
Complete Composition Operators for ioco-Testing Theory

Nikola Beneš
Faculty of Informatics
Masaryk University

Brno, Czech Republic
xbenes3@fi.muni.cz

Przemysław Daca
IST Austria

Klosterneuburg, Austria
przemek@ist.ac.at

Thomas A. Henzinger
IST Austria

Klosterneuburg, Austria
tah@ist.ac.at

Jan Křetínský
IST Austria

Klosterneuburg, Austria
jan.kretinsky@ist.ac.at

Dejan Ničković
AIT Austrian Institute of

Technology GmbH
Vienna, Austria

dejan.nickovic@ait.ac.at

ABSTRACT
We extend the theory of input-output conformance with op-
erators for merge and quotient. The former is useful when
testing against multiple requirements or views. The latter
can be used to generate tests for patches of an already tested
system. Both operators can combine systems with different
action alphabets, which is usually the case when constructing
complex systems and specifications from parts, for instance
different views as well as newly defined functionality of a pre-
vious version of the system.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal methods

Keywords
ioco; Model-based testing; Decomposition; Specification
merging

1. INTRODUCTION
Development and verification of modern hardware and

software systems faces numerous challenges due to their com-
plexity. For safety-critical applications, regulation bodies
impose rigorous standards that require convincingly showing
the absence of behavioral faults. There is a wide selection
of verification and validation (V&V) techniques to support
demonstration of the designed system’s correctness. These
techniques range from model checking to manual testing,
but many of them suffer from a number of drawbacks. For
instance, despite the tremendous progress in model check-
ing research and practice over the past decades, scalability
remains an issue for modern systems. In addition, model
checking is typically used to check the correctness of an ab-
stract model of the design, but usually does not address its
actual implementation. At the other extreme, manual testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CBSE’15, May 4–8, 2015, Montréal, QC, Canada.
Copyright c© 2015 ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737175.

remains the preferred V&V method in industry. While man-
ual testing provides a practical way to check the correctness
of an implementation, it remains an informal, tedious, ad-hoc
and error-prone activity with uncertain coverage. It is widely
recognized that despite much progress, V&V remains the
main bottleneck in the design of complex systems, and hence
the need for new rigorous and systematic, but also pragmatic
and scalable verification and testing techniques.

Model-based testing (MBT), also known as “black-box”
testing, provides a promising compromise between formal
verification and manual testing. Similarly to model check-
ing, MBT uses an abstract model of the system-under-test
(SUT). This model faithfully represents the core behavior of
the system, while hiding some less significant implementation
details. This abstract model is then used to automate the
generation of test cases in a systematic way. In particular,
the generated test suite is typically guaranteed to meet some
coverage criteria, thus providing additional assurance about
the quality of tests. The generated test cases are then ex-
ecuted on the actual SUT, checking its compliance to the
abstract model. MBT techniques require a conformance rela-
tion between the abstract model and the SUT. For instance,
the ioco conformance relation is at the core of the de-facto
standard MBT theory for input/output labeled transition
systems. Informally, we say that a physical implementation i
ioco-conforms to its abstract model s if any test generated
from s and executed on i leads to a response by i that is
foreseen by s.

The specification and design of complex systems can bene-
fit from a compositional flow that makes the testing activity
more effective. Such a flow needs to be supported by oper-
ations that provide structure both to the specification and
the system. The merge operation, illustrated in Figure 1 (a),
enables natural structuring of specifications into conjunctions
of requirements, where each requirement addresses a specific
aspect that the system needs to satisfy. The parallel com-
position, illustrated in Figure 1 (b), allows one to structure
a system as a network of interacting sub-systems. Finally,
the quotient, depicted in Figure 1 (c), is an operation dual
to the parallel composition, which formalizes the notion of
design “patching” and enables the synthesis of an unknown
sub-system specification from the specification of the overall
system and of the other components. Given a specification s
of the overall system and c of a subset of its components and
their interactions, the quotient s/c defines the part of the

system-wide specification that needs to be satisfied by the
remaining part of the implementation.

S2

S1

S2

S

CS1

(b) Parallel composition of S1 and S2.

(a) Merge of S1 and S2.

(c) Quotient of S by C.

Figure 1: Illustration of merge, parallel composition and quo-
tient operations. The results of the operations are depicted
in gray.

These composition operations have been studied mostly
as a theoretical foundation of specification theories. In this
paper, we propose to apply them in the setting of the ioco-
testing theory. Since they enable exploiting the structural
properties of both the system and its specification, the testing
effort could be reduced in practice.

The operation of merge acts as a logical conjunction.
Firstly, given a specification s, we can check whether re-
quirements s1, . . . , sn (obtained for instance manually) are
actually a decomposition of s by constructing their merge
and comparing it to s. Then we can generate tests more
efficiently with respect to si’s instead of achieving coverage
of the entire specification s. Secondly, given partial specifica-
tions (views) s1, . . . , sn, we can check for their consistency.
We construct their merge and show it is empty if and only if
the partial specifications are contradictory.

The parallel composition, denoted by ‖, has already been
studied for ioco. It has been shown that given subsystems
i1, i2 ioco-conforming to their respective specifications s1, s2,
the overall system i1 ‖ i2 ioco-conforms to s1 ‖ s2. Thus the
properties of the parallel composition enable inferring prop-
erties of the overall system from sub-system (unit) testing
and thus minimize costly integration testing. In our paper,
we use parallel composition in order to define the quotient.

Given the specification s of the overall system and the
specification of a sub-system c, we construct their quotient.
It is the most general specification that describes all sub-
systems that when put in parallel composition with c satisfy
the specification s. As a consequence, the quotient operation
allows us to improve regression testing by enabling generation
of test cases that exercise only the modified behavior of an
SUT after its patching.

Further, in contrast to the classical ioco theory, in which
the specification and the SUT must be defined over the same
inputs and outputs, we allow partial specifications that refer
only to a subset of the SUT’s alphabet. Hence, we equip the
theory with another operation, called alphabet equalization,
which completes the external interface of a partial model and
makes it consistent with the SUT’s interface. The proposed
theory facilitates dividing the testing activity into smaller
problems and minimizing the overall testing effort.

This paper focuses on merge, quotient, and alphabet equal-
ization, and complements the results of [5, 16] on parallel
composition. We summarize our main contributions:

1. A definition of and an algorithm to construct the merge
for the ioco theory, allowing us to check the consistency
of views as well as to construct complete models from
partial models.

2. The first complete algorithm for computing the quotient
for the ioco theory, allowing us to generate tests for
patches of an already tested system.

3. Extending the ioco-theory with a notion of alphabet
equalization, which enables true partial modeling of
requirements. Consequently, we can compute merges
and quotients of systems with different action alphabets,
which is the case with different views as well as when
defining new functionality of a previous version of the
system.

1.1 Related Work
Compositional aspects of systems have received consider-

able attention in the past decade, especially in the context
of contract-based design. Interface automata [6, 7] provide
support for independent implementability and stepwise re-
finement via decomposition of systems into sub-systems with
parallel composition. There are no known merge, quotient,
and alphabet equalization operations for interface automata.
The merge operation, also called shared refinement, was in-
troduced in [8] to synchronous interfaces, and its properties
were used to develop an incremental test generation proce-
dure in [1]. Assume/Guarantee Contracts [4] provide support
for parallel composition, merge, and alphabet equalization,
but there is no known quotient operation. In the context
of modal transition systems [10] and modal interfaces [13],
parallel composition, merge, and alphabet equalization were
studied in [2, 13, 14], while quotient was proposed in [12].

