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Abstract

Evolutionary biologists have an array of powerful theoretical techniques that can
accurately predict changes in the genetic composition of populations. Changes in gene
frequencies and genetic associations between loci can be tracked as they respond to a wide
variety of evolutionary forces. However, it is often less clear how to decompose these
various forces into components that accurately reflect the underlying biology. Here, we
present several issues that arise in the definition and interpretation of selection and
selection coefficients, focussing on insights gained through the examination of selection
coefficients in multilocus notation. Using this notation, we discuss how its flexibility -
which allows different biological units to be identified as targets of selection - is reflected
in the interpretation of the coefficients that the notation generates. In many situations, it
can be difficult to agree on whether loci can be considered to be under “direct” versus
“indirect” selection, or to quantify this selection. We present arguments for what the
terms direct and indirect selection might best encompass, considering a range of issues,
from viability and sexual selection to kin selection. We show how multilocus notation can

discriminate between direct and indirect selection, and describe when it can do so.

Introduction

It is straightforward to use mathematical models to describe the deterministic
evolution of a large population - we simply follow the frequencies of all the various gene
combinations as they change through time. However, it is not at all easy to find a clear and
meaningful interpretation of the consequent mass of coupled nonlinear equations, and thus
there are heated debates over the interpretation of population genetic models (e.g. Sober,
1984, Nowak et al., 2010, Abbott et al., 2010). How do traits that do not directly affect
fitness, such as mate preference or recombination rate, evolve? Can altruistic traits that
reduce their bearer’s fitness evolve? What, indeed, do we mean by fitness? Other
questions center on the interpretation of selection (Sober, 1984). Does selection act on
genes, on individuals, or on sets of interacting individuals? When does selection act on a
gene or trait? How can one distinguish direct from indirect selection, and how should
these types of selection be defined? In such examples, it has proved difficult and
contentious to relate verbal arguments to mathematical models, and to understand the
inner workings of the models. The difficulty is greater when the model consists of a
simulation or numerical calculation, but even when the model has an explicit analytic

representation, the meanings of the various terms are rarely obvious.

We examine several of the questions arising in the interpretation of selection via
insights gained from a particular type of multilocus analysis. We focus specifically on
what can be learned from the interpretation of the “selection” coefficients that appear in a

methodology for multilocus population genetics (Barton and Turelli, 1991; Kirkpatrick et
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al., 2002). This notation gives an exact analysis of selection and recombination, and
allows a close "quasi- linkage equilibrium" approximation when recombination is faster
than selection. It was developed in a series of papers, originally dealing with spatial clines
(Barton, 1983, 1986) and the evolution of quantitative genetic variation (Barton and
Turelli, 1987), but applied more broadly by Barton and Turelli (1991). Similar general
multilocus models were developed independently by Biirger (1991) and Christiansen
(1999). The method was set out very generally, allowing for sex - linkage and other forms
of transmission, by Kirkpatrick, Johnson and Barton (2002), who suggested some changes
to the notation introduced by Barton and Turelli (1991).

The key idea in this multilocus methodology is to represent genotype frequencies
by their moments, and fitness as a polynomial function of genotype; with a finite number
of alleles and loci, this leads to a closed set of equations, with a simple form that can be
generated by symbolic computation. Moments are defined relative to a reference point that
consists of a set of allele frequencies. Recursions describing evolution include emergent
coefficients that multiply the moments of the system (Eq. 1). The basic method is
generalizable, and allows considerable flexibility in the choice of reference point, in the
way fitnesses are represented, and in the choice of which individuals are taken as the unit
of selection. Thus, the choice of definition in a particular problem is crucial to our
interpretation of the coefficients that define fitness. However, until now the interpretation
of these coefficients, indeed whether in some cases they have any clear biological

interpretation at all, has been unclear.

As we examine how the coefficients generated by multilocus analysis can be
interpreted, we discuss insights that are applicable to several general issues in the
interpretation of selection. We illustrate these issues with a variety of examples: sexual
selection on haploids, diploid viability, epistasis, reinforcement, and kin selection. We
stress that there is considerable freedom in multilocus analyses to choose the unit of
selection to suit a particular biological problem, and there is also freedom to choose a
reference point against which the associations are defined. This flexibility, however,
means that it is not straightforward to interpret the various coefficients; indeed while in
some cases very useful conclusions can be made from examining the coefficients, in other
cases they remain uninterpretable. The lens of multilocus analysis raises some
particularly interesting issues with regard to direct and indirect selection. We discuss the
meaning of these terms, when these may be said to act on particular sets of loci, and how
in some cases the coefficients defined by the notation of Barton and Turelli (1991) can be
interpreted as corresponding to these types of selection. Examination of these issues
through multilocus notation can provide a unique perspective that advances our

understanding of the complexities of selection.
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Multilocus population genetics

Notation

Here we give a brief summary of the multilocus methodology, highlighting the
differences in the notation for selection between Barton and Turelli (1991), and
Kirkpatrick, Johnson and Barton (2002) (denoted for brevity by BT and KJB
respectively). We briefly illustrate the use of these notations with the example of sexual
selection in haploids. More details are given in the Appendix. The allelic value of a gene
is denoted by X in this paper, we assume two alleles per locus, and take X =0 or 1. There
is no difficulty (in principle) in extension to any (finite) number of alleles. We assume a
gene is always at some locus, i, in the genome. In the more general KJB notation, any
particular gene will be in some "context" - for example, a gene in a diploid male, on the
chromosome inherited from the female parent, could be denoted by 1 = i,, . Such "genes
in context" are termed "positions", and denoted by double-struck font, so that U can

represent an arbitary set of genes in context.

