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Abstract

The emergence of drug resistant pathogens is a serious public health problem. It is a long-
standing goal to predict rates of resistance evolution and design optimal treatment strate-
gies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific dif-
ferences in the evolutionary dynamics leading to resistance. However, it remains largely
unknown why the rates of resistance evolution via spontaneous mutations and the diversity
of mutational paths vary substantially between drugs. Here we comprehensively quantify
the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary
dynamics, in the presence of eight antibiotics representing the main modes of action. Using
precise high-throughput fithess measurements for genome-wide Escherichia coli gene dele-
tion strains, we find that the width of the DFE varies dramatically between antibiotics and,
contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence
of stress. We show that this previously underappreciated divergence in DFE width among
antibiotics is largely caused by their distinct drug-specific dose-response characteristics.
Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from
genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic
nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for
nitrofurantoin than for other drugs. A population genetics model predicts that resistance
evolution for drugs with this property is severely limited and confined to reproducible muta-
tional paths. We tested this prediction in laboratory evolution experiments using the “morbi-
dostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin
resistance indeed evolved extremely slowly via reproducible mutations—an almost para-
doxical behavior since this drug causes DNA damage and increases the mutation rate.
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Overall, we identified novel quantitative characteristics of the evolutionary landscape that
provide the conceptual foundation for predicting the dynamics of drug resistance evolution.

Author Summary

When bacteria acquire drug resistance through mutation of their genomes, it renders
once-powerful treatments useless. For some antibiotics, bacteria develop resistance rap-
idly, while for other antibiotics this process can be very slow. The causes of such differ-
ences in evolutionary dynamics between drugs remain poorly understood. Determining
how these mutations that confer drug resistance affect bacterial fitness is a crucial require-
ment for developing predictions about evolution. In this study, we systematically mea-
sured the fitness effects of thousands of mutations that mimic all viable spontaneous gene
disruptions in the bacterium Escherichia coli, when exposed to eight different antibiotics
that represent the main modes of drug action. We find that the overall magnitude of these
fitness effects varies enormously among antibiotics and show that this phenomenon is
explained by the drug-specific response of bacteria to small changes in drug dose. We fur-
ther show that, unlike the fitness effects—which vary greatly—the changes in tolerated
drug concentration generated by resistance-conferring mutations are similar for most
drugs, with the notable exception of an outlier drug called nitrofurantoin (which has an
extremely small tolerated drug concentration range). Using a combination of mathemati-
cal modeling and evolution experiments, we propose new quantitative measures that
enable partial predictions about how quickly resistance to a given drug will evolve and
whether it will reproducibly occur by exploiting the same mutations.

Introduction

The recent concurrence of a diminishing discovery rate of novel antibiotics with rapidly emerg-
ing drug resistant pathogens is an alarming concern for global public health [1-3]. For some of
the most worrisome infectious diseases, including tuberculosis, drug resistance evolves mainly
via spontaneous mutations that render antibiotics ineffective [4,5]. A possible way of averting
the looming resistance crisis is developing novel treatment strategies that use established drugs
in ways that minimize resistance evolution [6-9]. To rationally design such strategies, it is cru-
cial to understand the genetic origins and evolutionary dynamics leading to drug resistance.
The ultimate goal is to predict rates of resistance evolution for different drugs and to design
optimal treatment strategies accordingly [10]. The dynamics of spontaneous resistance evolu-
tion under well-controlled conditions varies markedly among antibiotics: e.g., trimethoprim
resistance evolves via reproducible mutations in its target enzyme (dihydrofolate reductase,
DHFR), causing sudden step-like increases in resistance. In contrast, resistance to translation
inhibitors like chloramphenicol and doxycycline evolves gradually via diverse mutations [11].
Rates of resistance evolution vary by orders of magnitude among drugs [3]. While recent work
elucidated effects of drug combinations [6-9,12-14], mutation rate [15-17], spatial heteroge-
neity [18-20], and accessible mutational paths [21] on drug resistance evolution, the causes for
differences in the rate of evolution and the constraints on the diversity of mutational paths to
resistance among drugs remain largely unknown.

The distribution of fitness effects (DFE) of mutations is a key determinant of evolutionary
dynamics [22]. Specifically, the width of the DFE was shown to affect the rate of evolution
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(Fisher’s fundamental theorem) [23]. The DFE depends on the genetic background [24] and the
environment [25,26] and has been approximated by generating tens to hundreds of mutants
from a clonal ancestor using transposon mutagenesis or mutation accumulation [27,28] and
measuring a fitness-related trait like growth rate for these mutants [25,29-34]. Detailed informa-
tion on the shape of the DFE is crucial for predicting rates of drug resistance evolution but little is
known about the DFE of mutations in bacteria under antibiotic stress despite great recent
advances in chemical genomics [35,36]. In particular, how the width of the DFE is affected by the
presence of drugs is unknown. To address this issue, we quantified the DFE under antibiotics by
measuring the growth rates of genome-wide Escherichia coli gene deletion strains. The width of
the DFE varies considerably among antibiotics—an effect we found to be explained by the drugs’
distinct dose-response characteristics. The underlying variations in inhibitory concentrations
resulting from genome-wide genetic perturbations have similar magnitude for most antibiotics
but are extremely small for the prodrug nitrofurantoin. We provide evidence supporting that this
small resistance variability strongly affects evolutionary dynamics for nitrofurantoin, limits resis-
tance development, and confines evolution to reproducible mutational paths.

Results

Many spontaneous mutations lead to complete or partial loss of protein function (e.g., through
protein truncation), which can be beneficial in the presence of antibiotics [13,17,35,37]. In contrast,
large-effect resistance mutations that modify the drug target or protoresistance genes are extremely
rare. Consequently, the DFE is dominated by loss-of-function mutations, and its robust statistical
properties (i.e., those that do not depend sensitively on outliers) are unequivocally determined by
the entirety of these mutations. We thus quantified the DFE for genome-wide loss-of-function
mutations using precise growth rate measurements of 3,985 nonessential E. coli gene deletion
strains [38] (Fig 1A and 1B; Materials and Methods). Specifically, we determined DFEs for eight
antibiotics representing the common modes of action at intermediate concentrations reducing
growth of the drug-sensitive parent strain by ~30% (Table 1 and Fig 1C). Three different beta-lac-
tams (ampicillin, cefoxitin, and mecillinam) were included to represent this particularly important
drug class. At low drug concentrations, the DFE becomes indistinguishable from that in growth
medium alone where, unlike in yeast [39], most loss-of-function mutations have deleterious fitness
effects (Fig 1B); at high drug concentrations where no strain can grow, the DFE becomes inconse-
quential with a single peak at zero. However, at intermediate antibiotic concentrations, mutations
had diverse fitness effects and many were beneficial, yielding DFEs of distinct shape (Fig 1C).

The width of the DFE (“fitness variability”) varied dramatically among antibiotics. For the
beta-lactams mecillinam, cefoxitin, and ampicillin, the DFE was extremely wide; various inter-
mediate widths occurred for other drugs (Fig 1C). Interestingly, in the presence of trimetho-
prim or nitrofurantoin, the DFE was narrower than that in the absence of a drug (Fig 1B and
1C)—a notable exception to the paradigm that stress generally increases fitness variability
[26,40]. Thus, identical genome-wide mutations lead to substantially different fitness variabil-
ity under different antibiotics.

These differences in fitness variability are not random; we found that DFE width correlates
with the dose-response characteristics of the drugs (Fig 2). Specifically, we quantified the shape
of the wild type (WT) dose-response curve (growth rate g as a function of drug concentration
¢) for each drug using Hill function fits [41,42] of the form

o 1)
gle) = T4 (c/IC,) (1)
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Table 1. Antibiotics used in this study.

