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Abstract
Weconsider the Tonks–Girardeau gas subject to a random external potential. If the disorder is such
that the underlying one-particleHamiltonian displays localization (which is known to be generically
the case), we show that there is exponential decay of correlations in themany-body eigenstates.
Moreover, there is no Bose–Einstein condensation and no superfluidity, even at zero temperature.

1. Introduction

Understanding the various aspects and even thequalitative structure of phase diagramsof interactingmany-body
systems in thepresence of static disorder still poses a big challenge. Basic questions, such as the existence and
characterizations of a phase ofmany-body localized states, remainunder debate—even for one-dimensional
systems (see [6, 40] and references therein). For bosons, onemanifestationof localization is the existence of a glass
phase inwhich the static correlations decay and superfluidity is absent [16].While such a phase is predicted to exist
for strong interactions or strong disorder, for intermediate interaction strength superfluidity is expected topersist
at small values of the disorder even inone-dimension [19, 46]. The interest in these questionswas reneweddue to
experimental accessibility of such systems [38] (see also [9, 49] and references therein).

In this context, and in view of thewoefully short list of rigorous results on disordered systemswith
interaction [24, 41], limiting or integrablemodel systems present a testing ground for numerical works,
conjectures and ideas (see [8, 29, 30, 50, 52]). In the bosonic case, the limiting case of hard-core repulsive
interaction is such an example: in the lattice set-up this amounts to studying theXY-spinHamiltonianwith a
randommagnetic field, and in the continuum this is the Tonks–Girardeaumodel with a randompotential,
which is the topic of the present paper. Such hard-core interactionsmay actually be realized experimentally
[27, 42]—albeit without disorder. Bothmodels can be related to non-interacting fermions in an external
randompotential. They are not exactly solvable, but nevertheless amenable to rigorous analysis; the difficulty in
both cases lies in the non-local dependence of the physical (bosonic) correlation functions on the underlying
fermionic correlation functions. In [11] this linkwas exploited numerically to show that the disorder destroys
bosonic quasi-long-range order. For theXY-model such a result can be confirmed by rigorous bounds on the
correlations of any eigenstate [53] (see also [1, 2, 23, 28] for related and earlier results in this context). The
purpose of this paper is to show that such results also apply to the corresponding continuummodel. In addition
to a proof of the exponential decay of correlations for all eigenstates, we show that the superfluid density (or
stiffness) vanishes (exponentially) at zero temperature. Our basic assumption in all these results is the
(exponential) localization of the underlying one-particle operator—a property which generically holds true up
to arbitrarily large energies in one-dimensional disordered systems [37, 43].

We consider a systemofN bosonswith point interactions on a ringwith length L, whichwe take to be an
integer for simplicity. It is described by amany-particleHamiltonian of the form
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Wewill be interested in the cases when the one-particleHamiltonian is given by

H
x

V x
d

d
1.2L,

2

2
≔ ( ) ( )- +w w

+

on L L0,2 ([ ])with periodic boundary conditions (b.c.s). The dependence onω, whichwill often be omitted
from the notation for convenience, indicates the randomness entering the potential landscape.Wewill assume
throughout that the following probabilistic average isfinite

V x x I n nsup d , 1, , 1.3
n I

n
n

∣ ( )∣ ≔ ( ] ( )
⎡
⎣⎢

⎤
⎦⎥ ò < ¥ -

where  stand for the expectationwith respect toω. This ensures, in particular, thatV L L0,1([ ])Îw and that the
one-particleHamiltonian (1.2) (defined via its quadratic formon the Sobolev space H L0,1[ ]) is self-adjoint in
L L0,2 ([ ]) (with any self-adjoint b.c.s and, in particular, with periodic ones) for almost allω.

In the Tonks–Girardeau limit g  ¥, the bosonic wavefunctions are required to vanish upon particle
contact, i.e., x x,..., 0N1( )Y = in case x xj k= for some j k¹ . Any eigenfunction of L, w hence takes the form
of an eigenfunction of a systemofNnon-interacting fermionsmultiplied by a suitable phase to render it
symmetric upon particle exchange [20, 56].More precisely, let HL

 stand for (1.2)with periodic (+) or anti-
periodic (−) b.c.s. If j L,{ }j denotes an eigenbasis of HL

 and j N
1{ }a a= indexes a subset ofN orthonormal

eigenfunctions, then
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is a normalized eigenfunction of the Tonks–GirardeauHamiltonian providedwe choose 1N
N 1≔ ( ) - + , i.e.,

anti-periodic b.c. in caseN is even and periodic b.c. in caseN is odd (see [34]). In particular, the bosonic ground
state of L corresponds to choosing j N

1{ }a a= theN lowest eigenvalues of HL
N , and its ground state energyEL(N) is

simply the sumof the lowestN eigenvalues of HL
N .

Wewillmainly investigate two quantities of interest:

(1)The reduced one-particle density matrix gY corresponding to any eigenstate Ψ given by(1.4). It is defined
through its kernel

x y N x x x y x x x x, , ,..., , ,..., d ... d , 1.5N N N2 2 2( ) ≔ ( ) ( ) ( )òg Y YY

and satisfies N0  gY and NTr g =Y . Bose–Einstein condensation (BEC) refers to amacroscopic value

of the largest eigenvalue gY of this operator in the thermodynamic limit (N L,  ¥with const.N

L
= )

[44] (see also [36]).
It is not hard to show that the reduced one-particle densitymatrix takes the formof a determinant of an
N N1 1( ) ( )+ ´ + blockmatrix
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where theN×N-submatrix K x y,N ( ) is for all x y given by the entries
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Introducing the projection PN j L j L, ,
N N∣ ∣ j j= å ñáa a a

onto the eigenfunctions entering the stateΨ, wemaywrite

K x y P P P, 2 1N N N x y N,( ) [ ]= - as an operator identity on P L L0,N
2 ([ ]). In thismanner, one easily sees that

gY only depends on the projectionPN, as a change of basis corresponds to a unitary transformation of the
matrix in (1.6)which leaves the determinant invariant.

