearly with time, genetic ancestry ultimately
spreads as «/t. Comparing Figs. 4 and 6 we see that with 10°
discrete loci, genetic ancestry falls behind pedigree ancestry after
~15 generations; this is illustrated in Fig. 5. With linkage, the
qualitative pattern is the same; for example, Fig. 8 shows that with
a linear genome of 100 Morgans (about three times the human
genome), genetic ancestors occupy a much smaller region than
pedigree ancestors after 100 generations (referring back to Fig. 4).

As one would expect for a simple diffusion, the distribution of
genetic ancestors is almost independent of the precise model of
reproduction (Fig. 6).

Once the pedigree and genetic ancestral waves corresponding
to a single individual are understood, it is not difficult to
extrapolate to describe the ancestry of a sample of individuals.
Indeed, the pedigree ancestry will also behave like a travelling
wave: in the bulk, the density of ancestors will remain bounded
due to the regulation of local population sizes (resulting from a
trade-off between the potentially exponential growth of pedigree
ancestors and local coalescence), while the families at the edges
will expand thanks to the available space around them from which
some of their ancestors will come. A question that may deserve
some attention would be whether the ancestors at the edges would
always be ancestors of the left-most and right-most individuals of
the sample (thinking in one dimension), or whether the ancestry
of other individuals may also reach the tip of the pedigree wave.
This is left to future enquiries. As concerns the genetic ancestors
of the sample, their number is bounded by [ times the sample size
and so the same reasoning as for a sample of size one applies: the
ancestral wave will expand at a speed of the order of 4/t and its
characteristics will depend only on p. and o 2.

Matsen and Evans (2008) showed that, in an unstructured
population, while the pedigree follows a branching process with
rate 2 (just as in our spatial extension to their results), genetic
ancestry is much more restricted, and the amount of genetic
material passed on is only loosely related to the number of
genealogical descendants. Indeed, Gravel and Steel (2015) show
that a fraction of the ancestral population may be ‘ghosts’, who
are pedigree ancestors of all present-day individuals, and yet pass
on no genetic material whatever. In our spatial model, pedigree
ancestry extends over a much wider area than genetic ancestry,
and so most individuals in the pedigree wave that are ahead of the
genetic wave are likely to be ‘ghosts’ for our sampled individual
(although they may of course contribute some genetic material to
other individuals in the present population).

One might argue that pedigree ancestry is irrelevant, since it
cannot be determined for more than a few generations, whether
through historical records or by genetic inference. Indeed, this was
the view expressed in the discussion that followed Chang (1999)’s
first results on pedigree ancestry (Donnelly et al., 1999). However,
it is important to understand that all genetic relationships are
constrained by the pedigree. Wakeley et al. (2012) show that this
constraint makes the standard coalescent seriously misleading
over recent generations. Usually, a sample either contains no close
relatives, in which case recent coalescence is impossible; however,
ifit does contain close relatives, then there is an appreciable chance
of recent coalescence. Thus, even if an extremely large number of
unlinked loci are observed, the distribution of coalescence times
will not converge to the standard exponential distribution in any
particular sample. This illustrates the more general point that even
though pedigree ancestry is essentially unobservable, it is helpful
to think of the evolution of a sexual population as consisting in
first, the random generation of a pedigree, and second, the random
percolation of genes down through this pedigree.

We cannot directly observe pedigree ancestry (except through
historical records, which rarely go back for more than ~10
generations; Gillespie et al., 2013). However, whole genome
sequencing allows relatives to be identified: individuals are
unlikely to share long blocks of identical sequence unless these
are derived from a recent common ancestor. This approach allows
ancestry shared up to ~7 generations ago to be identified from
human data (Browning and Browning, 2010; Huff et al., 2011)—
and considerably further if phased data were available. It is now
possible to sequence ancient DNA, from remains up to ~1000
generations old. One might imagine that relationships might then
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be identified across approximately double the timespan, if a long
shared block indicated that the present-day individual descends
directly from the ancient individual. However, the timespan
will not quite double, because the common ancestor may be
some generations earlier than the older sample. Nevertheless, the
methods outlined here and in Barton et al. (2013a) allow the
distribution of shared blocks to be predicted in such a situation,
and might make inference of ancestry feasible over perhaps up to
15 generations. This is just the timescale over which genetic and
pedigree ancestry separate: though most pedigree ancestors will
not contribute any genetic material, the few that do may contribute
blocks of detectable size.
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Appendix A. Expressions for the key parameters

We derive the values in the table in Section 2.4 for our key
parameters.