In the context of ioco-testing theory, parallel composition
was first studied in [16], where the input-enabledness of spec-
ifications was required to preserve compositional properties.
This work was extended in [5], where the input-enabledness
requirement was dropped by introducing a composition with
pruning. The quotient operation in the ioco-testing theory
was proposed in [11]. In contrast to this paper, the proposed
solution is incomplete and may not find the quotient even
when it exists. In addition, the authors only consider the par-
allel composition operation in which synchronization actions
are automatically hidden. We provide more flexibility by
separating parallel composition from hiding. Finally, there
is an assumption in [11] that the output alphabet of the
known component specification not shared with the alpha-
bet of the overall system specification must be used for the
synchronization with the quotient. In contrast, we provide
more flexibility by allowing specifying beforehand the input
alphabet of the quotient, thus allowing more control over
synchronization between the quotient and the known compo-
nent. We are not aware of any work on merge and alphabet
equalization in the context of ioco-testing.

2. DEFINITIONS AND PRELIMINARIES
In this section, we present the standard notions of the

ioco theory. First, the implementation under test as well as
the specification are reactive systems of the same kind. For
algorithmic reasons, all sets are considered finite.

Definition 1. An input-output labeled transition system
(IOLTS) is a tuple (Q, I,O, T, s) where Q is a set of states,
I is a set of input labels, O is a set of output labels, T ⊆
Q × (I ∪ O ∪ {τ}) × Q is the transition relation with the
silent action τ 6∈ I ∪O, and s ∈ Q is the initial state.

An IOLTS is an input-output transition system (IOTS) if

each state is input enabled, i.e. ∀q ∈ Q ∀i ∈ I : q
i−→. (See

notation in Fig. 2.)

We often abuse the notation and identify IOLTS with their
initial states. While specifications can be any IOLTS, not
describing behavior under certain inputs, implementations
are assumed to be IOTS, being able to deal with any input.
Input actions are marked in drawings with “?” and output
actions with “!”. The silent action τ is not visible to the ob-
server. Unless specified otherwise, we require that IOLTS are
strongly-convergent, i.e. they do not have infinite sequences
of τ transitions.

q
λ−→ q′ ≡ (q, λ, q′) ∈ T

q
λ−→ ≡ ∃q′ : q

λ−→ q′

q 6 λ−→ ≡ not q
λ−→

q
ε
=⇒ q′ ≡ q = q′ or q

τ ·...·τ−−−−→ q′

q
`
=⇒ q′ ≡ ∃q1, q2 : q

ε
=⇒ q1

`−→ q2
ε
=⇒ q′

q
δ
=⇒ q′ ≡ q

ε
=⇒ q′ such that ∀x ∈ O ∪ {τ} : q′ 6 x−→

q
α1·...·αn
======⇒ q′ ≡ ∃q0, . . . , qn : q = q0

α1==⇒ q1
α2==⇒ . . .

αn==⇒ qn = q′

q
α1·...·αn
======⇒ ≡ ∃q′ : q

α1·...·αn
======⇒ q′

q 6 α1·...·αn
======⇒ ≡ not q

α1·...·αn
======⇒

Figure 2: Notation for transitions in IOLTS. Here λ ranges
over I ∪O ∪ {τ}, ` over I ∪O and α’s over I ∪O ∪ {δ}.

The lack of outputs and silent transitions in a state is
observable as special action δ, called quiescence. A state q
is quiescent, denoted by δ(q), if ∀x ∈ O ∪ {τ} : q 6 x−→. This
gives rise to the suspension traces of s:

STraces(s) = {σ ∈ (I ∪O ∪ {δ})∗ | s σ
=⇒},

where quiescence can be observed, as opposed to usual traces
Traces(s) = STraces(s) ∩ (I ∪O)∗.

s1

s2s3 s4

coin?

τ τ

coffee!
tea!

(a) IOLTS s.

q1

q2

coin?

coin?

tea!

(b) IOTS i.

{s1}

{s2, s3, s4}

coin?

δ

coffee!
tea!

(c) Suspension
automaton Γ(s).

Figure 3: Illustration of Example 1.

The input-output conformance relation ioco is defined be-
tween an input-enabled implementation i and a specification s
over the same alphabet of inputs and outputs. Intuitively, i
ioco-conforms to s, written i ioco s, if after every suspension
trace of s, the output actions of i are foreseen by s.

Definition 2. Given IOTS i and IOLTS s, we say that
i ioco s if

∀σ ∈ STraces(s) : out(i after σ) ⊆ out(s after σ),

where

• for q ∈ Q, σ ∈ (I ∪O ∪ {δ})∗: q after σ = {q′ | q σ
=⇒ q′},

• for S ⊆ Q: out(S) =
⋃
q∈S

(
{x ∈ O | q x−→} ∪ {δ | δ(q)}

)
.

Example 1. The IOLTS in Figure 3a shows a specifica-
tion s of a vending machine that accepts a coin (coin?) and
then makes an internal choice between preparing two types of
beverages (coffee! or tea!). Note that state s1 is quiescent, so

the transition s1
δ
=⇒ s1 is possible. Figure 3b shows an IOTS i

that is a possible implementation of s. The component i has
less functionality than s, since it may only prepare tea. It is
easy to check that i ioco s.

An IOLTS p is called deterministic, if for every suspen-
sion trace σ the set p after σ is a singleton. In particular,
there are no silent actions in deterministic IOLTS. We often
transform an IOLTS to a deterministic form where, more-
over, quiescence is explicit. Consequently, the result of the
transformation is non-blocking, i.e. for each state q we have
q
x−→ for some x ∈ O ∪ {δ}.

Definition 3. A suspension automaton (SA) is a determin-
istic non-blocking IOLTS with output labels containing δ.
Given an IOLTS (Q, I,O, T, s), the suspension automaton of s
is the suspension automaton (2Q \ ∅, I, O ∪ {δ},Γ(T),Γ(s)),

where Γ(s) = {s′ ∈ Q | s ε
=⇒ s′} and transitions are given by

r
a−→{q′ ∈ Q | ∃q ∈ r : q

a
=⇒ q′} for a ∈ I ∪O

r
δ−→{q ∈ r | δ(q)}

Figure 3c show the suspension automaton Γ(s) of the IOLTS s
of Figure 3a.

The following lemma shows that the transformation of any
IOLTS to a suspension automata preserves the behavior as
well as ioco-conformance.