(2)The superfluid density (or: stiffness) measures the extent to which the ground state energy of the Tonks–
GirardeauHamiltonian increases as one twists the b.c.s [15], i.e., when thewave-functions are required to
pick up a phase eiq as one particlemoves around the ring, x x L x x x x,..., ,..., e ,..., ,...,j N j N1

i
1( ) ( )Y + = Yq . In

other words, the superfluid density sr is defined via the ground-state energy shift
E N E N L, , 0L L

2
s( ) ( )q q r» + for small θ. To give a precise definition in the thermodynamic limit, wefind
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itmore convenient towork in a grand-canonical picturewhere the particle number is determined by a fixed
chemical potentialμ; i.e.,μ is chosen independently ofN andω.
For given m Î , let N HTr 1 L,≔ ( )( ]m m


-¥

 denote the number of eigenstates of HL
 belowμ and set

N N Nmin ,≔ { }m m m
+ - .With E N ,L ( )q the ground state energy of the Tonks–GirardeauHamiltonianwith

twisted b.c.s, the superfluid density is defined as

L E N E Nlim sup
1

lim sup , , 0 . 1.8
L

L Ls
0

2
≔ ( ( ) ( )) ( )r

q
q -

q
m m

 ¥

Wenote that it follows from the diamagnetic inequality [35, theorem 7.21] that E N E N, , 0L L( ) ( )q for any
θ andN, hence 0s r .
With our definition ofNμ, the ground state energy E N , 0L ( )m has the following convenient representation in

terms of HL
.With 1N

N 1≔ ( )  = -m
+

m
m , we have

E N N H E, 0 Tr , 1.9L L
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m
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m

where the Ej L,{ } denote the eigenvalues of HL
, and min 0,[ · ] ≔ { · }-- denotes the negative part. In other

words, for any m Î , HL
m has exactlyNμ eigenvalues belowμ. This is a consequence of the fact that

N N
=m m
m, which, in turn, follows from the interlacing property E Ej L j L, ,<+ - for j odd, and E Ej L j L, ,>+ - for j

even (see [12, theorem2.3.1] or [47, theoremXIII.89]).

2. Results

2.1. Localization hypothesis andfirst consequences
Wewill assume that the one-particle operator HL,w

 in (1.2), for both periodic (+) and anti-periodic (−) b.c.,
exhibits (sub-)exponential Anderson localizationwith some exponential parameter 0, 1( ]x Î and localization
length ℓ < ¥ in the energy regimes of interest. To bemore specific, we consider the eigenfunction correlator

Q n m J n m, ; ; ; ; 2.1L
j E J

j L j L
,

, ,

j L,

( ) ≔ ( ) ( ) ( )åw w wF F

Î

 



corresponding to some energy regime J Ì . Here

n x x; ; d 2.2j L
I

j L, ,
2

n

1
2

( ) ≔ ∣ ( )∣ ( )
⎛
⎝⎜

⎞
⎠⎟òw j wF 

quantifies the probability for the jth eigenfunction to be present on a basic interval of unit length.We shall tacitly
assume that the complete orthonormal set of eigenfunctions of HL,w

 is jointlymeasurable in x,( )w . (In case of
degeneracy, which generically is believed to be absentwith probability one, this in particular requires the choice
of a proper labelling of eigenfunctions.)

Localization hypothesis eigenfunction correlator localization (ECL) on J: There exist C, 0,ℓ ( )Î ¥ and
0, 1( ]x Î such that for all n m L1 ,  and all L Î

Q n m J C
n m

, ; exp
dist ,

, 2.3L ℓ
[ ( )] ( ) ( )

⎛
⎝⎜

⎞
⎠⎟  -

x

x


where dist ,(· ·) denotes the Euclidean distance on the (one-dimensional) torus.

In the theory of (one-particle) randomoperators, the condition (ECL) is both strong and convenient: it
ensures localization in both the spectral sense (i.e. only pure-point spectrum in Jwith (sub-)exponentially
decaying eigenfunctions) as well as in the strong dynamical sense that

P H C
n m

sup 1 e 1 exp
dist ,

. 2.4
t

I
tH

J L I
i

1n
L

m ℓ
[ ( ) ] ( ) ( )

⎛
⎝⎜

⎞
⎠⎟  -

x

x
-  

Here P HJ L( ) denotes the spectral projection of HL
 onto the energy regime J and Tr1· ≔ ∣·∣  is the trace norm.

ECL is established for a large class of single-particle randomSchrödinger operators bymeans of either the
continuum fractional-momentmethod [4] (which is based on [3]) or via the bootstrapmulti-scale analysis
[17, 18] (which is based on [14]). In our one-dimensional set-up, localization is expected to hold generically at all
energies. In particular, (ECL)will hold for J ,( ]m= -¥ with 1x = and some localization length ℓ ℓ= m which
depends on m Î only. This has been established in the following specificmodels:
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• Early on in the history of localization proofs [21] for randompotentials of the formV x F bx( ) ( ( ))w=w with
bx ( )w a Brownianmotion on a compact RiemannianmanifoldM and F M:  a smoothMorse function
with Fmin 0M = .

• For homogeneousGaussian random potentials, i.e., V x 0[ ( )] = with covariance function
C x y V x V y( ) ≔ [ ( ) ( )]- , which admits the representation C x x y y yd( ) ( ) ( )ò g g= + in terms of a non-
negative, compactly supported function γ, which is uniformlyHölder continuous, i.e., there is s 0, 1( ]Î and
a < ¥ such that x y x a y s∣ ( ) ( )∣ ∣ ∣g g+ - for all x and all y 0> sufficiently small (see [13, 55]).