A.1. Effective density

We begin with the continuum model. Recall that effective
density is defined via

1
z—pe :/h(x)dx

where h(x) is the instantaneous rate at which genes separated by
distance x become identical. Thus, for the ball model with 2 parents
in 1D we have

"~ 2rau 2
(recalling that one generation is 1/(2riu) units of model time).
Thus, in 1D we have

1 /” 2r —x)
= u——=dx
2pe 0 2r

and so
1

T

A similar calculation for 2D gives p, = 1/(r?u).
For the Wright-Fisher model, ancestors can only coalesce if they
are at most two demes apart and

M ™
h(o>—ﬁ<<1 m)+2),

Pe

h(=1) = h(1) = %m(l —m),

A2 =h@) = 2™
N N 4~
Summing we obtain that 1/2p, = 1/N and so p, = N/2.
A similar calculation for the Moran model yields the same
expressions as in the Wright-Fisher model, so p, = N/2.

A.2. Rate of dispersal

Evidently > = m for both the Moran and Wright-Fisher
models.

For the continuum model, we must calculate the mean square
displacement of an individual when it is affected by an event.
Since the individual gene’s location and the location of the parent
from which it was inherited are independently and uniformly
distributed on the region affected by the event, the mean square
displacement will be E[V?], where V is the distance between
two independent uniform random variables on [0, 2r]. A simple
calculation yields o2 = 2r?/3.

A.3. Equilibrium density

Finally we compute p*, our approximation for the equilibrium
density of pedigree ancestors.

We first work with the continuum model. Let X' be number of
ancestors within distance r = 1 of a point within the ‘bulk’ of the
wave, so that n(t, x) = X at equilibrium. In a reproduction event,
the number of ancestors that are offspring, and therefore coalesce,
is Binom(.X, u) and so the expected number of unaffected lineages
is X (1—u).If atleast one ancestor was an offspring, which happens
with probability

1—-(1—uw*~1—et",

then we must add two parents to the pedigree. Thus, at stationarity,
we have Xu = 2(1 — e7**), and solving for X then yields

P W(—2e72)
u

where W is the Lambert W function. The density of ancestors at
equilibrium is clearly given by p* = K /V4(1), and so we have

W(—2e2
0F =20, (1 + (26)> ~ 1.59p,.

This result is consistent with the simulations of (Barton et al.,
2002), where the effective density was substantially lower than
census density.

As we see from Fig. 1, this equilibrium density for pedigree
ancestors is one aspect of the pedigree wave that is very well
captured by Eq. (3).

As concerns the Wright-Fisher model, suppose that each island
contains X ancestors at equilibrium. Let us focus on island 0. The
probability that a given individual on this island in the previous
generation is not a parent of one of the 3.X ancestors present on
islands —1, 0 or 1is equal to

m 4.5 1—m 2K
1—— 1——)
2N N

so that the mean number of such ancestors is

(- (- 5) 05 ) e

Solving N(1 — e~2%/N) = x gives here again

2

) (A1)

K:2pe<l+

Finally, assuming X ancestors on each island in the Moran
model, the rate b(i) at which the number of ancestors changes by i

is given by
X —1 X —1\°
1—m)? ——
e ()

b(—1) = Jc{mz +2(1 —mm
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Fig. B.11. Illustration of the effects of an event centred at z on the local ancestral
population size N(t,x). The dashed outline depicts the region within which
individuals are counted by N (t, x), and the dotted outline shows the region in which
individuals are affected by the event centred on z. The hatched region then shows
the segment within which parents of the event at z must fall in order to increase
N(t, x).
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b(0) > 0and b(i) = O0foranyi ¢ {—1, 0, 1, 2}. Solving for X such
that the mean change in number of ancestors is 0, we obtain
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Note that when m = 0 and N is large, we have X ~ N/2.

