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Many stochastic models of biochemical reaction networks contain some chemical species for which
the number of molecules that are present in the system can only be finite (for instance due to
conservation laws), but also other species that can be present in arbitrarily large amounts. The prime
example of such networks are models of gene expression, which typically contain a small and finite
number of possible states for the promoter but an infinite number of possible states for the amount
of mRNA and protein. One of the main approaches to analyze such models is through the use of
equations for the time evolution of moments of the chemical species. Recently, a new approach
based on conditional moments of the species with infinite state space given all the different possible
states of the finite species has been proposed. It was argued that this approach allows one to capture
more details about the full underlying probability distribution with a smaller number of equations.
Here, I show that the result that less moments provide more information can only stem from an
unnecessarily complicated description of the system in the classical formulation. The foundation
of this argument will be the derivation of moment equations that describe the complete probability
distribution over the finite state space but only low-order moments over the infinite state space. I will
show that the number of equations that is needed is always less than what was previously claimed
and always less than the number of conditional moment equations up to the same order. To support
these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of
unconditional moment equations for models with partially finite state space. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4937937]

INTRODUCTION

Stochastic kinetic models governed by the chemical
master equation (CME) are widely used to describe
biochemical reaction networks in which the inherent
randomness of molecular interactions cannot be ignored.1

However, computing the time evolution of the probability
distribution for such models is typically challenging because
the CME cannot be solved exactly,2,3 except in some special
cases.4–6 An approach that has recently gained popularity is
based on deriving systems of differential equations from the
CME that only describe the time evolution of moments—
up to some desired order L—of the underlying probability
distribution.7–9 The solution of such moment equations can
often be computed or at least approximated in cases where
the whole CME is intractable.10 However, if more than just
moments of very low order are desired (i.e., L ≫ 1), the
size of the system of moment equations increases quickly
in the number of chemical species that play a role for the
system. A common feature of reaction networks is that
some of the reacting chemical species can only be present
in finite amounts of molecules (e.g., gene copies, conserved
enzymes). Recently, it has been argued that in such cases,
the stochastic dynamics of the network can be described
more accurately with fewer equations through the use of
conditional moments.11,12 Here, I show that the result that less

a)Electronic mail: jruess@ist.ac.at

equations are needed is only true if the specific structure of
the reaction network is not taken into account in the derivation
of the classical unconditional moment equations. I provide a
formula to determine how many classical moment equations
are minimally needed to compute all moments up to any
desired order L, and show that, for all L, this number is
smaller than the number of conditional moment equations—
in line with the mathematical intuition that more accurate
descriptions of the whole underlying probability distribution
cannot be obtained with less equations. Furthermore, I provide
a simple MATLAB script that can be used to symbolically
derive the minimal system of moment equations and show that
these equations can be solved numerically much faster than
previously used systems of moment equations in which the
specific structure of models with partially finite state space is
not taken into account.

BINARY VARIABLE REPRESENTATION OF REACTION
NETWORKS WITH PARTIALLY FINITE STATE SPACE

Consider a reaction network of M chemical species
X1, . . . ,XM that interact stochastically according to K
reactions,

ν′1kX1 + · · · + ν′MkXM −−−−−→ ν′′1kX1 + · · · + ν′′MkXM,

k = 1, . . . ,K, (1)

where the coefficients ν′
ik

and ν′′
ik

determine how many
molecules of the ith species are consumed and produced

0021-9606/2015/143(24)/244103/7/$30.00 143, 244103-1 © 2015 AIP Publishing LLC
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in the kth reaction, respectively. Under the assumption that
the system is well-stirred and in thermal equilibrium, the
probability distribution describing the time evolution of the
number of molecules of the different species is governed
by the chemical master equation.13 Furthermore, ordinary
differential equations (ODEs) that describe the time evolution
of moments of this probability distribution, i.e., E [Xi(t)] ,
i = 1, . . . ,M; E