Here, we are primarily concerned with autosomal genes in diploids, or
equivalently, mated pairs of haploids. In these specific cases, we can also use the
condensed BT notation, in which a * denotes genes inherited from the paternal genome or
the haploid male parent. Thus, in this notation we would denote a set of genes U
expressed in females, V expressed in males by U, V* (i.e., genes from mothers and
fathers, respectively, in a diploid).

Genotype frequencies are represented by their moments, which are defined with
respect to a reference point, @; (see discussion below and Appendix). The deviation of the
allelic value from the reference point is denoted by {; = X; — ¢;, and the association
between a set of genes U is defined as Dy = E[{y] = E[] iy &i]. If the reference point is

set to be the allele frequency, and the genes 1, j are in the same genome, then D;; is the

usual pairwise linkage disequilibrium.

Selection: KJB notation

We consider selection in very general terms, as a process in which the composition
of a population changes in proportion to the fitnesses of its members. This includes
viability and fecundity selection, as well as sexual selection, acting through mating
success. As we argue below, this broad definition may also include assortative mating,
which does not change the frequencies of alleles, but does change the contribution of pairs
of alleles to the next generation; in this case, the population may be considered to consist
of sets of genes or individuals.

We define the relative fitness of a genotype X' simply as the ratio between its

frequency in the population, g(X), and its contribution to the next stage in the life cycle,
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g' (X), and write this as a polynomial function of genotype. KJB define relative fitness as:

W g (X)
Vo e + E vea (u — Duv) (1)

(The term £y — Dy ensures that [E[W / W] = 1). This expresses the relation between the

relative contribution of some group of genes, and their allelic value, X. It is completely
general, provided that we define enough coefficients ay to specify the fitness of any
genotype. With two alleles per locus, we need to specify a coefficient at least for every
subset of the set of all positions, (). As we discuss below, in general, the ay will depend

on genotype frequencies, if only because of the normalisation E [W /W] = 1.

The change in allele frequencies is given simply by:

Ap; =Dj = o 2 Dui (2)
(changes to the associations are defined similarly; see KJB). Here, we assume that the
reference point equals the initial allele frequency ¢; = p;, so D; = 0. If we consider a pair
of genomes, as with sexual selection amongst haploids, or viability selection on diploids,
the change in allele frequencies depends on terms representing interactions between
genomes, U = {U, V*}.

We illustrate this notation using the example of sexual selection in haploids,
concentrating on the evolution of an allele for female preferences. Here we assume that
there is a single preference locus p, expressed only in females, which is one out of the
total set of loci expressed across both males and females, U. The change in preference

frequency in females can be written as:

APP:[E[{”’ %]:Z‘JU&UDZP[U (3)

where p = py.Since p may be an element of the subsets U, the expansion of the sum will
include the term a,, Dy, terms which combine p with all other subsets of U, and all other

subsets of U that do not contain p. If the reference point is set to the initial allele
frequency such that p; = p;, then D; = 0, and each term in Eqn (3) will only be retained if
the association D in that term are among multiple loci expressed in each represented sex
(e.g.,if ¥V contains more than one locus expressed in males, and p is only expressed in
females, Dy, #0, Dy, v = Dpp Dy #0, but D, v = D, Dy=0 since D,, = 0). Evolution at the
preference locus in males would still be given by Eq. 3, except that p = p,,. In this case,
different terms would be retained in the expansion of Eqn (3), since p is now a member of

the set of loci expressed in males. Thus, now D,y #0, since p and V are expressed in the
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same Sex.

Selection: BT notation

In contrast to the KJB notation, Barton and Turelli (1991) gave a definition that
was specifically designed for selection on pairs of haploid genomes. They define separate
coefficients for each sex, where the set U represents genes in females, and V represents
genes in males. Using a ” to denote the coefficients in the BT notation instead of the KJB
notation, they define the fitness of pairs of loci in males and females (these could be

mated pairs of haploids or genes from maternally and paternally inherited loci in diploids):

WX
— = — =1+ ayg ({u—Dy) + agy (& —DY)
W gX) ZU ZV (4)
+ Dy Auy €u=Du) (& = DY),
Here, the first position in the subscript of the a coefficients denotes the set of genes in
females and the second position denotes the set in males (an * is used to refer to males

when the position is not clear from the subscript). The coefficients a; from KJB are
separated into coefficients expressing the effect on fitness of female genotype, ay, ¢, of
male genotype, agp,v , and of the interaction between them, ay,y. Thus, provided that
there are initially no associations between genes in males and females (i.e., Dy y = 0), the
marginal fitness of female and male genotypes depends only on ay,s and ag, v,

respectively. As we shall see below, changes in allele frequency within each sex depend

only on these marginal coefficients.

There is a simple relation between the BT and KJB coefficients:

ayyv = aU,V for U, V + (Z)
o= (5)
éU,Q) - Zﬂ’i@ ﬁ'U,V D>\k/ a@’\/ = é’@,V — ZU:#(Z) éU,V DU

As we discuss below, these differences between the notations have important implications

for the interpretation of these coefficients.

As before, the change in allele frequencies can be found by assuming that the

reference point equals the initial allele frequencies, yielding

Ap, = ) By Dui (6)

where ay, = (ay,p+ag,v)/2. We see that allele frequencies in each sex change only as a
result of the coefficients ay,¢, ap,v that represent selection within that sex, and not on

interactions ay,y. This is not the case for the KIB ay.
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Returning to the example above of sexual selection in haploids for illustration,

evolution at the preference locus p can be represented in the BT notation by:

Ap, = Bug Dy (7)

Since the coefficients a are averaged over both sexes we do not distinguish between the
sexes in the sets of loci expressed in the associations (the Ds) in the expansion of Eqn 7,
as occurs in the KJB notation (this was accounted for during the averaging). Terms in the

expansion of Eqn. (7) are thus retained provided that for SCU, ag, 3+#0.

