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John’s fundamental theorem characterizing the largest volume ellipsoid contained in

a convex body K in R
d has seen several generalizations and extensions. One direction,

initiated by V. Milman is to replace ellipsoids by positions (affine images) of another body

L. Another, more recent direction is to consider logarithmically concave functions on R
d

instead of convex bodies: we designate some special, radially symmetric log-concave

function g as the analogue of the Euclidean ball, and want to find its largest integral

position under the constraint that it is pointwise below some given log-concave function

f . We follow both directions simultaneously: we consider the functional question, and

allow essentially any meaningful function to play the role of g above. Our general

theorems jointly extend known results in both directions. The dual problem in the

setting of convex bodies asks for the smallest volume ellipsoid, called Löwner’s ellipsoid,

containing K. We consider the analogous problem for functions: we characterize the

solutions of the optimization problem of finding a smallest integral position of some

log-concave function g under the constraint that it is pointwise above f . It turns out that

in the functional setting, the relationship between the John and the Löwner problems is

more intricate than it is in the setting of convex bodies.
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20614 G. Ivanov and M. Naszódi

1 Introduction

The largest volume ellipsoid contained in a convex body in R
d and, in particular, John’s

result [13] characterizing it, plays a fundamental role in convexity. The latter states

that the origin-centered Euclidean unit ball is the largest volume ellipsoid contained

in the convex body K if and only if it is contained in K and the contact points (i.e., the

intersection points of the unit sphere and the boundary of K) satisfy a certain algebraic

condition.

As a natural generalization, one may fix two convex bodies K and L and solve the

optimization problem of finding a largest volume affine image of K contained in L. In this

setting, one expects a John-type condition in terms of contact pairs defined as follows.

If K ⊆ L ⊂ R
d are convex bodies, then a pair (u, v) ∈ R

d ×R
d is called a contact pair, if u

belongs to the intersection of the boundaries of K and L, v belongs to the intersection of

the boundaries of the polar sets K◦ and L◦, and 〈u, v〉 = 1. In other words, v is an outer

normal vector of a common support hyperplane of K and L at a common boundary point

u, with a proper normalization.

V. Milman achieved the first results giving a condition of optimality in the above

problem (unpublished, see Theorem 14.5 in [19]) followed by Lewis [14], which were

strengthened and extended by Giannopoulos, Perissinaki, and Tsolomitis [7] and then

by Bastero and Romance [5]. Finally, Gordon, Litvak, Meyer, and Pajor [8, Theorem 3.1]

proved the following.

Theorem 1.1 (Gordon, Litvak, Meyer, Pajor [8]). Let K be a compact set containing the

origin in the interior of its convex hull and L be a convex body in R
d with K ⊆ L

such that no affine image of conv K contained in L is of larger volume than conv K.

Then there are contact pairs {(ui, vi) : i = 1, . . . , m} of K and L with m ≤ d2 + d

such that

m∑
i=1

ciui ⊗ vi = Idd, and
m∑

i=1

civi = 0,

where Idd denotes the identity operator on R
d, and u ⊗ v denotes the linear operator

x �→ 〈v, x〉 u for every x ∈ R
d.

In fact, a more elegant result was derived from Theorem 1.1 in [8, Theorem 3.8].

Under the assumptions and with the notation of Theorem 1.1, there exists a point z inside
d

d+1K, and there exist contact pairs {(ũi, ṽi) | i = 1, . . . , m} of K − z and L − z, where
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Functional John and Löwner Conditions 20615

m ≤ d2 + d, satisfying:

m∑
i=1

ciũi ⊗ ṽi = Idd, and
m∑

i=1

ciũi =
m∑

i=1

ciṽi = 0.

A direct corollary of this version of Theorem 1.1 is that L−z ⊆ −d(K −z). The case where

−d cannot be replaced by a magnification factor of smaller absolute value was studied

in [12, 16]; for more on this question, see Grünbaum’s survey [9].

Our present goal is to extend Theorem 1.1 to the setting of log-concave functions.

As a natural generalization of the notion of affine images of convex bodies, we define the

positions of a function g on R
d as

E
[
g
] = {αg(Ax + a) : A ∈ R

d×d non-singular, α > 0, a ∈ R
d}.

We will say that a function f1 on R
d is below another function f2 on R

d (or that f2 is above

f1) and denote it as f1 ≤ f2, if f1 is pointwise less than or equal to f2, that is, f1(x) ≤ f2(x)

for all x ∈ R
d.

Fixing s > 0 and two functions f , g : Rd → [0, ∞), we formulate the following

optimization problem.

The John s-problem: find

max
h∈E[g]

∫
Rd

hs subject to h ≤ f . (1.1)

John’s theorem on largest volume ellipsoids was extended by Alonso-Gutiérrez,

Gonzales Merino, Jiménez, and Villa [1] to the setting of logarithmically concave (or in

short, log-concave) functions, that is, those R
d → [0, ∞) functions whose logarithm is a

concave function. They consider the John 1-problem with g being the indicator function

of the Euclidean unit ball Bd. One of the main results of [1] is Theorem 1.1 therein, which

states the existence and uniqueness of a functional John ellipsoid and gives the sharp

lower bound on α (in the notation that appears in the definition of E
[
g
]
). They consider the

natural analogue of the volume ratio, which they aptly call the integral ratio, a quantity

that compares the integral of the function with the integral of its John ellipsoid function,

and provide the sharp upper bound for it with a characterization of the equality case.

However, no analogue of John’s condition is found in [1].

A more general treatment was given in [10], where the authors consider the John

s-problem for some s > 0 with g being the “height” function of the upper hemisphere
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20616 G. Ivanov and M. Naszódi

of the Euclidean ball Bd+1, that is, g(x) =
√

1 − |x|2 for |x| ≤ 1 and g(x) = 0 otherwise.

The authors obtained the first necessary and sufficient condition on maximizers in this

problem analogous to the original John condition. As an application, the following Helly

type problem is treated: if f is the pointwise minimum of a finite family of log-concave

functions on R
d, then a subfamily of size 3d + 2 may be selected so that the pointwise

minimum of this subfamily is of integral bounded from above by cd

∫
f , where cd > 0

depends only on d.

What conditions should f and g satisfy in order for the John s-problem to be

meaningful? Following the path of analogy with Theorem 1.1 seems easy at first. Instead

of closed sets, we will work with upper semi-continuous functions, instead of volume, we

will work with the integral, or the integral of the s power of the function. In Theorem 1.1,

both K and L are compact. Should we, analogously, assume that the support of both f

and g defined as

supp f = {x ∈ R
d : f (x) > 0}

is bounded? That would be too restrictive, as it would disqualify the Gaussian den-

sity as f . On the other hand, clearly, the class of those functions g, for which the

family {h ∈ E
[
g
]

: h ≤ f } is not empty for any log-concave function f with positive

integral, is the class of functions with bounded support. Thus, assuming that g is

of bounded support is natural, while assuming that f is also of bounded support is

too strong.

We will call an upper semi-continuous function of finite and positive integral a

proper function.

Basic Assumptions. We say that a function g : Rd → [0, +∞) satisfies our Basic

Assumptions, if it has the following properties:

• g is a proper log-concave function, and

• supp g is bounded, and

• the origin is in the interior of supp g.

Auxiliary Assumptions. We say that a function g : R
d → R satisfies our

Auxiliary Assumptions if it has the following properties:

• g satisfies our Basic Assumptions, and

• g attains its maximum at the origin, and

• ln g is differentiable on supp g.
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Definition 1.2. For two functions f , g : Rd → R, we call the set

Cpoint(f , g) = {
u ∈ cl (supp f ) ∩ cl (supp g) : f (u) = g(u)

}

their set of contact points.

We are ready to state our first main result.