Abbreviation

AMP
FOX
CHL
CPR
MEC

NIT
TET
TMP

Drug

Ampicillin
Cefoxitin
Chloramphenicol
Ciprofloxacin
Mecillinam
Nitrofurantoin
Tetracycline
Trimethoprim

doi:10.1371/journal.pbio.1002299.t001
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Fig 1. Fitness variability changes drastically in the presence of different antibiotics. (A) Sample growth
curves (optical density over time) of wild type (WT; black) and gene deletion mutants pdxJ (green) and iscS
(red); yellow lines are exponential fits (Materials and Methods). (B) Histogram of growth rates (i.e.,
approximated DFE) of ~4,000 gene deletion strains in the absence of drug; histogram of 476 WT replicates is
outlined in black. (C) DFE in the presence of the antibiotics trimethoprim, nitrofurantoin, tetracycline,
chloramphenicol, ciprofloxacin, mecillinam, cefoxitin, and ampicillin (Table 1); vertical black lines show
median of WT replicates; drugs were used at concentrations inhibiting WT growth by one-third. Growth rates
are normalized to median of WT in the absence of a drug. The interquartile ranges (IQRs) of the DFEs are
shown in Fig 2B. Numerical data is in S1 Data.

doi:10.1371/journal.pbio.1002299.g001

Here, ICsy is the concentration required for 50% growth inhibition, g, the growth rate in the
absence of drug, and the Hill coefficient n measures the “dose-sensitivity” of growth rate to rel-
ative drug concentration changes; the steepness of the dose-response curve increases with .
Dose-sensitivities ranged from n ~ 1.4 (trimethoprim) to n ~ 9.1 (ampicillin) (Fig 2A and
Table 1) and strongly correlated with DFE width (Fig 2B). This observation suggests that the
differences in fitness variability under antibiotics are largely due to distinct drug-specific dose-

sensitivities.

Dose-sensitivity n ICs0
9.1+1.1 3.4+ 0.1 pg/mL

Mode of action (known target)

Cell wall (transpeptidase)

Cell wall 6.7+1.3 2.4 +0.1 yg/mL
Protein synthesis (50S ribosome subunit) 26+0.2 2+ 0.05 pg/mL
DNA replication (gyrase) 3.1+£0.2 5.5+ 0.2 ng/mL
Cell wall (PBP2) 7305 45.7 + 0.6 ng/mL
Multiple mechanisms 28+0.3 2.6+ 0.1 pg/mL
Protein synthesis (30S ribosome subunit) 23+0.3 440 + 20 ng/mL
Folic acid synthesis (DHFR) 1.4+£0.1 160 + 6 ng/mL
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Fig 2. The drug-specific dose-sensitivity is robust to genetic perturbations and correlates with fitness
variability. (A) Dose-response curves for eight antibiotics; circles (®) show trimethoprim; pluses (+),
tetracycline; downward triangles (v), chloramphenicol; stars (v), nitrofurantoin; squares (®), ciprofloxacin;
leftward triangles (+), cefoxitin; triangles (4), mecillinam; rightward triangles (>), ampicillin. Dose-sensitivity n
is shown (Materials and Methods). (B) Scatterplot of dose-sensitivity n and DFE width (IQR); Pearson’s p =
0.96, p = 1.3 x 107%; n error bars show standard deviation of replicates; DFE width error bars show bootstrap
95% confidence interval (Materials and Methods). Horizontal dashed line shows DFE width in the absence of
drug (cf. Fig 1B). Gray line shows a linear relation as a guide to the eye. (C) Mecillinam dose-response curves
for 78 arbitrary deletion mutants (purple; see S1 Data) and 17 WT replicates (black). (D) Same dataasin C
with concentration rescaled to ICso and growth rate response rescaled to go (Materials and Methods). See
also S1 Fig Numerical data is in S1 Data.

doi:10.1371/journal.pbio.1002299.g002

To further elucidate this relation between dose-sensitivity and DFE width, we asked how
dose-response curves change in mutants. We measured dose-response curves of 78 gene dele-
tion mutants for each drug; these mutants are an arbitrary set of gene deletion strains and were
used to represent the typical genetic diversity of genome-wide gene deletions (see S1 Data for a
complete list of these strains). The ICs, and the growth rate in the absence of drug clearly
changed in mutants (Fig 2C and S1 Fig). However, upon linear rescaling of growth rate and
drug concentration, dose-response curves collapsed back onto the WT curve yielding the same
Hill coefficient, suggesting that dose-sensitivity is robust to genetic perturbations (Fig 2D and
S1 Fig; Materials and Methods). In general, mutant dose-sensitivities were narrowly distributed
around the WT value but IC5, values varied considerably (S1 Fig). While dose-sensitivity was
reported to change as a result of constitutive resistance enzyme expression [43], it is similarly
conserved in mutants evolved for spontaneous drug resistance [41]. These observations sup-
port that mutants often experience considerably different effective drug concentrations, i.e.,
they respond to the drug exactly like the WT upon suitable rescaling of the drug concentration,
but their drug-specific dose-sensitivity is remarkably unaffected.

The clear linear correlation between dose-sensitivity and DFE width (Fig 2B) could indicate
that the changes in drug resistance resulting from mutations have similar magnitude for differ-
ent antibiotics. To explore this possibility and globally compare the resistance effects of
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Fig 3. Resistance variability is similar for diverse antibiotics but extremely low for nitrofurantoin. (A) Schematic: the effective drug concentration ces
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drug (x-axis); the dose-sensitivity n determines the change in distribution width as shown. (B) DEC for different antibiotics; arrows show IQR; effective drug
concentrations are normalized to the actual concentration. (C) DEC width (IQR) for different antibiotics. (D) Width of the distribution of relative IC5, changes
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from bootstrap (D), respectively; lighter bars show distribution width resulting from measurement noise alone (Materials and Methods). Note that the
difference for chloramphenicol between panels C and D is not significant. Numerical data is in S1 Data.

doi:10.1371/journal.pbio.1002299.g003

mutations between drugs, we inferred the effective drug concentrations for genome-wide
mutants from their growth rates measured at fixed concentration. Here, the effective drug con-
centration for a mutant is defined as the drug concentration that has the same inhibitory effect
on the WT (Fig 3A; Materials and Methods): a mutant that is more resistant than the WT expe-
riences a lower effective drug concentration, while a more sensitive mutant experiences a
higher one. The effective drug concentration is closely related to the ICs,: provided that the
dose-sensitivity n of the mutant is the same as that of the WT, a change in effective drug con-
centration by a factor o > 0 in a mutant is equivalent to a change in drug resistance (ICso) by
1/a. We thus used the effective drug concentration as a convenient way of quantifying changes
in drug resistance of mutants. Specifically, we capitalized on dose-response curve rescaling (Fig
2C and 2D) to convert the DFE (Fig 1C) into a distribution of effective concentrations (DEC),
which encapsulates the changes in resistance of genome-wide mutants for each drug; the dose-
sensitivity determines how the distribution width changes in this conversion (Fig 3A; Materials
and Methods). The resultant DEC width (“resistance variability”) was similar for most drugs
and covered approximately two-fold resistance changes (Fig 3B and 3C). The width of the dis-
tribution of relative ICs, changes for 78 mutants (Fig 2C and 2D and S1 Fig) was similar to the
DEC width for each drug, further corroborating this result (Fig 3D). This similar resistance
variability among drugs was unexpected given their distinct modes of action (Table 1 and S1
Table) and dissimilar resistance effects of individual mutations (S2 Fig). It entails that the
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number of readily accessible mutations leading to resistance changes of a given magnitude is
similar for unrelated drugs, suggesting that there is a common “step size” in drug resistance
space accessible by mutations; this in turn implies that the varying DFE widths (Fig 1C) are
largely explained by the different dose-sensitivities of the drugs.

Nitrofurantoin had strikingly low resistance variability: its DEC width was only slightly
above our detection limit (Fig 3C). Fine resolution dose-response curve measurements corrob-
orated that nitrofurantoin ICs, values changed little in mutants (Fig 3D and S1G Fig). Ampicil-
lin also had slightly lower resistance variability than other antibiotics but, unlike for
nitrofurantoin, resistance variability for ampicillin was far above the detection limit of our
assay (Fig 3C and 3D and S1M Fig). Thus, genome-wide genetic perturbations cause extremely
small resistance variability for nitrofurantoin compared to other antibiotics—the magnitude of
the changes in effective drug concentration accessible by readily available mutations is
extremely small for this drug.