�
Xi(t)X j(t)� , i, j = 1, . . . ,M, i ≤ j; . . ., can be

derived from the CME. For details of these results, the reader
is referred to the provided references.7–9 In this paper, I will
consider a subclass of general reaction networks. Specifically,
I will focus on systems in which the structure of the reaction
network ensures that some of the chemical species can only
be present in finite amounts of molecules. Without loss of
generality let us assume that

X1 ∈ {0, . . . ,m1}, . . . ,X j ∈ {0, . . . ,m j},
with m1, . . . ,m j ∈ N and 1 ≤ j ≤ M. (2)

In fact, we can go one step further and assume that only
one species has a finite state space. This is because an
equivalent description of the system can be derived where
the j species in (2) are replaced by one species that can take
m =

 j
i=1(mi + 1) different values (by using a mapping that

uniquely relates each state in {0, . . . ,m1} × · · · × {0, . . . ,m j}
to a state in {0, . . . ,m}). It should be noted that this equivalent
system cannot be written in standard form (1) anymore and
that specifying the correct transition rates on the finite state
space is somewhat more involved in such a description. From
the theoretical perspective, however, it is sufficient to know
that such an equivalent system exists. Partially finite state
spaces arise naturally in many applications, often due to
conservation laws in the system. For instance, models of
enzymatic reactions typically contain an influx of substrate to
the system but a finite and conserved number of enzymes that
catalyze the reaction.14 This implies that the enzyme and any
complex that involves the enzyme can only be present in finite
numbers of molecules, whereas substrate and product species
can theoretically be present in arbitrarily large amounts.

Another important example is provided by models of
gene expression.15,16 Such models typically consist of one
or more species that describe the state of the promoter of
the gene,17,18 one species for mRNA, one for protein and
possibly one each for some further quantities like protein
dimers or fluorescent protein.19 Thereby, the different possible
states of the promoter may, for instance, correspond to bound
or unbound transcription factors,20 different states of the
chromatin structure,21 or the presence of DNA loops.22 In any
case, there is usually only one copy of the gene present, which
leads to a finite state space for the promoter species, whereas
the other chemical species can in principle be present in
arbitrarily large amounts. At the level of the chemical master
equation, it is very natural to represent the promoter with
a single chemical species X1 ∈ {0, . . . ,m} that can switch
between m + 1 values where each of these values corresponds
to one possible state of the promoter. The corresponding
reaction network, however, cannot be directly written in the
form given in (1), because the different values of X1 are only
abstract representations of the promoter states and do not
correspond to actual molecule counts. From the mathematical

perspective, this is not necessarily a problem. It may, however,
become a problem when moment equations need to be
derived for the system. Specifically, the derivation of moment
equations23 typically operates on a structure like the one in (1)
and it is not immediately clear how it can be performed if such
a structure is not available. This seems to be the reason why
a different formulation of models of gene expression is more
prevalent in the field.11,21 In this formulation, the promoter is
represented by m + 1 binary variables X1, . . . ,Xm+1,∈ {0,1}
where each variable represents a possible state of the promoter.
The understanding here is that if a variable takes the value
of one at a certain time point, the promoter is in the state
that is represented by this variable and all other variables
must necessarily be zero. This implies that we can fully
characterize the promoter with m chemical species that follow
the additional rules given by

Xi(t) ∈ {0,1} , i = 1, . . . ,m
with Xi(t) · X j(t) = 0 for i , j. (3)

Note that the species Xm+1 has been dropped in (3), because
its value is always uniquely determined by the values of
X1, . . . ,Xm. The advantage of this formulation is that the
values of all these variables can be interpreted as amounts
of molecules and that it is straightforward to formulate the
reaction propensities as functions of the state of the system.
While researchers have been intuitively using this formulation,
its implications for the moment equations do not seem to be
entirely clear in the field. More specifically, the promoter
species Xi, i = 1, . . . ,m have so far only been treated in the
same way as any other species and the specific properties in (3)
were neglected.11 This does not lead to incorrect results, but
the derived moment equations are unnecessarily complicated.
In the following, I will explain how smaller systems of
moment equations can be obtained by using the structure
in (3) and what the implications of these equations are for
general systems with partially finite state space. The first
thing to realize is that for any formulation of the model with
m + 1 binary variables, there exists an equivalent formulation
with one species that can take m + 1 values. Importantly, the
reverse also holds true, which means that any species that can
take only finitely many values can be represented by a set
of binary variables with the structure in (3). To illustrate this
equivalence, let us consider a simple model of gene expression
in which the promoter can be in one of three possible states
that are represented in the following with the binary variables
A, B, and C:

A
c1−−−−−−⇀↽−−−−−−
c2

B
c3−−−−−−⇀↽−−−−−−
c4

C,

B
a−−−−−−→ B + M M

b−−−−−−→ ∅,

M
c−−−−−−→ M + P P

d−−−−−−→ ∅,

where at time zero it holds that A(0),B(0),C(0) ∈ {0,1} and
A(0) + B(0) + C(0) = 1. The conservation law A + B + C = 1
implies that one of the binary variables can be dropped from
the network, but this is not necessary for the discussion here
and will only become important later.

This network is equivalent to the following network in
which the promoter is represented by one species Y ∈ {0,1,2}
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in the understanding that Y = 0 corresponds to A = 1, Y = 1
to B = 1 and Y = 2 to C = 1:

∅
f1(Y )

−−−−−−−−−→ Y
f2(Y )

−−−−−−−−−→ ∅

∅
f3(Y )

−−−−−−−−−→ M M
b−−−−−−→ ∅

M
c−−−−−−→ M + P P

d−−−−−−→ ∅,

where f1(Y ) = c1 · 1{Y=0} + c3 · 1{Y=1}, f2(Y ) = c2 · 1{Y=1}
+ c4 · 1{Y=2} and f3(Y ) = a · 1{Y=1}.

In this paper, we will explore what this equivalence
implies for the moment equations and how comparisons
between classical and conditional moment equations can be
made in the light of these results.

THE NUMBER OF CLASSICAL AND CONDITIONAL
MOMENT EQUATIONS

Let us consider a reaction network with m binary variables
X1, . . . ,Xm with the properties in (3) that describe, for instance,
m + 1 possible promoter states or more generally any reaction
network with partially finite state space where the cardinality
of the finite part of the state space is m + 1. Furthermore,
assume that n = M − m species Xm+1, . . . ,XM with an infinite
state space are present in the network. If we do not take
into account the specific structure in (3) in the derivation of
moment equations and treat the system just like a standard
reaction network with M species, one can deduce that the
number of moment equations NM,L up to order L is given by

NM,L =

L
i=1

(
M + i − 1

i

)
. (4)

As already mentioned in the Introduction, it has been argued
that a description with less equations for the same truncation
order L can be obtained through the use of conditional moment
equations. The idea of such approaches is to use equations for
the probabilities of the binary variables, i.e., for

P(Xi(t) = 1,X1(t) = 0, . . . ,Xi−1(t) = 0,Xi+1(t)
= 0, . . . ,Xm(t) = 0), i = 1, . . . ,m, (5)

and equations for conditional moments, given each possible
state of the binary variables, for the remaining species, i.e.,
for the conditional means

E
�
X j(t)|Xi(t) = 1,X1(t) = 0, . . . ,Xi−1(t) = 0,Xi+1(t)
= 0, . . . ,Xm(t) = 0] , i = 1, . . . ,m, j = m + 1, . . . ,M (6)

and

E
�
X j(t)|X1(t) = 0, . . . ,Xm(t) = 0

�
, j = m + 1, . . . ,M. (7)

The conditional moments in Eq. (7) are needed because the
conservation law cannot be used to express these conditional
moments as functions of the conditional moments in Eq. (6).
This is essentially a consequence of the fact that for a
Bernoulli random variable B the conditional mean E [X |B]
of another random variable X does not uniquely determine
the conditional mean E [X |1 − B], unless X and B are
independent.

