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Abstract We give a lower bound on the ground state energy of a system of two
fermions of one species interacting with two fermions of another species via point
interactions. We show that there is a critical mass ratio my =~ (.58 such that the
system is stable, i.e., the energy is bounded from below, for m € [ma, m, 1]. So far
it was not known whether this 2 4 2 system exhibits a stable region at all or whether
the formation of four-body bound states causes an unbounded spectrum for all mass
ratios, similar to the Thomas effect. Our result gives further evidence for the stability
of the more general N + M system.
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1 Introduction

Systems of particles interacting via point interactions are frequently used in physics
to model short range forces. In these models the shape of the interaction potential
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enters only via the scattering length. Originally point interactions were introduced in
the 1930s to model nuclear interactions [4, 5, 12, 23, 24], and later they were also
successfully applied to other areas of physics like polarons (see [15] and references
there) or cold atomic gases [25].

Given N > 1 fermions of one type with mass 1/2 and M > 1 fermions of another
type with mass m/2 > 0, point interaction models give a meaning to the formal
expression

N

| M N M
DL D BEVESDIPBLCEST) (L1
j=I

i=1 i=1 j=I

for y € R. Because of the existence of discontinuous functions in H LR forn >
2, this expression is ill-defined in dimensions larger than one. In the following we
restrict our attention to the three-dimensional case but we note that the system also
exhibits interesting behavior in two dimensions [9, 10, 14].

A mathematically precise version of (1.1) in three dimensions was constructed in
[9, 13] and we will work here with the model introduced there. We note that even
though these models are mathematically well-defined it is not established whether
they can be obtained as a limit of genuine Schrodinger operators with interaction
potentials of shrinking support. (See, however, [1] for the case N = M = 1, and [2]
for models in one dimension.)

It was already known to Thomas [23] that systems with point interactions are
inherently unstable for bosons, in the sense that the energy is not bounded from
below, if there are at least three particles involved. It turns out that in the case that the
particles are fermions the question of stability is more delicate as it depends on the
mass ratio of the two species, in general.

The case N = M = 1 is completely understood as it reduces to a one particle
problem [1]. In this case there exists a one-parameter family of Hamiltonians describ-
ing point interactions parameterized by the inverse scattering length, and they are
bounded from below for all masses.

Beside this trivial case also the 2 + 1 case (i.e., N = 2 and M = 1), where the
two particles of the same species are fermions, is well understood [3, 6-9, 17-20,
22]. There is a critical mass ratio m*™ = 0.0735 such that the system is unstable for
m < m* and stable otherwise. It is remarkable that this critical mass ratio does not
depend on the strength of the interaction, i.e., the scattering length. Recently in [3] the
spectrum of the 2 + 1 system was discussed in more detail. Moreover, it was shown
in [7, 19] that in a certain mass range other models describing point interactions can
be constructed.

For larger systems of fermions even the question of stability is generally open. In
[21] the stability result for the 2 + 1 case was recently extended to the general N + 1
problem (N > 2 and M = 1). In particular it was shown that there exists a critical
mass m| =~ 0.36 such that the system’s energy is bounded from below, uniformly in
N, form > mj. As a consequence of the 2 + 1 case this N 4 1 system is unstable for
m < m*, but the behavior for m € [m*, m;) is unknown.

By separating particles one can obtain an upper bound on the ground state energy
of the general N 4+ M problem using the bounds for the N + 1 or the 1 + M problem.
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We note that the latter is, up to an overall factor, equivalent to the M + 1 problem
with m replaced by its inverse. Hence the fact that m; < 1 gives hope that there
exists a mass region where the general N + M system is stable for all N and M. The
simplest problem of this kind is the 2 42 case. So far there are only numerical results
on its stability available [11, 16]. In particular, the analysis in [11] suggests that the
critical mass for the 2 + 2 case should be equal to m*, i.e., the one for the 2 + 1
case.

In this paper we give a rigorous proof of stability for the 2 + 2 system in a certain
window of mass ratios. We find a critical mass m, =~ 0.58 such that the system is
stable if m € [mjy, mz_l] ~ [0.58, 1.73]. We note that the critical mass my is not
optimal and we cannot make any further statements about the mass range [m™*, m,]U
[m, ! , m*fl]. The behavior for these masses, and in particular the question whether
my = m*, still represents an open problem.