As we will see from the additional examples below, we can choose the entities that
are selected - single genes, pairs of genes in a diploid individual, and so on. Fitness may
be influenced by many factors including differential survival, differential contributions to

a mating pool, and genotype-dependent migration to different habitats. The interpretation
of the coefficients ay and ay,v will depend on these choices. After selection, in this

general sense, occurs, the sexual life cycle is followed by recombination, and a change in

reference point, as detailed in the Appendix.

Examples

In the following examples, we demonstrate some of the properties of the
coefficients in the multilocus notation, present some of the issues surrounding their
interpretation, and argue that different notations are better suited for different examples.
While so doing, we dissuss several issues regarding the general interpretation of selection,
including what units selection can be said to act on, how this changes our quantification of

selection, and how it might be determined whether direct or indirect selection is acting on
specific genes or set of genes. We reserve ay and ay,y for the specific definitions of KIB

or BT (egs. 1,4). When we define specific examples we will use letters other than "a" to

represent the coefficients, to clarify discussion of how these coefficients relate to ay and
ay,v . The KJB notation, using the a coefficients, leads to more straightforward
recursions, and was developed to handle a broader range of biological situations than the
BT notation (including non-random mating among diploids, genomic imprinting,
polyploidy, etc). However, as we show below, the BT notation, using the & coefficients,

can, in appropriate cases, be more readily interpreted.

B Defining fitnesses: choice of reference points and of sets of genes
Specific definitions of fitness in a particular biological problem will vary
depending on several choices, including the set of genes under consideration and the

reference point. (Recall that the latter is the point against which the genetic state of the
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population is defined, and in multilocus notation defines the associations D). While in
some cases the choice of both of these seems clear, in other cases there is some leeway
that will consequently alter the multilocus coefficients. We also point out that the choice
of both of these factors will almost always make the multilocus coefficients depend on

genotype frequencies, even when the fitnesses themselves are not frequency-dependent.

Reference points can be chosen arbitrarily. It is usually most convenient to set the
reference point equal to the current allele frequency in a population, and in many cases
this gives an intuitive meaning to the selection coefficients (see section on direct and
indirect selection below). One must still choose, however, across what set of genes the
allele frequency will be taken (the “context” in KJB). For example, allele frequencies may
differ between the sexes, or between the genomes derived from the mother or father, or
between microhabitats; one must decide whether to take the allele frequency within a
gene’s context as the reference point (p; = [E[X;]), or instead choose some wider average.
Indeed, one might choose a fixed arbitrary value: for example, Cheverud and Routman

(1995) define a measure of “physiological” epistasis, which is independent of allele
frequencies, by setting p; = %

That the choice of reference point generally renders multilocus coefficients
frequency-dependent can be illustrated by a very simple example, involving two genes at
the same locus. This example can be considered as viability selection on a diploid
individual, or, equivalently, viability selection, and sexual selection on a pair of haploid
individuals. (We refer to the two genes as “female” or “male”, but in the diploid
interpretation they are derived from the female and the male gamete). Under either

interpretation, we can write fitness as:

W =
1 +b;9 (Xi — wi) + bg; (X — wi) +bii (Xi — wi) (Xf — )
Here, we assume that genotypes have a fixed fitness, meaning that the fitness is not
frequency dependent and does not change through time (to within a scaling factor that
includes density-dependent regulation), and take the w; and wj as arbitrary, but fixed
values. Now, the selection coefficients ay can only be fixed if we keep these reference
points fixed; if they are set equal to the w;, wj, then the qy are identical to the by . In this

case of a single locus, the KJB and BT notations are equivalent: ay = ay.

In general, however, the coefficients a and a do depend on allele frequency. We
can choose the reference point to equal the current allele frequencies (p;=g;), but in
general this will not equal the fixed w; used to define fitness in Eq. 8 . We can see this by

letting A; = p; — w; (recall that ; = X; — p;):

W = 14b¢ i+ A1) +bg; (¢ +A)+bii (G +A) & +A) (9)
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NOW, W =1+ bi,(D A,’ + b(]),i Af + bi,i Al' A;k, and Wai,(b = bi,(Z) + bi,i A;k,
Wa(b’i =by,; +bi; A, Wa,-,,- = b;;. Thus, even in this simplest case, the coefficients a and

a must be frequency-dependent, both because they are normalized relative to the mean
fitness, and because the marginal fitness of each allele depends on how often it finds itself

associated with the other allele, via the coefficient b; ;.

Fitnesses, as defined by the by, might well also depend on genotype frequencies.

In this case the a, a would depend on genotype frequencies for two reasons, both because
of the changing reference point (as described above), and because of the intrinsic
frequency-dependence of genotype fitnesses. For example, pure assortative mating can be
modelled by assuming that a fraction (1-a@) of pairs mate randomly, whilst a fraction &
mate with the same type. For a single haploid locus, assuming equal frequencies in the
two sexes, and setting ¢; = p;:
Xi Xy o1 .
W=(1—a)+a( +—(1—Xi)(1—Xf))
Pi di

1 1 (10)
(1 —CY)+C¥(— (pi + &) (pi + &) + — (%-51)(%-&))
Pi i
CL/ %k
=1+ — 44
Pi di

This ensures that a; y = ag; = 0, so that allele frequencies do not change; the coefficient
a;; that represents assortment is necessarily frequency-dependent, becoming extremely
large when either allele is rare.