Lemma 1. For every IOTS i and IOLTS s

• STraces(s) = STraces(Γ(s)) = Traces(Γ(s))

• i ioco s ⇐⇒ i ioco Γ(s)

2.1 Demonic completion
The merge and quotient operations described in the fol-

lowing sections are defined for suspension automata that are
input-enabled. Every suspension automaton can be made
input-enabled by demonic completion, i.e. adding missing
input transitions to a “universal system” of two states {u, ū}
(shown in Figure 4) that accepts every legal behavior [16].

u ū

I ∪O
δ

δ

I

Figure 4: The uni-
versal system {u, ū}

Formally, given a SA (Q, I,O ∪
{δ}, T, s), the demonic completion
of s is the input-enabled SA (Q ∪
{u, ū}, I, O ∪ {δ}, T ′,Ξ(s)), where

T ′ = T∪{u `−→ u | ` ∈ I∪O}∪{ū `−→
u | ` ∈ I}∪{u δ−→ ū, ū

δ−→ ū}∪{q `−→
u | q ∈ Q, ` ∈ I, q 6 `−→}.

Demonic completion preserves ioco-conformance, i.e. for
every SA s and IOTS i, we have that

i ioco s ⇐⇒ i ioco Ξ(s).

The universal system might also appear in the result of
merge or quotient. Checking ioco-conformance against the

universal state is vacuous, thus we prefer to remove the
universal state as a post-processing step after these oper-
ations. We use the following algorithm on an suspension
automata (Q, I,O ∪ {δ}, T, s) to remove spurious transitions
to u: (1) traverse all states to check if s contains the universal
system {u, ū}; (2) if u, ū exist in s, then remove from T all
input transitions leading to u; and (3) remove u, ū if they
are unreachable from s.

Given SA s, let SA q be the result of applying the algorithm
above to s. Then we have for every IOTS i that

i ioco s ⇐⇒ i ioco q.

2.2 Validity
In the following section, we provide constructions for the

operations of merging and quotienting specifications. The
operations will be defined on suspension automata that are
“valid,” meaning they represent some real IOLTS specifica-
tion. However, the results of the operations are suspension
automata that might not be valid. In order to fix this, we
introduce a construction that transforms a possibly invalid
suspension automaton to a valid one while preserving the set
of its implementations, i.e. IOTS that ioco-conform to it.

As discussed in [17], several requirements must hold to en-
sure validity of the suspension automaton (Q, I,O∪{δ}, T, s).
Here we present a slightly different, but equivalent formula-
tion of these conditions:

non-blocking ∀q ∈ Q ∃x ∈ O ∪ {δ} : q
x−→,

anomaly freedom ∀q δ−→ q′ ∀x ∈ O : q′ 6 x−→,

quiescence observation

∀q δ−→ q′
δ−→ q′′ : Traces(q) ⊇ Traces(q′) = Traces(q′′).

The non-blocking condition requires that every state without
outputs must have a quiescent transition; however a state
can have a quiescent transition even in the presence of out-
puts. Note that we require non-blocking for all suspension
automata by definition. Anomaly freedom requires that a qui-
escent transition must lead to a state without any outputs.
Finally, quiescence observation requires that only the first
observation of quiescence may provide information about the
current state, namely that there are no outputs. Further
observation of quiescence do not yield any additional infor-
mation (system cannot produce more outputs if it could not
before and nothing was observed since then).

A suspension automaton satisfying all these conditions is
called valid. For any IOLTS s, the suspension automaton
Γ(s) of s is valid. Further, whenever a suspension automaton
s is valid, there is an (effectively constructible [17]) IOLTS s̄
such that s and Γ(s̄) have the same set of implementations,
i.e. for all IOLTS i : i ioco s ⇐⇒ i ioco Γ(s̄).

3. OPERATIONS
In this section, we define merging and quotient on valid

input-enabled SA and provide algorithms to compute them.
In general, these operators require post-processing in order
to ensure validity of the result. After merging, it is suffi-
cient to perform pruning, which removes states arising from
inconsistent requirements in different views. For quotient
we provide an operator valid that satisfies for all (possibly
invalid) suspension automata s that valid(s) is a valid sus-
pension automaton with the same set of implementations
as s. Formally, valid(s) satisfies the following axiom: for

every IOTS i

valid(s) is valid and (i ioco s ⇐⇒ i ioco valid(s)). (V)

If s does not have any implementations, then valid(s) is the
empty suspension automaton. Therefore, for any (possibly
invalid) suspension automaton that has implementations we
can construct a corresponding IOLTS specification. As a re-
sult, we ensure we can generate tests from the results of the
operations in the standard way [15].

The validization procedure consists of sequence of several
steps that also include pruning, see Fig. 5. Interestingly, these
extra steps make use of the newly defined merge operation.

SA
demonic
completion

∧ pruning

/ pruning δ-contraction u-merge pruning

u-removal

Merge

Quotient
Validization

Figure 5: Flowchart for merge and quotient.

Although both merge and quotient are operations on
IOLTS, they are defined in terms of operations on states of
these IOLTS. Therefore, instead of writing e.g. S1 ∧ S2 for
the merge of systems S1, S2, we write s1 ∧ s2 where s1, s2

are their initial states, respectively.

3.1 Merge (Conjunction)
We provide the operator of merge (conjunction) of valid

suspension automata s1, . . . , sn producing a suspension au-
tomaton

∧n
k=1 sk followed by pruning. The desired property

of the merge operator is formalized as the following axiom:
for every IOTS i

i ioco

n∧
k=1

sk ⇐⇒ ∀k ∈ {1, . . . , n} : i ioco sk. (M)

In other words, the set of implementations of the conjunction
is the intersection of the respective implementation sets. The
inspiration for the merge algorithm comes from the merge
and common implementation algorithms for modal transition
systems [3, 9]. Here we deal with systems over the same input
and output labels; for different alphabets, see Section 3.3.

For suspension automata (Qk, I, O ∪ {δ}, Tk, sk), k =
1, . . . , n, we define the suspension automaton (Q, I,O ∪
{δ}, T,

∧n
k=1 sk) as follows:

• states are given by the Cartesian product: Q =
∏n
k=1 Qk,

• the initial state is
∧n
k=1 sk = (s1, . . . , sn),

• for each x ∈ I∪O∪{δ} there is a transition (q1, . . . , qn)
x−→

(q′1, . . . , q
′
n) whenever qk

x−→ q′k for all k = 1, . . . , n.

This construction may give us an invalid automaton, as
illustrated in the following example.

Example 2. We demonstrate the merge operator on two
views of a task dispatcher module. The functional view in
Figure 6a allows the dispatcher to send a task on a regular
channel (snd !) or on a critical channel (snd crt !). Once
a task has been sent, the dispatcher can keep sending tasks

on the same channel until it receives an acknowledgment ack
or output quiescence.

The safety view in Figure 6b requires that the system
cannot dispatch any new tasks after using the critical channel
twice consecutively. This view, however, does not restrict
the usage of the regular channel.

1

2 3

ack?

snd crt!

ack?

snd crt!δ

snd!

snd!δ

(a) Functional view sfun.

A

B

C

ack?snd!δ

snd crt!ack?

snd!δ

snd crt!

ack?δ

(b) Safety view ssafe.

Figure 6: The task dispatcher module.

Figure 7a shows the merge of the functional and safety
views before pruning. The state (1, C) is blocking, because
the views require contradicting behavior: the safety view
does not allow the state to dispatch new tasks, while the
functional view forbids it from emitting quiescence. Note
that the state (2, C) is also invalid, since input ack? leads
it to a blocking state. The final merged specification after
pruning is shown in Figure 7b.