2 The Model

For p1, p2, ki, ko € R¥andm > 0, let

1
ho(p1. p2. ki k2) = pi + p3 + - (kf + k%) : .1)

We will work with the quadratic form F,, introduced in [13] for 2 4 2 particles. Its
form domain is given by

D(Fo) ={¥ =9+ G,u& |9 € HLR®) @ HL(R®), & € H?R%)}  (22)

where, for some (arbitrary) u > 0, G & is the function with Fourier transform

Gut(pr. paki k) = > (=DM (ho(pr. pa. ki ka) + ) " E(pi + k). pi kj)
i,je{1,2)

(2.3)
and we used the notation that p; = p», p» = p; and analogously for k. The space
HalS (R) denotes antisymmetric functions in H L(R3) @ H!(R3). Note that because of
the requirement ¢ € H'!(R!?) the decomposition ¥/ = ¢ + G w& is unique. Note also
that the Hilbert space under consideration consists of functions that are antisymmetric
in the first two and last two variables, i.e., under both the exchange p; < p; and
k1 <> kz.

For o € R, the quadratic form we consider is given by

Fou(¥) = H(@) = w W15 + 4T, (6) + 4o |15 2.4

where

H(<p)=/]Rlz (ho(p1, p2, k1, ka) + ) |¢(p1, p2, ki, k2)> dpy dpa dky dka  (2.5)
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and T, (§) = Z?:o ¢i (£), with the ¢; of the form

3/2 2
do(&) = 27? ( +1) fIS(P D, k)| \/—-i-p +—+/Ldepdk

2.6)

£ ki, p2, k2)E ki, pi1, k
S1(E) = E*(p1 + ki1, p2, k2)é(p2 + k1, p1, k2) dpy dp iy dis @7
ho(p1, p2, k1, k2) +

£ ki, p2, k)& k2, po. k
$2(E) = E*(p1 + ki1, p2, k)& (p1 + k2, p2 l)dpl dps diy dka 28)
ho(p1, p2, ki, k2) + 1

*
$3(E) = — §*(pi +hk1, P2, k2)§ (p2 + k2, p1, ki) dpy dp diy dky 2.9)
o(p1, p2, ki, k2) + 1
We note that Fy, is independent of the choice of i« > 0. The parameter « corresponds
to the inverse scattering length; more precisely, o = —272 /a, witha € (—o0,0) U
(0, o] the scattering length.

It was shown in [13] that 7}, (¢) is well-defined on H!/2(R?). To show stability,
we need to prove that it is in fact positive. If, on the contrary, there exists a u > 0 and
a & € HY2(R?) such that T,(§) < 0, a simple scaling argument (choosing ¢ = 0
and using the scale invariance of Fp) can be used to deduce that F,, is unbounded
from below for all ¢ € R.

The functionals ¢o and ¢ also appear in a similar form in the discussion of the
2 + 1 problem, and ¢, can be seen as the analogous 1 + 2 term. The term ¢3 has no
analogue in the 2 + 1 or 1 + 2 systems. Note that none of the ¢; for 1 < i < 3 has
a sign, and we expect that cancellations occur between them that are important for
stability. In our proof below, we will first bound ¢o + ¢3 from below by a positive
quantity, which we then use to compensate separately the negative parts of ¢; and
¢>. Since we shall neglect some positive terms, we cannot expect to obtain a sharp
bound. In particular, whether m, = m™*, as suggested in [11], cannot be determined
using this method.

3 Main Result

Fora € R3,b > 0and m > 0, let Oan be the bounded operator on L2(R3) with
integral kernel

—1/4 —1/4
Orypr ) = [+ @+ (2 +0)? + 17
1 (3.1
X .
2, 2, 2 22+m) 2
PLA P+ TPl P2+ (@ + (1+n;l)2b2
Let further
11
A(m) = - tm inf infspec O, . (3.2)

272 /M aeR3, b>0
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Theorem 1 For m > 0 such that A(m) + A(1/m) < 1, we have
32
m
T,() = (1 = A(m) — A(1/m)) /2 ? <m—+l> €113 (3.3)
forany &€ € H'2(R%) and any . > 0.

