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Antibiotic resistance carries a fitness cost that must be overcome in order for

resistance to persist over the long term. Compensatory mutations that

recover the functional defects associated with resistance mutations have

been argued to play a key role in overcoming the cost of resistance, but com-

pensatory mutations are expected to be rare relative to generally beneficial

mutations that increase fitness, irrespective of antibiotic resistance. Given

this asymmetry, population genetics theory predicts that populations

should adapt by compensatory mutations when the cost of resistance is

large, whereas generally beneficial mutations should drive adaptation

when the cost of resistance is small. We tested this prediction by determining

the genomic mechanisms underpinning adaptation to antibiotic-free

conditions in populations of the pathogenic bacterium Pseudomonas
aeruginosa that carry costly antibiotic resistance mutations. Whole-genome

sequencing revealed that populations founded by high-cost rifampicin-

resistant mutants adapted via compensatory mutations in three genes

of the RNA polymerase core enzyme, whereas populations founded by

low-cost mutants adapted by generally beneficial mutations, predominantly

in the quorum-sensing transcriptional regulator gene lasR. Even though the

importance of compensatory evolution in maintaining resistance has been

widely recognized, our study shows that the roles of general adaptation in

maintaining resistance should not be underestimated and highlights the

need to understand how selection at other sites in the genome influences

the dynamics of resistance alleles in clinical settings.

1. Introduction
The evolution of antibiotic resistance in pathogenic bacteria is typically

accompanied by fitness costs that are expressed in terms of reduced growth

rate, competitive ability and virulence [1–3]. Fitness costs generate selection

against resistance when pathogen populations encounter antibiotic-free

environments, as occurs during transmission between hosts or when antibiotic

use is discontinued. Because exposure to high doses of antibiotic is transient,

resistance will only be maintained in the long term if resistant populations

can evolve adaptations that offset the cost of resistance. Therefore, understand-

ing the mechanisms that allow resistant bacterial populations to evolve

increased fitness is of fundamental importance to understanding the long-term

maintenance of resistance in pathogenic bacteria.

One possible mechanism through which bacteria can overcome the cost of

resistance is by acquiring compensatory mutations that reduce or eliminate

the fitness costs associated with resistance alleles by recovering the functional

defects associated with resistance mutations [4–9]. Alternatively, it is possible

for antibiotic-resistant populations to overcome the fitness cost of resistance
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Figure 1. Adaptation to the cost of rifampicin resistance. This figure shows the competitive fitness (mean+ s.e; n ¼ 3) of the eight rpoB mutants used to found
the selection experiments (blue diamonds) and the average fitness of three endpoint populations (red squares) evolved from each rpoB mutant. The rpoB mutations
carried by the rifampicin-resistant mutants are specified in the names assigned to the mutants. The relative fitness of all endpoint populations converged towards
that of the rifampicin-sensitive ancestral strain (standardized to a value of 1). In all cases, the average relative fitness of the endpoint populations showed a
significant increase compared with that of the initial rpoB mutant (two-sample t-test, p , 0.05).
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by acquiring generally beneficial mutations that increase fit-

ness without offsetting the cost of resistance per se. Unlike

compensatory mutations, generally beneficial mutations con-

tribute to an increase in fitness, regardless of the genetic

background in which they arise [10,11]. In this scenario,

resistant populations overcome the cost of resistance by

adapting to general environmental conditions, such as nutri-

ent availability and the presence of stressors. The dominant

view that has emerged from studies of the long-term evolution

of antibiotic-resistant populations is that adaptation to the cost

of resistance is driven by compensatory mutations [1,2,12–14].

Compensatory mutations have been identified in clinical

pathogen populations, especially Mycobacterium tuberculosis
[15–17], and compensatory adaptation has emerged as a cen-

tral explanation for the long-term maintenance of resistance

in pathogen populations [3].