Appendix B. Deriving the continuum PDE

Consider the effects of an event centred at z on N(x) as
illustrated in Fig. B.11 (we suppress the dependence on t for
brevity). We are interested in deriving the change in E[N(x)] as
a result of events, and we therefore consider the positive and
negative changes in turn. There can only be an increase in N(x)
if, (a) at least one individual was born in the event (since we are
going backwards in time); and (b) if at least one of the resulting
parents falls in the line segment [x — 1,x + 1]. By definition,
there are N(z) individuals within distance 1 of z. The probability
that at least one of these individuals was born in this event is
therefore 1 — (1—u)¥®, since the probability that none were born
is (1 — w)N®. We write

k) =1— (1 —u*.

Then, given that there was at least one individual born in the
event, we know that there are exactly two parents (as this is an
assumption of our backwards in time model), which are located
uniformly in the segment [z — 1, z + 1]. We can then only see an
increase in N(x) if one or both of these parents fall in the segment
[x—1,x+ 1] N[z — 1,z 4+ 1], as shown in the hatched region in
Fig. B.11. The probability that a given parent falls in this region is
p, = 1 — |x — z|/2. Thus, conditional on at least one individual
being born, the expected number of parents falling in the interval
is 2p, = 2 — |x — z|. The mean increase in N (x) due to an event at
z € [x — 2, x + 2] is therefore

1 x+2
: / E[GN@)] @ — x — 2]) dz.
x—2

To derive the mean decrease in n(x) due to events, we require
some new notation. Let N*(I) denote the number of individuals in
the interval I, so that N*([x — 1, x + 1]) = N(x). We know that
only the individualsin [x — 1, x4+ 1] N[z — 1, z 4+ 1] can potentially
reduce N(x) for an event centred on z. Since each individual has
a probability u of being born (thereby reducing N(x), as we are
looking backwards in time), the mean decrease is uN*([x — 1, x +
1]N[z—1, z+ 1]). Now, during a reproduction event the locations
of the parents are always uniformly distributed over the area of

0.0007

— Observation
-- E[a-w"]
(17u)F[N]
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Fig. B.12. Evaluation of Eq. (B.1) from simulation data. To calculate the derivative
of n(t, x) = E[N(t, x)], we estimate n(t, x) after 2 x 106 events, corresponding to 20
generations and after 2 x 10° + 10* events, and then report the difference divided
by 10%. Also shown are the results of evaluating Eq. (B.1) using (1 — u)EN©9] and
E[(1 — u)N©¥] as described in the text. Expectations were calculated by taking the
mean over 10000 replicates.

the event, and so we make the approximation that individuals are
uniformly distributed in the interval considered. We thus have

2

Recall from Section 3.2 that reproduction events occur homoge-
neously in space and time at rate 1 and that the region affected
by any of them has radius 1 (more general rates and radii can be
obtained by a simple change of time and space scales). Since only
events with centre z € [x — 2, x + 2] may affect the individuals
presentin [x — 1, x4+ 1], we obtain that the mean reduction in n(x)
is given by

un(x) [*+? |x — z| un(x)
1 —_ dZ =
s /., 2 2

E[N*(x — 1,x+ 11N [z — 1,z + 1] =~ E[N(x)] <] X —z|> '

In units of generation time, events fall at rate 1/(2u) per unit
time per unit area. Combining the positive and negative parts of
the mean change in n(t, x) we have