Theorem 1.3 (John’s condition—no zeros). Fix s > 0. Let f : Rd → (0, +∞) be a proper

log-concave function taking only positive values. Let g = e−ψ : Rd → [0, +∞) be a

function satisfying our Auxiliary Assumptions (see page 8) such that g ≤ f . Assume

that h = g is a maximizer in John s-problem (1.1). Then there are contact points

u1, . . . , um ∈ Cpoint(f , g) and positive weights c1, . . . , cm such that

m∑
i=1

ci
ui ⊗ ∇ψ(ui)

1 + 〈∇ψ(ui), ui

〉 = Idd,
m∑

i=1

ci

1 + 〈∇ψ(ui), ui

〉 = s and
m∑

i=1

ci
∇ψ(ui)

1 + 〈∇ψ(ui), ui

〉 = 0.

(1.2)

Moreover, if g is radially symmetric, then condition (1.2) is also sufficient. That is, if

g(x) = g0(|x|) for some function g0 : [0, ∞) → [0, ∞), and there are contact points

u1, . . . , um ∈ Cpoint(f , g) and positive weights c1, . . . , cm satisfying (1.2), then g is the

unique maximizer in John s-problem (1.1).

Theorem 1.3 will be a corollary to our much more general Theorem 4.1.

Let us elaborate on the conditions on the functions. First, the differentiability

of ψ is assumed for simplicity, in the general setting it will not be necessary as we will

consider subgradients of ψ , and the Fréchet normal cones (see Definition 2.2) of the lifting

of f and g, defined as

Lift f = {
(x, y) ∈ R

d+1 : x ∈ cl (supp f ) , |y| ≤ f (x)
} ⊂ R

d+1.

Second, as in the case of convex sets, the origin must be chosen in a certain way.

The assumption that g attains its maximum at the origin is artificial and is imposed for

simplicity; as we will see, it implies that all the denominators in the equations in (1.2)

are positive, which is the real key condition for our theorem to hold. In fact, we will show

that any point from the interior of the support of g sufficiently close to the maximum

can be chosen as the origin.
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20618 G. Ivanov and M. Naszódi

Third, analogously to Theorem 1.1, where K need not be convex, our g need not

be log-concave. We will have an analogue of the convex hull as well, the log-concave

envelope, see Definition 2.1.

Finally, the assumption that f takes only positive values is the trickiest one! The

issue is that there might be “irregular” contact points u ∈ cl (supp f ) ∩ cl (supp g) with

f (u) = g(u) = 0 that require special attention, as we will see in Section 8. Theorem 1.3

side steps this problem by its assumption that f is nowhere zero.

To obtain a condition for optimality in John s-problem (1.1) similar to the one

in Theorem 1.1, we define contact pairs for functions through contacts of their liftings.

Since liftings of log-concave functions are not convex in general, we need to take extra

care defining normal vectors, which we will do in Section 2.

Definition 1.4. For two functions f , g : Rd → R, their set of contact pairs is defined as

C(f , g) = {
(u, v) ∈ R

d+1 × R
d+1 : u = (u, f (u)), u ∈ cl (supp f ) ∩ cl (supp g) , f (u) = g(u),

v ∈ N(Lift f , u) ∩ N(Lift g, u) , 〈v, u〉 = 1
}
,

where N(A, u) denotes the Fréchet normal cone of the set A ⊂ R
d+1 at a point u ∈ R

d+1,

see Definition 2.2.

In the following theorem, no additional assumptions are imposed on f except for

being proper and log-concave. On the other hand, we require g to be q-concave, that is,

gq is concave on its support.

Theorem 1.5 (John’s condition—q-concave case). Fix s > 0. Let f , g : Rd → [0, +∞) be

two proper log-concave functions. Let g = e−ψ : Rd → [0, +∞) be a function satisfying

our Auxiliary Assumptions (see page 8) and such that g ≤ f . Additionally, let g be

q-concave for some q > 0. Assume that h = g is a maximizer in John s-problem (1.1).

Then there are contact pairs (u1, v1), . . . , (um, vm) ∈ C(f , g) and positive weights c1, . . . , cm

such that

m∑
i=1

ciui ⊗ vi = Idd,
m∑

i=1

cif (ui)νi = s and
m∑

i=1

civi = 0, (1.3)

where ui = (ui, f (ui)) and vi = (vi, νi). Moreover, if g is radially symmetric, then condition

(1.3) is also sufficient. That is, if g is radially symmetric, and there are contact pairs
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(u1, v1), . . . , (um, vm) ∈ C(f , g) and positive weights c1, . . . , cm satisfying (1.3), then g is

the unique maximizer in John s-problem (1.1).

A dual construction to the largest volume ellipsoid contained in a convex body

is the smallest volume ellipsoid containing a body. Notably, the necessary and sufficient

conditions for the Euclidean unit ball to be this minimal ellipsoid coincide with the

conditions in John’s characterization of the largest volume ellipsoid. This coincidence

follows simply by duality in the case of a centrally symmetric convex body. For historical

precision, we remark that John considered the smallest volume ellipsoid containing a

body in his seminal paper [13].

Disregarding history, for a convex body K, the largest volume ellipsoid contained

in K is usually referred to as the John ellipsoid of K, whereas the smallest volume

ellipsoid containing K is called the Löwner ellipsoid of K.

In the setting of pairs of convex sets, there is hardly any difference between the

two problems: K has the largest volume among all its affine images inside L if and only

if, L has the smallest volume among all its affine images containing K. So, Theorem 1.1

provides us with a necessary condition in this case as well. However, it is not the case in

the functional setting! Let us formulate a dual functional problem and explain the issue.

The Löwner s-problem: find

min
h∈E[g]

∫
Rd

hs subject to f ≤ h. (1.4)

As in the case of the John s-problem, the set of h ∈ E
[
g
]

satisfying f ≤ h may be

empty, for example, if g is of compact support and the support of f is the whole space R
d.

Unlike in the case of the John s-problem, characterizing the class of those functions g,

for which the family {h ∈ E
[
g
]

: h ≥ f } is not empty for any proper log-concave function

f , is not straight forward. Clearly, the support of g needs to be R
d, but this condition

alone is not sufficient. In order to find this class, we consider the polars of f and g.

The log-conjugate (or polar) of a function f : Rd → [0, +∞) is defined by

f ◦(y) = inf
x∈supp f

e−〈x,y〉

f (x)
,

and is known to be a log-concave function, see Section 2 for details.

Since h ≥ f if and only if h◦ ≤ f ◦, it follows that the class of those log-concave

functions g, for which the family {h ∈ E
[
g
]

: h ≥ f } is not empty for any proper log-

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/20613/7265294 by Institute of Science and Technology Austria user on 08 January 2024



20620 G. Ivanov and M. Naszódi

concave function f , is the class of log-concave functions that are polar to functions with

bounded support.

The Löwner s-problem was investigated by Li, Schütt, and Werner [15] and by

Ivanov and Tsiutsiurupa [11] for certain special choices of g. We note that no John-type

condition of optimality was obtained. Our second main result provides it.

Theorem 1.6 (Löwner’s condition—no zeros). Fix s > 0. Let f : Rd → (0, +∞) be a proper

log-concave function such that f ◦ takes only positive values. Let g : Rd → [0, +∞) be a

proper log-concave function such that f ≤ g and g◦ satisfies our Auxiliary Assumptions

(see page 8). Set g◦ = e−ψ , and assume that h = g is a minimizer in Löwner s-problem (1.4).

Then there are contact points u1, . . . , um ∈ Cpoint(f
◦, g◦) and positive weights c1, . . . , cm

such that

m∑
i=1

ci
ui ⊗ ∇ψ(ui)

1 + 〈∇ψ(ui), ui

〉 = Idd,
m∑

i=1

ci

1 + 〈∇ψ(ui), ui

〉 = s and
m∑

i=1

ci
g◦(ui) · ∇ψ(ui)

1 + 〈∇ψ(ui), ui

〉 = 0.