Although compensatory mutations have been identified

in a wide range of systems, the fact that resistant populations

can also evolve by generally beneficial mutations that

increase fitness, irrespective of antibiotic resistance, is far

less frequently mentioned in current discussions of antibiotic

resistance evolution. It has been estimated that there are, on

average, 12 possible compensatory mutations per deleterious

mutation in bacteria [18], and the rate of compensatory

mutation should therefore be in the order of 12 sites per

genome x 9 � 10211 mutations per site per generation

under laboratory conditions [19], which corresponds to

�1 � 1029 per genome per generation. On the other hand,

generally beneficial mutations have been estimated to occur

at a rate between 1 � 1028 and 1 � 1025 per genome per gen-

eration under laboratory conditions, which is 10–10 000

times higher than our crude estimate of the rate of compensa-

tory mutation [20–23]. This asymmetry suggests that, all else

being equal, generally beneficial mutations are expected to

contribute more towards adaptation in antibiotic-resistant

populations than compensatory mutations do.

However, adaptation in asexual populations is driven by

a small minority of mutations with relatively large benefits

that overcome stochastic drift and competition from rival

beneficial mutations owing to clonal interference [20,22,24,25].

Compensatory mutations are therefore expected to make a dis-

proportionately large contribution to adaptation when they are
associated with large fitness benefits relative to generally ben-

eficial mutations. Because compensatory adaptation directly

recovers the functional defects associated with resistance

mutations [5,7,8,26], compensatory mutations should confer

large fitness benefits in populations carrying very costly resist-

ance mutations. However, the fitness benefits associated with

compensatory mutations are expected to be small in popu-

lations carrying low-cost mutations. This population genetic

framework predicts that the likelihood of adaptation by com-

pensatory mutations should increase with the cost of

resistance [27]. Crucially, studies of evolution in antibiotic-

resistant populations have largely focused on adaptation in

populations that carry very costly resistance mutations

[6,28–32]. We postulate that the roles played by general

adaptation in eliminating the fitness cost of antibiotic

resistance are greater than currently thought.

To test the hypothesis that high fitness costs promote evol-

ution by compensatory adaptation, we allowed populations of

eight isogenic rifampicin-resistant isolates of the opportunistic

pathogen Pseudomonas aeruginosa that carry different fitness

costs, as well as their rifampicin-sensitive ancestor, to evolve

for 300 generations in an antibiotic-free rich medium. Extensive

whole-genome sequencing was used to systematically identify

compensatory mutations and generally beneficial mutations in

evolved endpoint populations.
2. Results and discussion
(a) Evolved rifampicin-resistant mutants recover

from the fitness cost of resistance
To study adaptation to the cost of rifampicin resistance, we

allowed three independently propagated populations of

eight different rifampicin-resistant rpoB mutants that carried

different fitness costs to evolve in a rifampicin-free culture

medium for 300 generations. Fitness varied considerably

between the rifampicin-resistant mutants that were used to

initiate the selection experiment (figure 1: one-way ANOVA,

F7,16¼ 4.66, p ¼ 0.0052). Fitness increased over the course of

the selection experiment (paired t-test, t7 ¼ 5.47, p ¼ 0.0009),

and the fitness of the evolved populations was very similar

http://rspb.royalsocietypublishing.org/
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to that of the rifampicin-sensitive ancestral strain that the

resistant mutants were evolved from. These results clearly

demonstrate that selection in the absence of antibiotics can

rapidly eliminate the substantial fitness cost that is associated

with rifampicin resistance for a range of rpoB mutations.

(b) Testing for compensatory adaptation using whole-
genome sequencing

To determine the genetic basis of adaptation in antibiotic-

resistant populations, we performed whole-genome

sequencing on three randomly selected colonies isolated

from each evolved endpoint population (electronic sup-

plementary material, table S1: 8 mutants � 3 populations per

mutant � 3 isolates per population ¼ 72 isolates). As a control

experiment, we also sequenced the genomes of evolved

isolates from rifampicin-sensitive ancestral populations that

were evolved for the same number of generations (electronic

supplementary material, table S2: 12 populations� 3 isolates

per population ¼ 36 isolates). Non-synonymous single-

nucleotide polymorphisms (SNPs) and short indel (insertion

and deletion) mutations of less than 1 kb in protein-coding

regions were the most common forms of mutations that we

identified. Silent and intergenic mutations were found at low

frequencies, as were large deletions and duplications spanning

more than one gene.