• For alloy-type randompotentials V x W x U x jj j( ) ( ) ( ) w= + å -w Î with independent and identically
distributed randomvariables j j( ) w Î whose distribution is absolutely continuouswith a bounded density, i.e.

v v vd dj( ) ( ) w Î = with some L L1( ) ( )  ÇÎ ¥ of compact support. The termW serves as a non-
random, bounded, 1-periodic background potential and the single-site potentialU is assumed to satisfy
c x U x C x1 1I 0,1( ) ( ) ( )[ ]  for some c C, 0,( )Î ¥ and a non-trivial sub-interval I 0, 1[ ]Ì (see [22]).

ECL implies the (sub-)exponential localization of eigenfunctions about some random localization center.
More precisely, it implies what is called semi-uniform localization of eigenfunctions (SULE). For the definition
of the latter it is convenient tofix aweight function g L: 1 ,..., 1,L { } [ ) ¥ with the property

g 1L
L1

1( )aå =a=
- . A specific choice, whichwewill adopt below, is g LL ( )a = .

Localization hypothesis (SULE) on J: There exist 0,ℓ ( )Î ¥ , 0, 1( ]x Î and, for every L Î , an amplitude
A 0L, w that is uniformly integrable, i.e.

Asup , 2.5
L

L[ ] ( )


< ¥
Î

such that for every eigenfunction j L,j of HL,w
 with eigenvalue E Jj L, Î there is some j L, , g Îw

 such that for

all n:

n A g
n

; exp
dist ,

. 2.6j L L L j L
j L

, , , ,
3 2 , ,
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( ) ( )
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⎟⎟w g

g
F -w w

w
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The points j L, ,g w
 play the role of localization centers. However, they need not coincide with the location of the

maxima of n;j L, ( )wF . The length ℓ is non-randomand coincides with theminimumof all localization length at
energies in J. Atfirst sight, the role of the function gLmight be puzzling and onemay be tempted to drop the
factor g

L
3 2 on the right side of (2.6). This, however, is known to bewrong [10]. If assumption (ECL) holds for an

energy regime J, then (SULE) holdswith anyweight function gL for the same energy regime (but possibly with a
slightly reduced localization length), see [5, chapter 7].

As explained in the introduction, every fermionicmany-body state x x,..., N1( )f , which is either periodic or
antiperiodic depending onwhetherN is odd or even, gives rise to the periodic bosonicmany-body state

x x x x x x,..., ,..., signN N j k N j k1 1 1( ) ( ) ( ) fY =  -< . In the Tonks–Girardeau limit, the dynamics of such a

state is given in terms of the dynamics of free fermions, i.e., x x t H x x,..., exp i ,...,t N j
N

L j N1 1 1
N( )( ) ( ) ( )f f= - å = .

While the bosonic one-particle densitymatrix
t

gY of this state does not coincide with the fermionic one, given by

t
Gf (which is defined as in (1.5)withΨ replaced by tf ), their diagonals agree, i.e., the bosonic and fermionic
densities are equal:

x x x x x x x, , e e , . 2.7t
tH tHi i

t t
L

N
L

N( ) ≔ ( ) ( ) ( )( ) ( )
 

g = G = Gf fY
-

Dynamical localization for free fermions, in the form (2.4), then immediately entails the following result for any
many-body eigenstate. The bound(2.8) is amanifestation ofmany-body localization for themodel of
interacting bosons considered here.

Proposition 2.1. If the range of Gf at t=0 falls within a regime of dynamical localization, i.e.

P H P HJ L J L
N N( ) ( ) G = G = Gf f f for some J Ì for which(2.4) holds, then there exists an A 0,( )Î ¥ which is

independent of L andN such that:

(1) the total number of particles on any subset I L0,[ ]Ì changes on average by order one only:

x x x x A for all I Lsup d d 0, , 2.8
t I

t
I

0( ) ( ) [ ] ( )
⎡
⎣⎢

⎤
⎦⎥  


ò ò- Ì

Î
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(2) for any pair of subsets I K L0,[ ]Ì Ì :

x x x x A
I K

sup d d exp
dist ,

. 2.9
t I

t
K

c

0 ℓ
( ) ( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟   


ò ò + -

x

x
Î

The (simple) proof of this propositionwill be given in the appendix. Both statements are expressions of non-
ergodic behavior of the localized system: onemay prepare the system initially in a state which exhibits a step-like
profile in its density, i.e., some positive averaged density in one half (I) and another one in the other half (I c). In
such a situation, (2.8) states that the step-like profile remains for arbitrarily long timeswith only afinite number
of particles crossing on average.

The second bound is relevant for experiments inwhich the bosons are initially trapped around some
location (such that x xd 0

K 0 ( )ò » ) and then released from the trap at t=0. The localization bound(2.9) then
guarantees that the total number of particles will remain small on average away from the initial location,
uniformly in time (confirming numerical simulations in [45].)A related bound for theXY-model can be found
in [2, theorem1.1].

2.2.Decay of correlations and absence of BEC
Ourfirst non-trivial consequence of one-particle localization concerns a strong version of absence of off-
diagonal long-range order (ODLRO).

Theorem2.2. LetΨ be anymany-particle eigenstate of the form(1.4)which is composed of a selection of one-particle
states j L

N
, 1

N{ }j a=
a

corresponding to an energy regime J. If condition (ECL) holds for J, then there exist A 0,( )Î ¥
independent of L andN such that

A
n m

1 1 exp
2

3
1

dist ,

2
2.10n m 2 ℓ

[ ] ( ) ( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟ g s- -s

x

xY 

for all n m L1 ,  and all 2 5 1 s < . Here 2·  denotes theHilbert–Schmidt-norm on L L0,2 ([ ]).

Aproof of this theorem, aswell as of the subsequent corollary, will be given in section 3. The proof shows
that the result can easily be extended in various directions, and is not restricted to eigenstates of themany-
particleHamiltonian. It applies, e.g., to general states of the form (1.4) as long as the one-particle functions jj are
suitably localized, and is thus also relevant in time-dependent situations as in [48].