Since resistance variability reflects the step size in drug resistance space accessible by typical
mutations, we hypothesized that it affects the dynamics of evolutionary adaptation to antibiot-
ics. To test this hypothesis, we first studied a stochastic population genetics model describing
an evolving asexual population of fixed size. Mutations were captured by relative IC5, changes
sampled from log-normal distributions resembling the shape of the empirically determined
DEC:s (Fig 3B); the corresponding selection coefficients were calculated via the dose-response
curve. For simplicity, we assumed that the resistance effects of multiple mutations are indepen-
dent. The model further captured genetic drift and clonal interference (Materials and Meth-
ods). At constant drug concentration, fitness in this model rapidly saturates after fixation of a
few resistance-conferring mutations. We thus focused our analysis on a situation in which the
drug concentration is steadily increased to maintain constant selection pressure for resistance
(Materials and Methods). Simulations for this situation showed that the rate of resistance evo-
lution increases with DEC width (Fig 4A and 4B and S3A-S3D Fig)—a plausible effect as wider
DEC implies greater resistance increases and selection coefficients for typical mutations, thus
increasing the rate at which mutations escape drift and get fixed in the population (S4 Fig).
Beyond the abundant mutations captured so far, rare large-effect resistance mutations (e.g., in
the drug target) are available for some drugs. For instance, trimethoprim resistance evolves pri-
marily via a few large-effect point mutations and promoter mutations in folA, which codes for
the drug target DHFR [11], and the first steps in nitrofurantoin resistance evolution are usually
mutations in the enzymes nfsA and nfsB, which activate this prodrug [44]; in contrast, resis-
tance to most ribosome inhibitors (such as chloramphenicol and tetracycline) does typically
not involve any mutations in the drug target [11]. While we cannot predict whether or not
such large-effect mutations are available for a given drug, we can test in our model how their
availability affects the evolutionary dynamics. To this end, we assumed that rare mutations can
occur that lead to a five-fold increase in resistance (Materials and Methods); this value is simi-
lar to typical resistance effects of drug target mutations [11,44]. For drugs with low resistance
variability, our model predicts that such large-effect mutations are reproducibly selected early
and evolution becomes sluggish when they are exhausted (Fig 4A); in contrast, greater resis-
tance variability enables sustained resistance evolution via diverse readily available mutations
(Fig 4B).

To further test these hypothesized consequences of differences in resistance variability
between drugs, we performed laboratory evolution experiments. Specifically, we used the “mor-
bidostat”—an automated device that maintains nearly constant population size and growth
inhibition by feedback-controlled inflow of growth medium and drugs as resistance evolves
[11]. We performed separate evolution experiments for nitrofurantoin and chloramphenicol,
maintaining six populations evolving in parallel for each drug. Nitrofurantoin and
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lines are sample runs; dark lines are mean of 200 runs; inset: distribution of relative ICs, changes used in simulations (Materials and Methods). (B) Same as
in panel A for wider DEC (Materials and Methods). (C, D) Results from morbidostat laboratory evolution experiments: IC5q increase over time for
nitrofurantoin (C) and chloramphenicol (D); light lines are individual runs; dark lines are mean, error bars standard deviation; shaded region in C indicates
early phase during which large-effect mutations fix (Materials and Methods). (E) Mutated loci in nitrofurantoin (left) and chloramphenicol (right)-resistant
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t test; error bars show jackknife standard error (Materials and Methods). Numerical data is in S1 Data. Whole genome sequencing results are in S2 Table and
S3 Table.

doi:10.1371/journal.pbio.1002299.g004

chloramphenicol were selected because of their substantially different resistance variability (Fig
3C) but nearly identical dose-sensitivity (Fig 2A and 2B and Table 1); the latter is an important
prerequisite for quantitative comparisons between drugs as the rate of resistance evolution
increases with the dose-sensitivity (S3E-S3H Fig) [18,43]. Nitrofurantoin resistance consis-
tently evolved in two phases: an early phase with a rapid resistance increase (~20-fold within
10 d, Fig 4C) followed by a second phase in which evolution proceeded at a strikingly low rate,
resulting in a mere ~2-fold additional increase after 21 d (Fig 4C). These evolutionary dynam-
ics suggest that large-effect mutations are exhausted during phase 1, followed by sluggish adap-
tation in phase 2, consistent with our predictions from nitrofurantoin’s low resistance
variability (Fig 4A). In contrast, chloramphenicol resistance evolved steadily throughout the
experiment to an ~200-fold final increase (Fig 4D).

Whole-genome sequencing corroborated this scenario and revealed that nitrofurantoin
resistance evolves via highly reproducible mutational paths. To reveal the genetic changes that
underlie the resistance increase in the dominant clone in each population, we used the estab-
lished approach of sequencing one isolate from each evolved population after 10 and 21 d,
respectively; on average, about five mutations per clone were identified for both drugs after 21
d (S2 Table; Materials and Methods). In all nitrofurantoin replicates, loss-of-function muta-
tions in nfsA, nfsB (enzymes that activate this prodrug) [44], mprA (a multidrug resistance
repressor) [45], and ompR (an outer membrane porin regulator) [45] rapidly fixed, and three
replicates had mutated RNA polymerase (rpoA, rpoB); other mutations in nitrofurantoin-
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resistant clones mostly occurred in phase 2, were irreproducible, and yielded marginal resis-
tance increases (Fig 4C and 4E and S2 Table). In contrast, mutational paths to chloramphenicol
resistance were diverse [11]: only mutations in the promoter of the multidrug efflux pump
mdfA were present in all replicates; mutations in soxR and in the lon promoter occurred in four
replicates while numerous other mutations were idiosyncratic (Fig 4E and S2 Table). The low
mutation diversity for nitrofurantoin (Fig 4E) is remarkable as this drug, unlike chlorampheni-
col, causes DNA damage (S1 Table) and triggers the SOS response (S5 Fig), thus likely increas-
ing mutation rate [15,17], which should normally accelerate adaptation (S3]-S3M Fig) and
diversify mutational paths. The seemingly paradoxical observation of the exact opposite behav-
ior is rationalized by nitrofurantoin’s low resistance variability (Fig 3C and 3D and Fig 4A).
Together, these data support the view that resistance variability is a fundamental system-level
property that determines the step size in resistance space accessible by readily available muta-
tions with substantial effects on evolutionary dynamics.

The dynamics of resistance evolution is also affected by the dose-sensitivity. Our simula-
tions show that the rate of resistance evolution increases with increasing dose-sensitivity (S3E-
S3H Fig). Further, for drugs with low dose-sensitivity, the availability of large-effect mutations
in the drug target leads to sudden step-like increases in resistance that are separated by periods
of stagnation during which resistance does not increase (S6A Fig; Materials and Methods).
These jumps in resistance occur each time a large-effect target site mutation sweeps through
the population; the periods of stagnation between jumps reflect that it is unlikely for off-target
mutations to fix in the population, because their selection coefficients are extremely low due to
the low dose-sensitivity (Fig 3A). This dynamics of resistance evolution has been observed for
trimethoprim [11], suggesting that its extremely low dose-sensitivity (Fig 2A) contributes to
the almost exclusive selection of target site mutations in DHFR [11]. In contrast, higher dose-
sensitivity would lead to a more steady resistance increase and the more frequent fixation of
off-target mutations (S6B Fig; Materials and Methods). These results indicate that the discrete
dynamics of trimethoprim resistance evolution is due to this drug’s extremely low dose-
sensitivity.

Discussion

We provide a systematic analysis of the DFE in the presence of antibiotics and a quantitative
foundation for predicting differences in the dynamics of resistance evolution between drugs.
Specifically, we showed that resistance variability, i.e., the magnitude of the changes in drug
resistance resulting from genome-wide genetic perturbations (Fig 3), and dose-sensitivity, i.e.,
the magnitude of the growth rate changes resulting from drug concentration changes (Fig 2),
are key drug-specific properties that jointly shape the DFE (Fig 1). Resistance variability is a
fundamental system property that shapes the evolutionary landscape; unlike the DFE, it is
independent of drug concentration, sets the step size in resistance space accessible by typical
mutations, and thus delimits the cell’s propensity for evolving spontaneous drug resistance.
Identical resistance variability for different drugs is often implicitly assumed in theoretical
arguments [18,20]; our data validate this assumption for most antibiotics but negate it for
nitrofurantoin. The causes of nitrofurantoin’s low resistance variability remain unknown; a
potential explanation is that nitrofurantoin may perturb cell physiology in ways that are funda-
mentally harder to compensate genetically than for other drugs, as it triggers reactive species
formation which simultaneously damages diverse cell components [46].