The mutations that we identified may include beneficial,

neutral or mildly deleterious mutations. Parallel evolution

provides a hallmark of genes that are under strong positive

selection [33–36], and we therefore focused our analysis

on genes in which we detected parallel evolution. In our

study, parallel evolution, in a particular gene, can be demon-

strated either by mutations in different populations or by

different mutations within the same endpoint population.

Our results broadly indicate that such parallel evolution

was very common in both the evolved resistant and control

populations. Among the resistant mutant populations

(figure 2), five genes contained 69% of all mutations that

were detected in the sequenced endpoint isolates evolved

from the rifampicin-resistant mutants (highlighted in blue),
whereas five genes covered 75% of all mutations found in

the evolved control populations (highlighted in red).

Because compensatory mutations interact epistatically

with resistance mutations to recover fitness [26,31,37], we

expected compensatory mutations to be found in evolved

resistant populations, but not in rifampicin-sensitive ancestral

populations. Previous studies have shown that second-site

mutations in RNA polymerase subunits (rpoA, rpoB and

rpoC) can compensate for the cost of rifampicin resistance

[5,7,16,26]. Consistent with this, we found nine independently

evolved point mutations in these RNA polymerase genes

among the resistant populations, but no RNA polymerase

mutations were detected in the evolved control populations.

Interestingly, one of the rpoB mutations represents a reversion

mutation that swept to fixation in a population that was

initiated by the H531R mutant. The reversion mutation

restored the rifampicin-sensitive phenotype, which constitutes

an evolutionary reversal of antibiotic resistance. Several lines

of evidence suggest that the remaining RNA polymerase

mutations are compensatory mutations rather than generally

beneficial mutations. First, the intragenic second-site

mutations in rpoB found in this study (E528D, H531C and

N573S) are known to recover the reductions in transcriptional

efficiency and fitness costs associated with the original rpoB
mutations [5]. Second, we observed three independent

examples of parallel evolution in rpoB at an amino acid level.

An additional mutation in the same codon as the original

rpoB mutations H531R and H531Y can result in a common

amino acid substitution H531C, which was observed in two

populations founded by H531R and one population founded

by H531Y (electronic supplementary material, table S1).

H531C can offset the fitness cost of the original rpoB mutations

without altering the rifampicin resistance phenotype [38].

To test the hypothesis that low fitness costs constrain com-

pensatory adaptation, we tested for a negative correlation

between the frequencies of RNA polymerase mutations and

the initial cost associated with each rpoB mutation (figure 3).

In support of our hypothesis, we found a significant negative

correlation between the number of compensatory mutations

per genome and the initial cost associated with resistance

http://rspb.royalsocietypublishing.org/
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(Spearman’s rank correlation: r ¼ 20.786, r2 ¼ 0.618, F1,6 ¼

9.72, p ¼ 0.0206). Almost all isolates from populations that

were founded by very costly resistance mutants, such as

H531R and H531Y, carry compensatory mutations, whereas

no compensatory mutations were found in populations that

were founded by low-cost resistance mutations such as S536F.

(c) Adaptation in antibiotic-resistant populations is
dominated by generally beneficial mutations

Although we found evidence for compensatory adaptation

when the cost of resistance was large, the dominant genetic

mechanism of adaptation in antibiotic-resistant populations

was mutations in lasR, a key transcriptional regulator gene

involved in quorum-sensing [39,40]. About 71% of all endpoint

populations founded by resistant mutants had at least one

sequenced isolate with mutations in lasR. There was also a

high diversity of mutations in lasR, which include 26 indepen-

dently evolved SNPs and short indel mutations, as well as four

independent large deletions (more than 2 kb) affecting lasR and

adjacent genes. These mutations are thought to disrupt LasR

function and result in quorum-sensing deficiency [41–45]. For

example, the missense mutation A231V, which was observed

in two independent populations founded by the rpoB mutant

Q518R, is known to disrupt LasR functions and quorum-

sensing-regulated phenotypic traits [41]. Mutations in lasR led

to increased fitness in rpoB mutants (electronic supplementary

material, figure S1). In agreement with this, numerous studies

have shown that P. aeruginosa populations adapt to novel

environments through the loss of LasR function [42–46].

lasR mutations were also detected in the evolved control

populations (electronic supplementary material, table S2),

confirming that lasR mutations were not compensatory.