This bound readily implies stability for Fy, as the following corollary shows.

Corollary 1 For m such that A(m) + A(1/m) < 1, we have

a>0

-0 3.4)

3 1 2
m ) 24 (1=A(m)—A(1/m))2 |W”2

0
Fo(y) = { ) <m+
for any € D(Fy).

Proof Without loss of generality we can assume that |||, = 1. Using Theorem 1
and H(p) > 0, we get

Fou(f) + > 4T, (€) + 4ot €2

3/2
z4[a+(1—A(m) —A(l/m))/ﬂn{#) ] IElI3 . (3.5)

In case « > 0 we obtain Fy(y¥) > —u , which shows the result as © > 0 was
arbitrary. If @ < 0, we choose

3
s (m+1 1
= , 3.6
p=a < m ) 2741 — A(m) — A(1/m))> (36)
which yields the desired result. O

We thus proved stability as long as A(m) + A(1/m) < 1. To investigate the
implication on m, let us first check what happens for a = 0 and b = 0. An explicit
calculation following [6] shows that

_ 1 14+m

A(m) = —mﬁinfspec 0%
_ 2 1 2 1 2 i 1 3.7
— ;( +m) ﬁ—«/ + moarcsin ( 35 3.7

which satisfies A (m) + A(1/m) < 1 for 0.139 < m < 7.189. This range of masses
is the largest possible for which our approach can show stability.

While we do not know whether A (m) = A(m), we shall give in Section 5 a rough
upper bound on A (m) which shows that A(m) + A(1/m) < 1 for 0.58 <m < 1.73.

4 Proof of Theorem 1

We shall split the proof into several steps.
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4.1 Bound on ¢3

We shall rewrite ¢3 in (2.9) using center-of-mass and relative coordinates for each

of the pairs (p1,k1) and (pa, k2). With P\ = p1 + ki, q1 = 5= p1 — Hmkl,
Py = py +kyand g2 = {24 py — 135k, we have
$3(6) = —/dPl dPydqi dq>
Ex(py, 1%” + o B2 — g)E(P, B+ g P — 611)
H—m (Pf + P3) + 5 e (af +43) + 1
4.1)
By completing the square, we can write, for any positive function w,
dPydPydq)dq,
w6 = [
w(q2, P1, P)w(qi, P2, P1)
1 2 2
bl ) P ) P) — ) P ) P - ) P ) P
2 |Xw (g2, P1, P2) — Xw(q1, P2, PDI” — |xw(q2, P1, P2) 42)

o (PE+ PE) + 52 (qf +43) + 1

where we denote x,,(q, P1, P2) = E(Pl, 1+m +4q, ;"J::f, q)w(q, P1, P). We shall
choose

w(q, P1, P) = ¢* +A? ((lf—m)? (Pl2 + P22) + HLm/“L> (4.3)

for some constant A > 0. The first term in the numerator on the right side of (4.2) is
manifestly positive. Performing the integration over g1, the integral over the second

term equals
: (PE+P3) + l%mu«)

/dP] szch (—
+
2 p2\, m 2, p2
’\\/(1+m)2 (PE+P; )+1_ +\/q2 Tm? (PP+P))+ i m

2
TPt P — 612)‘

g5 + 12
. (4.4

Let us compare this latter expression with ¢q in (2.6), which can be rewritten as

27%m m 2
$o(§) = P2+ a2 5 P2 — )l

m+1

N m 5 N m
— (P P ——udP1dPydq .
x\/q2+(1+m)2(1+ 2)+1+m,u, 1dP>dqr
4.5)
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For 0 < A < 1, one readily checks that
L, (P1, P2, q)
m
— 2 P2 P2 -
\/q +(1+m)2( * )+1+ "
2 2 2 2
g2+ 22 (s (PR + P3) + i)
2 2 2 2
)‘\/(Hin—m)Z(Pl+P2)+1+Lmu+\/q2+(1.ln—m)2(Pl+P2)+l+Lm
(4.6)

is non-negative. What we have shown here is that

do(§) + $3(8)