1, A

2, B 3, A

2, C 1, C

ack?

snd crt!

ack?

δ

snd!

snd!δ

snd crt!

ack?

δ ack?

(a) Before pruning.

1, A

2, B 3, A

ack?

snd crt!

ack?

δ

snd!

snd!δ

(b) After pruning.

Figure 7: Merge of the views in Figures 6a and 6b.

Pruning
To obtain a valid result, blocking states, such as (1, C) of
the previous example, need to be pruned. Moreover, pruning
these states away may result in new blocking states, which
must be pruned as well until this procedure stabilizes.

Formally, a state q ∈ Q is invalid if

• q is blocking, i.e. there is no x ∈ O ∪ {δ} with q
x−→,

• q a?−→ q′ where a ∈ I and q′ is invalid,

• for all x ∈ O ∪ {δ}: q x−→ q′ where q′ is invalid.

The pruning thus proceeds as follows:

1. Identify all blocking states and add them to the set P.

2. Find all states with an input transition to P and add
them to P.

3. Find all states such that all their output and δ transi-
tions go to P and add them to P.

4. Repeat steps 2 and 3 until no more states found.

5. Set Q′ = Q \ P. Leave the transitions induced by Q′.

The merge operator is given by the ∧-construction followed
by pruning.

Theorem 1. Let (sk)k be a finite sequence of valid sus-
pension automata. The merge operator satisfies the axiom
(M). In particular, the initial state

∧n
k=1 sk is pruned if and

only if there is no IOTS i with i ioco sk for all sk.

3.2 Parallel Composition & Quotient

Parallel Composition
The compositional architecture of both implementations and
specifications is achieved by the use of the parallel composi-
tion operator ‖. We first recall this standard operator. Two
IOLTS are said to be composable if they have no common
input or output actions. The only shared actions thus belong
to the set of input actions of one IOLTS and to the set of
output actions of the other. Such actions are combined in the
parallel composition in a synchronizing manner. It is usual
to define the parallel composition without implicit hiding,
i.e. the synchronization actions remain visible. The hiding
of these actions can be then done explicitly, which allows to
describe a variety of architectural choices. We postpone the
operation of hiding to the next section.

Definition 4. Let (Q1, I1, O1, T1, s1) and (Q2, I2, O2, T2, s2)
be two IOLTS such that I1 ∩ I2 = O1 ∩O2 = ∅. Their par-
allel composition is the IOLTS (Q, I,O, T, s1 ‖ s2) where
Q = Q1×Q2, O = O1 ∪O2, I = I1 ∪ I2 \O, s1 ‖ s2 = (s1, s2)
and the transition relation is defined as follows:

• if q1
α−→ q′1 for α 6∈ (I2 ∪O2) then (q1, q2)

α−→ (q′1, q2),

• if q2
α−→ q′2 for α 6∈ (I1 ∪O1) then (q1, q2)

α−→ (q1, q
′
2),

• if q1
α−→ q′1, q2

α−→ q′2 for α 6= τ then (q1, q2)
α−→ (q′1, q

′
2).

For input-enabled specifications, the parallel composition
satisfies the so-called independent implementability crite-
rion [16].1 Let s1, s2 be composable input-enabled suspension
automata. For every IOTS i1, i2

i1 ioco s1, i2 ioco s2 =⇒ i1 ‖ i2 ioco s1 ‖ s2. (PC)

Observe that the other implication does not hold and the
composition is thus semantically incomplete, as opposed to
our merge and quotient.

Quotient
We provide the operator of quotient, which is dual to parallel
composition. Given valid suspension automata s, c specifying
the whole system and the known component, respectively,
the quotient of s by c is the construction s/c followed by
validization. Intuitively, it is the most general specification
describing all components that when put in parallel with the
known component c satisfy the specification s. It can thus
be seen as a kind of specification decomposition. Formally,
the quotient axiom is the following: for every IOTS i

i ioco s/c ⇐⇒ ∀j ioco c : i ‖ j ioco s. (Q)

1The constraint of input-enabled specifications can be
dropped when a parallel composition with pruning inspired
by interface automata is used [5].

Consequently, the quotient does not exist if and only if there
is no i satisfying the right hand-side.

Clearly, there are more solutions to the equation depending
on the input alphabet of the quotient Is/c. In order to obtain
a unique solution, our quotient operator is parameterized
by Is/c. Let (Qs, Is, Os∪{δ}, Ts, s) and (Qc, Ic, Oc∪{δ}, Tc, c)
be suspension automata and let Is/c be an alphabet. We
assume that the following is satisfied: Is/c∩Ic = ∅, Is/c\Oc ⊆
Is, Oc ⊆ Os, Is ∩ Oc = ∅, Is ⊆ Ic ∪ Is/c. We first set
Os/c = Os \ Oc to be the output alphabet of the quotient.
The quotient is the suspension automaton (Q, Is/c, Os/c ∪
{δ}, T, s/c), defined as follows:

• The set of states is Q = 2Qs×Qc . We also define the
following auxiliary sets for each q ∈ Q:

– nexta(q) = {(t′, d′) | ∃(t, d) ∈ q : t
a−→ t′ and if

a ∈ Ic ∪Oc ∪ {δ} then d
a−→ d′ else d′ = d}.

– asynchronous closure cl(q) = {(t′, d′) | ∃(t, d) ∈ q :

∃σ ∈
(
(Ic ∪Oc) \ (Is/c ∪Os/c)

)∗
: t

σ−→ t′, d
σ−→ d′}.

Furthermore, a state q is called inconsistent if there
exists a ∈ Oc and (t, d) ∈ q such that d

a−→ and t 6 a−→.

• The initial state is s/c = cl({(s, c)}).

• The transition relation T is defined for consistent states
only:

– for a ∈ Is/c: q
a−→ cl(nexta(q)),

– for a ∈ Os/c: if ∀(t, d) ∈ q : t
a−→ then q

a−→
cl(nexta(q)),

– for δ: if ∀(t, d) ∈ q : (t
δ−→ or d 6 δ−→) then q

δ−→
cl(nextδ(q)).

There are no transitions for the inconsistent states.

Note that all states of the quotient reachable from the initial
state are closed, i.e. q = cl(q). Intuitively, the closure collects
all additional requirements arising from the (uncontrollable)
asynchronous moves of the known component.

Example 3. We illustrate the quotient operator on the
alternating-bit protocol shown in Figure 8a, where Osalt =
{out , bit0 , bit1 , ack0 , ack1}, Isalt = {msg}. This protocol
is realized by a transmitter and receiver modules, which
exchange messages with a correction bit initially set to 0.
The transmitter waits for an input message msg? and sends it
to the receiver with a control bit (action bit0!). The receiver
delivers the message out! and confirms to the transmitter
by action ack0!. In the next round, the control bit is flipped
and the protocol restarts.

Suppose we have already tested the transmitter against
the specification ctr in Figure 8a, where Octr = {bit0 , bit1},
Ictr = {msg , ack0 , ack1}. The specification ctr behaves like
required by the protocol, but it has the additional feature
that when it receives an out-of-order acknowledgment, it
resends the bit notification. To obtain the specification of
the receiver, we compute the quotient of salt by ctr over the
alphabet Isalt/ctr = {bit0 , bit1}. The resulting specification
is shown in Figure 8c; for clarity we omitted the universal
states.