Absence of BEC is not immediately implied by the absence ofODLRO, since our assumptions on the system
allow for unboundedfluctuations of the density.We therefore need amild additional assumption on these
fluctuations in order to reach such a conclusion.

Corollary 2.3.Given the assumptions of theorem 2.2, assume additionally that for p 2>

P Hsup Tr 1 . 2.11
n L

I J L
p

,
n[( ( )) ] ( ) < ¥

Then for any sequenceΨ of eigenstates composed of one-particle states j L N, 1 ,...,
N( )j a=
a

whose energies fall into a regime

J of (ECL), the almost-sure convergence

L
lim 0 2.12

L r
( )g

=
¥

Y 

holds for any r 1
p

2 < .

Note that the convergence (2.12) is independent of the choice ofN, which is allowed to depend on L andω.
Typically one is interested in the case that N Lconst.» as L  ¥. The subsequent proof (specifically
equation (3.30)) also shows that in case(2.11) holds with p 1> the (averaged)momentumdistribution
associatedwith the stateΨ,

n k
L

x y x y
1

e , d d , 2.13k x yi∬( ) ≔ [ ( )] ( )( ) g-
Y

remains uniformly bounded, since n k sup 1 1L L n m n I
1

, 2m
∣ ( )∣ [ ]  gå < ¥Y  . (In particular, n 0( ) < ¥. At

large values k∣ ∣  ¥, one expects an algebraic fall-off n k k 4( ) ~ - due to the hard-core repulsion [7]). This is
consistent with numerical predictions in [11].
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A simple sufficient condition for (2.11) to hold for any value p 2> (and hence for the validity of (2.12) for
any r 0> ) and -homogeneous randompotentials in case J ,( ]mÌ -¥ is the existence of an exponential
moment

xe d 2.14
I

tV x

1

[ ] ( )( )ò < ¥-

for some t 0> . (Aderivation of this statement starts from the estimate P HTr 1 e Tr 1 eI L
t

I
tH

,n n
L( )( ] m

m
-¥

 - 

and proceeds through standard semigroup bounds, see [43, chapter II 5].)This is clearly satisfied for themodels
listed above. (Alternatively, onemay proceed though resolvent techniques as in [43, chapter II 5] to show that the
finiteness of V x xsup dn I

p2

n
[∣ ( )∣ ]ò is sufficient for (2.11) to hold.)

The absence ofODLROandBEC is not a consequence of the disorder alone: In caseV=0, Lenard [31]
showed that the reduced densitymatrix of the ground state wave functionΨ behaves as x y x y, 1 2( ) ∣ ∣g ~ -Y

-

for large x y∣ ∣- . This slow fall off is sometimes referred as quasi-long range order and causes of the order of N
particles to quasi-condense into the zeromode.

The above corollary (with r 1 2< ) shows that localization decreases the rate of quasi-condensed particles
in comparison to the free case (V= 0). This should not be taken for granted as a comparisonwith the non-
interacting case shows. For non-interacting bosons in a non-negative Poisson randompotential, Luttinger
togetherwith Kac [25, 26] and Sy [39]noted that that critical dimension d for the occurrence of BEC is lowered
to d=1. (A rigorous version of their analysis is contained in [32, 33] and the basicmechanism also applies to
alloy-type randompotentials.)The occurrence of BEC in an ideal Bose gas even at positive temperature is due to
the behavior of the density of states near the bottomof the one-particle energy spectrum. The latter is severely
suppressed due to the occurrence of Lifshitz tails, which causes amacroscopic fraction of the particles to
condense intomodes whose energy vanishes in the thermodynamic limit. Since Anderson localization is known
for suchmodels, our results imply that the interactions destroy BEC, and the corresponding Tonks–Girardeau
model shows noBEC even at zero temperature.

2.3. Absence of superfluidity
In the absence of an external randompotential (V= 0), it is well-known that the superfluid density(1.8)
coincides with the total density at chemical potentialμ:

L
Nlim

1

2
. 2.15

L
s 2

[ ]
( )r

m
p

= =m
¥

+

In particular, it is strictly positive for all 0m > . This changes drastically in the regime of localization.

Theorem2.4. If condition (SULE) holds (with g LL ( )a = ) for the energy regime ,( ]m-¥ , then for any 0q > and
almost surely:

L E N E Nlim sup , , 0 0. 2.16
L

L L( ( ) ( )) ( )q - =m m
¥

As a consequence, the superfluid density(1.8) is zero almost surely.

Our result implies that generically a disordered Bose gas in one-dimension in the Tonks–Girardeau regime
shows no superfluidity and noBEC even at zero temperature. This statement concerns the usual
thermodynamic limit.We note that other limiting regimes are possible, corresponding tomean-field type
interactions, where both BEC and superfluidity can prevail at zero temperature [30, 50] (see also [8, 29, 54] for
related results). The proof of theorem 2.4will be given in section 4.

3. Proof of decay of correlations

This section is devoted to the proofs of theorem 2.2 and corollary 2.3. SinceN is kept fixed in theorem2.2, wewill
drop the superscript N on the eigenfunctions j L,

N{ }j of HL
N (aswell as their dependence onω) for ease of

notation.
Using the Laplace formula, the determinantal expression(1.6) for the kernel of the one-particle reduced

densitymatrix can be recast as

x y x y K x y y K x y x, adj , , adj , , 3.1j L j L N N
,

, , ,( ) ( ) ( ) [ ( )] ≕ ( ) ( ) ( ) ( )åg j j j j= á ñ
a b

b aY
a b

where the last inner product is in N and the adjugatematrix of K x y,N ( ) is thematrix of cofactors (up to signs),
i.e.
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K x y
e

e K x y
K x yadj , det

0

,
1 det , . 3.2N

T

N
N, ,[ ( )]

( )
( ) [ ( )] ( )ˆ ˆ

⎛
⎝⎜

⎞
⎠⎟= = -b a

a

b

a b
a b

+

Here e{ }a denote the unit vectors and the hats indicate the deletion of rowβ and columnα from K x y,N ( ). Some
key properties are summarized in the following:

(1) In case x=y, K x x K x x, adj ,N N( ) ( )= equals the identitymatrix.