Based on the observed large difference in resistance variability between nitrofurantoin and
chloramphenicol, we made predictions for the rates of resistance evolution and the diversity of
mutational paths for these drugs which we confirmed in evolution experiments (Fig 4). Several
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predictions of our analysis for other drugs are also in qualitative agreement with results of
recently published evolution experiments that were performed for large sets of antibiotics
using manual protocols with increasing drug concentration [7,14]. Specifically, ampicillin
resistance consistently evolved more slowly than cefoxitin resistance [7,14] (comparing the
fold-increase in minimal inhibitory concentration (MIC) at the end of the experiment under
strong selection in Supplementary Figure 1 in [7] and in Supplementary Table SI in [14],
respectively); this is consistent with the expectation from our analysis since resistance variabil-
ity for ampicillin is lower than for cefoxitin (Fig 3C), while the dose-sensitivity of these two
drugs is similar (Table 1). We can further directly compare the rates of resistance evolution for
tetracycline, chloramphenicol, ciprofloxacin, and cefoxitin in these datasets, as these drugs
have almost identical DEC width (Fig 3C), and we thus expect that their rates of resistance evo-
lution should correlate with their dose-sensitivity. Indeed, this is the case: tetracycline resis-
tance consistently evolved more slowly than chloramphenicol resistance, which in turn evolved
more slowly than ciprofloxacin resistance which again evolved more slowly than cefoxitin
resistance [7], reflecting the order in which the dose-sensitivity of these drugs increases

(Table 1). Still, to statistically validate the generality of our results for resistance evolution,
future work is required in which the predicted effects of resistance variability and dose-sensitiv-
ity (S3 Fig) on resistance evolution should be tested systematically for a large set of different
drugs in well-controlled evolution experiments as in Fig 4. Advances in fluidic tools [47] and
sequencing technology may soon render such large-scale evolution experiments feasible.

Our analysis further revealed that, for each drug, there are hundreds of gene deletion
mutants that have increased resistance compared to the WT (Fig 3B). For chloramphenicol,
significantly fewer mutants have increased resistance than for other drugs (Fig 3B and S1] Fig);
in contrast, for trimethoprim the majority of mutants have increased resistance (Fig 3B and
S1C Fig). It will be interesting to elucidate the underlying causes of these differences of global
gene deletion effects between drugs in future work. Only very few of the corresponding loss-of-
function mutations are selected in evolution experiments (Fig 4E and S4 Table), highlighting
that it remains hard to predict specific mutations based on these data. Still, these observations
support the view that there is a huge reservoir of easily accessible loss-of-function mutations
that can lead to moderate resistance increases, at least during initial adaptation to antibiotics.

Our result that resistance variability for nitrofurantoin is exceptionally low may have rele-
vance beyond the laboratory: to this day, nitrofurantoin resistance levels for E. coli isolates
from urinary tract infections remain astonishingly low compared to other antibiotics despite
its clinical use for over 50 years [48,49]. This situation may be due to nitrofurantoin’s extremely
low resistance variability. It will be interesting to extend our approach to the most worrisome
pathogens and larger sets of drugs to systematically investigate the relation between empirical
evolutionary dynamics and the quantitative determinants of drug resistance evolution revealed
here.

Materials and Methods
Strains and Drugs

Deletion strains are from the Keio collection of 3,985 nonessential gene deletions [38]. Since
the strains in this collection have a kanamycin resistance marker, kanamycin resistance was
introduced on a low copy plasmid (pUA66, [50]) in the parent strain (BW25113, “WT”). All
growth rate measurements of gene deletion strains were performed in lysogeny broth (LB)
medium. Drugs were obtained from Sigma Aldrich (catalogue numbers: ampicillin, A9518;
cefoxitin, C4786; ciprofloxacin, 17850; chloramphenicol, C0378; mecillinam, 33447; nitrofur-
antoin, N7878; tetracycline, 268054; trimethoprim, 92131). Drug stocks were prepared in water
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(ampicillin, cefoxitin, ciprofloxacin, mecillinam), ethanol (chloramphenicol, tetracycline, tri-
methoprim), or dimethylformamide (nitrofurantoin), passed through a 0.22 pm filter, and
stored in the dark at —20°C.

Growth Rate Measurements

High-throughput growth rate measurements were performed as described [51]. In brief, strains
were incubated for ~20 h on 96-well plates (nontreated transparent flat bottom, Nunc) con-
taining 200 pl medium per well. Cultures were inoculated automatically using a replicator
(V&P scientific) transferring ~0.2 ul from an (thawed) overnight culture kept at —80°C with
15% glycerol. As in previous studies [35,52], optical density (OD) measurements at 600 nm
were used to quantify bacterial growth as a proxy for fitness; these measurements were per-
formed every ~30 min in a plate reader (Tecan Infinite F500, 5 flashes, 10 ms settle time; filter:
D600/20x; Chroma). The plates were kept in an incubator (Liconic Storex) at 30°C, >95%
humidity, and shaken at 720 rpm. The growth rate in exponential phase was quantified from
the OD increase over time (Fig 1A) by a linear fit of log(OD) in the range 0.022 < OD < 0.22
(yellow lines in Fig 1A); WT growth was reliably exponential in this range in all conditions
used. The cultures have already undergone approximately six generations when they are in this
OD range and have thus reached a steady state of exponential growth where the rate of biomass
increase that is measured by OD is the same as the rate of cell number increase. Drugs were
used at intermediate concentrations that inhibit WT growth by about one-third. Cell death is
negligible at these low drug concentrations, which cause only relatively mild stress and growth
inhibition. Late growth, occurring after 1,000 min, was discarded because in rare cases, fast
growing strains (most likely resistant mutants) overtook the population. For beta-lactams
(ampicillin, cefoxitin, and mecillinam), only early growth (happening before 450 min for ampi-
cillin and mecillinam, and before 300 min for cefoxitin) was considered because beta-lactams
can cause early exit from exponential phase at considerably lower cell densities than in the
absence of drug (see e.g., Fig 2d in [53]); this effect was stronger for cefoxitin than for ampicil-
lin and mecillinam, which is why an earlier time cutoft had to be used. Moreover, many
instances of late fast growth occurred for these drugs—an effect that may be due to drug decay
as these drugs can be relatively unstable in aqueous solution [54]. All growth rates were nor-
malized to that of the parent strain growing in LB on the same day. Our automated measure-
ments led to highly reproducible growth rates: 476 replicates of WT growth rate measurements
had a variation coefficient (standard deviation over mean) of typically <5%. Medium evapora-
tion and edge effects were undetectable over the assay period.

Analysis of Dose-Response Curves and Effective Drug Concentrations

Dose-response curves (Eq 1 and Fig 2) were fitted with a Hill function using the least square fit-
ting function Isqcurvefit in Matlab 7.13 (Mathworks). The relative error of the fit parameters
was calculated from the standard deviation of replicate measurements of the dose-response
curve. Dose-response curves g(c) in Fig 2D and S1A, S1B, S1D and S1E Fig were rescaled

by dividing g and ¢ by the fitted gy and ICs, respectively. The conversion of growth rate to
effective drug concentration (Fig 3A) was done using the inverse of the Hill function (1):

d=d,(=) " where r is the measured mutant response, # is the dose-sensitivity of the parent

strain (n = | %gg((f;) | for ¢ > ICsy), and d, is the actual drug concentration used (identical to

the effective drug concentration experienced by the WT); effective drug concentrations in Fig
3B were normalized to d|, to facilitate between-drug comparison.
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Error bars in Fig 3C were calculated by smooth bootstrapping. Specifically, 5% relative
Gaussian noise (reflecting our growth rate measurement uncertainty) was added to each
mutant response before its conversion into an effective drug concentration in each iteration of
the bootstrap; further, the uncertainty of the dose-sensitivity #n was captured by adding Gauss-
ian noise with the same standard deviation as observed from replicate measurements of #
(Table 1) in each iteration. In this way, 10,000 DECs were resampled for each drug; error bars
in Fig 3C show the bootstrap standard error of the IQR. The IQR of the DEC resulting from
measurement uncertainty alone (light bars in Fig 3C) was estimated analogously for each drug
by adding 5% relative Gaussian noise to the median of all mutant responses. The error bars in
Fig 3D show 95% confidence intervals of the IQR from bootstrapping (10,000 iterations); the
IQR of the distribution of relative ICs, changes resulting from measurement uncertainty alone
(light bars in Fig 3D) was calculated from 17 WT replicate dose-response curves.