For truncation orders L > 1, equivalent conditional higher
order moments are required. Using this approach, the number

of equations Nc
m,n,L for a truncation order L is given by

Nc
m,n,L = m + (m + 1)

L
i=1

(
n + i − 1

i

)
, (8)

where the first term stems from the m equations for the
probabilities and the second term arises because for each
of the m + 1 possible promoter states a system of moment
equations up to order L for the n species Xm+1, . . . ,XM is
needed. A consequence of Eq. (8) is that when the order up
to which the moments have to be computed is increased from
L − 1 to L, the number of equations increases by

Nc,+
m,n,L = (m + 1) ·

(
n + L − 1

L

)
. (9)

To compare this to the number of classical moment equations,
we can deduce from Eq. (4) that the number of classical
moment equations increases by

N+M,L =

(
M + L − 1

L

)
(10)

when the order is increased from L − 1 to L. Writing out the
binomial coefficients in Eqs. (9) and (10), it is easy to see
that for any n and m there exists a truncation order l such
that Nc,+

m,n,L < N+M,L ∀ L > l. In other words, the number of
equations in the conditional moments framework grows slower
in the truncation order than the number of classical moment
equations, and thus, there always exists a truncation order for
which the system can be described with less equations by using
conditional moments. This observation was originally stated in
Ref. 11 where the authors considered a specific example with
m = 1 and n = 2 and deduced that Nc

m,n,L < NM,L for L > 3
(see Table II in Ref. 11). Together with the fact that the classical
moments can be recovered from the conditional moments, one
reaches the mathematically quite unintuitive conclusion that
more properties of the underlying probability distribution can
be captured with a smaller number of equations.11,12 In this
paper, I will show that this result is only obtained because
the NM,L classical moment equations contain many equations
that are redundant. Specifically, while Eq. (4) provides the
number of moment equations that would be generated by a
naive use of current toolboxes,23,24 it cannot be taken as a
measure of the number of classical moments that are actually
necessary. In other words, the result that Nc

m,n,L < NM,L is not
very meaningful from a mathematical perspective because the
conditional moments framework automatically incorporates
the specific structure of the network given in Eq. (3) and any
comparison to classical moment equations must take this into
account.

THE MINIMAL NUMBER OF CLASSICAL MOMENT
EQUATIONS FOR REACTION NETWORKS
WITH PARTIALLY FINITE STATE SPACE

Essentially, there is only one simple aspect that needs
to be taken into account to deduce the minimally needed
number of moment equations. One has to realize that the
structure in Eq. (3) implies that all moments that contain
products Xi(t) · X j(t) with i, j ≤ m and i , j are zero and can
be dropped, whereas all moments that contain powers Xi(t)s, i
≤ m, s > 1 can be replaced by lower order moments, because
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Xi(t) ∈ {0,1} implies that Xi(t)2 = Xi(t). To understand why
such simplifications must necessarily be possible, it is helpful
to remember the discussion in the first section in this
paper where we saw that an equivalent representation of
the system can be obtained by replacing the m binary
variables with one species Y ∈ {0,1, . . . ,m}. As discussed
earlier, this equivalence can be understood in the sense
that Xi(t) = 1 corresponds to Y (t) = i − 1 for i = 1, . . . ,m
and Xi(t) = 0 ∀ i = 1, . . . ,m to Y (t) = m. Consequently,
the first order moments E [Xi(t)] , i = 1, . . . ,m can be
understood as the probabilities P(Y (t) = i − 1), i = 1, . . . ,m,
which completely characterize the full probability distribution
of Y . In this light, it is not surprising that higher order
moments of Xi(t), i = 1, . . . ,m cannot contain any additional
information. These arguments only explain why no additional
moments for the marginal distribution of the finite species are
needed, but equivalent comparisons can also be invoked for the
joint distribution of finite and infinite species to explain why
all of the cross moments between finite and infinite species
that contain terms of the form Xi(t) · X j(t) with i, j ≤ m must
necessarily be redundant. In essence, the use of the binary
variable representation together with moment equations can
be understood as an approach that leads to moments for
the infinite species but automatically retains the complete
probability distribution of the finite species.