Observe that the construction may create a suspension
automaton that is not necessarily valid. To obtain a valid

1 2 3 4

5678

δ

msg? bit0 ! out!

ack0 !

msg? δbit1 !out!

ack1 !

(a) Protocol specification salt.

A

B

C D

E

F

δ

msg?

bit0 ! ack1?

δ

ack0?

δ

msg?

bit1 ! ack0?

δ

ack1?

(b) Transmitter ctr.

Q

W

V X

Y

Z

δ

bit0?

out!

ack0 !

δ

bit1?

out!

ack1 !

(c) The quotient of salt by ctr.

Figure 8: The alternating-bit protocol.

suspension automaton we use the pruning operation pre-
sented in the previous section and several other operations
announced in Fig. 5 and defined below. If the initial state s/c
is removed in the pruning phase, we say that the quotient s/c
does not exist.

Validization
We now show the procedure valid that converts any (generally
invalid) suspension automaton (Q, I,O ∪ {δ}, T, s) to one
that is valid. This post-processing step yields the complete
quotient operation. The algorithm proceeds in several phases:

• Pruning: In order to ensure the non-blocking prop-
erty, we remove the blocking states, which may have
been generated, similarly to the merging operation by
applying the pruning procedure.

• δ-contraction: In order to ensure the quiescence-obser-
vation property, we apply the merge operation on the
states of the single suspension automaton as follows.

For q ∈ Q, let ∆(q) = {q′ | q δ∗−→ q′} denote all the δ-

reachable states. We replace every transition q
δ−→ q′ by

q
δ−→
∧
q′∈∆(q) q

′ with a δ-self-loop on the latter state.

Since the conjunction contains also q, it can only have
less traces than q. Further δ-transitions do not change
the state and thus preserve all the traces; thus the
property is satisfied. Further, by the definition of ioco,
for a quiescent i if i ioco q then also i ioco q′ for each
q′ ∈ ∆(q), whence the preservation of implementations.

• Removing outputs after quiescence: In order to ensure
the anomaly-freedom property, we need to prohibit
outputs right after a quiescent transition was taken.
Formally, we make a merge of s with the “universal
system” described in Section 2.1. Intuitively, this dupli-
cates the state space remembering whether the previous
transition was quiescent or not, and thus prohibiting
outputs or not, respectively.

• Pruning: Since the previous two merging phases may
again create blocking states, we perform the pruning
again.

As no other properties are violated by merging and
none is violated by pruning, the final result satisfies all
three properties and is a valid suspension automaton.

Theorem 2. Let s be a (possibly invalid) suspension au-
tomaton. Then valid(s) satisfies the axiom (V).

The quotient operator is given by the /-construction fol-
lowed by application of valid.

Theorem 3. Let s, c be valid suspension automata. The
quotient operator satisfies the axiom (Q). In particular, the
initial state is pruned if and only if there is no IOTS i such
that i ‖ j ioco s for all j ioco c.

While the merge in the third phase at most duplicates the
state space, the merge of the second phase may in general
cause an exponential blowup in connection with δ transitions.
Fortunately, this is not the case when used as the quotient
post-processing. During the quotient post-processing, instead

of conjunction we can consider taking union and set q
δ−→⋃

q′∈∆(q) q
′. Indeed, in the quotient construction, each new

state is a set of original states and implicitly represents their
merge.

Lemma 2. Let q, q′ (and thus also q ∪ q′) be states of
a quotient such that q ∧ q′ exists. Then for all IOTS i

i ioco q ∧ q′ ⇐⇒ i ioco q ∪ q′.

As a result, only singly exponential blow-up can be caused
by the quotient operation.

3.3 Unhiding / Alphabet Equalization
In this section, we present the dual to hiding, the unhide

operator. The purpose of this operator is to perform alphabet
equalization, e.g. to change a partial specification view into
a full specification. This becomes useful when combined with
our previous operations: combining alphabet equalization
with the merge operator allows us to merge partial speci-
fications with different alphabets, while combining it with
the quotient operator provides us with the decomposition in
various architectural patterns.

It is common to only allow hiding output actions; however,
we also permit hiding input actions in order to handle more
general settings. Note that we treat input actions differently
than outputs. While output actions are renamed into silent
τ actions, input actions are simply removed.

Definition 5. Let (Q, I,O, T, s) be an IOLTS and let IH ⊆
I, OH ⊆ O be sets of actions to be hidden. The IOLTS
hide (IH , OH) in s is (Q, I\IH , O\OH , T ′, s) with transitions
defined as follows:

• whenever a ∈ (I ∪ O ∪ {τ}) \ (IH ∪ OH) and s
a−→ s′

then hide (IH , OH) in s
a−→ hide (IH , OH) in s′, and

• whenever a ∈ OH and s
a−→ s′ then hide (IH , OH) in

s
τ−→ hide (IH , OH) in s′.

We sometimes omit the set of input actions if it is empty,
thus writing hideOH in s instead of hide (∅, OH) in s. This
notation agrees with the standard hide operator as has been
used in [16].

Ideally, the dual to hiding, the unhide operator would
satisfy the following axiom: for all IOLTS i

hide(IH , OH) in i ioco s ⇐⇒ i ioco unhide(IH , OH) in s

However, this is not possible in general. The problem lies
in the fact that the implementation i may contain loops
labeled with actions of OH . After hiding, these loops intro-
duce divergence, which means that the left-hand side of the
equivalence is not well defined. We thus restrict ourselves
to implementations that do not contain such loops; we call
these implementations hidden-output convergent.

Definition 6. Let (Q, I,O, T, s) be an IOLTS and let IH ,
OH be disjoint sets of actions with (IH ∪OH) ∩ (I ∪O) = ∅.
The IOLTS unhide (IH , OH) in s is defined as (Q, I∪IH , O∪
OH , T

′, s) where T ′ = T ∪ {(q, a, q) | q ∈ Q, a ∈ OH}.

Note that we have not explicitly defined any transitions for
actions from IH . Such actions (implicitly leading into the
universal state) are going to be added once the IOLTS is
changed into an input-enabled suspension automaton.

Theorem 4. Let (Q, I,O, T, s) be an IOLTS, IH , OH as
in Definition 6. Then for all hidden-output convergent IOTS
i the following holds:

hide(IH , OH) in i ioco s ⇐⇒ i ioco unhide(IH , OH) in s

The unhide operator allows us to extend the merge op-
erator to systems with different alphabets, e.g. partial spec-
ifications. Let s1, . . . , sn be IOLTS (or their suspension
automata) over input and output alphabets Ik, Ok, respec-
tively, for each k = 1, . . . , n. Further, let I and O be input
and output alphabets that subsume all Ik and all Ok, respec-
tively, and such that I ∩ O = ∅. Then the merge

∧n
k=1 sk

over alphabets I,O is defined as the construction

n∧
k=1

unhide(I \ Ik, O \Ok) in sk

followed by pruning. As a corollary of Theorem 4, we thus
obtain the main contribution of this section.

Corollary 1. The merge operator over I, O satisfies the
axiom (M) for all IOTS i that are hidden-output convergent
with respect to all O \Ok.