Population Genetics Model

Our theoretical description of evolutionary dynamics in the morbidostat is similar to the popu-
lation genetics model described in [55] but with fixed population size. In brief, we describe the
occurrence of mutations as a Poisson process with average rate u = 10”7 per cell and generation
in a population of fixed size N = 10°. Mutations lead to an increased concentration of 50%
growth inhibition IC3}"; specifically, the fold-change in IC, is drawn from a log-normal distri-
bution of associated normal distribution with mean zero and standard deviation o = 0.15 (Fig
4A) or 0 = 0.3 (Fig 4B). These o values imply an ~2-fold difference in IQR, similar to the
observed fold-change in width of the DECs between nitrofurantoin and chloramphenicol (Fig
3B). The width of the distributions used in Fig 4A and 4B was about 2-fold greater than the
experimentally observed values to obtain resistance increases quantitatively similar to typical
experimental outcomes; the result that the rate of resistance evolution increases with DEC
width is independent of this specific choice (S3C and S3D Fig). Details of the distribution
shape, in particular of the tails, cannot be reliably inferred from our experimental data due to
limited sampling. A log-normal distribution was used as a convenient approximation of the
DEC because its shape is similar to the observed DECs and resistance under sustained antibi-
otic selection pressure typically increases exponentially for a considerable time. Other distribu-
tion shapes resembling the observed DECs could also be used and would not affect the main
results of our simulations, which depend only on the strong effects resulting from changes in
the width of the distribution.

Mutations escape drift with probability p given implicitly by the first positive root of
p=1—-exp(—(1 + s)p), where the selection coefficient of a mutation is s = ¢"" /(g) with
the average growth rate in the population (g) and the growth rate of the new mutant
g = (1+ (c/I1Cx")")'g,. The current drug concentration c is continuously adjusted so
that the average growth rate (g) equals 0.5, mimicking the feedback control of drug concentra-
tion in the morbidostat. Large-effect mutations (Fig 4A and S6 Fig) were introduced as addi-
tional mutations providing a 5-fold increase in ICs and replace 1% of the other beneficial
mutations. Averages in Fig 4, S3 Fig, and S6 Fig were calculated from 200 simulation runs. We
independently verified these simulation results by calculating analogous numerical solutions of
the discrete generation model described in [56] that explicitly captures genetic drift without
approximations; results from both models were in excellent agreement.

Laboratory Evolution and Whole Genome Sequencing

Resistance evolution experiments were carried out in the morbidostat as described [11]. Six
replicate experiments were performed for each drug; all experiments were run in parallel. The
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ICs of evolved populations (Fig 4C and 4D) was measured as described [11]. Following previ-
ous studies [7,11], one clone was isolated from each of the six replicates, and whole genome
sequencing was performed for these clones and the MG1655 ancestor. To ensure that the
selected clones are representative of the evolved population, we verified for each chosen clone
that its dose-response curve is similar to that measured for the whole population. Genomic
DNA was purified from overnight cultures using the Promega Wizard Genomic DNA Purifica-
tion Kit (catalogue number A1120). Library preparation, multiplexing, and sequencing were
performed at the EMBL GeneCore facility. The samples were sequenced on an Illumina
HiSeq2000 (paired-end sequencing, 100 bp read length, ~140-fold coverage). Sequencing data
were analyzed using Breseq [57] (Version 0.25) and Geneious [58] (Version 7, http://www.
geneious.com). Reads were aligned to the deposited MG1655 reference (NC_000913) using
Bowtie2. The mutations identified by Breseq were manually inspected for false positives;
regions with ambiguous evidence were further examined in Geneious; all validated mutations
are listed in S2 Table. We identified several mutations in the ancestor (S3 Table); these were
included in the reference sequence and reads from the ancestor realigned to this new reference
until no additional mutations were identified by Breseq. A nitrofurantoin-resistant clone from
day 21 was sequenced in duplicate to verify reproducibility of sequencing results; the mutations
identified in both sequencing replicates agreed perfectly. For most loss-of-function mutations
that fixed in the evolution experiments, the corresponding gene deletion strain had increased
drug resistance compared to the parent (54 Table). However, the inverse of this statement does
not hold: for each drug there are many gene deletion strains that have increased resistance (S1
Data), but most of the corresponding loss-of-function mutations are not selected in the evolu-
tion experiments.

Mutation diversity in Fig 4E is defined as the entropy H = —E;[p;log, p; + (1 - pj)log,(1 - pj)],
where p; is the empirical probability that locus j is mutated in a randomly chosen evolution repli-
cate, and the summation is over all loci. This entropy H measures the diversity of mutated loci in
the six evolution replicates: loci that are reproducibly mutated in all (or none) of the six replicates
contribute zero to this measure; loci that are mutated in some, but not all, of the replicates con-
tribute a value that corresponds to the Shannon information (in bits) about the identity of the
clone gained from identifying that the locus is mutated; e.g., a locus that is mutated in half of the
replicates has p; = 1/2 and contributes exactly one bit of information to H. Error bars in Fig 4E
show two standard deviations from jackknife resampling (Matlab function jackknife). The two-
sample  test in Fig 4E was performed assuming unequal variances (Matlab function ttest2).

Gene Ontology Enrichment Analysis

We performed gene ontology enrichment analysis (S1 Table) on the 20 strains that responded
most strongly to each drug or on all strains that did not grow if these were more than 20 for a
given drug. The gene ontology database used in our analysis was retrieved from geneontology.
org (released 07/15/2014) and the gene association file linking gene names to GO numbers
from ecocyc.org [45] (GOC validation date: 06/26/2014). The p-values were obtained using a
custom implementation of Sherlock and Weng’s GO:Termfinder software [59], and Bonferroni
corrected for the number of GO terms tested.

Gene Expression Measurements

SOS response induction (S5 Fig) was measured in concentration gradients of different antibiot-
ics using LexA-regulated promoter-GFP reporter strains [50] lexA, recA, polB, recN and quanti-
fied as described [52].
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Supporting Information

S1 Data. Excel file containing the raw data for all figures.
(XLSX)

S1 Fig. Rescaling of dose-response curves and distributions of Hill function fit parameters.
(A,B) As Fig 2C and 2D for trimethoprim. (C) Scatterplot of trimethoprim dose-sensitivity n
and ICs, for mutants (colored circles) and WT replicates (black stars); marginal cumulative
distributions (“cdf”) are shown along axes. (D-F) As A-C for ciprofloxacin. (G-M) As C for
nitrofurantoin (G), tetracycline (H), chloramphenicol (J), mecillinam (K), cefoxitin (L), and
ampicillin (M). Numerical data is in S1 Data.

(TIFF)

S2 Fig. Correlations of resistance effects of genome-wide gene deletions for different antibi-
otics. (A) Pearson correlation coefficients of effective drug concentrations of genome-wide
gene deletion mutants (cf. Fig 3) for all drug pairs (Materials and Methods). (B-D) Density
scatterplots comparing effective drug concentration changes for trimethoprim and nitrofuran-
toin (B), trimethoprim and ciprofloxacin (C), and tetracycline and chloramphenicol (D).
Chloramphenicol and tetracycline have similar modes of action (translation inhibition), which
is reflected in highly correlated effective drug concentrations; a similar effect is seen for ampi-
cillin and mecillinam; correlations for all other drug pairs are weak. Note that the relatively
weak correlations between beta-lactams (with the exception of ampicillin-mecillinam) are con-
sistent with a recent chemical genomics study [35] that generally found even lower correlations
between these drugs and the highest correlation for ampicillin-mecillinam. Numerical data is
in S1 Data.

(TIFF)

S3 Fig. Effects of resistance variability, dose-sensitivity, and mutation rate on dynamics of
evolutionary adaptation to drugs in the population genetics model. (A) Simulation results
from the population genetics model as in Fig 4A. IC5, increase over time for a drug with nar-
row distribution of relative ICs, changes (o = 0.15; Materials and Methods); sample runs are
light gray; mean from 200 runs is black. (B) As A but for wider distribution of relative ICs,
changes (0 = 0.3). (C) Average fold-change in ICs after 250 generations (IC;‘)‘J) as a function
of the width of the distribution of relative IC5, changes (Materials and Methods). (D) Relative
fold-change in ICs, per fixed mutation. Increasing the width of the distribution of relative ICs
changes accelerates resistance evolution; the width of this distribution is directly reflected in
the relative fold-change in ICs, per fixed mutation. (E-H) As A-D but for varying dose-sensi-
tivity n. Reducing dose-sensitivity decelerates resistance evolution. (J-M) As A-D but for vary-
ing mutation rate p. Increasing mutation rate accelerates resistance evolution and slightly
increases the resistance increase per fixed mutation. Unless stated otherwise, the dose-sensitiv-
ity is n = 3, the width of the distribution of relative IC5, changes is 0 = 0.3, and the mutation
rateispu=10".