= Prtq, {2 Py—q)PLy(Py, P2, q)dP1d Padg (4.7)

for any A > 0.
Note that for A2 = 1 /2, L, takes the simple form

1 m 2 2 m
Ly 5P Prg) = %\/—(Hm)z (P2 + P2) + {2ut (4.8)
and is, in particular, independent of ¢.
4.2 Bound on ¢

For the term ¢ in (2.7), we shall switch to center-of-mass and relative coordinates
for the particles (p1, 2 k). With P = pi + pa + k1. q1 = $2p1 — 52— (p2 + k1)

Tm (p1 + k1), as well as k = k, for short, we have

and g2 = 24m P2 — 2+m

m
= — | dPdq;dqgy dk
¢1(6) 1+m/ q1dq>

£ (éiZP 922 5 +612J<>§ (éinmﬁ’ q1. 50 + 41 k)

ql “1‘612 +1+—m41 'Clz+mP +1+_mk2+l+_m'u
(4.9)

Defining
_ 1+ P k
6ilg, P, k) = <2+nm1P g 2+m +q+k 3k + Ty 1+m) (4.10)

our aim is to obtain a lower bound on the operator on L?(RR3) with integral kernel

6.(q1, P, k)24, (g0, P, k)72
2 2 2 2 1 2
i+ 4+ im0 2+ e PPt Tkt T

(4.11)
for suitable A, uniformly in the fixed parameters P and k.
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Let us take A> = 1/2 for simplicity, in which case we have

\/’/’_1 1 2 1 2 1
byl P = T (q—i—jk—%P) +lPR?+ . @12

Note also that

m 5 1 5
+ k
1+ m)2+m) l+m
_2m (24m g, 2 1 5
:(1+m)2[ m (ik_%”) +Z(P+k)] (4.13)
With
a=zk— 3t P = (P+k)?+ 0y (4.14)

our task is thus to find a lower bound on the operator with integral kernel

%’ Omb(ql q2), defined in (3.1). The best lower bound equals 272 A(m), by

definition.
To summarize, what we have shown here is that

/ ]é Lmp g, P tq, k)‘ 0, v3(q. P.k)dP dg dk.
(4.15)
Using (4.10), a simple change of variables shows that this is equivalent to

1(8)

2
/)E Py, 1+m +4q, {"er,f, —Q>‘ Ly, a(P1, P2,q)dPrdPrdq .
(4.16)

4.3 Bound on ¢,

In exactly the same way we proceed with ¢ in (2.8), which we rewrite as

$2(8)

m
—— | dPdgidgrd
1+ q1aq2ap

Ex (llj_z":np —Q2,P7Q2+%)S(ff{fnp q1. p.q1 + 1+2m)
DR B e wedin P P
4.17)
If we now define
Zk(‘lfPsP)ZL/\(llJ:Lz’fnP CIP+‘1+1+2m’1Yi_7n_1+Lm_Wf+2m)

(4.18)
we need a lower bound on the operator on L(R?) with integral kernel

Gq1, P, p)~ (g0, P, p)T1 2
2 2 2,
90 @+ T a2 T P T

(4.19)
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for fixed P and p. By proceeding as in the previous subsection, one readily checks
that, for A2 = 1/2, its best lower bound is —2712A(1/m), with A defined in (3.2). In
particular, we have

$2(5)
> —A(1/m)

21%m N
m+1/|s(P1,l%w,ﬁ—P;—q>|2Ll/ﬁ(Pl,Pz,q)dPldfadq.
(4.20)

4.4 Combining above bounds

By combining the bounds (4.7), (4.16) and (4.20) from the previous three subsections,
we obtain

3
Tu(6) = Y ()

j=0
2m%m
> (1= A(m) — A(1/m))
m+ 1
X / &P, i Py + q. 725 Py — q>|2L1/ﬁ(Pl, Py, q)dP1dP,dq

421

with Ll/ﬁ defined in (4.8). In the case A(m) + A(1/m) < 1, we can further use

Ll/ﬁ(Pl, P>, q) > Vmu/(2(1 + m)) for a lower bound. This completes the proof
of Theorem 1.

5 Bound on A (m)

Note that A(m) > A(m). To obtain an upper bound, we use the Schur test. We first
drop the positive part of the operator with integral kernel

22+m) , 2m
A+m2® T A +m)?