1

2 3

ack?

snd crt!

ack?
wait!

snd crt!

snd!

ack?
restart? snd!

(a) Functional view with ad-
ditional wait and restart ac-
tions.

A

B

C

u

û

wait!δ
snd!ack?

snd crt!ack?

snd!δ
wait!

snd crt!

ack?δ
wait!

restart?

restart?

restart?

I ∪O

δ

δ

I

(b) Safety view after unhiding
unhide({restart}, {wait}) in ssafe.

1, A

2, B 3, A

1, u

2, u 3, u

ack?

snd crt!

ack?

wait!

snd!

snd!

restart?

ack?

snd crt!

ack?wait!
snd crt!

snd!

ack?
restart?

snd!

(c) Merge of the views in Figures 9a and 9b.

Figure 9: Example of merge with alphabet equalization.

Example 4. Figure 9a shows the functional view sfun from
Figure 6a extended by new actions wait ! and restart?, and
without δ-actions. The action wait ! allows the dispatcher to
become idle in state 2 and restart? resets the dispatcher from
state 3 to the initial state. To equalize the alphabets, we
unhide the safety view ssafe with the actions restart?, wait !
as shown in Figure 9b; here the universal states are explicit.
Finally, we merge the two views to obtain the specification
in Figure 9c.

Similarly, we can consider parallel composition with the
subsequent hiding and obtain the respective quotient oper-
ator, where unhide is applied on the specification of the
whole system. In the following corollary we use the notation
hocOH (i ‖ j) to denote that i ‖ j is hidden-output convergent
with respect to OH .

Corollary 2. Let s, c be specifications, Is/c be an input
alphabet for the quotient, IH and OH be hiding alphabets.
Then for all implementations i we have

i ioco(unhide(IH , OH) in s)/c ⇐⇒ ∀j ioco c :

(hocOH (i ‖ j)⇒ hide(IH , OH) in(i ‖ j) ioco s).

4. CONCLUSION AND FUTURE WORK
We proposed two operations coming from interface theories,

merge and quotient, for exploiting structural properties of
systems in ioco-based testing. Together with parallel compo-
sition, these operations enable minimizing the testing effort
by: (1) facilitating multiple view modeling that follows the
common structure of requirements documents; and (2) for-
malizing the notion of design patches. The operations are
complete with respect to the standard semantics (M), (Q),
in contrast to incompleteness of parallel composition (PC).
We ensured generality of the operations by allowing variable
alphabets and flexible management of synchronization ac-
tions. Finally, the validization procedure is of independent
interest in other settings [17].

We plan to investigate deeper the interplay between paral-
lel composition, merging, and quotient in order to develop
a methodology that further optimizes black-box testing of
complex systems. We will also study the models with τ -
divergent loops that are forbidden by the classical ioco-
testing theory. We believe that such restriction is unneces-
sarily strong and not practical since such models may easily
result from hiding of synchronization actions. Hence, we
will study this problem and propose alternative solutions for
handling models with τ -divergent loops.

Acknowledgments
This research was funded in part by the European Research
Council (ERC) under grant agreement 267989 (QUAREM),
by the Austrian Science Fund (FWF) projects S11402-N23
(RiSE) and Z211-N23 (Wittgestein Award), by People Pro-
gramme (Marie Curie Actions) of the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under REA
grant agreement 291734, and by the ARTEMIS JU under
grant agreement 295373 (nSafeCer). Jan Křet́ınský has been
partially supported by the Czech Science Foundation, grant
No. P202/12/G061. Nikola Beneš has been supported by the
MEYS project No. CZ.1.07/2.3.00/30.0009 Employment of
Newly Graduated Doctors of Science for Scientific Excellence.

5. REFERENCES
[1] B. K. Aichernig, F. Lorber, D. Ničković, and S. Tiran.

Require, test and trace it. Technical Report
IST-MBT-2014-03, Graz University of Technology, 2014.
https://online.tugraz.at/tug_online/voe_main2.

getVollText?pDocumentNr=637834&pCurrPk=77579.

[2] S. Ben-David, M. Chechik, and S. Uchitel. Merging
partial behaviour models with different vocabularies. In
CONCUR, 2013.

[3] N. Beneš, I. Černá, and J. Křet́ınský. Modal transition
systems: Composition and LTL model checking. In
ATVA, 2011.

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca,
R. Passerone, and C. Sofronis. Multiple viewpoint
contract-based specification and design. In FMCO,
2007.

[5] P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic.
Compositional specifications for ioco testing. In ICST,
2014.

[6] L. de Alfaro and T. A. Henzinger. Interface automata.
In ESEC / SIGSOFT FSE, 2001.

[7] L. de Alfaro and T. A. Henzinger. Interface theories for
component-based design. In EMSOFT, 2001.

[8] L. Doyen, T. A. Henzinger, B. Jobstmann, and
T. Petrov. Interface theories with component reuse. In
EMSOFT, 2008.

[9] D. Fischbein, N. D’Ippolito, G. Brunet, M. Chechik,
and S. Uchitel. Weak alphabet merging of partial
behavior models. ACM Trans. Softw. Eng. Methodol.,
21(2):9, 2012.

[10] K. G. Larsen and L. Xinxin. Equation solving using
modal transition systems. In LICS, 1990.

[11] N. Noroozi, M. R. Mousavi, and T. A. C. Willemse. On
the complexity of input output conformance testing. In
FACS, 2013.

[12] J. Raclet. Residual for component specifications. Electr.
Notes Theor. Comput. Sci., 215:93–110, 2008.

[13] J. Raclet, E. Badouel, A. Benveniste, B. Caillaud,
A. Legay, and R. Passerone. A modal interface theory
for component-based design. Fundam. Inform.,
108(1-2):119–149, 2011.

[14] J. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and
R. Passerone. Why are modalities good for interface
theories? In ACSD, 2009.

[15] J. Tretmans. Test generation with inputs, outputs and
repetitive quiescence. Software - Concepts and Tools,
17(3):103–120, 1996.

[16] M. van der Bijl, A. Rensink, and J. Tretmans.
Compositional testing with ioco. In FATES, 2003.

[17] T. A. C. Willemse. Heuristics for ioco-based test-based
modelling. In FMICS/PDMC, 2006.

APPENDIX
To make some of the reasoning in the proofs easier, we first de-
scribe the notion of coinductive ioco. The coinductive ioco
was defined in [11] where it is also shown that it coincides
with standard ioco when the right-hand side specification is
deterministic. Here, we present a slightly modified version.
Instead of deterministic IOLTS on the right-hand side, we
consider possibly blocking suspension automata, i.e. suspen-
sion automata that might contain blocking states.

Definition 7. Given an IOTS (Qi, I, O, Ti, i) and a possibly
blocking suspension automaton (Qs, I, O∪{δ}, Ts, s), a binary
relation R ⊆ Qi ×Qs is called a coinductive ioco from i to s
when (i, s) ∈ R and for every (j, r) ∈ R it holds that:

1. (Input simulation) if r
a−→ r′ for a ∈ I, then for all

j′ ∈ j after a we have (j′, r′) ∈ R,

2. (Output simulation) if j
a
=⇒ j′ for a ∈ O ∪ {δ}, then

r
a−→ r′ and for all j′ ∈ j after a we have (j′, r′) ∈ R.