As well as being free to choose an arbitrary baseline, wj, and reference point, ;
for defining fitnesses, we can also choose which sets of genes to follow, both within and
across loci. This will also affect definitions of fitness, and affect the multilocus
coefficients. Suppose that instead of following the contribution of pairs of genes to the
next generation, we follow just genes in females. Because we are now only following

genes in one position (the females), we write coefficients as a;, rather than a; 5. From Eq.
9, their marginal relative fitness is now W /W =1 + (bi,(b +b;; Af) ;| W, so that again

a; = (b,-’(z, +b;; A;‘) / W' if there is an interaction between the genes, b;;, due to non -
random mating between haploids or dominance in diploids, then the selection coefficient
for genes in females depends on the frequency of the allele that they encounter in males
A} = p? — w;. The change in allele frequency is Ap; = a; D;; = a; p; g;. If allele
frequencies are the same in the two sexes, then this gives a closed equation for the allele

frequencies, with the frequency-dependence that arises from dominance or non-random
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mating between haploids being absorbed into the single coefficient a; y = ap ;= a; . If we

have in mind viability selection on diploids, then it is natural to assume this symmetry: it
would only be violated if genes were imprinted, so that they have different effects when
inherited from the mother versus the father. However, if selection acts on pairs of haploid
individuals, with distinct sexes (as in the original discussion of Eqn 9), then selection may

well act differently on genes at the same loci that find themselves in a different sex.

Just as we must make a choice of what set of genes (in what context) to use as a
reference point at a given set of loci, a choice must also be made of what loci to track.
This choice is more critical. If we do not follow all of the genes that cause fitness
differences, then the recursions across generations will still be correct, but the coefficients
may change with the frequencies of genes or gene combinations that are not themselves
tracked. A complete description of the dynamics requires that we follow all of the genes
that affect fitness.

Direct vs. indirect selection

Evolution at a locus does not require that selection acts specifically on alleles at
that locus, but can occur instead because of selection on other loci in the system. In other
words, alleles that do not cause differences in fitness may change in frequency if they are
correlated with fitness. In order to begin to partition out the pathways leading to evolution
at a locus from different sources of selection, it is useful to distinguish between two
different types of selection, direct and indirect. In population genetics, selection is said to
act directly on a set of genes when those genes cause differences in fitness of the
individual (or set of individuals) that carries them. Direct selection can lead to changes in
allele frequency and/or changes in disequilibria; the latter can occur even when allele
frequencies themselves do not change. Selection acts indirectly on genes that do not affect
the fitness of their carrier; linkage disequilibrium (or more generally, associations)
between the focal loci and other genes under selection is required for indirect selection to
operate. The distinction between direct and indirect selection has long been critical in the
field of sexual selection, where they distinguish two biologically independent modes of
evolution of female preferences: direct selection on preferences occurs when specific
preference alleles have effects on female survival or fecundity (Kirkpatrick and Ryan
1991). In contrast, indirect selection on a preference is defined as occuring when
preferences change in frequency due to the presence of genetic associations between the

preference and other loci, such as male display loci, that are under selection.

We note that the distinction between direct and indirect selection tends to be made
differently in the literature on social evolution. The terms in Hamilton’s Rule correspond
to the direct effects of genes on the individual that carries them, plus the indirect effects

on fitness of genes in other individuals; these genes are typically at the same locus. In
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population genetics, indirect selection refers to the effects of genes at different loci, but in

the same individual.

Modifier loci provide another interesting example in which to consider direct and
indirect selection. Modifiers have sometimes been defined to be neutral with regard to
fitness, which implies that they can only be under indirect selection. However, they can be
defined more generally, as alleles which alter some aspect of the genetic system (Feldman
et al. 1996). Under this latter definition, selection on a modifier can be direct, because a
modifier can alter the fitness of an individual that carries it. Modifiers of dominance and
epistasis are necessarily directly selected, because they alter the fitness of an individual in
a way that depends on other genes, at the same or at different loci. We discuss modifiers
of dominance (more precisely, of heterozygote fitness) below. Other examples in which
selection can be direct include modifiers of ploidy, and modifiers that affect migration.

Here, we illustrate that when the reference point is chosen carefully, it is possible
for the coefficients to provide measures of direct and indirect selection on genes; these are
composite measures of selection with a clear biological interpretation. Once we have
chosen the reference point, and the sets of genes that we follow, the coefficients are
uniquely defined. We show that direct and indirect selection can, in some circumstances,

be distinguished by these coefficients using the BT formulation of the multilocus notation.

First, we repeat a word of caution that extends to all examples below - unless we
have included all the genes that cause fitness differences in the set that we follow (“‘causal
loci”), we will not be able to determine which are directly versus indirectly selected, and
we will not have a closed set of equations that allow us to predict evolution over multiple
generations. This can easily be seen if we think of a set of neutral markers, that are
associated with unobserved selected loci - the typical situation with real data. We can
define, in any one generation, the average fitness of each marker genotype, and hence the
a’s, but have no way to predict how these coefficients will change from one generation to
the next, since the markers do not cause the fitness differences. Below, we use examples
to illustrate several other general issues that arise in attempting to distinguish direct and

indirect selection using multilocus notation.