(1.5)

Moreover, if g is radially symmetric, then condition (1.5) is also sufficient. That is, if g is

radially symmetric, and there are contact points u1, . . . , um ∈ Cpoint(f
◦, g◦) and positive

weights c1, . . . , cm satisfying (1.5), then g is a minimizer in Löwner s-problem (1.4).

Theorem 1.7 (Löwner’s condition—q-concave case). Fix s > 0. Let f : Rd → (0, +∞) be a

proper log-concave function. Let g : Rd → [0, +∞) be a proper log-concave function such

that f ≤ g and g◦ satisfies our Auxiliary Assumptions (see page 8). Additionally, assume

that g◦ is q-concave with some q > 0. Assume also that h = g is a minimizer in Löwner

s-problem (1.4). Then there are contact pairs (u1, v1), . . . , (um, vm) ∈ C(g◦, f ◦) and positive

weights c1, . . . , cm such that

m∑
i=1

civi ⊗ ui = Idd,
m∑

i=1

cig
◦(ui) · νi = s and

m∑
i=1

cig
◦(ui) · νiui = 0, (1.6)

where ui = (ui, g◦(ui)) and vi = (vi, νi). Moreover, if g is radially symmetric, then

condition (1.6) is also sufficient. That is, if g is radially symmetric, and there are contact

pairs (u1, v1), . . . , (um, vm) ∈ C(f , g) and positive weights c1, . . . , cm satisfying (1.6), then

g is a maximizer in Löwner s-problem (1.4).

Theorems 1.6 and 1.7 will be corollaries to our more general Theorem 5.1.
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Remark 1.8 (Duality and duality). Observe that even though Theorem 1.6 is phrased in

terms of f ◦ and g◦, it is not the same as Theorem 1.3 for f ◦ and g◦, even in the case

where s = 1. The reason is that we need to maximize/minimize a different functional—

the integral of the polar of the function instead of the integral of the function itself. In

other words, the solution to Löwner’s problem is not the dual of the solution to John’s

problem. Moreover, comparing (1.5) and (1.2), we see that the conditions are different.

See more on this in Section 12.2.

This is a major difference between our results and Theorem 1.1, since the latter

has a self-dual form [8, Theorem 3.8].

1.1 Structure of the paper

In Section 2, we recall the basics of the theory of log-concave functions and polarity on

functions. Then, in Section 3, we discuss properties of normal cones of liftings of log-

concave functions. These are rather technical facts, we suggest skipping the proofs on

a first reading. We state and prove our first main result, Theorem 4.1, the condition of

optimality in John’s problem in Section 4, and our second main result, Theorem 5.1, the

condition of optimality in the Löwner’s problem in Section 5.

In Section 6, we show that the optima generally exist in both the John and the

Löwner problem, and discuss when uniqueness holds—and when it does not.

Section 7 describes the normal cone of the lifting of a log-concave function e−ψ in

terms of the subdifferential of ψ . Then, in Section 8, more readily applicable conditions

on g are shown that guarantee that the very technical conditions of Theorems 4.1 and 5.1

on f and g hold for essentially all meaningful choice of f .

In Sections 9 and 10, we present the preliminaries needed to prove the results of

the Introduction on radially symmetric and q-concave functions.

Section 11 contains the proofs of the results of the Introduction by combining the

results of Sections 7 through 10 to show how our two main, general results Theorems 4.1

and 5.1 apply.

In Section 12, we note that Theorem 1.1 follows from our results, and study the

relationship of the John and Löwner problems. Finally, we discuss what changes need

to be made if affine positions of functions are replaced by linear positions, that is, when

translations in R
d are not allowed in the optimization problems.

2 Basic Notions

We use int K, bd (K), cl (K) , and conv K to denote respectively the interior, boundary,

closure, and convex hull of a set K in some Euclidean space, mostly R
d or R

d+1. We
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20622 G. Ivanov and M. Naszódi

denote the Euclidean unit ball by Bd = {x ∈ R
d : |x| ≤ 1}. We will think of Rd as the linear

subspace of R
d+1 spanned by the first d elements of the standard basis. We denote the

orthogonal projection from R
d+1 to R

d by Pd. We use ed+1 to denote the last vector of the

standard basis of Rd+1.

2.1 Functions

Let f : Rd → [0, ∞) be a function. For α ∈ R, we denote its α superlevel set by

[f ≥ α] = {x ∈ R
d : f (x) ≥ α},

and we use similar notations for level sets and sublevel sets of functions. We denote the

support of f by

supp f = {x ∈ R
d : f (x) > 0}.

The essential graph and the lifting of f are the sets

ess graph f = {(x, f (x)) : x ∈ cl (supp f )} , and

Lift f = {(x, y) : x ∈ cl (supp f ) , |y| ≤ f (x)}

in R
d+1.

We call an upper semi-continuous function of finite and positive integral a proper

function. Note that for a proper log-concave function f , we have that Lift f is compact

if and only if, cl (supp f ) is compact, which is equivalent to f having bounded support.

A special class of log-concave functions is q-concave functions for some q > 0, which

is those f for which f q is concave on its support. It is an exercise to show that if f is

q-concave and 0 < r ≤ q, then f is r-concave as well.

The effective domain of a convex function ψ : Rd → R ∪ {+∞} is the set

dom ψ = {x : ψ(x) < +∞} ,

the epigraph of ψ is

epiψ = {(x, ξ) : x ∈ dom ψ , ξ ∈ R, ξ ≥ ψ(x)} .
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Note that if f = e−ψ is a proper log-concave function, then ψ is a lower semi-continuous

convex function whose epigraph is closed, and

supp f = dom ψ (2.1)

are convex sets in R
d with non-empty interior.

Definition 2.1. For a function g : Rd → [0, +∞), its log-concave envelope, log-env g, is

the minimal upper semi-continuous log-concave function h satisfying g ≤ h.

We note that for any function g, the log-concave envelope log-env g is well-

defined. The epigraph of − ln(log-env g) is the closure of the convex hull of the epigraph

of − ln(g) in R
d+1.

2.2 Positions, Minkowski’s determinant inequality

We will work with positions of functions that are the analogues of affine images of

convex bodies. To this end, we define the vector space

W = {(A ⊕ α, a) : A ∈ R
d×d, α ∈ R and a ∈ R

d},

and its subsets

M = {(A ⊕ α, a) ∈ W : A is non-singular, and α > 0},

and

M+ = {(A ⊕ α, a) ∈ M : A is positive definite}.

We will refer to elements of W as extended contact operators, and we will say that A⊕α

is the operator part and a is the translation part of (A ⊕ α, a) ∈ W.

We denote by

E
[
g
] = {αg(Ax + a) : (A ⊕ α, a) ∈ M}

the positions of a function g on R
d, and by

E+[
g
] = {αg(Ax + a) : (A ⊕ α, a) ∈ M+}.

the positive positions of g.
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We recall the additive and the multiplicative forms of the Minkowski determi-

nant inequality. Let A and B be positive definite matrices of order d. Then, for any

λ ∈ (0, 1),

(det (λA + (1 − λ)B))1/d ≥ λ (det A)1/d + (1 − λ) (det B)1/d , (2.2)

with equality if and only if A = cB for some c > 0; and

det (λA + (1 − λ)B) ≥ (det A)λ · (det B)1−λ , (2.3)

with equality if and only if A = B.

2.3 Polarity for sets and functions

Recall that the polar of a set K in R
d is given by

K◦ = {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ K}.

For any cone C with apex at the origin of a linear space L, we call its polar set the polar

cone. It is easy to see that

C◦ = {
p ∈ L∗ : 〈p, a〉 ≤ 0 for all a ∈ C

}
.