—1
p1-p2+ bz} . (5.0

k(p1. p2) = | pi + 3 + -
It follows from [21, Lemma 3] that the negative part of this operator has the integral
kernel

—k(p1, p2) + k(p1, —p2)
2
2 Pl P2

L4+m[ 2, 2. 204m) o wm 2P Apip)?
[P1 TP F Gt T (1+m)2b] ~ T(my?

k_(p1, p2)
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By applying the Cauchy-Schwarz inequality, we obtain, for any positive function &
on R? (possibly depending on a and b)

h(p1) |P1 - pal
Alm) = zx/_ pi. apb /RS h(p2) [ 22 4 2@4m) o 2m 4o P dppy
P1 T P2 T GFm)? (14m)? (1+m)?
I
X [(Pz +a)+b ] dp>. (-2)

By monotonicity, we can set b = 0, i.e,

h(p1) Ip1 - p2l

A(m) < ——— p/ |p2+al™" dps.
2\/— pr.a JrR3 h(p2) I:p% + p% + 2(2+m2)azi|2 _ 4(171'172;2
(14-m) (14-m)
(5.3)

We shall choose 4 to be even, i.e., h(p) = h(—p), in which case we can symmetrize
to get

1 h(p1) |p1 - p2l
A(m) < ——— sup .
TE/m paJrd h(p2) [ 2 Lop2 oy 22tm) o7 4(py-p2)*
P ™ P2 Gimy? (+m)?

l( 1 n 1 >d
X = P2
2\|p2+al |p2—al

1 / h(p1) |p1 - p2l
< ——=sup 5
/M pya Jr3 h(p2) P+ i+ 224m) o7 _ 4prp)?
(1+m)? (1+m)?
2., 2
+a
x Py dpy . (5.4)

(P +a2)’ = 4(p2 - a)?

To maximize the right side, @ wants to be parallel to pyp, i.e., a = kpj for k € R.
This is a direct consequence of [21, Lemma 5]. We shall choose i (p) = |p|. By scale
invariance we can set |p;| = 1. We then obtain

r2t
A(m) < sup/ dt/ dr 3
cR 24 2Q+m) 2|7 _4r2?
K 1 +r (1+m)2K :| )2
2 2
+ Kk
x r . (5.5)

(r2 + K2)2 — 4k2r242

We further bound ¢ < 1 in the denominator of the first term in the integrand in
(5.5), and use that

2
22 4m) 2} 4r? Zm(m+2) Lr2 s 2V2+m 2
(14 m)? (I+m)? = (1+m)? (I +m)/m

(5.6)

|:1—|—r2+

@ Springer



Math Phys Anal Geom (2018) 21: 19

Page 11 0of 13 19

0.5 T T T T T T

04l ]

A1, k)

0.2+ q

oo 1 1 1 1 1 1
0.0 0.5 2.0 2.5 3.0

Fig. 1 The function A(1, k), with A(1) = sup, A(1, x) ~ 0.427

Since

1 r2 +K2
/ drt 5 =
0 (r2 +K2)" — dic2r2e2 2r

r2 + k2 min{1, r* /k?}

we therefore get

2 (1+m)? ®© V2 +«?
A(m) < =—————sup | dr >
T m32(m+2) cer Jo [1+r2+ 2/24m KZ]
(14m)/m

Fig. 2 Our upper bound on A(m) + A(1/m), given by A(m) + A(1/m)

(5.7)

(5.8)
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We define ¢, = 24/2 +m/((1 + m)/m). After explicitly doing the integral, the
bound (5.8) reads A(m) < A(m) := sup,.q A(m, k) with

1 (1+m)? 1 n «
7 m32(m +2) 1+ cpic? V14 enic2/ 1+ 12 (cm — 1)

VIt enk? + 1 +k2(cn —1)
n
K

A(m, k) =

x 1

(5.9)

For our purpose it is important that A(1) = 0.427 < 1/2 (see Fig. 1). By continu-
ity, this implies that A(m) + A(1/m) < 1 for a window of mass ratios around 1. In
fact, a numerical optimization over « leads to the conclusion that A(m)+ A(1/m) <
1 whenever 0.58 ® my < m < m2_1 ~ 1.73 (see Fig. 2).
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