(2) Since K x y P P P, 2 1N N N x y N,( ) [ ]= - , the inequality P K x y P,N N N( ) - holds, and hence we arrive at
the bound K x y, 1N ( )   on the operator norm.

(3) Since the adjugatematrix of any hermitianN×Nmatrix is hermitianwith eigenvalues given by the products
of N 1- disjoint eigenvalues of thematrix, the normbound

K x yadj , 1 3.3N ( ) ( ) 

is an immediate consequence of K x y, 1N ( )   .

Our basic strategy for an estimate of(3.1) is to split the summation depending onwhether the eigenstates
live predominantly to the right or left of themidpoint of n andm. To to so, wewill supposewithout loss of
generality n m L1 2 < and abbreviate by

M m n 2 3.4≔ ⌊( ) ⌋ ( )+

themidpoint between n andm (or between n and m 1- if n m 2( )+ is not an integer). Thismidpoint
introduces a left/right partition of the system according towhichwemay sort the eigenstates:

1

2
,

1

2
. 3.5

M

j L
M

L

j L
0

,
2

,
2≔ ∣ ( )∣ ≔ ∣ ( )∣ ( )

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭  ò òa j x a j x>

a a

The normalization of eigenstates implies that  and constitute a disjoint partition of the finite index set
N1 ,...,{ }.Writing the vectors on the right side of (3.1) accordingly as x x x( ) ( ) ( ) j j j= + (and similarly for

y( )j )wemay split the sum(3.1) into three parts, x y x y x y x y, , , ,1 2 3( ) ( ) ( ) ( )( ) ( ) ( )g g g g= + +Y Y Y Y , with

x y y K x y x

x y y K x y x

x y y K x y x

, , adj , ,

, , adj ,

, , adj , . 3.6

N

N

N

1

2

3

( ) ≔ ( ) ( ) ( )
( ) ≔ ( ) ( ) ( )
( ) ≔ ( ) ( ) ( ) ( )

( )

( )

( )



 

 

g j j

g j j

g j j

á ñ

á ñ

á ñ

Y

Y

Y

TheHilbert–Schmidt norms of these contributions are estimated separately.We start with the first two terms.

Lemma3.1. For all m n> :

N I Q k m J

N I Q n k J

1 1 2 , ;

1 1 2 , ; , 3.7

I I n
k

M

L

I I m
k M

L

L

1
2

1

2
2

1

n m

n m

( ) ( )

( ) ( ) ( )

( )

( )





å

å

g

g

Y
=

Y
= +

 

 

whereMwas defined in(3.4) and N I P x x x, dk
I

N
k

( ) ≔ ( )ò denotes the local particle number in Ik.

Proof.TheCauchy–Schwarz inequality in N and(3.3) imply

x y y x K x y P x x y, adj , , . 3.8N N j L
1 2 2 2 2

,
2∣ ( )∣ ( ) ( ) ( ) ( ) ∣ ( )∣ ( )( )




  åg j j j
a

Y
Î

a
     

Integration over x InÎ and y ImÎ yields the bound

N I m1 1 . 3.9I I n j L
1

2
2

,
2

n m ( ) ( ) ( )( )


 åg F

a
Y

Î
a

 

The last termmay be estimated using the fact that eigenfunctions corresponding to a Î predominantly live
on the left:

m k m Q k m J2 2 , ; . 3.10j L
k

M

j L j L
k

M

L,
2

1
,

2
,

2

1

2( ) ( ) ( ) ( ) ( )
 

 å åå åF F F
a aÎ = Î =

a a a
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Finally, we use that

Q k m J Q k m J, ; , ; . 3.11
k

M

L
k

M

L
1

2

1

2

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟å å

= =

This completes the proof of the first inequality. A proof of the second inequality proceeds analogously with the
roles of  and interchanged. ,

Both terms are thus (sub-)exponentially small in the distance between n andm provided the eigenfunction
correlator decays accordingly. To establish this for the third termwe employ the technique developed in [53] for
estimates on certain structured determinants.

Lemma3.2. For all m n> :

e N I N I N I Q k l J1 1 2 2 , ; . 3.12I I n m k l k L
3

2 ,n m ( ) ( ) ( ) ( ) ( )( )
( ) åg ¢Y 

Herewe have abbreviated k l k
n

l M
L

k m
L

l
M

, 1 1 1≔( )
⎡⎣ ⎤⎦å¢ å å + å å= = + = = .

Proof.Using the definition of the adjugatematrix, we rewrite the inner product again as a determinant of a block
matrix of the following form:

x y

x

y
K x y

, det

0 0

0
,

3.13

T

N

3 ( )
( )

( )
( ) ( )( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟





g
j

j
= ~Y

where K x y V K x y V, ,N
T

N( ) ( )=~
for a permutationmatrixV that permutes the indices such that the indices in

 correspond to thefirst ∣ ∣ rows and columns, and the ones in the to the last N∣ ∣ ∣ ∣ = - ones.Note that
K x y, 1N ( ) ~  . Hencewe can apply the following estimate on the determinant, which is a simple variant of the
bound in theorem 3.1 in [53].