= Sexual selection in haploids

If all causal sets of genes in haploids are included in our definition of fitness, then
we can identify which sets of genes are directly selected - that is, which genes influence
the fitness of the individuals that carry them. Here, we use the model of sexual selection in
haploids introduced above (see Notation), where we are interested in evolution at a locus
for female preference, which together with its context is denoted p in the KJB and p in the
BT notation. We assume that the preference locus itself is not under viability or fecundity

selection, and that this is the only locus expressed in females. We also assume that all



12

Interpreting ML coefficients 11.2.15 mainText.nb

causal loci in the system are included in p in females and the set V in males (e.g., p is the
only member of set U in Fig. 1a). Assuming strict polygyny, where all females have equal
mating success, there is thus no direct selection on females. We will show that this is
reflected in the multilocus coefficients from the BT notation. The fitness of haploid pairs

must have the form:

w (11)
L+ ) oy =D+ ) apr(&y = Dp) & = Dy)

That is, in the BT notation, the coefficient ép,® = 0, reflecting the lack of direct selection
at the p locus in females (recall that gene for female preference, p, is not expressed in
males in this example). Because &, = 0 in this example, the frequency of the locus p

changes only in so far as it is associated with other directly selected sets. In other words,
any evolution that occurs at the preference locus from Eq. 7, using the BT notation, must

come through associations of p with selected loci, V (e.g., through Dpy); it is thus indirect.

In contrast, the lack of direct selection on locus p is less obvious in the more
general KJB notation. Now, we define relative fitness as in Eqn 1, where U includes

genes in both males and females. Because ay, = ay,s - >y au,v Dy, when DG#0, ay, ¢ 1s not

necessarily zero, so the fact that preference alleles themselves do not affect fitness of

females is not reflected in the ay, . In fact, in our sexual selection example, a,, ¢ will
necessary not equal zero if females prefer a combination of genes in males V, since both

ap,v and D, will be non-zero.

The change in preference frequency in females with the KJB notation can be seen

in Eq. 3 above. This expression is very simple, but it is not as obvious as with the BT

notation that when D,, D,y =0, then App,(z) = 0. To see this, substitute ay,y=ay, v,

a(D,V = é.@lv _ZU éU,V Du, and aU,® = é-U,(D - ZU é-U,V D\*] intO Eq 3,giVing:

Appp = ZU ay,y Dpu,v +
Z\, (aw,v - ZU ay,v DU) Dpv+ (12)
5 (5 v

Since D;,,v=0 and D,y y = Dpy Dy, this is zero, as required.

The example above shows that even when the BT coefficient &U,(Z) =0, the KJB

coefficient may be non-zero, so that direct selection is not reflected in the KJB notation.
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We see that for haploids, the most natural representation is that of Barton and Turelli
(1991). Note, however, that even with the BT notation, a;; ¢ only accurately represents

direct selection on the set U in haploid females provided that, as specified above, all

causal loci influencing fitness in females are included in the set U.

Indirect selection, like direct selection, can again be represented by the BT
notation. In the case of selection on locus i, the term }}; ay,» Dy; describes the evolution
at locus i that occurs because of selection on the set U, transmitted to i by the genetic
association between i and U. Because the selection coefficient ay, s accurately represents

direct selection on the set of genes U in this notation, it also represents the indirect
selection that the set U will transmit to gene i. The measures of selection, both direct and
indirect, extracted by the coefficients are an agglomeration of frequency-dependent effects
on fitness from viability selection, sexual selection, and fecundity selection, if it is acting.
The coefficients thus allow the total evolutionary change to be separated into components

that can be attributed to the loci through which the selection originates.

Epistasis between three loci

An attempt to specify whether particular multilocus coefficients impart direct or
indirect selection on a locus quickly brings to light an interesting issue in defining whether
sets of loci are under direct or indirect selection. Provided that we have included all
causal loci, we can identify which complete sets of genes are directly selected. However,
one must be very careful with language in stating whether particular subsets of a set of

genes are also directly selected.

Consider an example with selection on sets of genes, where we do not need to
consider separate sexes. In this simplest case, there is no distinction between the KJB and
BT notations. In such an example, if a; = 0, we might say that gene i is not directly
selected. However, the entire set of genes {i, j, k} may be directly selected, meaning that

certain combinations of alleles will have high fitness (e.g. if a;jx # 0). In this case, allele i
will change in frequency even if a; = 0, and even if it is in linkage equilibrium with both j
and k (Dj = D;; = Djjx = 0) - provided that j and k are associated with each other:

Ap; = ajjk Diijk = aijx(pi qi Dji +(qi — pi) Dijr). This can easily be seen from Table 1,
which presents the a's for this problem: amongst genotypes X;, X; =0, 0 or 1,1, allele

X; = 1 always increases fitness, and so if D j; > 0, it will increase. Since the change in

frequency at locus i occurs because of direct selection on a set of which i is a subset, we
can say that i ultimately evolves because of direct selection. We cannot say, however, that
there is direct selection specifically on the locus i. Note that since the change in
frequency at locus i arises in the absence of a genetic association between i and another

locus we cannot define the selection on i as indirect.
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Table 1. Relative fitnesses in a three locus example with epistasis, where W /W =1 +
a; k(i jk — Dijr)

X X; X; wIw

0 0 1 = ajji pi pj Px = @ijik Diji
1+ aije qi pj Pk — aiji Diji
1+ a;jk pi pj gk — aiji Dijk
1 = aijie qi pj g — aiji Diji
1 +aiji piq; Pk — aiji Diji
1 = aijk qiq; pr — aiji Diji
1 = ajjk piq;qr — aijk Diji
1+ a;ji i qj g — aijic Diji

More specifically, this issue will arise whenever we try to identify whether there is

= R e = T U e T
—_— e = m OO O
_— e OO = = OO O

direct selection on a particular subset of loci, when the set as a whole influences fitness.
Consider four loci, i, j, k, and [. If a;j5; = 0 and a; = 0, but g;;; # 0, we can say that there
is no direct selection on locus &, and that there is direct selection on the set {i, j, [}, but
will not be able to say that specific subsets of {i, j, [} are directly selected if the as that
correspond to those subsets are zero. We can only say that they evolve because of direct
selection on a larger, directly selected set. Note that if the a that corresponds to a subset
of {i,j, [} is non-zero, we can say that that a represents a component of direct selection on
that subset.