(TIFF)

$4 Fig. Role of resistance variability in evolutionary adaptation to drugs. (A) Schematic: the
width of the DEC determines the increase in drug resistance (i.e., the reduction of the effective
drug concentration or “step size” in resistance space) resulting from a typical beneficial muta-
tion; for a narrow DEC this increase is small (blue arrow), whereas for a wide DEC it is large
(magenta arrow). (B) This increase in drug resistance due to beneficial mutations (horizontal
arrows) translates into their selection coefficients (vertical arrows) via the dose-response curve.
A smaller resistance increase implies a lower selective advantage (blue arrows), reducing the
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probability and rate of fixation of the corresponding mutation. (C) Schematic illustrating how
DEC width affects the dynamics of resistance evolution in a morbidostat.
(TIFF)

S5 Fig. The SOS response is induced in response to nitrofurantoin. Transcriptional regula-
tion of SOS response promoters lexA, recA, polB, and recN in response to nitrofurantoin
(magenta), ciprofloxacin (gray), and tetracycline (black) as a function of growth rate at differ-
ent drug concentrations (Materials and Methods). SOS induction in response to nitrofurantoin
is similar to that of ciprofloxacin (used as positive control) at the same growth rate; in contrast,
no induction occurs for tetracycline (used as a negative control). Numerical data is in S1 Data.
(TIFF)

S6 Fig. Effect of rare large-effect mutations on resistance evolution in population genetics
model. (A) Simulation results as in Fig 4B but with low dose-sensitivity (n = 1) as observed for
trimethoprim (Fig 2A) and available large-effect (LE) mutations (Materials and Methods).
Note the step-like 5-fold increases in resistance in the individual simulation runs (gray lines).
Each of these step-like increases corresponds to the fixation of one large-effect mutation; these
events are separated by periods of stagnation during which resistance does not increase. (B) As
A but with high dose-sensitivity (n = 7) as observed for mecillinam and cefoxitin (Fig 2A). For
this higher dose-sensitivity, resistance increases more steadily with only occasional jumps as
both large-effect and other mutations are selected with high probability. Width of the distribu-
tion of relative ICs, changes is o = 0.3, mutation rate = 107",

(TIFF)

S1 Table. Gene ontology enrichment analysis for the most sensitive gene deletion strains
for all drugs.
(XLSX)

S2 Table. List of mutations identified in morbidostat evolution experiments and their pre-
dicted effects.
(XLSX)

S3 Table. List of mutations identified in the MG1655 ancestor strain and their predicted
effects.
(XLSX)

S4 Table. Drug resistance effects of gene deletions corresponding to observed loss-of-func-
tion mutations.
(XLSX)

Acknowledgments

We thank Rosalind Allen, Veronika Bierbaum, Frank Poelwijk, Matt Scott, Hildegard Uecker,
and all members of the Bollenbach and Toprak labs for fruitful discussions, comments on the
manuscript, and technical help.

Author Contributions

Conceived and designed the experiments: GC ET TBo. Performed the experiments: GC MD
TBa AG DHA TBo. Analyzed the data: GC MD TBo. Wrote the paper: GC MD ET TBo.

PLOS Biology | DOI:10.1371/journal.pbio.1002299 November 18,2015 15/18


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002299.s011

@’PLOS | BIOLOGY

Determinants of Evolutionary Dynamics Leading to Drug Resistance

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels |, Conlon BP, et al. A new antibiotic kills patho-
gens without detectable resistance. Nature. 2015; 517: 455-9. doi: 10.1038/nature14098 PMID:
25561178.

Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resis-
tance. Nat Rev Microbiol. 2011; 9: 894—6. doi: 10.1038/nrmicro2693 PMID: 22048738

Palmer AC, Kishony R. Understanding, predicting and manipulating the genotypic evolution of antibiotic
resistance. Nat Rev Genet. 2013; 14: 243-8. doi: 10.1038/nrg3351 PMID: 23419278

Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol.
2014; 12: 465-478. doi: 10.1038/nrmicro3270 PMID: 24861036

Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003; 52:
11-7. doi: 10.1093/jac/dkg269 PMID: 12805267

Imamovic L, Sommer MO. Use of collateral sensitivity networks to design drug cycling protocols that
avoid resistance development. Sci Transl Med. 2013; 5: 204ra132. doi: 10.1126/scitransimed.3006609
PMID: 24068739

Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, et al. Strength of selection pressure
is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol.
2014; 31: 2387—-401. doi: 10.1093/molbev/msu191 PMID: 24962091.

Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multi-
drug resistance. Proc Natl Acad Sci U S A. 2014; 111: 14494-9. doi: 10.1073/pnas.1409800111 PMID:
25246554,

Munck C, Gumpert HK, Wallin AIN, Wang HH, Sommer MO. Prediction of resistance development
against drug combinations by collateral responses to component drugs. Sci Transl Med. 2014; 6:
262ra156. doi: 10.1126/scitranslmed.3009940 PMID: 25391482

Martinez JL, Baquero F, Andersson DI. Predicting antibiotic resistance. Nat Rev Microbiol. 2007; 5:
958-65. doi: 10.1038/nrmicro1796 PMID: 18007678

Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance
under dynamically sustained drug selection. Nat Genet. 2012; 44: 101-5. doi: 10.1038/ng.1034 PMID:
22179135

Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, et al.
When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown
transition. PLoS Biol. 2013; 11: €1001540. doi: 10.1371/journal.pbio.1001540 PMID: 23630452

Lazar V, Nagy |, Spohn R, Csorgd B, Gyorkei A, Nyerges A, et al. Genome-wide analysis captures the
determinants of the antibiotic cross-resistance interaction network. Nat Commun. 2014; 5: 4352. doi:
10.1038/ncomms5352 PMID: 25000950.

Lazar V, Pal Singh G, Spohn R, Nagy |, Horvath B, Hrtyan M, et al. Bacterial evolution of antibiotic
hypersensitivity. Mol Syst Biol. 2013; 9: 700. doi: 10.1038/msb.2013.57 PMID: 24169403

Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and
combating the evolution of antibiotic resistance. PLoS Biol. 2005; 3: e176. doi: 10.1371/journal.pbio.
0030176 PMID: 15869329

Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via
radical-induced mutagenesis. Mol Cell. 2010; 37: 311-20. doi: 10.1016/j.molcel.2010.01.003 PMID:
20159551

Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM. Stress-induced beta-lactam antibiotic resis-
tance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J
Bacteriol. 2009; 191: 5881-9. doi: 10.1128/JB.00732-09 PMID: 19648247

Hermsen R, Deris JB, Hwa T. On the rapidity of antibiotic resistance evolution facilitated by a concen-
tration gradient. Proc Natl Acad Sci U S A. 2012; 109: 10775-80. doi: 10.1073/pnas.1117716109
PMID: 22711808

Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung C, et al. Acceleration of emergence of bacterial anti-
biotic resistance in connected microenvironments. Science. 2011; 333: 1764—7. doi: 10.1126/science.
1208747 PMID: 21940899

Greulich P, Waclaw B, Allen RJ. Mutational Pathway Determines Whether Drug Gradients Accelerate
Evolution of Drug-Resistant Cells. Phys Rev Lett. 2012; 109: 088101. doi: 10.1103/PhysRevLett.109.
088101 PMID: 23002776

Weinreich DM, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few muta-
tional paths to fitter proteins. Science. 2006; 312: 111-4. doi: 10.1126/science.1123539 PMID:
16601193