The classical convex conjugate transform (or Legendre transform) L is defined

for a function φ : Rd → R ∪ {+∞} by

Lφ(y) = sup
x∈Rd

{〈x, y〉 − φ(x)}.

This notion yields the following duality mapping on the set of log-concave functions,

justified in [2–4]. The log-conjugate (or polar) of a log-concave function f = e−ψ : Rd →
[0, +∞) is defined by

f ◦(y) = e−(Lψ)(y) = inf
x∈supp f

e−〈x,y〉

f (x)
.
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2.4 The normal cone

For a set S in a linear space, we define its positive cone (or cone hull) by

Pos(S) = {λa : λ > 0, a ∈ conv S} .

Definition 2.2. The Frechét normal cone (in short, the normal cone) to a set A ⊂ R
d at

a point a0 ∈ A is the set of vectors v ∈ R
d such that for any ε > 0, there is δ > 0 such that〈

v, a − a0

〉 ≤ ε
∣∣a − a0

∣∣ for alla ∈ A ∩ (
δBd + a0

)
. In short,

N
(
A, a0

) = {
v ∈ R

d :
〈
v, a − a0

〉 ≤ o
(∣∣a − a0

∣∣) for all a ∈ A
}
.

Clearly, N
(
A, a0

)
is a closed convex cone in R

d.

It is easy to see that the normal cone to a convex set K in R
d at a boundary point

a0 ∈ bd (K) coincides with the usual normal cone, that is,

N
(
K, a0

) = {
v ∈ R

d :
〈
v, a − a0

〉 ≤ 0 for all a ∈ K
} = (

Pos
(
K − a0

))◦ . (2.4)

Mostly, we will consider the normal cone of the lifting of an upper semi-

continuous log-concave function f . In particular, we will show in the next section that

N(Lift f , u) is not empty at any u ∈ ess graph f .

2.5 Contact pairs

An important technical step in our analysis is to consider most but not all contact pairs

of f and g.

Definition 2.3. For two functions f , g : Rd → R, we call the set

Cred(f , g) = {
(u, v) ∈ C(f , g) : f (u) �= 0

} ∪ {
(u, v) ∈ C(f , g) : f (u) = g(u) = 0, v = (v, 0)

}

their reduced set of contact pairs, where

C(f , g) = {
(u, v) ∈ R

d+1 × R
d+1 : u = (u, f (u)), u ∈ cl (supp f ) ∩ cl (supp g) , f (u) = g(u),

v ∈ N(Lift f , u) ∩ N(Lift g, u) , 〈v, u〉 = 1
}
,

as given in Definition 1.4.
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The difference between C(f , g) and Cred(f , g) is that in the latter, we exclude outer

normals with non-zero last coordinate at contact points at which both functions vanish.

Note that if g ≤ f and u ∈ R
d is such that f (u) = g(u), then N(Lift f , u) ⊆

N(Lift g, u), where u = (u, f (u)). Thus, if g ≤ f , then one has

C(f , g) = {
(u, v) ∈ R

d+1 × R
d+1 : u = (u, f (u)) ∈ ess graph f ∩ ess graph g,

v ∈ N(Lift f , u) , 〈v, u〉 = 1
}
.

Also, we will need to ensure that for any point u ∈ ess graph f and any v ∈
N(Lift f , u) , the angle between u and v is acute, that is, 〈u, v〉 > 0. In the case of convex

sets, this condition easily follows from the assumption that the origin is in the interior

of the set. In our functional case, a bit more care is needed.

Definition 2.4. Let f : Rd → [0, +∞) be a function. We say that a set U ⊂ R
d is a star-like

set with respect to f , if for every u ∈ U ∩supp f , we have 〈(u, f (u)), v〉 > 0 for all non-zero

v ∈ N(Lift f , (u, f (u))) .

Since the Fréchet normal cone is always closed, we immediately have the

following.

Lemma 2.5. Let f : Rd → [0, +∞) be a proper log-concave function, and u ∈ supp f . Set

u = (u, f (u)), and assume that {u} is a star-like set with respect to f . Then

N(Lift f , u) = Pos(v ∈ N(Lift f , u) : 〈v, u〉 = 1) .

3 The Normal Cone of the Lifting

In this section, we collect several technical statements about normal cones, which will be

used in the proofs of the main results The proofs of the statements are based on mostly

standard methods of real and convex analyses. This section is self-contained, that is, no

proof herein relies on any out-of-section statement. It may be ideal to omit these proofs

on a first reading.

We recall that the Hausdorff distance between two compact subsets K and L of

R
d is defined by

δH (K, L) = inf
{
λ > 0: K ⊂ L + λBd; L ⊂ H + λBd}

.
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Proposition 3.1 (Hemicontinuity of the normal cone for convex sets). Let {Ki}i∈N be a

sequence of bounded convex sets in R
d converging in the Hausdorff distance to a convex

set K, and let {ui}i∈N be a sequence of points with ui ∈ Ki converging to a point u ∈ bd (K).

Let {vi}i∈N be a sequence of outer normals vi ∈ N
(
Ki, ui

)
converging to a unit vector

v ∈ R
d. Then v ∈ N(K, u).

Proof. According to equation (2.3) of [18],

N(K, u) = p−1
K (u) − u

for any u ∈ K, where pK : R
d → K is the metric projection onto K, that is, pK(x) is

the unique point of K that is closest to x. Furthermore, Lemma 1.8.11 of [18], and the

discussion preceding it state that the mapping (K, x) �→ pK(x) is continuous in both

arguments.

Suppose for a contradiction that v is not in N(K, u), that is, pK(u + v) �= u. Then,

by the continuity of (K, x) �→ pK(x) in the second variable, there is a neighborhood

U of u, and a neighborhood V of u + v such that pK(V) ∩ U = ∅. In turn, by the

continuity of (K, x) �→ pK(x) in the first variable, there is a neighborhood U ′ of u inside

U such that pK(V) ∩ U ′ = ∅ for all sufficiently large i ∈ N. This clearly contradicts the

assumptions. �

By the symmetry of Lift f about Rd and the convexity of supp f , one obtains the

following.

Lemma 3.2 (The normal cone of Lift f at the boundary of supp f ). Let f : Rd → [0, ∞) be

an upper semi-continuous log-concave function and let u ∈ bd (supp f ). Set u = (u, f (u)).

Then

Pd (N(Lift f , u)) = N(Lift f , u) ∩ R
d = N(supp f , u) ,

where the last normal cone is considered in R
d, and Pd : R

d+1 → R
d denotes the

orthogonal projection onto the first d coordinates.

The following simple lemma describes locally the normal cone of Lift f in terms

of the normal cone of epi(− ln f ).
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20628 G. Ivanov and M. Naszódi

Lemma 3.3 (The normal cone of Lift f in supp f ). Let f = e−ψ : Rd → [0, ∞) be an upper

semi-continuous log-concave function. Fix a point u ∈ supp f , a scalar ν ∈ R, and set

u = (u, f (u)). Then

(v, ν) ∈ N(epiψ , (u, ψ(u))) if and only if
(

v,
−ν

f (u)

)
∈ N(Lift f , (u, f (u))) . (3.1)

Furthermore,

Pd (N(Lift f , (u, f (u)))) ⊆ N([f ≥ f (u)], u) , (3.2)

where Pd : Rd+1 → R
d denotes the orthogonal projection onto the first d coordinates.

Proof. Clearly, ν cannot be positive. If ν = 0, then by Lemma 3.2, the leftmost inclusion

is equivalent to v ∈ N(dom ψ , u), and the rightmost is equivalent to v ∈ N(supp f , u) ,

which are equivalent by (2.1).