More specifically, three independent lasR mutations we

observed are known to compromise LasR function by elimi-

nating the start codon (M1I), deleting the lasR promoter

region [47] or preventing LasR multimer formation via the

P74L mutation [48]. However, the proportion of control

populations that had at least one sequenced isolate with

lasR mutations (33%) was lower compared with that of resist-

ant populations (71%), so it remains to be understood why

such discrepancies exist between the resistant and control

populations.
(d) The evolutionary dynamics of general
and compensatory adaptation

To better understand the conflict between compensatory

adaptation and general adaptation, we studied the dynamics

of adaptation by sequencing a time series of isolates from a

subset of our selection lines. We focused on populations in

which both generally beneficial mutations and compensatory

mutations were identified (electronic supplementary material,

table S1). The co-occurrence of generally beneficial mutations

and compensatory mutations implies that these populations

are likely to provide direct insights into the outcome of compe-

tition between these two classes of beneficial mutations. Based

on the sequencing results, we constructed the evolutionary his-

tory for these four populations (figure 4). The key insight that

emerged from our phylogenetic inference was that general

adaptation tends to precede compensatory adaptation. In

three of the four populations, general adaptation initially

occurred through the spread of lasR mutations during the

first 24 days of the experiments (figure 4b–d). Successful

lasR mutants then acquired compensatory mutations in RNA

polymerase genes, which began to increase to detectable fre-

quency by the end of the experiment. In the H531Y-A

population (figure 4a), initial adaptation was dominated by

the spread of mutations in the gacA gene. GacS/GacA modu-

lates the expression of more than 500 genes of the RsmA

regulon and is indirectly involved in the regulation of

quorum-sensing [49–51]. Subsequently, isolates carrying com-

pensatory mutations in the rpoB gene also began to increase to

detectable frequency by day 30.

Several factors are likely to have favoured this repeatable

evolutionary dynamic of general adaptation followed by

compensatory adaptation. We detected a vast diversity of

lasR mutations, suggesting that any mutation which disrupts

LasR production and the quorum-sensing phenotype is

beneficial under these experimental conditions. By contrast,

we found a relatively small number of compensatory

mutations in RNA polymerase, which supports the idea that

compensatory mutations are rare [52]. This asymmetry is illus-

trated by the observation that the frequency of repeated

independent mutations in rpoB (3/7) was much higher than

that in lasR (1/30) among the resistant populations. lasR
mutations also confer large fitness benefits. For example,

http://rspb.royalsocietypublishing.org/


gacA (Q168*)
PA4690a (K138N)

PA0625
(D17 bp)

H531Y (population A)

Q518R (population B)
Q518R (population C)

Q518L (population C)

genotype with generally
beneficial mutation(s) only

genotype with compensatory
mutation(s)

inferred genotype

acquisition of additional
mutation(s)

identical genotypes from
different time points

arnT (silent)

arnT (silent)
lasR (C201*)

arnT (silent)
lasR (Y112*)
fusA1(Y630C)

arnT (silent)
lasR (A231V)
rpoB(E528D) arnT (silent)

lasR (K16*)
rpoB (E528D)

arnT (silent)
lasR (D10 bp)
rpoB (Q193L)

arnT (silent)
lasR (V208E)
rpoC (D410G)

PA1428a (silent)
lasR (Q160*)

intergenic (SNP)
rpoB (E528D)

lasR (A231V)
rpoB (G367S)

lasR (R180W)
wzz (T50A)

arnT (silent)
lasR (Y112*)
rpoC (D410G)

arnT (silent)
lasR (Y112*)

PA1768 (193T)

arnT (silent)
lasR (K16*)

arnT (silent)
lasR (D10 bp)

arnT (silent)
lasR (Y112*)

arnT (silent)
lasR (A231T)

PA0716 (Y15C)

arnT (silent)
lasR (V208E)

PA1428a
(silent) lasR

(D74 bp)

lasR (D1 bp)
wzz (T50A)

lasR
(Y64F)

lasR
(D1 bp)