PLOS Biology | DOI:10.1371/journal.pbio.1002299

November 18,2015 16/18


http://dx.doi.org/10.1038/nature14098
http://www.ncbi.nlm.nih.gov/pubmed/25561178
http://dx.doi.org/10.1038/nrmicro2693
http://www.ncbi.nlm.nih.gov/pubmed/22048738
http://dx.doi.org/10.1038/nrg3351
http://www.ncbi.nlm.nih.gov/pubmed/23419278
http://dx.doi.org/10.1038/nrmicro3270
http://www.ncbi.nlm.nih.gov/pubmed/24861036
http://dx.doi.org/10.1093/jac/dkg269
http://www.ncbi.nlm.nih.gov/pubmed/12805267
http://dx.doi.org/10.1126/scitranslmed.3006609
http://www.ncbi.nlm.nih.gov/pubmed/24068739
http://dx.doi.org/10.1093/molbev/msu191
http://www.ncbi.nlm.nih.gov/pubmed/24962091
http://dx.doi.org/10.1073/pnas.1409800111
http://www.ncbi.nlm.nih.gov/pubmed/25246554
http://dx.doi.org/10.1126/scitranslmed.3009940
http://www.ncbi.nlm.nih.gov/pubmed/25391482
http://dx.doi.org/10.1038/nrmicro1796
http://www.ncbi.nlm.nih.gov/pubmed/18007678
http://dx.doi.org/10.1038/ng.1034
http://www.ncbi.nlm.nih.gov/pubmed/22179135
http://dx.doi.org/10.1371/journal.pbio.1001540
http://www.ncbi.nlm.nih.gov/pubmed/23630452
http://dx.doi.org/10.1038/ncomms5352
http://www.ncbi.nlm.nih.gov/pubmed/25000950
http://dx.doi.org/10.1038/msb.2013.57
http://www.ncbi.nlm.nih.gov/pubmed/24169403
http://dx.doi.org/10.1371/journal.pbio.0030176
http://dx.doi.org/10.1371/journal.pbio.0030176
http://www.ncbi.nlm.nih.gov/pubmed/15869329
http://dx.doi.org/10.1016/j.molcel.2010.01.003
http://www.ncbi.nlm.nih.gov/pubmed/20159551
http://dx.doi.org/10.1128/JB.00732-09
http://www.ncbi.nlm.nih.gov/pubmed/19648247
http://dx.doi.org/10.1073/pnas.1117716109
http://www.ncbi.nlm.nih.gov/pubmed/22711808
http://dx.doi.org/10.1126/science.1208747
http://dx.doi.org/10.1126/science.1208747
http://www.ncbi.nlm.nih.gov/pubmed/21940899
http://dx.doi.org/10.1103/PhysRevLett.109.088101
http://dx.doi.org/10.1103/PhysRevLett.109.088101
http://www.ncbi.nlm.nih.gov/pubmed/23002776
http://dx.doi.org/10.1126/science.1123539
http://www.ncbi.nlm.nih.gov/pubmed/16601193

@’PLOS | BIOLOGY

Determinants of Evolutionary Dynamics Leading to Drug Resistance

22,

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet. 2007;
8:610-8. doi: 10.1038/nrg2146 PMID: 17637733

Fisher RA. The Genetical Theory of Natural Selection. Oxford.: Clarendon Press; 1930.

Sousa A, Magalhdes S, Gordo I. Cost of antibiotic resistance and the geometry of adaptation. Mol Biol
Evol. 2012; 29: 1417-28. doi: 10.1093/molbev/msr302 PMID: 22144641

Kishony R, Leibler S. Environmental stresses can alleviate the average deleterious effect of mutations.
J Biol. 2003; 2: 14. doi: 10.1186/1475-4924-2-14 PMID: 12775217

Trindade S, Sousa A, Gordo I. Antibiotic resistance and stress in the light of Fisher's model. Evolution.
2012; 66: 3815-24. doi: 10.1111/j.1558-5646.2012.01722.x PMID: 23206139

Elena SF, Ekunwe L, Hajela N, Oden SA, Lenski RE. Distribution of fithess effects caused by random
insertion mutations in Escherichia coli. Genetica. 1998; 102—103: 349-58. http://link.springer.com/
article/10.1023/A:1017031008316 PMID: 9720287

Burch CL, Guyader S, Samarov D, Shen H. Experimental estimate of the abundance and effects of
nearly neutral mutations in the RNA virus phi 6. Genetics. 2007; 176: 467—76. doi: 10.1534/genetics.
106.067199 PMID: 17339206

Lind PA, Berg OG, Andersson DI. Mutational robustness of ribosomal protein genes. Science. 2010;
330: 825-7. doi: 10.1126/science.1194617 PMID: 21051637

MacLean RC, Buckling A. The distribution of fitness effects of beneficial mutations in Pseudomonas
aeruginosa. PLoS Genet. 2009; 5: €1000406. doi: 10.1371/journal.pgen.1000406 PMID: 19266075

Kassen R, Bataillon T. Distribution of fitness effects among beneficial mutations before selection in
experimental populations of bacteria. Nat Genet. 2006; 38: 484—8. doi: 10.1038/ng1751 PMID:
16550173

McDonald MJ, Cooper TF, Beaumont HJE, Rainey PB. The distribution of fithess effects of new benefi-
cial mutations in Pseudomonas fluorescens. Biol Lett. 2011; 7: 98—100. doi: 10.1098/rsbl.2010.0547
PMID: 20659918

Sanjuan R, Moya A, Elena SF. The distribution of fitness effects caused by single-nucleotide substitu-
tions in an RNA virus. Proc Natl Acad Sci U S A. 2004; 101: 8396—8401. doi: 10.1073/pnas.
0400146101 PMID: 15159545

Schoustra SE, Bataillon T, Gifford DR, Kassen R. The properties of adaptive walks in evolving popula-
tions of fungus. PLoS Biol. 2009; 7: €1000250. doi: 10.1371/journal.pbio.1000250 PMID: 19956798.

Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, et al. Phenotypic landscape of a bacterial
cell. Cell. 2011; 144: 143-56. doi: 10.1016/j.cell.2010.11.052 PMID: 21185072

Liu A, Tran L, Becket E, Lee K, Chinn L, Park E, et al. Antibiotic sensitivity profiles determined with an
Escherichia coli gene knockout collection: Generating an antibiotic bar code. Antimicrob Agents Che-
mother. 2010; 54: 1393—-1403. doi: 10.1128/AAC.00906-09 PMID: 20065048

Girgis HS, Hottes AK, Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One.
2009; 4: €5629. doi: 10.1371/journal.pone.0005629 PMID: 19462005

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12
in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2: 2006.0008. doi: 10.
1038/msb4100050 PMID: 16738554.

Pache RA, Babu MM, Aloy P. Exploiting gene deletion fitness effects in yeast to understand the modu-
lar architecture of protein complexes under different growth conditions. BMC Syst Biol. 2009; 3: 74. doi:
10.1186/1752-0509-3-74 PMID: 19615085

Martin G, Lenormand T. The fitness effect of mutations across environments: a survey in light of fitness
landscape models. Evolution (N Y). 2006; 60: 2413-2427. http://onlinelibrary.wiley.com/doi/10.1111/].
0014-3820.2006.tb01878.x/pdf PMID: 17263105

Wood KB, Wood KC, Nishida S, Cluzel P. Uncovering Scaling Laws to Infer Multidrug Response of
Resistant Microbes and Cancer Cells. Cell Rep. 2014; 6: 1073-84. doi: 10.1016/j.celrep.2014.02.007
PMID: 24613352.

Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic Functions: a
Multiparameter Approach to the Design of Antibiotic Treatment Regimens. Antimicrob Agents Che-
mother. 2004; 48: 3670-3676. doi: 10.1128/AAC.48.10.3670-3676.2004 PMID: 15388418

Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, et al. The innate growth bistability and fit-
ness landscapes of antibiotic-resistant bacteria. Science. 2013; 342: 1237435. doi: 10.1126/science.
1237435 PMID: 24288338

Breeze AS, Obaseiki-Ebor EE. Mutations to nitrofurantoin and nitrofurazone resistance in Escherichia
coli K12. J Gen Microbiol. 1983; 129: 99—-103. doi: 10.1099/00221287-129-1-99 PMID: 6339681