We write i � s, when there exists a coinductive ioco relation
from i to s.

Note that we use
a−→ in the output simulation part, which

means that we only consider the explicit δ transitions of the
possibly blocking suspension automaton.

If the possibly blocking suspension automaton has no
blocking states, i.e. it is a suspension automaton according
to Definition 3, the above definition is equivalent to that of
[11] and the following lemma holds:

Lemma 3. Let i be a state of an IOTS and s be a state of
a suspension automaton. Then i ioco s if and only if i � s.

Correctness of Pruning
We first show that by pruning the possibly blocking suspen-
sion automaton, we get a suspension automaton that has the
same implementations with respect to �.

Lemma 4. Let s be a state of a possibly blocking suspen-
sion automaton. If s is an invalid state then there is no
coinductive ioco relation containing (i, s) for any state i of
an IOTS.

Proof. Let R be a coinductive ioco relation. The proof
goes by induction. If s is a blocking state then any pair
(i, s) ∈ R would certainly violate the output simulation

condition. If s
a?−→ s′ where s′ is an invalid state, then

any pair (i, s) ∈ R would require that for all i′ ∈ i after a?,
(i′, s′) ∈ R. Note that i after a? is nonempty, as i is an IOTS
state. However, by induction, (i′, s′) may not be in R as s′

is an invalid state. The remaining case is that all output and
δ transitions outgoing from s end in an invalid state. There
is a ∈ O ∪ {δ} such that i

a
=⇒ i′. But then, either s 6 a−→, which

violates the output simulation condition, or s
a−→ s′ where

s′ is an invalid state. Again, by induction, the condition
(i′, s′) ∈ R cannot be satisfied.

Lemma 5. Let s be a state of a possibly blocking suspen-
sion automaton. If s is not an invalid state then for every
IOTS state i holds: i � s before pruning if and only if i � s
after pruning.

Proof. Due to previous lemma, coinductive ioco relations
are not affected by the pruning, as they can never contain
pairs (j, t) with t an invalid state.

The consequence of these results is that we can now freely
use � in the following proofs.

Correctness of Merging
In this section, let s1, . . . , sn be a fixed input to the merge
operation. Most notably, assume that all sk have already
been completed (Section 2.1) and thus are input enabled.

Lemma 6. Let i be an IOTS state satisfying i � sk for all
k. Then the merge s =

∧n
k=1 sk exists and i � s.

Proof. Let R = {(j, (t1, . . . , tn)) | ∀k : j � tk}. We show
that R is a coinductive ioco relation from i to s. Clearly,
(i, s) ∈ R. Let now (j, (t1, . . . , tn)) ∈ R.

Let (t1, . . . , tn)
a?−→ (t′1, . . . , t

′
n). This means that tk

a?−→ t′k
for all k. Let now j′ ∈ j after a? be arbitrary. From j � tk
we know that j′ � t′k. Therefore, (j′, (t′1, . . . , t

′
n)) ∈ R.

Let j
a
=⇒ j′ for a ∈ O ∪ {δ}. From j � tk we know that

tk
a−→ t′k and j′ � t′k for all k. Therefore, (t1, . . . , tn)

a−→
(t′1, . . . , t

′
n) and (j′, (t′1, . . . , t

′
n)) ∈ R.

We have shown that R is a coinductive ioco relation from
i to s, therefore i � s.

Lemma 7. Let i be an IOTS state satisfying i � s with s
as above. Let k ∈ {1, . . . , n} be arbitrary. Then i � sk.

Proof. Let R = {(j, tk) | j � (t1, . . . , tn)}. We show
that R is a coinductive ioco relation from i to sk. Clearly,
(i, sk) ∈ R. Let now (j, tk) ∈ R.

Let tk
a?−→ t′k. Due to input enabledness and determinism,

(t1, . . . , tn)
a?−→ (t′1, . . . , t

′
n). Let j′ ∈ j after a? be arbitrary.

From j � (t1, . . . , tn) we know that j′ � (t′1, . . . , t
′
n). This

means that (j′, t′k) ∈ R.

Let j
a
=⇒ j′ for a ∈ O ∪ {δ}. From j � (t1, . . . , tn) we know

that (t1, . . . , tn)
a−→ (t′1, . . . , t

′
n) with j′ � (t′1, . . . , t

′
n). By the

construction of merge, this means that tk
a−→ t′k. Therefore,

(j′, t′k) ∈ R.
We have shown that R is a coinductive ioco relation from

i to sk, therefore i � sk.

Correctness of Quotient
We now focus on proving the correctness of the quotient
construction. In this section, let s and c be fixed inputs for
the construction. Denote Ls = Is∪Os and Lc = Ic∪Oc their
respective alphabets and Ls/c = Is/c ∪Os/c the alphabet of
the quotient. Finally, for the sake of more readable notation,
we write s/c instead of (s, c) for pairs of states of the system
specification and the known component.

The following auxiliary lemma follows straightforwardly
from the definition of coinductive ioco.

Lemma 8. If i � s and i
ε
=⇒ i′, then i′ � s.

We further observe the following two facts about the states
of the quotient. The first is that if there exists an imple-
mentation i � q then q is consistent. The second is that all
states of the quotient satisfy q = cl(q). We call this second
observation the closure of q in the following proofs.

Lemma 9. Let q̂ be a state of the quotient and let ı̂ � q̂.
Let s/c ∈ q̂ and let ̂ � c be arbitrary. Then ı̂ ‖ ̂ � s.

Proof. Let R = {(i ‖ j, t) | i � q, t/d ∈ q, j � d}. We
show that R is a coinductive ioco relation. Let (i ‖ j, t) ∈ R.

Let t
a−→ t′ for a ∈ Is. This means that a ∈ (Ic \ Ls/c) ∪

(Is/c \ Lc). Let further i ‖ j a
=⇒ i′ ‖ j′ be arbitrary.

• Let a ∈ Ic \ Ls/c. Then i
ε
=⇒ i′ and j

a
=⇒ j′. This means

that i′ � q (previous lemma) and j′ � d′ such that

d
a−→ d′. Due to the closure of q, t′/d′ ∈ q and thus

(i′ ‖ j′, t′) ∈ R.

• Let a ∈ Is/c \ Lc. Then i
a
=⇒ i′ and j

ε
=⇒ j′. This means

that i′ � q′ such that q
a−→ q′ and j′ � d. Due to the

definition of nexta(q), t′/d ∈ q′ and thus (i′ ‖ j′, t′) ∈ R.

Let i ‖ j a
=⇒ i′ ‖ j′ for a ∈ Oc ∪Os/c ∪ {δ}.

• Let a ∈ Oc \Ls/c. Then i
ε
=⇒ i′ and j

a
=⇒ j′. This means

that i′ � q and there exists d
a−→ d′ with j′ � d′. If t 6 a−→

then q would be inconsistent; therefore, t
a−→ t′ for some

t′. Due to the closure of q, t′/d′ ∈ q and (i′ ‖ j′, t′) ∈ R.

• Let a ∈ Os/c \Lc. Then i
a
=⇒ i′ and j

ε
=⇒ j′. This means

that there has to exist q
a−→ q′ with i′ � q′ and j′ � d.