Lemma3.3. Let v pÎ , w qÎ , and let K A B
C D( )= be a p q p q( ) ( )+ ´ + matrix with K 1  . Then

v
A B

w C D
e v w Bdet

0 0
0 . 3.14

T

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟     

Proof.By linearitywemay assume that w 1=  . As in [53], wefirst apply a unitary operatorUon p that takes v
into the vector v0 ,..., 0,( )  .Moreover,we canfind another unitaryVon p such thatV AUT is upper triangular,
i.e., all entries below thediagonal are zero. The left side of (3.14) is equal to the absolute value of the determinant of

V
v
A B

w C D
U

Uv

V AU VB
w CU D

M
1 0 0
0 0
0 0 1

0 0
0

1 0 0
0 0
0 0 1

0 0

0 . 3.15
q

T

T

q

T

T

T

( )
≕ ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

To estimate it, we useHadamard’s bound, which states that the determinant of amatrix is bounded by the
product of the norms of the row vectors. Before we apply this bound, we performonemore operation that leaves
the determinant invariant, namelywe subtract s times the p 1 th( )+ row from thefirst row, for some s Î . Let
α denote the lower right entry ofV AUT (i.e., the only non-zero entry in the pth row ofVAUT). Using the fact
that the normof a row vector of a squarematrix can never exceed the normof thematrix, we then obtain

M v s s B B wdet 1 . 3.16
q

2 2 2 2 2

1

2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) a a- + + +
a

a
=

     

Thefirst factor on the right side bounds the normof the first row, the second one the p 1 th( )+ row, and the last
factors the rows p p q2 ,... 1+ + + . The norms of the other rows p2 ,..., are bounded by one. Since

w w w e1 exp
1

2
ln 1 exp

1

2
, 3.17

q q q

1

2

1

2

1

2∣ ∣ ( ∣ ∣ ) ∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ å å+ = + =

a
a

a
a

a
a

= = =

the choice s v B2 2 1(∣ ∣ )a a= + -    leads to the desired bound (3.14). ,

An application of lemma 3.3 to (3.13) leads to the bound

x y e y x B, , 3.183∣ ( )∣ ( ) ( ) ( )( )
 g j jY      
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whereB is the ∣ ∣ ∣ ∣ ´ matrix with entries a Î , b Î given by

B K x y z z z, 2 d . 3.19N
k

L

I x y
j L j L, ,

1 ,
, ,

k
c

≔ [ ( )] ( ) ( ) ( )
[ ]òå

Ç
j j=a b a b

=
a b

Here the equality results from(1.7). The operator normofB is estimated in terms of its Frobenius norm,
B B 2    , which in turn is bounded from above usingMinkowski’s inequality as follows. For x InÎ , y ImÎ ,

B B z z z

k k

N I Q k l J N I Q k l J

N I Q k l J

2 d

2

2 2 , ; 2 2 , ;

2 2 , ; . 3.20

k

L

I x y
j L j L

k

n

k m

L

j L j L

k

n

k
l M

L

L
k m

L

k
l

M

L

k l k L

2 ,
2

1 ,
, ,

2

1
,

2
,

2

1
2

1 1

2

1

2

,

k
c

1
2

1
2

1
2

1
2

∣ ∣ ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

[ ]

( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟







 









òå å å

å å å å

å å å å

å

j j=

+ F F

+

¢

Ça
b

a b
a
b

a b

Î
Î

= Î
Î

= = Î Î

= = + = =

a b

a b

 

The penultimate inequality derives from(3.10) (and its analog for). After inserting this bound in (3.18) and
integrating its square over x InÎ and y ImÎ , we obtain the claimed bound (3.12). ,

Wemay now conclude the proof of ourfirstmain result.

Proof of theorem2.2.We start by noting that 1 1I I 2n m
[ ] gY  is uniformly bounded. In fact, the Cauchy–

Schwarz inequality and the fact that theHilbert–Schmidt norm is dominated by the trace norm lead to

N I N I1 1 1 1 1 1 . 3.21I I I I I I n m2 2 2
1 2

n m n n m m( ) ( ) ( ) ( ) g g gY Y Y     

Moreover, by theCauchy–Schwarz inequality for the expectation value

N I N I N I N I . 3.22n m n m
1 2[ ( ) ( ) ] ( [ ( )] [ ( )]) ( )   

In turn, the average local particle number is uniformly bounded by assumption:

N I Q n n J Csup sup , ; . 3.23
L n

n
L n

L
, ,

[ ( )] [ ( )] ( )  =

Wemay therefore assumewithout loss of generality that m n> .Wemay also assume that n m L1 2; <
the general case then follows by a simple relabeling.Wefirst proof the assertion for 2

5
s = . Since

1 1 1 1 3.24I I
i

I
i

I2
1

3

2n m n m

2
5

2
5 ( )( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  åg gY

=
Y   

we can treat the three contributions to gY separately. For thefirst term, lemma 3.1 and theHölder inequality for
the expectation value imply

N I Q k m J1 1 2 , ; . 3.25I I n
k

M

L
1

2
1

n m

2
5

1
5

1
5

2
5

[ ( )] [ ( )] ( )( )⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟   ågY

=

 

Thefirst factor is uniformly bounded according to(3.23). The last factor is bounded using the localization
assumption (ECL):

Q k m J C
k m

C
M m

, ; exp
dist ,

exp
dist ,

. 3.26
k

M

L
k

M

1 1 ℓ ℓ
[ ( )] ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟  å å - ¢ -

x

x

x

x
= =

Since M m m ndist , dist ,1

2
( ) ( ) this implies the claim for thefirst term in the decomposition(3.6). The second

term is treated similarly. For the third term,we employ lemma 3.2 andHölder’s inequality for the expectation
value to conclude:

e N I N I N I Q k l J

e N I N I N I Q k l J

1 1

2 , ;

2 , ; . 3.27

I I

n m k l k L

n m k l k L

3
2

1 5
,

2 3 3 5

1 5
,

n m

2
5

3
5

1
5

1
5

3
5

1
5

1
5

1
5

2
5

( )[ ( )] [ ( )] ( ) ( )

[ ( )] [ ( )] [ ( )] [ ( )] ( )

( )

( )

( )

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥



   

    

å

å

g

¢

¢

Y 

The terms involving the local particle number are uniformly bounded. The last term is again bounded using the
localization assumption (ECL). In fact
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k l
C

M m M n
exp

2dist ,

5
exp

2 min dist , , dist ,

5
. 3.28

k l, ℓ ℓ
( ) { ( ) ( )} ( )( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟å¢ - -

x

x

x x

x

Since the distance of themidpointM to either n andm is atmost n m1 dist ,1

2
( ( ))+ , this completes the proof in

case 2

5
s = .