While these considerations provide simple and significant
reductions in the number of moment equation, they are
currently not used in the literature; the most likely reason being
that the currently available toolboxes have not been developed
to incorporate the specific structure of reaction networks
with partially finite state space. The provided supplementary
material,25 however, shows that it is straightforward to
incorporate these simplifications in symbolic derivations of the
moment equations. Using these simplifications, the number of
minimally needed moment equations can be obtained as

Nmin
m,n,L =

L
i=1

(
n + i − 1

i

)
+ m + m

L−1
i=1

(
n + i − 1

i

)
. (11)

This number consists of the number of moments that do not
contain any binary variables (first term), the means of the
binary variables that uniquely determine their full marginal
distribution (second term), and the cross moments, such as
E
�
X1(t)Xm+1(t)L−1�, that contain exactly one power of a binary

variable and no more than L − 1 powers of other species (third
term). An aspect to point out in Eq. (11) is that, contrary to
Eq. (8), the last sum is multiplied by m and not by m + 1. This
is a consequence of the conservation law, which can be used
here to reduce the number of equations because for two random
variables B and X it holds that E [X(1 − B)] = E [X] − E [X B]
and this implies that the (m + 1)th binary variable does not
lead to any additional moments. From Eq. (11), it follows that
when the order is increased from L − 1 to L, the number of
moments increases by

Nmin,+
m,n,L =

(
n + L − 1

L

)
+ m ·

(
n + L − 2

L − 1

)
. (12)

We are now at the point where we can state the result that
provides the main backbone of the discussion in this paper.

Corollary 1. The number of minimally needed classical
moment equations is never larger than the number of
conditional moment equations and always smaller if n > 1.

Proof. It suffices to show that for any n,m,L ∈ N it holds
that Nmin,+

m,n,L ≤ Nc,+
m,n,L with equality holding if and only if

n = 1. To see this, note that

Nmin,+
m,n,L ≤ Nc,+

m,n,L

⇔
(

n + L − 1
L

)
+ m ·

(
n + L − 2

L − 1

)
≤ (m+1) ·

(
n + L − 1

L

)
⇔ m ·

(
n + L − 2

L − 1

)
≤ m ·

(
n + L − 1

L

)
⇔ L ≤ n + L − 1
⇔ n ≥ 1,

which concludes the proof.

COMPARISON OF THE NUMBER OF MOMENT
EQUATIONS FOR BENCHMARK
REACTION NETWORKS

Example 1. As a first benchmark example, let us consider
a reaction network that consists of two possible states for the
promoter, denoted here A and B, and of messenger RNA M
and protein P. The purpose of this example is only to discuss
the number of moment equations and not to determine their
solution. Since this number does not depend on the reaction
propensities, it is not of importance here which reactions take
place. For instance, the system could be the standard random
telegraph model,

A
c1−−−−−−⇀↽−−−−−−
c2

B,

B
a−−−−−−→ B + M M

b−−−−−−→ ∅,

M
c−−−−−−→ M + P P

d−−−−−−→ ∅.

Alternatively, the reactions could also be as in Ref. 11,
which means that a direct comparison of the number of
moment equations obtained here and in the reference is
possible. Noting that for this example we have that n = 2
and m = 1, we can directly compare the number of moment
equations using (4), (8), and (11). The results are listed in
Table I. The first two rows in this table are exactly the same
as those listed in Table II in Ref. 11 (except that we obtain
one conditional moment less for each closure order because
of the conservation law). Based on the comparison of these
two rows, it was concluded that less conditional moments are
needed for large closure orders. We can now see, however,

TABLE I. Comparison of the number of moment equations for a reaction
network with n = 2 and m = 1. The first row shows the number of classical
moments obtained when the structure of the system is not used, the second
row provides the number of conditional moment equations, and the third row
the number of minimally needed classical moments.

Truncation order L 1 2 3 4 5 6

Classical 3 9 19 34 55 83
Conditional 5 11 19 29 41 55
Minimal classical 3 8 15 24 35 48
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TABLE II. List of required moments up to order L = 3 for Example 1 (n = 2 and m = 1). The moments listed in
each row are only the moments of the corresponding order, i.e., for the moment equations up to order three the
moments of all the rows together are needed.