Hastings (1985) and Barton (1986) showed that when selection is weak relative to
recombination, selection a; for a set of genes U in haploids generates linkage
disequilibrium, Dy, amongst precisely those genes (to leading order in the strength of
selection). In this limiting case, we can interpret the coefficients ay (or ay) as directly
selecting for the corresponding Dy. This argument can be extended to allow strong
directional selection (i.e. a;>>ay ), but then, the simple relation between the epistatic

coefficients and the associations that they produce is lost (see Appendix).

Multiple interpretations of the same coefficients: reinforcement

In some situations, examination of the multilocus notation can point out parallels
between very different biological processes. The biological interpretations of the
multilocus notation must thus be made in context, because the same coefficients may
represent different natural processes. We illustrate this with a simple model of the

components of the process of reinforcement. The coefficient a;; may represent either

assortative mating between haploid individuals, or reduced survival of the heterozygotes

formed in diploids after meiosis. In the classical view of reinforcement, we expect that
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selection can only increase prezygotic isolation, but cannot decrease the survival of
heterozygotes (Dobzhansky, 1940). Yet, both processes are represented by an increase in

a;;. The difference lies in the constraints that we implicitly assume. It is natural to suppose

that an increase in assortative mating increases the contribution of homozygous pairs to
the next generation, and decreases the contribution of heterozygous pairs, without
changing allele frequencies. In contrast, we could hardly assume that a decrease in
survival of heterozygotes would be compensated by an increase in survival of

homozygotes: the latter we assume to be held fixed at some maximum value.

To illustrate how the same coefficients take on different meanings due to
constraints, consider the fitness of an additive modifier k of assortment between haploids

at locus i would be written as

W 2-Xp—XP)+ay (Xp+ X} .
T = 1+ WEREEEEL (X, - p) (X; - p) (13)

which implies BT coefficients a;; = (2o qx + @1 pr) / (Pi i),

aix; = Qi = (@1 — o) / (2 p; qi), assuming reference points equal to allele frequencies, and
allele frequencies the same in each sex. This definition ensures that marginal fitnesses at
locus i do not vary, so that there is pure assortment, with no sexual selection. This can be

interpreted as a fraction « of individuals mating assortatively, and the remainder randomly

(O’Donald, 1980). There is no direct selection on the modifier (dg, = a; ¢ = 0).

By contrast, an additive modifier k of heterozygote fitness would be written as:

=1 —(50(2—Xk—X;§)
+51(Xe + X)) (Xi(1 = X7) + (1 = X)) X)

=l=

=1
=S+ &) (gi—pi) =28 ) -
(s1=50) Gk + {2 pg + G+ ) (gi —p) =24 7))
where § = So gk + S1 Pk, W=1 - 25piq;
so that the selection against heterozygotes (so(2 — Xy — Xj) + 51(Xy + X})) 18

(14)

250, So+ 51,2581 ,depending on whether the modifier locus has value X; + X;=0, 1 or 2.
This implies coefficients W a;¢ = W ag,; = 25(p;i — q;), W a;; = 25,

Wag, = Wagy=-2pq(si—s0),andWa;,x = Wag,ix = Wag; = Wayg=
(s1—50) (Pi —qi), W a; . = W ajx; = 2 (s1 — so). Thus, selection now acts directly on the
modifier, via the coefficients ag,, a;¢. (For a full model of reinforcement, we would

assume that locus i is associated with other genes, U, under selection. Then, isolation may
be strengthened either by a modifier of assortment, or by an increase in associations, D;y

for V C U. These correspond to Felsenstein's (1981) one-and two allele models,
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respectively; Barton and De Cara, 2010). The key point here is that the appropriate
definition of the coefficients depends on the constraints placed on them, which depends in

turn on the biological context.

Units of selection: Kin selection

It is well understood that selection may act at different levels or on different units.
There are interesting parallels both in the issues that arise when considering selection on
different units and in the ways that this selection is defined notationally. Kin selection, for
example, is a kind of indirect selection, in which an allele spreads by assisting the
reproduction of other individuals that tend to carry the same allele. It is commonly
represented by Hamilton’s Rule (Hamilton, 1964a.b), which states that a trait will increase
if its direct cost is outweighed by the benefit it gives to others, multiplied by their
“relatedness”. This term is misleading, because “relatedness” need not be due to simple
kinship, and the coefficient of relatedness in general depends on the whole evolutionary
process, not just on the pedigree: thus, it will vary across the genome, and can only be
estimated from the pedigree when selection is weak (Queller, 1992; Gardner et al., 2011).
There are further difficulties in understanding the “inclusive fitness” of an individual,
which attempts to identify the causal effect of that individual on the propagation of the
alleles that it carries, through both its own and the others’ reproduction. These difficulties
have led to heated debate; for a recent manifestation, see Nowak et al. (2010) and Abbott
et al. (2010).

Kin selection can be represented using the multilocus formalism, with the
associations Dy playing the role of “relatedness” (Gardner et al., 2007). In general, the
fitness of each reproductive individual depends on both its own genotype, and on the
genotypes of all its neighbours. However, we can illustrate the issues by considering just
pairwise interactions. The fitness of a reproductive individual depends on its own genes,
X, and on the genes of another randomly chosen ‘helper’, X*. We then show how (just as
with sexual selection between a pair of haploid individuals) direct selection can be
accurately represented by an extension of the BT notation. There may also be
recombination, union of gametes, mixing of subpopulations, or further rounds of selection:
we just focus on one round of kin selection that involves interactions between random
pairs.