We thus assume that ν < 0. Since ψ is a convex function, (v, ν) ∈ N(epiψ , (u, ψ(u)))

holds if and only if

ψ(x) ≥ ψ(u) +
〈
u − x,

v

ν

〉

for all x ∈ R
d, which yields by exponentiation

f (x) = e−ψ(x) ≤ f (u)e〈x−u, v
ν 〉 = f (u)

[
1 +

〈
x − u,

v

ν

〉]
+ o(|x − u|) .

The latter, by the definition of the normal cone, is equivalent to

(
v,

−ν

f (u)

)
∈ N(Lift f , (u, f (u))) , (3.3)

completing the proof of one implication in (3.1).

For the other direction, assume (3.3), that is,

f (x) ≤ f (u)
[
1 +

〈
x − u,

v

ν

〉]
+ o(|x − u|) .

Since 1 + t < et for all t, we have f (x) ≤ f (u)e〈x−u, v
ν 〉 + o(|x − u|) = f (u)e〈x−u, v

ν 〉+o(|x−u|),
where we used f (u) > 0. By taking logarithm, we obtain ψ(x) ≥ ψ(u) + 〈

u − x, v
ν

〉 +
o(|x − u|), and hence, (v, ν) ∈ N(epiψ , (u, ψ(u)).
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Equation (3.2) is a direct consequence of the definition of the normal cone and

can be easily shown to hold for any function without the assumption of log-concavity.

The proof of Lemma 3.3 is complete. �

Since the normal cone to a convex subset of R
d at any point of its boundary

contains non-zero vectors, the two previous lemmas yield the following.

Corollary 3.4 (The normal cone is not empty). Let f : Rd → [0, ∞) be an upper semi-

continuous log-concave function. The normal cone to Lift f at any point of ess graph f

contains non-zero vectors.

Lemma 3.5 (Regularity of the normal cone of Lift f ). Let f : Rd → [0, ∞) be an upper

semi-continuous log-concave function. Fix ε > 0 and a point u ∈ bd (supp f ) with f (u) =
0. Then there is a δ > 0 such that for every u1 ∈ bd (supp f )∩(

δBd + u
)

and every
(
v1, ν1

) ∈
N

(
Lift f , (u1, f (u1))

)
, there is a v ∈ N(cl (supp f ) , u) with

〈
v1|v1| ,

v
|v|

〉
> 1 − ε.

Proof. Observe that if
(
v1, ν1

) ∈ N
(
Lift f , (u1, f (u1))

)
for some point u1 ∈ cl (supp f ),

then v1 ∈ N
(
[f ≥ f (u1)], u1

)
. Thus, if δ is sufficiently small, then f (u1) is close to

zero, and hence, [f ≥ f (u1)] ∩ (
Bd + u

)
is close to cl (supp f ) ∩ (

Bd + u
)

. By applying

Proposition 3.1, we complete the proof. �

Lemma 3.3 gives a description of the normal cone of Lift f , which yields the

following local description of Lift f in terms of curves.

Lemma 3.6 (Local description of Lift f at a non-zero point in terms of a curve). Let f =
e−ψ : Rd → [0, ∞) be an upper semi-continuous log-concave function. Let u ∈ supp f and

set u = (u, f (u)). Let ξ(t) : [0, 1] → R
d+1 be a curve such that ξ(0) = (u, f (u)) and the right

derivative ξ
′
(0) at zero exists. Consider the following statements:

1.

ξ
′
(0) ∈ int

(
N

(
Lift f , ξ(0)

))◦
.

2. There is a positive ε such that

ξ(t) ∈ Lift f for all t ∈ [0, ε].
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20630 G. Ivanov and M. Naszódi

3.

ξ
′
(0) ∈ (

N
(
Lift f , ξ(0)

))◦
.

Then (1) implies (2), and (2) implies (3).

Proof. With the identification R
d+1 = R

d ⊕ R, we split the coordinates of ξ(t) as ξ(t) =
(ξ(t), μ(t)) that is, ξ : [0, 1] → R

d and μ : [0, 1] → R with ξ(0) = u and μ(0) = f (u).

Clearly, if Lift f was a convex set in R
d+1, then the statement would follow from

basic properties of supporting hyperplanes to convex sets. We will use the fact that

even though Lift f is not convex in general, but the epigraph of ψ is. The proof relies

on translating the question on the behavior of ξ with respect to Lift f to a question

concerning the behavior of the curve

η(t) = (ξ(t), − log μ(t))

with respect to epiψ .

Since f is upper semi-continuous and log-concave, epiψ is a closed convex set in

R
d+1 with nonempty interior. It follows that

η′(0) ∈ int (N(epiψ , η(0)))◦ (3.4)

implies

η(t) ∈ epiψ for all t ∈ [0, ε], with some ε > 0, (3.5)

which, in turn, implies

η′(0) ∈ (N(epiψ , η(0)))◦ . (3.6)

Clearly, statement (2) of the lemma is equivalent to (3.5), thus, in order to prove the

lemma, we need to show the equivalence of inclusions (1) and (3.4), and the equivalence

of inclusions (3) and (3.6).

Using η′(0) =
(
ξ ′(0), −μ′(0)

f (u)

)
and the definition of the polar cone, we have

η′(0) ∈ (N(epiψ , η(0)))◦ ⇐⇒
〈(

ξ ′(0),
−μ′(0)

f (u)

)
, (v, ν)

〉
≤ 0 for all (v, ν) ∈ N(epiψ , η(0)) .
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The latter, by (3.1), is equivalent to

〈(
ξ ′(0), μ′(0)

)
,
(

v,
−ν

f (u)

)〉
≤ 0 for all

(
v,

−ν

f (u)

)
∈ N

(
Lift f , ξ(0)

)
,

which, in turn, is equivalent to

ξ
′
(0) ∈ (

N
(
Lift f , ξ(0)

))◦
.

In summary, (3.6) is equivalent to statement (3) of the lemma. The equivalence of

(3.4) and statement (1) is shown the same way. �

Since cl (supp f ) = Lift f ∩ R
d is a closed convex set in R

d, we have the following

statement.

Lemma 3.7 (Local description of Lift f at a zero point in terms of a horizontal curve).

Let f : Rd → [0, ∞) be an upper semi-continuous log-concave function. Let u ∈ cl (supp f )

such that f (u) = 0. Denote u = (u, f (u)) = (u, 0). Let ξ(t) : [0, 1] → R
d be a curve such

that ξ(0) = (u, 0) and the right derivative ξ
′
(0) at zero exists. Consider the following

statements:

1.

ξ
′
(0) ∈ int

(
N

(
supp f , ξ(0)

))◦
.

2. There is a positive ε such that

ξ(t) ∈ Lift f for all t ∈ [0, ε].

3.

ξ
′
(0) ∈ (

N
(
supp f , ξ(0)

))◦
.

Then the implications (1) ⇒ (2) ⇒ (3) hold, where polarity is meant in R
d.

4 John’s Problem

Fix s > 0, and two functions f , g : Rd → [0, ∞). In addition to John s-problem (1.1), we

will consider the following optimization problem.
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Positive position John s-problem: find

max
h∈E+[g]

∫
Rd

hs subject to h ≤ f . (4.1)

We say that g is a global maximizer in the (Positive position) John s-problem, if

for any (A ⊕ α, a) in M (resp., in M+), we have that
∫
Rd hs ≤ ∫

Rd gs whenever h ≤ f and

h(x) = αh(Ax + a). On the other hand, g is a local maximizer in the (Positive position)

John s-problem, if there is a neighborhood U of (Idd ⊕ 1, 0) in M (resp., in M+) such that

for any (A ⊕α, a) ∈ U , we have that
∫
Rd hs ≤ ∫

Rd gs whenever h ≤ f and h(x) = αh(Ax + a).