The general case followswith the help of interpolation from the bounds(3.21)–(3.23): For p2 5 s< < ,

N I N I

N I N I

1 1 1 1

1 1 , 3.29

I I I I n m

I I n
p

m
p

2 2

2

n m n m

p
p

p
p

p
p

n m

p
p

p p

2
5 2

2
5 2
5 2 2

5 2
5 2

2
5

5
5 2 5 2

2 5 2
5 2

2 5 2

[ ] ( ) ( )

[ ( ) ] [ ( ) ] ( )

( )

( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

  

   

g g

g

s
Y Y

Y

s
s s

s
s s

-
- -

-
-
-

-
- -

-
-
-

   

 

where the second step isHölder’s inequality for the expectation. Since the last two factors are uniformly bounded
for p=1we arrive at the claim. ,

Aproof of absence of BEC then proceeds as follows:

Proof of corollary 2.3.Assumption(2.11) implies that N IsupL n n
p

, [ ( ) ] < ¥. From the interpolation bound
in(3.29) and (2.10)we conclude that for any p2 5 s< <

C
p

p

n m
1 1 exp

2

5 2

dist ,

2
3.30I I 2n m ℓ

[ ] ( ) ( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟ g

s
-

-
-

s
x

xY 

with some C < ¥ that is independent of L, n andm. Since max 1 1n m I In m
g gåY Y   , we can bound

1 1 1 1 , 3.31
n m

I I
n m

I I
1

n m n m[ ] [ ] ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟    å å å åg g gs

s
s s

s

Y Y Y     

where in the last stepwe usedMinkowski’s inequality for the expectation. Since the operator norm is bounded
by theHilbert–Schmidt norm, (3.30) implies that the sumoverm in (3.31) is bounded, independently of n. This
shows CL[ ] g s

Y  with some C < ¥ that is independent of L andN. AChebychev estimate then implies
for any 0e > and r 0>

L
L

C
L , 3.32r

r
r1( ) [ ] ( ) 


g e

g
e e

>
s

s s s
s

Y
Y - 

 

where  stands for the probability of an event. If we choose r 2 s> , then r1 1s- < - , and the right side of
(3.32) is summable in L. The Borel–Cantelli lemma thus yields the claimed almost-sure convergence. ,

4. Proof of the absence of superfluidity

For a proof of theorem2.4, let HL ( )q denote the self-adjoint operator which acts as(1.2) on functionswith
twisted b.c.s, L e 0i( ) ( )y y= q and L e 0i( ) ( )y y¢ = ¢q . Let Ej L,{ ( )}q denote its eigenvalues, ordered increasingly
with j, i.e., E Ej L j L, 1,( ) ( )q q+ .With

2
1 1 4.1N≔ ( ( ) ) ( )q q

p
+ + -m m

wehave

E N E, . 4.2L
j

N

j L
1

,( ) ( ) ( )åq q=m m
=

m

Weclaim that EN L, ( ) q mmm . This follows from the fact that, by construction EN L,  m
m

, and

E E Emax ,N L N L N L, , ,( ) { }qm + -
m m m

. Hencewe can invoke the variational principle in the form

E N N H N, inf Tr 0 1, Tr . 4.3L L( ) { [ ( ) ] ∣ } ( )  q m q m g g g= + -m m m m

Weemphasize that it is possible here to relax the condition NTr g = m to NTr g m exactly because
EN L, ( ) q mmm . This turns out to be convenient in the following.

To obtain an upper bound on E N ,L ( )qm , and hence on sr , we choose as a trial densitymatrix in (4.3)

max , 1
, with e e . 4.4

j E
j L j L

:

i
, ,

i

j L

j L j L

,

, ,
˜

{ ˜ }
˜ ≔ ∣ ∣ ( ) 

 
åg

g
g

g j j= ñá
m

y y-

m

m m

 

Here, j L,{ }j m abbreviates an orthonormal eigenbasis of HL
m and Ej L,{ }m are the corresponding eigenvalues. Note

that NTr g̃ = m, as remarked in (1.9), hence 0 1 g and NTr g m.
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The trial phase functions L: 0,j L, [ ] y  will be chosen continuous, increasing (and piecewise
differentiable) such that 0 0j L, ( )y = and Lj L, ( )y q= .We pick themdepending on an additional variational
parameter 0d > to be chosen later.More specifically, we set

I I , 4.5j

k k

k

: j L,

( ) ≔ ⋃ ( )
( ) 

d
dF m

and choose

I I 4.6j j˜ ( ) ( ) ( )d dÍ

to be the largest connected subset of Ij ( )d .We then simply take j L,y to increase linearly on Ij̃ ( )d with slope
Ij∣ ˜ ( )∣q d , and constant otherwise. Note that Ij̃ ( )d is certainly non-empty for L 1 2d > - , since

n L I1 n n j L j: ,
2 2

j L,
( ) ( ∣ ( )∣)( )


  d då F -dF >m

m which implies I Lj
2∣ ( )∣ d d- - . The localization assumption

(SULE)may be used for a stronger estimate. Namely,(2.6) implies that kj L, ( )  dF m for any k L1 ,...,{ }Î with

k A Ldist , lnj L L,
3 2ℓ( ) ( ) g dx xm . Choosing

A L
L

exp
4

, 4.7L
3 2

ℓ
≔

( )
( )

⎛
⎝⎜

⎞
⎠⎟d -

x

x

we see that kj L, ( )  dF m whenever k Ldist , 4j L,( ) g m , and thus Ij ( )d contains an interval of length at least
L 4 4( )- . Therefore