We define the fitness of a set of individuals as their relative contribution to the
next stage of the life cycle. Using the general KJB formalism, fitness is defined by
coefficients ay (Eq. 1), with the set Y = {U, V} of genes including a set U from the

reproductive individual, and V from the helpers (Fig. 1b). Alternatively, fitnesses could be

defined in the BT notation, using coefficients ay v (Eq. 4). Clearly, the genes in the two

sets U, V need not be at the same loci.
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Assume for the moment that genomes X, X* are associated randomly, so that
initially Dy y = Dy Dy. Then, a gene i can only increase via the reproductive individual,
atarate Ap; = >y ay g Div (Eq. 6), which is independent of both ay v and ag .
Moreover, associations amongst genes in the reproductive individual (which are the only
associations that can be transmitted to future generations) change as

ADs = Yy ay ¢(Dsy — Ds Dy) (Kirkpatrick et al., 2002, Eq. 9), which again does not
depend on ay y or agy. This is simply because the output from the reproductive
individuals depends only on the a;, ¢, and is only influenced by the 'helpers' in so far as

these affect those ay; 5. The coefficient ay; g is thus akin to a measure of direct selection;

direct selection as acting only when genes in the reproductive individual directly affect
that individual’s fitness.
Kin selection requires that there be associations between genes in individuals that

interact (i.e., “relatedness”), so that immediately before kin selection we have Dy y # 0.

Then, Ap; = Yy aygDiv + Xy agy Div + Xyy avy(Diyy — Diy Dy — Dy Diy),
showing that an allele at locus i can increase through indirect selection if it is associated

with genes in helpers (D;y, Diyy).

Effects of the helpers on the fitness of the reproductive individual can thus appear
in two ways. First, they make the marginal fitnesses of alleles in the reproductive

individual depend on allele frequencies in the helpers (making the coefficients of direct
selection, ay ¢, frequency-dependent). Second, if there are associations between genes in
the helpers and allele i in the reproductive individual, (D;y, D;yy), then they cause

indirect selection on allele i. Just as with sexual selection between haploids, this

definition corresponds to the BT notation, but not the KJB notation.

This formalism might represent classical kin selection, but could equally well be
thought of as describing frequency-dependent selection. Less obviously, it could
represent the effect of genes in other species on the focal allele. The formalism is agnostic

as to the causes of the associations Dy i, which might be due to kinship, to selection or

assortment at some previous stage, or to some kind of habitat choice. A closed model
requires that we explain the evolution of these associations (Gardner et al., 2007). With
weak selection, quasi-linkage equilibrium can be used to approximate the "relatedness"
due to kinship, in the strict sense of pedigree relationship; associations due to habitat
choice within or between species are generated directly by genotypes that affect that

choice.

Alternate notation: Viability and sexual selection on diploids

In some cases, neither the BT nor the KJB notation suits the needs of the problem,

and we must turn to an alternate notation. Another representation is most suitable, for
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example, when we want coefficients to specifically represent additive and dominance
effects during viability selection in diploids. If there is no imprinting, and no difference
between cis and trans genotypes, then fitness depends only on the diploid genotype at

each locus, and can be written as:

W=ty o] | G+ ][], @ (15)

Here, the coefficient a4 p represents an interaction between the additive effects of the set
of loci A, and the dominance effects of loci in the set B; A, B include the null sets but
otherwise do not overlap (Fig. 1c). If all @y p = O for B + @, there is no dominance, but
there can be arbitrary epistasis between the additive effects of the loci. However, these
coefficients depend on the choice of reference points, and so the partitioning will change
with allele frequencies (see Barton and Turelli, 2006).

It may be appropriate to define such specialised notations for specific problems,
but one can always write the more general ay in terms of such coefficients, and then use

the general KJB machinery to find how the population evolves. In this example, the
coefficients in either of the standard notations (i.e. ay, ayy) have a complex dependence
on the @4 p, and do not reflect the additive and dominance components of selection in a

straightforward way. Since the general recursions for the KJB notation are simpler than

those for BT, it is simpler to use the former in calculations.

If sexual selection between diploids is considered we can again use Eq. 4, but the
sets U and V have a different interpretation. Each set now represents not only the loci
within a particular sex, but the pairs of maternally and paternally inherited positions
within each locus (as in the KJB notation). Provided that the a are calculated as in the
example of sexual selection in haploids above, coefficients corresponding to direct and
indirect selection can still be identified in this extension of the BT notation, although these
types of selection can have several components, for which it may not be possible to

determine specific interpretations.

Summary

Descriptions of selection can sometimes seem straightforward; the relative fitness
of two genotypes at a locus from a specific bout of selection, for example, can be
described by a simple ratio. The interpretation of selection can, however, be considerably
more complicated, particularly when multiple loci are considered. We use multilocus
notation, in which evolutionary changes in gene frequencies and genetic associations are
written in terms of the products of frequency-dependent selection coefficients and

moments of gene frequencies, to discuss several general issues surrounding the
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interpretation of selection. First, we point out that the choices made in the set of genes
considered and the set of allele frequencies that constitute a reference point can alter
descriptions of selection, and consequently the interpretation of the multilocus selection
coefficients. We show, however, that in some cases these choices can be made in a way

that yields selection coefficients with intuitive meanings.