We are ready to state our first main result, a general version of Theorem 1.3. The

assumptions of the theorem are quite technical, they will be explained in Section 12,

where we discuss natural situations when they hold.

Theorem 4.1 (John’s condition). Fix s > 0. Let f : Rd → [0, +∞) be a proper log-concave

function, and let gb : Rd → [0, ∞) be an upper semi-continuous function such that

• log-env gb satisfies our Basic Assumptions (see page 8);

• the set of contact points Cpoint

(
f , gb

)
is a star-like set with respect to f ;

• the reduced set of contact pairs Cred

(
f , gb

)
is bounded.

Then setting g = log-env gb, the following hold:

1. If h = g is a local maximizer in John s-problem (1.1) for f and g, then there

exist contact pairs (u1, v1), . . . , (um, vm) ∈ Cred

(
f , gb

)
and positive weights

c1, . . . , cm such that

m∑
i=1

ciui ⊗ vi = Idd,
m∑

i=1

cif (ui)νi = s and
m∑

i=1

civi = 0, (4.2)

where ui = (ui, f (ui)) and vi = (vi, νi).

2. If there exist contact pairs and positive weights satisfying equation (4.2), then

g is a global maximizer in Positive position John s-problem (4.1) for f and g.

We emphasize that in this result, we maximize the integral of the log-concave

envelope of a given function gb, but we use the contact pairs of f and gb. It allows

us to consider the case when the integral of gb is zero, for example, if gb has a finite

number of non-zero values. A similar results for not necessarily log-concave function gb
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immediately follows from Theorem 4.1, because a position of g is below f if and only if

the corresponding position of gb is below f by the log-concavity of f .

Corollary 4.2. Let the functions f , gb : R
d → [0, +∞) satisfy the assumptions of

Theorem 4.1. In addition, let the integral of gb be positive. Then

1. If h = gb is a local maximizer in John s-problem (1.1) for f and gb, then there

exist contact pairs (u1, v1), . . . , (um, vm) ∈ Cred

(
f , gb

)
and positive weights

c1, . . . , cm satisfying (4.2).

2. If there exist contact pairs and positive weights satisfying equation (4.2), then

h = gb is a global maximizer in Positive position John s-problem (4.1) for f

and gb.

In Section 8.2, we will discuss conditions on gb, which guarantee that the

conditions of Theorem 4.1 on f and gb hold with any proper log-concave function f .

4.1 Strategy of the proof of Theorem 4.1

Definition 4.3. For any (u, v) ∈ R
d+1 ×R

d+1, we define the John-type extended contact

operator by

CJ(u, v) = ((u ⊗ v) ⊕ μν, v) ∈ W,

where u = (u, μ) ∈ R
d ⊕ R = R

d+1, and v = (v, ν) ∈ R
d ⊕ R = R

d+1.

For two functions f , g : R
d → [0, ∞), we denote the reduced set of John-type

extended contact operators by

AJ(f , g) = {
CJ(u, v) : (u, v) ∈ Cred(f , g)

} ⊂ W. (4.3)

We break up the proof of Theorem 4.1 into several steps. First, we will use a

geometric reformulation of the equations in (4.2). It is easy to see that those equations

encode the fact that the point
(
Idd ⊕ s, 0

) ∈ M is in the positive cone of the set AJ

(
f , gb

)
in W. It then follows that if no set of contact pairs satisfies (4.2), then there is a linear

hyperplane separating the point
(
Idd ⊕ s, 0

)
and the set AJ

(
f , gb

)
.

We then aim at turning this separation of
(
Idd ⊕ s, 0

)
and the set AJ

(
f , gb

)
into a

perturbation of the function g, which is of greater integral than g, and is still pointwise

below f . However, to obtain this perturbation of g, we need strong separation, which

poses an important difficulty. To solve it, we need to show that AJ

(
f , gb

)
is compact in
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W. To that end, we will show that the boundedness of the set of contact pairs Cred

(
f , gb

)
yields the compactness of AJ

(
f , gb

)
. Note that we will not investigate the boundedness

of Cred

(
f , gb

)
itself in the current section, it will be addressed in Section 8.

Thus, to prove (1) of Theorem 4.1, we first write strong separation analytically: if

no contact pairs yield (4.2), then there is an (H ⊕ γ , h) ∈ W (a normal to the separating

hyperplane) such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈
(H ⊕ γ , h) , AJ

〉
< 0 (4.4)

for all AJ ∈ AJ

(
f , gb

)
.

To obtain the needed perturbation of g, we construct a certain kind of “average”

of two functions below a given log-concave function f so that the new function remains

below f . This will be a straight forward adjustment of averaging two positions of a set

inside a given convex set. Using this averaging construction, we will construct a curve


t, t ∈ [0, τ ] in M starting at
(
Idd+1, 0

)
such that its directional vector at zero is precisely

the normal vector (H ⊕ γ , h). Positions of g correspond to the points of 
t in a natural

way: αg
(
A−1(x − a)

)
corresponds to (A ⊕ α, a) ∈ M. That is, the position corresponding

to 
0 = (
Idd+1, 0

)
is g itself, and 
t, t ∈ [0, τ ] can be seen as a homotopy of Lift g for a

sufficiently small positive τ .

The next step is to see what properties of the curve 
t, t ∈ [0, τ ] should possess

in order to guarantee the inequalities in (4.4). It turns out that the leftmost inequality in

(4.4) essentially means that the integral of a position of g corresponding to a point 
t is

greater than the integral of g itself for all sufficiently small t.

Remark 4.4. We note that the comparison of integrals appears only at this step. So using

our approach, one might maximize more sophisticated functionals than the Ls-norm

of g.

Finally, we will show that the rightmost inequality in (4.4) essentially means that

the position of g corresponding to 
t remains below f for all sufficiently small t.

To put everything together, in the proof of necessary condition (1), we will assume

that the point
(
Idd ⊕ s, 0

)
is strongly separated from the set AJ

(
f , gb

)
in W. Then, we will

construct a curve 
t in W using the normal vector of the separating hyperplane, and

after that, we will show that it defines a homotopy of Lift g with the desired property. In

the proof of sufficient condition (2), we will assume that g is not the global maximizer,

and we will construct a curve 
t in W using our averaging construction and then, we will
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show that the directional vector of 
t is the normal vector of a hyperplane that separates(
Idd ⊕ s, 0

)
from AJ

(
f , gb

)
in W.

4.2 Main components of the proof of Theorem 4.1

By a routine compactness argument and by Corollary 3.4, one has the following.

Lemma 4.5. Let functions f , gb : Rd → [0, +∞) satisfy the assumptions of Theorem 4.1.

Assume h = g is a local maximizer in John s-problem (1.1). Then the sets Cred

(
f , gb

)
and

Cpoint

(
f , gb

)
are non-empty.

Let us show that the boundedness of the set of contact pairs yields the compact-

ness of the set of contact operators.

Lemma 4.6 (Compactness of the set of contact operators). Let functions f , gb : Rd →
[0, +∞) satisfy the assumptions of Theorem 4.1. Then AJ

(
f , gb

)
is a compact subset

of W.

Proof. The definition of AJ

(
f , gb

)
and the boundedness of Cred

(
f , gb

)
imply that AJ

(
f , gb

)
is bounded.

Let us show that AJ

(
f , gb

)
is closed. Consider a sequence {(ui, vi)} ⊂ Cred

(
f , gb

)
,

where ui = (ui, μi) and vi = (vi, νi), such that CJ

(
ui, vi

)
is convergent. Since Cred

(
f , gb

)
is bounded, we may assume by passing to a subsequence that lim

i→∞
ui = u = (u, μ) and

lim
i→∞

vi = v = v = (v, ν). By upper semi-continuity, (u, μ) ∈ ess graph f ∩ ess graph gb.