This means that t
a−→ t′ for some t′ and t′/d ∈ q′. Thus

(i′ ‖ j′, t′) ∈ R.

• Let a ∈ Ls/c ∩Lc. Then i
a
=⇒ i′ and j

a
=⇒ j′. This means

that q
a−→ q′ with i′ � q′ and d

a−→ d′ with j′ � d′. This
means that t

a−→ t′ for some t′ and t′/d′ ∈ q′. Thus
(i′ ‖ j′, t′) ∈ R.

• Let a = δ. Then i
δ
=⇒ i′ and j

δ
=⇒ j′. This means that

there exists matching q
δ−→ q′ and d

δ−→ d′. Furthermore

q
δ−→ and d

δ−→ imply t
δ−→ t′ for some t′ and t′/d′ ∈ q′.

Thus (i′ ‖ j′, t′) ∈ R.

We see that (̂ı ‖ ̂, q̂) ∈ R and therefore ı̂ ‖ ̂ � q̂.

Before we prove the other direction, we need an auxiliary
lemma.

Lemma 10. Let p be a suspension automaton state with
p

σ−→ p′ where σ is a trace that does not include δ and let
i′ � p′. It is possible to construct an IOTS i � p such that
i
σ
=⇒ i′.

Proof. Let m be the length of σ and let p = p0
σ(1)−−−→

p1
σ(2)−−−→ · · · σ(m)−−−→ pm = p′ be the abovementioned trace of p.

We inductively construct ik for k from m to 0 as follows:

• im = i′,

• for k < m, let ik be an arbitrary implementation of pk

to which we add an extra transition ik
σ(k+1)−−−−→ ik+1.

We then set i = i0. It is obvious that i satisfies the statement
of the lemma.

Lemma 11. Let q̂ be a state of the quotient and let ı̂ be an
IOTS state such that for all t/d ∈ q̂ and all j � d, ı̂ ‖ j � t.
Then ı̂ � q̂.

Proof. Let R = {(i, q) | ∀t/d ∈ q,∀j � d, i ‖ j � t}. We
show that R is a coinductive ioco relation. Let (i, q) ∈ R.

Let q
a−→ q′ for a ∈ Is/c. Let further i

a
=⇒ i′ be arbitrary

and take an arbitrary t′/d′ ∈ q′ and j′ � d′. We need to
show that i′ ‖ j′ � t′.

• Let a ∈ Is/c \ Lc. Then t
a·σ−−→ t′ and d

σ−→ d′ for some
σ ∈ (Lc \ Ls/c)∗. Using Lemma 10, we can construct

j � d with j
σ
=⇒ j′. Thus i ‖ j a·σ

==⇒ i′ ‖ j′. As i ‖ j � t,
we have i′ ‖ j′ � t′. Thus (i′, q′) ∈ R.

• Let a ∈ Is/c ∩Oc. Similarly to the previous case, t
a·σ−−→

t′ and d
a·σ−−→ d′ for some σ ∈ (Lc \ Ls/c)∗. Again,

using Lemma 10, we have j � d with j
a·σ
==⇒ j′. Thus

i ‖ j a·σ
==⇒ i′ ‖ j′. As i ‖ j � t, we have i′ ‖ j′ � t′. Thus

(i′, q′) ∈ R.

Let i
a
=⇒ i′ for some a ∈ Os/c. Then for all t/d ∈ q there

is t
a−→, otherwise there would be some j such that i ‖ j 6� t.

This means that q
a−→ q′. We then proceed as in the previous

case.

Let i
δ
=⇒ i′. Either all t/d ∈ q satisfy d 6 δ−→, in which case

q
δ−→ ∅ and clearly (i′, ∅) ∈ R for any i′. Otherwise, there is

some t
δ−→. The proof then proceeds again similarly to the

first case (with δ · σ).
We see that (̂ı, q̂) ∈ R and therefore ı̂ � q̂.

Correctness of Validization
Validization preserves implementations with respect to �.

Lemma 12. For any possibly blocking suspension automa-
ton s and IOTS i we have

i � s ⇐⇒ i � valid(s)

Proof. Preservation of implementations by pruning has
been already proved above. Merging with the universal
automaton obviously preserves implementations, as the uni-
versal automaton admits any implementation and merging
has been proved to be correct. The only part that has to be
proved is that of the δ-contraction. We show that whenever

s0
δ−→ s1

δ−→ · · · δ−→ sm and i � s0, then for all i′ such that

i
δ
=⇒ i′ and for all k ∈ {0, . . . ,m} it holds that i′ � sk.

We first note that if i
δ
=⇒ i′ then also i

ε
=⇒ i′, and by

Lemma 8 we obtain i′ � s0.

We then note that i′
δ
=⇒ i′ and by repeated application of

the output simulation part of Definition 7 we have i′ � sk
for all k.

Correctness of Unhiding
In the following, let IH and OH be fixed. We use the short-
hand notation h(i) for hide(IH , OH) in i and unh(s) for
unhide(IH , OH) in s.

Lemma 13. Let i be a hidden-output bounded implemen-
tation such that h(i) � s. Then i � unh(s).

Proof. We show that R = {(i, unh(s)) | h(i) � s} ∪
{(i, u), (i, ū) | i implementation } is a coinductive ioco rela-
tion. Clearly, the pairs (i, u) and (i, ū) satisfy the conditions
of Definition 7. Let (i, unh(s)) ∈ R.

Let unh(s)
a−→ u where a ∈ IH . Then for all i′ ∈ i after a,

(i′, u) ∈ R.

Let unh(s)
a−→ unh(s′) where a ∈ Is. Then s

a−→ s′ and
thus for all h(i′) ∈ h(i) after a, we have h(i′) � s′. Thus also
(i′, unh(s′)) ∈ R.

Let i
a
=⇒ i′ where a ∈ OH . Then unh(s)

a−→ unh(s) and

h(i)
ε
=⇒ h(i′). By Lemma 8, we have h(i′) � s and thus

(i′, unh(s)) ∈ R.

Let i
a
=⇒ i′ where a ∈ Oi \OH . Then h(i)

a
=⇒ h(i′) and due

to h(i) � s, we also have s
a−→ s′. Thus also unh(s)

a−→ unh(s′)
and (i′, unh(s′)) ∈ R.

Lemma 14. Let i be a hidden-output bounded implemen-
tation such that i � unh(s). Then h(i) � s.

Proof. We show that R = {(h(i), s) | i � unh(s)} is
a coinductive ioco relation. Let (h(i), s) ∈ R.

Let s
a−→ s′. Then also unh(s)

a−→ unh(s′) and thus for all
i′ ∈ i after a, i′ � unh(s′). Therefore, (h(i′), s′) ∈ R.

Let h(i)
a
=⇒ h(i′). Then i

b1=⇒ i1
b2=⇒ · · · bn=⇒ in

a
=⇒ i′ where

bk ∈ OH for all k. Due to construction of unh and i �
unh(s), we have ik � unh(s) for all k. Due to in � unh(s),

we have unh(s)
a−→ unh(s′) with i′ � unh(s′). Therefore,

(h(i′), s′) ∈ R.