Order L Minimal classical Conditional

1 E[A], E[M ], E[P] P (A= 1), E[M |A= 1], E[P |A= 1],
E[M |A= 0], E[P |A= 0]

2 E[AM], E[AP], E�M2�, E
�
M2|A= 1

�
, E[MP |A= 1], E�P2|A= 1

�
,

E[MP], E�P2� E
�
M2|A= 0

�
, E[MP |A= 0], E�P2|A= 0

�

3 E
�
AM2�, E[AMP], E�AP2�, E

�
M3|A= 1

�
, E

�
M2P |A= 1

�
, E

�
MP2|A= 1

�
,

E
�
M3�, E

�
M2P

�
, E

�
MP2�, E

�
P3|A= 1

�
, E

�
M3|A= 0

�
, E

�
M2P |A= 0

�
,

E
�
P3� E

�
MP2|A= 0

�
, E

�
P3|A= 0

�

that this result was only obtained because the structure of the
system was not used in the derivation of the classical moment
equations, and accordingly, many redundant moments were
counted. The third row in Table I shows that the number of
non-redundant classical moments is always less and grows
slower than the number of conditional moments.

To make this comparison more intuitive for the
reader, Table II provides a list of the conditional and
minimal classical moments up to order L = 3. Note
that A(t),B(t) ∈ {0,1} and A(t) = 1 − B(t), which leads to
E [A(t)] = P (A(t) = 1) = 1 − P (B(t) = 1) = 1 − E [B(t)] and
E [M(t)|A(t) = 0] = E [M(t)|B(t) = 1], but this does not imply
any relation between E [M(t)|A(t) = 0] and E [M(t)|A(t) = 1].

Example 2. As a second example, consider a reaction
network with a third binary variable,

A
c1−−−−−−⇀↽−−−−−−
c2

B
c3−−−−−−⇀↽−−−−−−
c4

C,

B
a−−−−−−→ B + M M

b−−−−−−→ ∅,

M
c−−−−−−→ M + P P

d−−−−−−→ ∅.

Here, we have that m = 2 and n = 2 and obtain the number of
moment equations listed in Table III. Comparing the first and
the third row, it can be seen that at a truncation order of L = 6
more than two third of the naively derived classical moment
equations are actually redundant.

NUMERICAL EVALUATION OF THE COMPUTATIONAL
COST OF SOLVING THE CLASSICAL AND MINIMAL
CLASSICAL MOMENT EQUATIONS

In this paper, it was established that the number of
classical moment equations that are really needed for models
with partially finite state space may be significantly less than
the equations that are obtained in a naive derivation of the
moment equations. This suggests that computational time can

TABLE III. Comparison of the number of moment equations for a network
with n = 2 and m = 2.

Truncation order L 1 2 3 4 5 6

Classical 4 14 34 69 125 209
Conditional 8 17 29 44 62 83
Minimal classical 4 11 21 34 50 69

be saved if the moments are computed using the results of
this paper. To test whether this is really the case, and to
evaluate quantitatively how large the computational savings
are, I performed a study where the classical and minimal
classical moment equations were solved numerically for the
two examples considered in this paper with many different
parameter values. More specifically, for both examples, all
parameters were sampled 10 000 times (uniformly from
the interval [0,1]) and the moment equations were solved
for L = 2,3,4,5 up to a final time of t = 100 using the
CVODE solver of the SUNDIALS toolbox.26 Thereby,
I assumed that M(0) = P(0) = 0 for both examples, for
Example 1 that A(0) = 1 and B(0) = 0, and for Example
2 that A(0) = 0, B(0) = 0, and C(0) = 1. The implementation
of this comparison is provided as supporting MATLAB files
and the precise settings of the numerical solver can be found
in the code. The results are listed in Tables IV (for Example
1) and V (for Example 2). It can be seen that the saved
computational time increases quickly with the order of the
moment equations. For higher orders, the solution of the
minimal moment equations was on average up to 80%–90%
faster. Specifically for applications where moments have to
be computed iteratively, such as for parameter inference21 or
experiment design,19,27 this is extremely important and may
determine whether algorithms that are typically used in such
applications require hours or days of running time.