Another major focus of our discussion is the identification of sources of direct and
indirect selection. The definition of direct selection, when focussed on a set of genes in
one sex, seems clear; selection on a set of genes in an individual is direct when that set of
genes affects the fitness of that individual, in the absence of genetic associations between
that set of genes and other sets of genes. We show above, however, that one must be very
cautious in describing whether particular subsets of loci are under direct selection. In
contrast to direct selection, indirect selection can be thought of as having three distinct
meanings, all of which are mediated by associations between sets of genes. First, indirect
selection can act on genes that do not themselves cause any changes in fitness, but are
correlated with selected genes as a result of their own effects (e.g., selectively neutral
female preference, Kirkpatrick and Ryan 1991). Second, it can act on genes that do not
cause any changes in fitness, but are correlated by chance with selected genes (e.g. genes
caught in selective sweeps). Finally, in social evolution, genes in an individual are said to
be indirectly selected when they cause changes in the fitness of another individual, with
whom the focal individual shares genes. Indirect selection thus seems equivalent to the
current usage of the term kin selection, in which “relatedness” is a measure of the

associations between sets of genes in different individuals (Gardner et al., 2007,2011).

We demonstrate that Barton and Turelli’s (1991) formulation of the multilocus
notation can accurately partition out selection coefficients for direct and indirect selection
on inclusive sets of causal loci in all three circumstances, given a sensible choice of
reference point, due to the fact that it is formulated to describe mated pairs of haploids.
This can lead to important insights into the sources of selection on loci in haploid models.
In the case of the evolution of male mating preferences, for example, the BT notation can
separate out direct selection against preference alleles, due to increased competition for
mates, from indirect selection transmitted to the preference locus via genetic associations
with a male trait; it thus allows a comparison of the magnitude of these effects (Servedio
2007). Although formulated for mated pairs of haploids, we believe that by extension, it is
possible to modify the same notation to describe pairs of diploids, or indeed, of arbitrary
sets of genes in a way that retains the meaning of coefficients with regard to direct and
indirect selection: fitness should be defined in terms of products across classes of gene, as
in Eq. 4).

The fact that selection coefficients describing direct and indirect selection during

social evolution can be identified illustrates parallels in the interpretation of selection
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across different units of selection. Such parallels should also be able to be drawn at other
levels of selection, again given a meaningful choice of reference point; in these cases the
selection coefficients should again have a ready interpretation using the BT notation. In
other cases, regardless of the unit of selection, the more flexible KJB notation may be
simpler. It may then, however, not be possible to interpret selection coefficients in terms
of direct and indirect selection. In yet further cases, such as the example of additivity and
dominance in diploids above, customized notation may be developed that can have a

meaningful interpretation for a given problem.

Many of the issues we have raised parallel those discussed in the philosophical
literature. Our perspective is essentially the same as that of Sober and Lewontin (1982).
It is always possible to assign selection coefficients to any set of alleles, such that these
determine the change in frequency of these alleles. However, these coefficients will
change over time, and do not necessarily describe the full causal dependence of fitness on
genotype. There are (at least) three issues here. First, unless all the frequencies of all the
alleles that affect fitness are included, the marginal selection on the alleles in the analysis
will change as the causal genotypes change in frequency. Second, even if all causal
alleles are included, the selection on individual alleles (that is, their marginal effect on
fitness) will change as a result of dominance, epistasis and frequency-dependence. Third,
unless recombination is much faster than other processes, the dynamics will involve
associations amongst alleles (linkage disequilibria), and the marginal selection will
depend on these associations as well as on the allele frequencies. If all genes that affect
fitness are included, the multilocus selection coefficients will reflect the dependence of

selection on these factors.

Some forms of frequency-dependent selection can be captured by considering the
contribution of pairs, or larger clusters, of genes: this seems natural when the frequency
dependence of genic fitness is due to the different frequency with which genes find
themselves in diploid genotypes, formed by random union. This approach is traditional in
game theory, which considers the payoff from interactions between two or more
individuals. However, only polynomial frequency-dependence can be modelled in this
way. Similar issues arise in coalescent theory, where selection can be represented, as we
trace back through a genealogy, by the branching of two or more “virtual” ancestral
lineages; once the ancestral selection graph is constructed, one of these branches is
selected with a probability that depends on the genotype (Neuhauser, 1999). In this
approach, k’th order frequency dependence is described by branching of k + 1 virtual
ancestral lineages, just as k’th order polynomial frequency-dependence can be
accommodated by considering groups of k interacting individuals. Thus, general (i.e., non-
polynomial) frequency-dependence is intractable, both forwards and backwards in time.

Our arguments center on how selection coefficients should be defined and

interpreted, given that the relation between genotype and fitness is known with certainty.
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Thus, they are mainly applicable to theory rather than to data: measurement error, and
ignorance of which loci actually cause fitness differences, would introduce extra layers of
uncertainty. However, our theoretical arguments should help inform empirical research
that aims at identifying the genes responsible for fitness differences, and distinguishing

direct from indirect selection.
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Figure 1
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Figure 1. Life cycles and illustration of the action of the multilocus coefficients with

selected examples, using the notation of Barton and Turelli (1991). Solid back lines link
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points of interest in the life cycle, and dashed grey lines indicate the action of the selection

coefficients. A) selection coeffcients a;; ¢ act on all subsets of the set U in females,
selection coefficients ‘AI(Z),V act on all subsets of the set V in males, and the

coefficients ay y describe selection (including non-random mating) that brings together
subsets of the sets U and V. B) Selection on the set of genes U in a particular individual

comes from the genes it carries, a v¢» and from the set of genes V in helpers, &Q),V’ as well
as from interactions between the two, ayy. C) Selection coefficients can be written for
the sets of loci A (representing additive effects), a4 ¢, and B (representing dominance

effects), ag 5, as well as the interaction between them, a4 5.