PA1428a (silent)
lasR (Q160*)

lasR (R216W)
wzz (T50A)

lasR
(R216W)

lasR
(A231V)

day

18

24

30

day

18

24

30

day

18

24

30

day

18

24

30

lasR
(D1 bp)

PA1429, lasR, rsaL, lasl
(D3210 bp)

dnaX (+6 bp)

PA1429, lasR, rsaL, lasl
(D3210 bp)lasR

(D1 bp)

lasR (D1 bp)lasR (S129I)

lasR (D1 bp)
intergenic (+4 bp)

rpoA (S49F) 

PA1429, lasR, rsaL, lasl
(D3210 bp)

pqsE (C97Y)

rpoB (N573S)
PA1829 (I295T)

rpoB
(N573S)

gacA
(Q168*)

gacA (Q168*)
ftsY (+6 bP)

gacA (Q168*)
PA4690a (K138N)

gacS (D29 bp)
PA3133 (D1 bp)

PA1734
(R27L)

(b)(a)

(c) (d )

Figure 4. Clonal interference constrains compensatory adaptation. A schematic diagram representing the phylogeny inferred for six randomly selected isolates
sampled from the 18th, 24th and 30th (final) days for four populations in which the co-occurrence of generally beneficial mutations and compensatory mutations
was detected in the endpoint populations. Circles represent the observed genotypes, and the diameter of a circle indicates the frequency of that isolate in the
population (n ¼ 1, 2 or 3). Red circles denote isolates carrying compensatory mutations, while black circles denote isolates carrying generally beneficial mutations
but not compensatory mutations. Each thin arrow represents the acquisition of one or more additional mutations with respect to the previous genotype. Mutations
carried by individual isolates are shown in text, with newly acquired mutations in blue and previously acquired mutations in black.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20152452

5

 on February 11, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
three double mutants that carry single lasR mutations in

addition to their original rpoB mutations, showed an increased

fitness of between 15.6% and 32.3% (electronic supplementary

material, figure S1). This suggests that the fitness benefit

associated with lasR mutations was likely to be comparable

to, or greater than, the benefit associated with compensatory

mutations, except when the cost of resistance was very large.

Surprisingly, we found that the control populations often

carried mutations in genes that were not mutated in resistant

populations (figure 2), including wspA and wspF from the wsp
operon (n ¼ 9), dipA (n ¼ 12), as well as morA (n ¼ 2). The

absence of wspA/wspF, dipA and morA mutations in the resistant

populations raised the possibility that the fitness benefit con-

ferred by these mutations could be contingent on the absence

of rpoB mutations (sign epistasis) [53]. To test this hypothesis,

we measured the fitness of isolates carrying rpoB mutations

with dipA or morA mutations and found that dipA and morA
mutations were beneficial in the presence of rpoB mutations

[54], implying that sign epistasis cannot explain the absence of

mutations in these genes in the evolved resistant isolates. It is

conceivable that the different amounts of time spent by the var-

ious strains in the stationary phase could have contributed to

these differences in the mutational spectrum.
3. Conclusion
The idea that compensatory adaptation eliminates the cost of

resistance and allows resistance alleles to effectively persist in

bacterial populations has been extensively studied in
evolutionary models of antibiotic resistance [2,3,13,55–57].

Here, we examine the underlying genomic basis of adap-

tation in rifampicin-resistant populations of the pathogenic

bacterium P. aeruginosa. Although rifampicin-resistant popu-

lations quickly evolved to overcome their initial fitness

cost, compensatory mutations were fixed in populations

founded only by highly costly resistant mutants. Importantly,

many studies of evolution in antibiotic-resistant popula-

tions tend to focus on evolution in populations carrying

very costly resistance mutations [6,28–32]. Our results

suggest that the role of generally beneficial mutations in over-

coming the fitness cost of resistance may be more important

than currently thought. Given the functional diversity of

antibiotic resistance mechanisms, more insight into the con-

flicts between these two types of mutations could be

gleaned by performing experimental evolution studies

using antibiotic-resistant mutants that carry other types of

resistance mutations.