2dt un(t, x)
n(t+dt,x) —n(t,x) = — | — 5
u

1 x+2

x Z/ E[i(Nz)] (2 — |x —z]|) dz) + O(dt?).
x—2

Then, approximating again by assuming that E[u(N(z))] =~

u(n(z)), we arrive at

x+2 5
M:—n(t,x)—kf M(2_|X_Z|)dz'
at -2 2

Eq. (B.1) is a useful description of the dynamics of n(t, x),
but it is, unfortunately, only an approximation. The reason for
the approximate nature of this equation is that n(t, x) models
the expected value of the number of ancestors in the region
around x, not the full distribution. This leads to a rather poor
approximation in this case because the equation contains the
nonlinear term u(n(z, t)). Fig. B.12 plots the observed value of
an/dt from simulations and compares this with predictions made
from (B.1). In one prediction we evaluate the equation in the
straightforward way, evaluating u(n(t, x)) directly as 1 — (1 —
u)EINEX] This method leads to substantial errors, as we would
expect from Jensen’s inequality. However, if we evaluate u(n(t, x))
as 1 —E[(1 — u)N®?] (using simulated values) we see a very close
agreement between the observed and predicted values of dn/dt.

(B.1)
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Thus, Fig. B.12 shows that (B.1) is correct in a limited sense, but
is also fundamentally flawed due to the incorrect assumption that
E[(1—u)NE0]is equal to (1 — u)*IN 9] [n fact, the main problem
comes from the large fluctuations in N(t, x) at the tip of the wave
and we expect that a better understanding of the actual value of
E[(1 — u)V®®] in this region of space should yield a much better
approximation of the wave.

Nonetheless, Eq. (B.1) provides us with a useful approach to
characterising the wave of pedigree ancestors, and does predict
some aspects of the wave to high accuracy. To simplify, we
approximate (B.1) by taking the Taylor series of u(n(t, z)) to order
three about x, obtaining

an an) 2 an\?2
— = —n4+2—-~ — =1 —-uw'log(1 —u)? | —
at nt u 3u( w” log( W <8x>
2 2
— =1 -u"log(1 —u)—.
3u( u)" log( u)sz

We are most interested in the case of large effective density and we
can therefore approximate further in the case of small u to obtain
the partial differential equation

an 2 2 9%n
— — —n + 7(1 _ efun) + 7efun
u

ot 3¢ e (8.2)

Appendix C. Wave shape for the Fisher-KPP equation

The shape of the wave front for such a wave is found (after a
suitable scaling of space and time) by solving

3p _ dp
=—+4+c—+p(1—-p) =0. C1
oz T oy p(1—p) (C1)
Writing z = dp/dx, we see that this is equivalent to solving
0z 5 p(1—p) ox 1
ap p ap  z(p)
for 0 < p < 1. We know that the wavefront decays exponentially
(with parameter 1 when ¢ = 2) close to the front and so we
take initial conditions z(0.999) = —0.009 and x(0.999) = 0.

This gives us a function x(p) mapping the relative population size
p to position in the front. We then invert this function to map
position x to p(x), and use this function to determine the wave
centre z. We then plot p(x)/(1 — p(x)) (on a logarithmic scale)
against (x — z)/+/2 log 2 to obtain the curve in Fig. 2.

Appendix D. Speed of a discrete Fisher wave

Suppose that we replace the classical Fisher-KPP equation by
a discrete space version, in which the Laplacian is replaced by the
discrete Laplacian. The simplest way to identify the wave speed for
the classical equation is to look for solutions of the form e™"* for
Eq. (C.1). This gives a relationship between y and c and the speed
of the wave is the smallest ¢ for which y is real-valued. To mimic
this in the discrete case, we seek a travelling wave solution of the
form z'=%. This leads to

¢ m 1
zt=AM1+=(z2—-24+ - .
2 z

For example, setting m = 1/2 and solving numerically for z and
c, there is a minimum speed at ¢ = 0.78 (and z = 0.124). This is
appreciably slower than the speed of the corresponding wave in a
continuum which is /2 log 2 ~ 1.177.
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