If μ > 0, then the convex function − ln f is finite in some open neighborhood

of u in its effective domain. Using Lemma 3.3 and then applying Proposition 3.1 to the

compact convex set K = {(x, h) : − ln f (x) ≤ h ≤ − ln f (u) + 1} yield

v ∈ N(Lift f , u) .

Now, consider the case μ = 0. Since the set {νi : i ∈ Z
+} is bounded and lim

i→∞
μi = 0,

we have

lim
i→∞

μiνi = 0 = μν.

Hence, 〈v, u〉 = 〈v, u〉 . By this and by Lemma 3.2, it suffices to show that v ∈
N(supp f , u) ⊂ R

d.
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By the assumptions of Theorem 4.1, the origin is in the interior of supp f .

Consider the sequence of compact convex sets
[
f ≥ f (ui)

] ∩ 2 |u| Bd. This sequence

converges to cl (supp f ) ∩ (2 |u| Bd). By (3.2), vi ∈ N
([

f ≥ f (ui)
] ∩ 2 |u| Bd, ui

)
. Thus, using

Lemma 3.5, we conclude lim
i→∞

vi = v belongs to N(supp f , u) . Consequently, AJ

(
f , gb

)
is a closed bounded set of the finite-dimensional vector space W and hence, it is

compact. �

Next, we reformulate equation (4.2) in terms of separation of a closed convex set

from a point in the finite dimensional real vector space W.

Lemma 4.7 (Separation of operators). Let the functions f , gb : Rd → [0, +∞) satisfy the

assumptions of Theorem 4.1. Then the following assertions are equivalent:

1. There are no contact pairs of f and gb and positive weights satisfying

equation (4.2).

2. There exists (H ⊕ γ , h) ∈ W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈
(H ⊕ γ , h) , CJ(u, v)

〉
< 0 (4.5)

for all (u, v) ∈ Cred

(
f , gb

)
.

3. There exists (H ⊕ γ , h) ∈ W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈
(H ⊕ γ , h) , CJ(u, v)

〉 ≤ 0 (4.6)

for all (u, v) ∈ Cred

(
f , gb

)
.

Proof of Lemma 4.7. For any (u, v) ∈ Cred

(
f , gb

)
, we have 〈u, v〉 = 1 thus, tr (u ⊗ v) +

f (u)ν = 1. Taking trace in the first equation in (4.2) and adding it to the second equation

therein yields that
∑m

i=1 ci = d+s. It follows that assertion (1) of the lemma is equivalent

to the assertion that 1
d+s

(
Idd ⊕ s, 0

)
is not in the convex hull of the set AJ

(
f , gb

)
of John-

type extended contact operators defined by (4.3). By Lemma 4.6, AJ

(
f , gb

)
is compact.

Note that both the set AJ

(
f , gb

)
and the point 1

d+s

(
Idd ⊕ s, 0

)
belong to the affine

hyperplane {(A, a) ∈ W : trA = 1} . Thus, the statements in Lemma 4.7 are reduced to

the separation of a point from a compact subset AJ

(
f , gb

)
by a linear hyperplane in the

finite-dimensional real vector space W, a basic notion in convexity. �
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Second, the following lemma allows us to interpolate between two functions

below a given one in such a way that the new function remains below the given one.

Lemma 4.8 (Inner interpolation of functions). Let f : Rd → [0, +∞) be a log-concave

function and g : Rd → [0, +∞) be a function. Let α1, α2 > 0, A1, A2 be non-singular

matrices of order d, and a1, a2 ∈ R
d be such that

α1g(A−1
1 (x − a1)) ≤ f (x) and α2g(A−1

2 (x − a2)) ≤ f (x).

for all x ∈ R
d. Let β1, β2 > 0 be such that β1 + β2 = 1. Define

α = α
β1
1 α

β2
2 , A = β1A1 + β2A2, and a = β1a1 + β2a2.

Assume that A is non-singular. Then

αg(A−1(x − a)) ≤ f (x). (4.7)

If A1 and A2 are positive definite, and g is integrable, then we also have

∫
Rd

αg(A−1(x − a)) dx ≥
(∫

Rd
α1g(A−1

1 (x − a1)) dx
)β1

(∫
Rd

α2g(A−1
2 (x − a2)) dx

)β2

(4.8)

with equality if and only if A1 = A2.

Proof. Fix x ∈ R
d and define

x1 = A1A−1x, x2 = A2A−1x.

By assumption of the lemma,

f (x1 + a1) ≥ α1g
(
A−1x

)
and f (x2 + a2) ≥ α2g

(
A−1x

)
. (4.9)

By our definitions, β1(x1 + a1) + β2(x2 + a2) = x + a. Therefore, by the log-concavity of f ,

f (x + a) ≥ f β1(x1 + a1)f β2(x2 + a2),
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which, by (4.9), yields

f (x + a) ≥ αg
(
A−1x

)
.

Inequality (4.7) follows. Inequality (4.8) immediately follows from Minkowski’s determi-

nant inequality (2.3). �

Next, we observe that the leftmost inequalities in (4.5) and (4.6) compare the

integrals of g and a perturbation of g defined by

gt(x) = αtg
(
A−1

t (x − at)
)

, for x ∈ R
d. (4.10)

Lemma 4.9 (Integral of a perturbation of g). Fix s > 0, and let g : Rd → [0, +∞) be a

function such that gs is of finite positive integral. Let 
(t) = (At ⊕ αt, at), t ∈ [0, 1] be

a curve in M with (A0 ⊕ α0, a0) = (Idd+1, 0), and assume that the right derivative of 


at t = 0 is of the form (H ⊕ γ , h). Define the perturbation gt of g by (4.10). Consider the

following statements:

1. 〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0;

2. ∫
gs

t >

∫
gs

for all t ∈ (0, τ ] and some τ > 0;

3.

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 ≥ 0.

Then (1) implies (2), and (2) implies (3).

Proof. One has

∫
Rd

gs
t = αs det At

∫
Rd

gs = (1 + tγ + o(t))s (1 + t tr H + o(t))
∫
Rd

gs =

= (1 + t (sγ + tr H) + o(t))
∫
Rd

gs = (
1 + t

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 + o(t)
) ∫

Rd
gs,

and the statement follows. �
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The following lemma is an exercise in compactness.

Lemma 4.10 (Homotopy of a compact set). Let F be a closed set in R
d and K ⊂ F be a

non-empty compact set. Let H : K × [0, τ ] → R
d be a homotopy between K and some set

Kτ such that for every u ∈ bd (F) ∩ K and some positive εu, the curve H(u, t), t ∈ [0, εu]

belongs to F. Then there is positive ε such that H(K, t) ⊂ F for all t ∈ [0, ε].

Proof. Fix any u ∈ K, and consider the continuous function t �→ dist(H(u, t), F). It is zero

at t = 0. Clearly, if u belongs to the interior of F, then this function is zero on a proper

interval t ∈ [0, εu]. By the assumption of the lemma, the same holds if u ∈ bd (F) ∩ K. The

compactness of K yields the assertion of the lemma. �

Finally, we show that the rightmost inequalities in (4.5) and (4.6) encode that a

certain perturbation of g is pointwise below f .

Theorem 4.11 (Characterization of admissible perturbations). Let the functions

f , g : Rd → [0, +∞) satisfy the assumptions of Theorem 4.1, and let 
(t) = (At ⊕αt, at), t ∈
[0, 1] be a curve in M with (A0 ⊕α0, a0) = (Idd+1, 0), and assume that the right derivative

of 
 at t = 0 is of the form (H ⊕ γ , h). Define the perturbation gt of g by (4.10). Consider

the following statements:

1.
〈
(H ⊕ γ , h) , CJ(u, v)

〉
< 0 for all (u, v) ∈ Cred

(
f , gb

)
.