Although compensatory adaptation provides a more

direct solution to the cost of resistance, two constraints are

likely to restrict compensatory evolution. First, generally ben-

eficial mutations are more common than compensatory

mutations. While compensatory mutations usually occur in

the same protein or pathway as antibiotic resistance mutations

do [4,52], generally beneficial mutations are expected to occur

at many different sites in the genome. In our study, this asym-

metry is highlighted by the rarity of repeated independent

mutations in genes involved in general adaptation, notably

in lasR, versus the higher frequency of repeated nucleotide

substitutions in rpoB, which was involved in compensatory

http://rspb.royalsocietypublishing.org/
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adaptation. Second, generally beneficial mutations can have

large effects on fitness that surpass those associated with com-

pensatory mutations (electronic supplementary material,

figure S1). We argue that compensatory adaptation tends to

occur when the cost of resistance is large, because compensa-

tory mutations provide very large fitness benefits in

populations carrying costly resistance mutations.

Given that the spread of compensatory mutations can be

delayed by the spread of generally beneficial mutations

owing to clonal interference, selection for compensatory adap-

tation will be relatively ineffective under conditions where

selection at other sites in the genome is strong. A number of

important selective forces are likely to exert strong and recur-

rent selective pressure on populations of bacterial pathogens,

such as antibiotic use [58,59], bacteriophage [60] and the

immune system [61], suggesting that compensatory adap-

tation may be difficult to acquire in clinical settings. These

constraints are probably especially important in opportunistic

pathogens, because they are essentially invading a novel niche

that imposes distinct selective pressures when they establish

infections in human hosts [35,62,63]. In this respect, it is inter-

esting to note that the best-characterized example of

compensatory adaptation in a clinical setting, rifampicin resist-

ance in M. tuberculosis [7,15,16], comes from an obligate

pathogen that is well adapted to life in human hosts [64].

Whole-genome sequencing is now being used extensively

to study the population biology of bacterial pathogens, and it

is often thought that mutations which are found in antibiotic-

resistant isolates are compensatory mutations [15,59,65–67].

Although there are some excellent examples of compensatory

adaptation in clinical pathogens [6,15,16,68–70], it is also

apparent that compensatory evolution is not ubiquitous

[57]. Our study highlights some of the obstacles to evolution

by compensatory mutations, but their consequences remain

unclear. On the one hand, it is possible that rapid adaptation

by generally beneficial mutations effectively eliminates selec-

tion against antibiotic-resistant pathogen lineages. In this

scenario, resistance alleles continue to carry a cost, but selec-

tion against resistant lineages is offset by the beneficial

mutations carried at other sites in the genome. Importantly,

antibiotic use results in a large increase in the population

size of antibiotic-resistant lineages, suggesting that they

should enjoy an increased likelihood of acquiring generally

beneficial mutations relative to sensitive strains that are sup-

pressed by antibiotic use. Compensatory mutations interact

epistatically with resistance mutations such that the loss of

resistance mutations becomes deleterious once compensatory

mutations have been acquired. By delaying the spread of

compensatory mutations, it is possible that generally

beneficial mutations increase the window of opportunity

for reversion to antibiotic sensitivity. It is hoped that future

work will shed light on the roles that selection for generally

beneficial mutation plays in the maintenance of resistance.
4. Material and methods
(a) Selection experiment
The eight rifampicin-resistant rpoB mutants used in the selection

experiment were evolved from the rifampicin-sensitive

PAO1::mini-Tn7-pLAC-lux ancestral strain using a fluctuation

test [5]. All strains were streaked on M9KB agar plates [71] and

incubated overnight at 308C. On the next day, three independent
colonies per rpoB mutant strain were randomly selected for pro-

pagating three independent populations (denoted A–C) during

the selection experiment. About 1 ml of M9KB liquid culture

medium [71] was inoculated with a colony in the absence of

rifampicin. The bacterial cultures were incubated overnight

with shaking (225 r.p.m.) at 308C. On the next day, 1 ml of each

overnight culture was diluted 1000-fold in fresh M9KB medium

and incubated overnight under the same experimental conditions.

The serial transfer was repeated for 30 consecutive days, or

approximately 300 generations. Glycerol stocks of all populations

were prepared on the 18th, 24th and 30th (final) days of the selec-

tion experiment. In a separate set of control experiments, 12

independent colonies of the rifampicin-sensitive ancestral strain

were randomly selected for propagating 12 independent popu-

lations (denoted A–L) using the same experimental procedures

as described above.