TABLE IV. Comparison of the computational cost (in seconds) of nu-
merically solving classical and minimal classical moment equations for
Example 1.

Truncation order L 2 3 4 5

Classical 0.0095 0.0134 0.0209 0.1488
Minimal classical 0.0095 0.0114 0.0151 0.0211
Saved time (%) 0.16 14.76 27.94 85.85

TABLE V. Comparison of the computational cost (in seconds) of numerically
solving classical and minimal classical moment equations for Example 2.

Truncation order L 2 3 4 5

Classical 0.0117 0.0211 0.2206 0.5886
Minimal classical 0.0116 0.0133 0.0175 0.1059
Saved time (%) 1.48 36.81 92.09 82.01
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SYMBOLIC DERIVATION OF THE MINIMAL
MOMENT EQUATIONS

The MATLAB code for deriving minimal systems of
moment equations and a description of the code are provided
in the supplementary material.25 I would like to specifically
point out that this code is a working tool and not meant
to be a full toolbox for solving moment equations. The
tool only derives moment equations and is currently neither
directly interfaced with moment closure methods nor with
ODE solvers. In addition, the reaction network has to be
specified in the binary variable representation. An automatic
derivation of this description for any reaction network with
partially finite state space is currently not implemented. In the
future, I plan to work on extensions for these tasks.

DISCUSSION

As stochastic kinetic models gain more and more
importance for applications in molecular biology,17,19,21,28,29

also the question of how to best work with these models is
being debated increasingly often.30–32 It is clear that there
will never exist one approach that is universally best for any
reaction network,8 but it may very well be that for networks
with specific structure, some approaches are better suited than
others. In this paper, I focused on networks with partially finite
state space, which typically arise due to conservation laws in
the chemical reactions. The main focus of the examples
considered here was on models of gene expression where
DNA is a conserved quantity. Equally important applications
can, however, also be found in (single) enzyme kinetics with
small and conserved numbers of enzymes.33,34 I showed how
the minimal number of moment equations of any order can
be determined for such models and provided a symbolic
algorithm for deriving these equations. The results revealed
that the implications of a partially finite state space had not
been completely understood in earlier studies and that the
number of classical moment equations that are really needed
is smaller than what was previously claimed.11,12,35

The results of this paper can also be seen as the
basis for a hybrid approach for the analysis of stochastic
models of biochemical reaction networks. The binary variable
representation of the network, and the derivation of moment
equations from it, automatically keeps the full probability
distribution over the finite part of the state space while
resorting to low-order moments over the infinite part.
Essentially the same is done when the conditional moment
equations are used11 and one may question how it is
possible that the number of minimally needed classical
moment equations that was derived in this paper turned
out to be smaller than the number of conditional moment
equations. The reason for this is that the conditional moment
equations up to order L provide information about the full
probability distribution that is “partially of order L + 1” from
the perspective of the minimal classical moment equations.
For instance, in Example 1, the five conditional moments
of order L = 1 listed in Table II uniquely determine the
three minimal classical moments of order L = 1, but they
also determine E [AM] and E [AP], which are of second

order. If we would interpret all cross moments between
binary variables and infinite variables (i.e., moments of the
type E

�
X1(t)Xm+1(t)L−1�) as belonging to order L − 1 instead

of L in the formulation of the minimal classical moment
equations, then exactly the same number of minimal classical
and conditional moment equations would be obtained. In
fact, in this interpretation, minimal classical and conditional
moment equations capture exactly the same properties of the
full probability distribution and can be derived from each
other. In this light, one could argue that the conditional
moment equations do not provide a new way of representing
stochastic models of biochemical reaction networks. They
do, however, suggest new approximation techniques36,37 and
this may help future efforts in modeling stochastic reaction
networks.
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