I
L 4

4
. 4.8j∣ ˜ ( )∣ ( )d

-

A straightforward computation shows that

H

H
x

x
x x

H

I
n

H

I

Tr

Tr

max , 1

1

max , 1

d

d
d

Tr

max , 1

1

Tr

max , 1

1
. 4.9

L

L

j E

L

j L j L

L

j E j n I I
j L

L

j E j

:
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2

,

2

2

:
2

:
,

2

2 2

:

j L

j L n j

j L

,

,

,

[ ( ) ]

[ ]
{ ˜ } { ˜ }

∣ ( )∣ ( )

[ ]
{ ˜ } ∣˜ ( )∣

( )

[ ]
{ ˜ } ∣˜ ( )∣

( )

˜ ( )
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To estimate the normof g̃ , we note that g̃ is unitarily equivalent to the N N´m mmatrix withmatrix elements

e , ej L k L,
i i

,
j L k L, ,

 j já ñy ym m . In particular

max e , e . 4.10
j k

j L k L,
i i

,
j L k L, ,˜ ∣ ∣ ( )  åg j já ñy ym m 

For j k¹ , we have

z z z

z z z

z z z

e d

e d

e d 4.11
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j L
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c
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for j k¹ and ∣ ∣ q p. In combinationwith (4.10), this implies

LN1 2 . 4.13˜ ∣ ∣ ( )g q d+ m 

Inserting the bounds(4.8) and (4.13) in (4.9), and using (4.3) and (1.9), we hence conclude that for any
L 5
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X L
E N E N L

H N
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, 4.14L
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2 2

≔
( ) ( )
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[ ] ( )

q
q

d
q

m
d-

- +
-

m m
m m-

m

with δ given in (4.7). Our goal is to show that Xlim 0L L =¥ almost surely. Note that δ is random, but the
coefficientAL in (4.7) is uniformly bounded in expectation, according to the assumption (2.5).Moreover, we
have the following rough but uniformbounds:

Lemma4.1.Under assumption (1.3) one has, irrespective of b.c.s

N

L

H

L
sup and sup

Tr
. 4.15

L L

L
1 3[ ] [( [ ] ) ]

( )
 

 

m
< ¥

-
< ¥m

Î Î

-
m

Proof.With hn denoting the restriction ofHL to In, withNeumann b.c.s, it is well known [47, sectionXIII.15]
that

N hTr 1 . 4.16
n

L

n
1

, ( ) ( )( ] åm m
=

-¥

A simple calculation based on the Birman–Schwinger principle (see, e.g., [51, chapter 7]) shows that hinf spec n

can be bounded in terms of V
In

∣ ∣ò , which has afinite expectation according to our assumption (1.3). In fact, one
has

h f V f t t tinf spec , tanh , 4.17n
I

1

n

∣ ∣ ( ) ( )
⎛
⎝⎜

⎞
⎠⎟ ò- =-

-

whereV- denotes the negative part ofV. Keeping half of the kinetic energy, one also obtains

h f V
1

2

1

2
2 , 4.18n I

I

1
n

n

∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟ ò- D - -

-

and hence

hTr 1 Tr 1 . 4.19n f V I, 0,2 2
In

n1( ) ( ) ( )( ] [ ( ∣ ∣)] ò -Dm m-¥ + -
-

It is easy to see that Tr 1 I0, n
( )[ ] -Dn grows like 1 2n for large ν, and f t1 ( )- grows like t2 for large t. Hence (4.19) is

bounded by a constant times V1
In

∣ ∣ò+ - , which implies, in combinationwith (4.16), thefirst bound in (4.15).

To obtain the second, we use, similarly to (4.16), that

H h hTr Tr 1 . 4.20L
n

L

n n
1

,[ ] ( ) ( ) ( )( ]
  åm m- - - m-

=
-¥

m

In combinationwith (4.17) this implies

H f V hTr Tr 1 . 4.21L
n
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I
n

1

1
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⎛
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⎞
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=

-
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m

In particular, HTr L
1 3( [ ] ) m- -

m is bounded by a constant times V1n In
( ∣ ∣)òå + - , which implies the desired

result (4.15). ,
Let us denote the right side of (4.14) byYL. From lemma 4.1, (2.5) andHölder’s inequality for the expectation

value, it follows that

Y C L
L

exp
1

5 4
4.22L

1 5 1 5 3 2

ℓ
[ ] ∣ ∣

( )
( )

⎛
⎝⎜

⎞
⎠⎟  q -

x

x
-

for L 5 and some constant C 0> independent of L. TheChebychev inequality yields, for any 0e > ,

X Y Y . 4.23L L L
1 5 1 5( ) ( ) [ ] ( )      e e e-

From (4.22), the right side is seen to be summable in L. The proof of theorem 2.4 is thus concludedwith the help
of the Borel–Cantelli lemma, which ensures that the probability that XL  e happens for infinitelymany L Î
is zero. ,
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Appendix. Proof of dynamical properties of the density

Proof of proposition 2.1.By assumption on the range of the initial state, we have U Ut tt
*G = Gf f with

U P Het
tH

J L
i L

N N( )
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x x x x U U

U U U U
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where the inequality follows from U 1t  G Gf f    . Thefirst bound (2.8) is then a consequence of

U Usup 1 1 sup 1 1 , A.2
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n

m
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å
Ç
Ç

Î ¹Æ
¹Æ

Î
   

valid for all I KÍ . In case I=K, the right side is bounded by a constant on account of(2.4); this concludes the
proof of thefirst assertion.

The proof of the second assertion (2.9)proceeds similarly.We estimate

x x U U U U U U

U U x x U

d Tr 1 1 1 Tr 1 1 1 Tr 1 1

1 1 1 1 1 1 d 2 1 1 . A.3

I
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K t I1 1 1 0 1
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f f f

f       

The proof is completed using(A.2) and(2.4). ,
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