(b) Competitive fitness assay
The competitive fitness of the endpoint populations of each

of the propagated populations was quantified relative to the

rifampicin-sensitive ancestral strain as previously described [5].

Briefly, overnight cultures of the endpoint populations, the

PAO1::mini-Tn7-pLAC-lux ancestral strain and a GFP-tagged

derivative strain of PAO1 were diluted 1 : 10 in M9KB medium

and regrown to early exponential phase at 308C with continuous

shaking (225 r.p.m.). Each non-fluorescent strain was mixed with

the GFP-tagged strain, diluted 200-fold in M9KB medium and

incubated in Nunc 96-well microplates (Thermo Scientific,

USA) at 308C overnight for approximately 24 h with continuous

shaking. The proportion of fluorescent and non-fluorescent cells

in each co-culture was determined using an Accuri C6 flow cyt-

ometer (BD Biosciences, USA) before and after the incubation.

The competitive fitness of each non-fluorescent strain was calcu-

lated as the ratio of population doublings of each endpoint

population relative to the GFP-tagged control strain it was com-

peting against [72]. The relative competitive fitness of the

endpoint populations was obtained by standardizing their com-

petitive fitness to that of the rifampicin-sensitive ancestral strain

within each set of competition experiments. Three biological and

three technical replicates of each strain were assayed for each

endpoint population.

To demonstrate that lasR mutations are beneficial under the

same conditions of the selection experiment, the competitive fit-

ness of three evolved rifampicin-resistant isolates that carried

different lasR mutations and the initial rpoB mutant strains was

determined relative to the rifampicin-sensitive ancestral strain

using a modified version of the competition assays, in which

all strains were regrown to exponential phase and co-cultured

overnight with the GFP-tagged control strain in 5 ml Falcon

tubes (BD Biosciences) using exactly the same growth conditions

as those under which the selection experiment was carried out.

(c) Whole-genome sequencing
The initial rpoB mutants and the endpoint populations of the

selection experiment were streaked on M9KB agar plates and

incubated overnight at 308C. On the next day, three colonies of

each population were randomly selected to inoculate M9KB

liquid medium incubated at 308C with shaking overnight. Geno-

mic DNA was extracted using the DNeasy Blood and Tissue Kit

(Qiagen, The Netherlands) according to the manufacturer’s pro-

tocol. The 12 initial isolates of the rifampicin-sensitive ancestral

strain and the three randomly selected colonies from the 12 end-

point populations, which were evolved from these initial isolates

during the control experiment, were prepared for whole-genome

sequencing using the same procedures.

To search for evidence of clonal interference in rpoB mutant

populations, six random isolates from the 18th and 24th days

http://rspb.royalsocietypublishing.org/
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of the selection experiment were selected for whole-genome

sequencing from four selected rpoB mutant populations

(H531Y-A, Q518L-C, Q518R-B and Q518R-C) using the same

procedures as described above. Three additional random isolates

from the four endpoint populations were whole-genome

sequenced to obtain a total of six isolates for each of the three

time points (excluding an isolate from the endpoint population

of Q518R-C, which was not successfully sequenced).

Paired-end whole-genome sequencing with read length of

100 bp was performed using the HiSeq 2000 sequencing system

(Illumina, USA). The average coverage was 44.1� (median cover-

age: 43.5�). Variants were identified using an experimentally

validated in-house pipeline [72,73]. The initial rpoB mutant isolates

were found to have the same genetic background, with the excep-

tion of the specified mutations in rpoB. We discarded mutations

that were already present in all the initial isolates with respect to

the P. aeruginosa PAO1 reference genome, analysing only those

mutations that accumulated throughout the selection experiment.

(d) Statistics
All statistical analyses were performed using JMP software v. 11

(SAS, USA). Unless otherwise stated, all statistical tests are
two-tailed, and the level of significance is 0.05. The degrees of

freedom are reported as subscripts next to the test statistics.
Data accessibility. Whole-genome sequencing data are available at the
European Nucleotide Archive: http://www.ebi.ac.uk/ena/data/
view/PRJEB11978.
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