PLOS Biology | DOI:10.1371/journal.pbio.1002299 November 18,2015 17/18


http://dx.doi.org/10.1038/nrg2146
http://www.ncbi.nlm.nih.gov/pubmed/17637733
http://dx.doi.org/10.1093/molbev/msr302
http://www.ncbi.nlm.nih.gov/pubmed/22144641
http://dx.doi.org/10.1186/1475-4924-2-14
http://www.ncbi.nlm.nih.gov/pubmed/12775217
http://dx.doi.org/10.1111/j.1558-5646.2012.01722.x
http://www.ncbi.nlm.nih.gov/pubmed/23206139
http://link.springer.com/article/10.1023/A:1017031008316
http://link.springer.com/article/10.1023/A:1017031008316
http://www.ncbi.nlm.nih.gov/pubmed/9720287
http://dx.doi.org/10.1534/genetics.106.067199
http://dx.doi.org/10.1534/genetics.106.067199
http://www.ncbi.nlm.nih.gov/pubmed/17339206
http://dx.doi.org/10.1126/science.1194617
http://www.ncbi.nlm.nih.gov/pubmed/21051637
http://dx.doi.org/10.1371/journal.pgen.1000406
http://www.ncbi.nlm.nih.gov/pubmed/19266075
http://dx.doi.org/10.1038/ng1751
http://www.ncbi.nlm.nih.gov/pubmed/16550173
http://dx.doi.org/10.1098/rsbl.2010.0547
http://www.ncbi.nlm.nih.gov/pubmed/20659918
http://dx.doi.org/10.1073/pnas.0400146101
http://dx.doi.org/10.1073/pnas.0400146101
http://www.ncbi.nlm.nih.gov/pubmed/15159545
http://dx.doi.org/10.1371/journal.pbio.1000250
http://www.ncbi.nlm.nih.gov/pubmed/19956798
http://dx.doi.org/10.1016/j.cell.2010.11.052
http://www.ncbi.nlm.nih.gov/pubmed/21185072
http://dx.doi.org/10.1128/AAC.00906-09
http://www.ncbi.nlm.nih.gov/pubmed/20065048
http://dx.doi.org/10.1371/journal.pone.0005629
http://www.ncbi.nlm.nih.gov/pubmed/19462005
http://dx.doi.org/10.1038/msb4100050
http://dx.doi.org/10.1038/msb4100050
http://www.ncbi.nlm.nih.gov/pubmed/16738554
http://dx.doi.org/10.1186/1752-0509-3-74
http://www.ncbi.nlm.nih.gov/pubmed/19615085
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb01878.x/pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb01878.x/pdf
http://www.ncbi.nlm.nih.gov/pubmed/17263105
http://dx.doi.org/10.1016/j.celrep.2014.02.007
http://www.ncbi.nlm.nih.gov/pubmed/24613352
http://dx.doi.org/10.1128/AAC.48.10.3670-3676.2004
http://www.ncbi.nlm.nih.gov/pubmed/15388418
http://dx.doi.org/10.1126/science.1237435
http://dx.doi.org/10.1126/science.1237435
http://www.ncbi.nlm.nih.gov/pubmed/24288338
http://dx.doi.org/10.1099/00221287-129-1-99
http://www.ncbi.nlm.nih.gov/pubmed/6339681

@’PLOS | BIOLOGY

Determinants of Evolutionary Dynamics Leading to Drug Resistance

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, et al. EcoCyc: a com-
prehensive database resource for Escherichia coli. Nucleic Acids Res. 2005; 33: D334-337. doi: 10.
1093/nar/gki108 PMID: 15608210

McCalla DR, Reuvers A, Kaiser C. Mode of action of nitrofurazone. J Bacteriol. 1970; 104: 1126—1134.
http://jb.asm.org/content/104/3/1126.full.pdf PMID: 16559085

Okumus B, Yildiz S, Toprak E. Fluidic and microfluidic tools for quantitative systems biology. Curr Opin
Biotechnol. 2014; 25: 30-8. doi: 10.1016/j.copbio.2013.08.016 PMID: 24484878

Bean D, Krahe D, Wareham D. Antimicrobial resistance in community and nosocomial Escherichia coli
urinary tract isolates, London 2005—-2006. Ann Clin Microbiol Antimicrob. 2008; 7: 13. doi: 10.1186/
1476-0711-7-13 PMID: 18564430

Zhanel GG, Hisanaga TL, Laing NM, DeCorby MR, Nichol KA, Palatnik LP, et al. Antibiotic resistance
in outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative
Alliance (NAUTICA). Int J Antimicrob Agents. 2005; 26: 380—388. doi: 10.1016/j.ijantimicag.2005.08.
003 PMID: 16243229

Zaslaver A, Bren A, Ronen M, ltzkovitz S, Kikoin I, Shavit S, et al. A comprehensive library of fluores-
cent transcriptional reporters for Escherichia coli. Nat Methods. 2006; 3: 623—628. doi: 10.1038/
nmeth895 PMID: 16862137

Chevereau G, Bollenbach T. Systematic discovery of drug interaction mechanisms. Mol Syst Biol.
2015; 11: 807. doi: 10.15252/msb.20156098 PMID: 25924924

Bollenbach T, Quan S, Chait R, Kishony R. Nonoptimal microbial response to antibiotics underlies sup-
pressive drug interactions. Cell. 2009; 139: 707—18. doi: 10.1016/j.cell.2009.10.025 PMID: 19914165

Yeh P, Tschumi Al, Kishony R. Functional classification of drugs by properties of their pairwise interac-
tions. Nat Genet. 2006; 38: 489-94. doi: 10.1038/ng1755 PMID: 16550172

Baltzer B, Lund F, Rastrup-Andersen N. Degradation of mecillinam in aqueous solution. J Pharm Sci.
1979; 68: 1207-1215. doi: 10.1002/jps.2600681005 PMID: 41925

Hegreness M, Shoresh N, Hartl D, Kishony R. An equivalence principle for the incorporation of favor-
able mutations in asexual populations. Science. 2006; 311: 1615-7. doi: 10.1126/science.1122469
PMID: 16543462

Fogle CA, Nagle JL, Desai MM. Clonal interference, multiple mutations and adaptation in large asexual
populations. Genetics. 2008; 180: 2163—73. doi: 10.1534/genetics.108.090019 PMID: 18832359

Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, et al. Identifying structural
variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Geno-
mics. 2014; 15: 1039. doi: 10.1186/1471-2164-15-1039 PMID: 25432719

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an inte-
grated and extendable desktop software platform for the organization and analysis of sequence data.
Bioinformatics. 2012; 28: 1647-9. doi: 10.1093/bioinformatics/bts199 PMID: 22543367

Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic net-
work architecture. Nat Genet. 1999; 22: 281-5. doi: 10.1038/10343 PMID: 10391217

PLOS Biology | DOI:10.1371/journal.pbio.1002299 November 18,2015 18/18


http://dx.doi.org/10.1093/nar/gki108
http://dx.doi.org/10.1093/nar/gki108
http://www.ncbi.nlm.nih.gov/pubmed/15608210
http://jb.asm.org/content/104/3/1126.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16559085
http://dx.doi.org/10.1016/j.copbio.2013.08.016
http://www.ncbi.nlm.nih.gov/pubmed/24484878
http://dx.doi.org/10.1186/1476-0711-7-13
http://dx.doi.org/10.1186/1476-0711-7-13
http://www.ncbi.nlm.nih.gov/pubmed/18564430
http://dx.doi.org/10.1016/j.ijantimicag.2005.08.003
http://dx.doi.org/10.1016/j.ijantimicag.2005.08.003
http://www.ncbi.nlm.nih.gov/pubmed/16243229
http://dx.doi.org/10.1038/nmeth895
http://dx.doi.org/10.1038/nmeth895
http://www.ncbi.nlm.nih.gov/pubmed/16862137
http://dx.doi.org/10.15252/msb.20156098
http://www.ncbi.nlm.nih.gov/pubmed/25924924
http://dx.doi.org/10.1016/j.cell.2009.10.025
http://www.ncbi.nlm.nih.gov/pubmed/19914165
http://dx.doi.org/10.1038/ng1755
http://www.ncbi.nlm.nih.gov/pubmed/16550172
http://dx.doi.org/10.1002/jps.2600681005
http://www.ncbi.nlm.nih.gov/pubmed/41925
http://dx.doi.org/10.1126/science.1122469
http://www.ncbi.nlm.nih.gov/pubmed/16543462
http://dx.doi.org/10.1534/genetics.108.090019
http://www.ncbi.nlm.nih.gov/pubmed/18832359
http://dx.doi.org/10.1186/1471-2164-15-1039
http://www.ncbi.nlm.nih.gov/pubmed/25432719
http://dx.doi.org/10.1093/bioinformatics/bts199
http://www.ncbi.nlm.nih.gov/pubmed/22543367
http://dx.doi.org/10.1038/10343
http://www.ncbi.nlm.nih.gov/pubmed/10391217

