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Supplementary Information

Here we further describe details of the mutlilocus notation, based upon its
development in Barton and Turelli 1991 and Kirkpatrick et al. (2002).

Defining associations

Having chosen the reference point, we define the association amongst the set
of genes U by:

Dy = E [(u] where(y = H G andG = (X; — 1) (1)
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where the expectation is over the population (which is assumed large). Sup-
pose that the set of all positions is 2, with |Q2] = n members, each of which can
have value X; = 0 or 1. Then, there are 2"-1 degrees of freedom, which can be
represented by associations amongst all possible subsets of €, Dy for U C Q.
By convention, Dy = 1, where ) is the empty set.

In the recursion for the effects of selection (Eqs. XXX), sets with repeated
elements appear. Assuming two alleles per locus, labelled X; = Oorl,these can
be expressed in terms of lower-order moments with distinct elements, so that
we have a closed set of 2"-1 equations:

D;iiu =i (1 — 1) Du — (21 — 1) Diuy (2)

Changes in reference point

Associations depend on the reference point, p;, which will usually be an allele
frequency. However, in all but the simplest cases, allele frequencies will differ
between contexts (for example, between sexes or locations), and will change
through time. Thus, we must choose the most appropriate reference point, and
can change from reference point g; to p; using the following formula:
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and U\V denotes U, with the elements of V removed. For example, D; =
D;; — AijDy — DiAjy + AjA;. If the original reference point was equal to the
original allele frequencies, p; = p; = E[Xj], then D; = Dj = 0, and D;J.:
D;5 4+ A;Aj; the change to a new reference point has generated an association
Az A;.

Recombination

To complete the sexual life cycle, we represent recombination as a linear
mixture of moments, using the BT notation. Defining rs 1 as the probability
that a set U = ST is made up of S from the female parent, and T from the
male parent, we have:

Dy = Z rs,rDs T (4)

ST=U
This is a special case of transmission of genes from one context to another,
without any genes being created or destroyed; conservative migration (i.e., mi-
gration that does not change overall allele frequencies) can be treated in a similar
way. If transmission depends on genotype, then we can write rg 7 as a poly-
nomial function of the (; this can be seen as a combination of selection with

transmission, and includes both as special cases (Barton, 1995; Kirkpatrick et
al., 2002).

Multiplicative selection on haploids

Multiplicative selection does not generate linkage disequilibria; yet, because
we define fitness as a sum rather than a product, it does involve coefficients
ay for all sets of selected loci. Here, we show that the associations generated
by multiplicative selection, relative to the initial allele frequencies, vanish when
measured against the new allele frequencies. Let relative fitness be:
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This can be written in the form of Eq. XXX by identifying ay = By, where
we definefyy = [[;c Bi- At linkage equilibrium, D;]:“UDUUZ’BUP - However,
there will also be changes in allele frequency, Ap, = B;pg;, and so we must
change the reference point to match the new allele frequencies. Substituting
into Eq. XXX, and assuming linkage equilibrium, we see that all the terms

cancel, so that the population stays at linkage equilibrium:
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This proliferation of terms that all disappear suggests that the polynomial
form of Eq. 1 is not the best way to represent the population, when selection is



multiplicative. Biirger (1991) and Turelli and Barton (1994) develop an alterna-
tive representation, in which linkage disequilibria are represented by multilocus
cumulants, rather than moments, and selection is represented by the gradient
of mean fitness with respect to these cumulants. Thus, we define k; = D;,
Rij = Dij*DiDja Rijk = DijkaijDkaiij7DjkDifDiDjDk7 and so
on; the selection gradients are defined as Ly = 0log (W) /Oky. Now, provided
the population is at linkage equilibrium, multiplicative selection onlygenerates
first-order selection gradients, £;, and only changes the first-order cumulants,
Kg.

This derivation assumes that all haploid individuals are subject to the
same form of multiplicative selection. If selection acts differently on the two
sexes (or more generally, acts differently on subpopulations that will eventually
combine to mate at random), then linkage disequilibria will be generated by
mixing.

One can find the effect of small deviations from multiplicative fitness, using
the QLE approximation, by letting ay = Sy + ay, and finding Dy to leading
order in .  This leads to complex expressions; in particular, weak epistasis
aypgenerates both higher- and lower-order associations, so that there is no longer
a direct relationship between the epistatic coefficients, and the associations that
they produce.

Quasi-linkage equilibrium with strong directional selection

We can extend Hastings’ (1985) and Barton’s (1986) argument, by allowing
strong directional selection. Now, we must take care of the distinction between
additive and multiplicative selection. The null model must be multiplicative
selection, since that generates no linkage disequilibrium; this contrasts with the
case when when selection is weak, when there is no significant distinction be-
tween additive and multiplicative selection. This is at first glance puzzling:
because the ay for |U| > 1 measure deviations from additivity, there are non-
zero higher order coefficients even though fitnesses are multiplicative, and so
should generate linkage disequilibria. This is the case when associations are
measured with reference point at the initial allele frequencies. However, these
associations cancel precisely when we change the reference point to the new
allele frequencies after selection (the terms that cause the cancelation are triv-
ially small with weak selection), so that, provided that it does not differ between
the sexes, multiplicative selection indeed generates no linkage disequilibria (Ap-
pendix, Eq. 6). Thus, neither the coefficients ayy nor aycan be interpreted as
generating associations between the set of genes U. If we now superimpose
weak deviations from multiplicative fitness, it is no longer true that selection for
a set of genes U only generates associations Dy amongst that set, as would be
the case under weak selection: additional associations are generated, and there
is no one-to-one mapping between the coefficients of epistatic selection and the
linkage disequilibria.