2. There is ε > 0 such that gt ≤ f for all t ∈ [0, ε].

3.
〈
(H ⊕ γ , h) , CJ(u, v)

〉 ≤ 0 for all (u, v) ∈ Cred

(
f , gb

)
.

Then (1) implies (2), and (2) implies (3).

Proof. By the log-concavity of f , a position of g is below f if and only if the corre-

sponding position of gb is below f . Hence, it suffices to consider the perturbation of gb

given by

g̃t(x) = αtgb

(
A−1

t (x − at)
)

, for x ∈ R
d.

Since our sets are symmetric aboutRd, it suffices to consider the sets ess graph g̃t.

Define the homotopy H :
(
ess graph gb

) × [0, 1] → R
d+1 by

H(y, t) = (
Aty + at, αtgb(y)

)
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for all y ∈ cl
(
supp gb

)
and y = (y, gb(y)). That is,

H
(
ess graph gb, t

) = ess graph g̃t.

Consider an arbitrary u ∈ cl
(
supp gb

)
and v = (v, ν) ∈ R

d × R. Set u = (u, gb(u)).

One has

H′ := d

dt

∣∣∣∣
t=0+

H(u, t) = (
Hu + h, γ gb(u)

)
,

and thus, by Definition 4.3,

〈
v,H′〉 = 〈v, Hu + h〉 + γ νgb(u) = 〈(

H ⊕ γ , h
)
, CJ(u, v)

〉
. (4.11)

Consider the case gb(u) > 0. We recall the assumption of Theorem 4.1 according

to which Cpoint

(
f , gb

)
is a star-like set with respect to f . Using Lemma 2.5 in identity

(4.11), we see that for a fixed u ∈ ess graph f with non-zero last coordinate, assertion (1)

of the theorem is equivalent to

H′ ∈ int (N(Lift f , u))◦ .

Similarly, assertion (3) of Theorem 4.11 is equivalent to

H′ ∈ (N(Lift f , u))◦ .

Consider the case gb(u) = 0. Since supp log-env g is bounded and contains the

origin in its interior by the assumption of Theorem 4.1, the origin is contained in the

interior of supp f . This ensures that at every contact point u ∈ Lift gb ∩ bd (Lift f ) with

f (u) = 0, every outer normal direction to supp f has an acute angle with u = (u, 0) ∈ R
d,

and hence, it can be represented by a vector v = (v, 0) ∈ R
d such that 〈u, v〉 = 1, which

yields (u, v) ∈ Cred

(
Lift gb, f

)
.

It follows from identity (4.11) that for a fixed u whose last coordinate is zero,

assertion (1) of the theorem is equivalent to

H′ ∈ int (N(supp f , u))◦ ,
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where all the sets and the polarity are meant in R
d. Similarly, assertion (3) of Theorem

4.11 is equivalent to

H′ ∈ (N(supp f , u))◦ .

Consequently, the implication (2) ⇒ (3) of Lemma 3.6 and the implication (2) ⇒
(3) of Lemma 3.7 yield (2) ⇒ (3) in the theorem.

To obtain the implication (1) ⇒ (2) of Theorem 4.11, we will use Lemma 4.10 with

the roles K = ess graph gb and F = Lift f . We need to check that the curve ξ(t) = H (u, t)

remains in Lift f for an arbitrary fixed u ∈ ess graph f ∩ ess graph gb and all sufficiently

small t. The implication (1) ⇒ (2) of Lemma 3.6 and the implication (1) ⇒ (2) of Lemma

3.7 yield this property of the curve ξ(t) in the corresponding cases. This completes the

proof of Theorem 4.11. �

Remark 4.12. Theorem 4.11. is the only place in the proof of Theorem 4.1 at which we

use the assumption that Cpoint

(
f , gb

)
is a star-like set with respect to f .

4.3 Proof of Theorem 4.1

We start with assertion (1) of the theorem. Assume that there are no contact pairs and

positive weights satisfying equation (4.2). Then, by Lemma 4.7, there exists (H ⊕ γ , h) ∈
W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈
(H ⊕ γ , h) , CJ(u, v)

〉
< 0 (4.12)

for all (u, v) ∈ Cred

(
f , gb

)
.

The matrix Idd + tH is non-singular for all t ∈ [0, τ ] for some positive τ . We use

(H ⊕ γ , h) to obtain a perturbation of g within the class E
[
g
]
, which is pointwise below

f but is of larger integral than g. Set

gt(x) = (1 + tγ )g
((

Idd + tH
)−1

(x − th)
)

.

Clearly, gt ∈ E
[
g
]

for all t ∈ [0, τ ]. By implication (1) ⇒ (2) of Lemma 4.9,

∫
gs

t >

∫
gs
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for all t ∈ (0, τ ] with some τ > 0. Using the implication (1) ⇒ (2) of Theorem 4.11, one

obtains that gt ≤ f for all sufficiently small t. Thus, g is not a local maximizer in the

John s-problem (1.1), completing the proof of assertion (1) of Theorem 4.1.

We proceed with assertion (2) of the theorem. Assume that h = g is not a global

maximizer in Positive position John s-problem (4.1). That is, there exist a positive definite

matrix A, γ ∈ R and h ∈ R
d such that the function g1 defined by

g1(x) = eγ g
(
A−1(x − h)

)
, for x ∈ R

d

satisfies g1 ≤ f and
∫
Rd gs

1 >
∫
Rd gs. We may assume a bit more by applying a slight

contraction on Lift g1 (which is a transformation within E+[
g
]
): Lift g1 ⊂ int (Lift f ). We

will use g1 to define a perturbation gt of g (a curve in M) that is below f with larger

integral, and then, taking the derivative of that perturbation at the starting point t = 0,

we will obtain (H ⊕ γ , h) ∈ W that separates
(
Idd ⊕ s, 0

)
from the set AJ(f , g), which by

Lemma 4.7 will yield the assertion.

Set H = A − Idd. We begin by showing that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0. (4.13)

Indeed, since Lift g1 is a compact subset of int (Lift f ), there is a δ > 0 such that

A − δIdd is positive definite and the function g̃1 defined by

g̃1(x) = eγ g1

((
A − δIdd

)−1
(x − h)

)
,

satisfies the relations g̃1 ≤ f and
∫
Rd gs <

∫
Rd g̃s

1.

g̃t(x) = etγ g
((

Idd + t
(
H − δIdd

))−1
(x − th)

)
∈ E+[

g
]

.

By Lemma 4.8, g̃t ≤ f for all t ∈ [0, 1], and

∫
Rd

g̃s
t ≥

(∫
Rd

gs
)1−t (∫

Rd
g̃s

1

)t

≥
∫
Rd

gs.

Using implication (2) ⇒ (3) of Lemma 4.9, we have

0 ≤ 〈((
H − δIdd

) ⊕ γ , h
)

,
(
Idd ⊕ s, 0

)〉 = 〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 − δd,
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Functional John and Löwner Conditions 20643

yielding

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 ≥ δd > 0,

and (4.13) follows.

For t ∈ [0, 1), define

gt(x) = etγ g
((

Idd + tH
)−1

(x − th)
)

.

Clearly, gt ∈ E+[
g
]

for all t ∈ [0, 1). By the choice of g1 and by Lemma 4.8, one sees

that gt ≤ f for all t ∈ [0, 1]. The implication (2) ⇒ (3) in Theorem 4.11 implies that〈
(H ⊕ γ , h) , CJ(u, v)

〉 ≤ 0 for all (u, v) ∈ Cred

(
f , gb

)
. Combining this with inequality (4.13),

Lemma 4.7 yields assertion (2) of Theorem 4.1, whose proof is thus complete.

5 Löwner Problem

Fix s > 0, and two functions f , g : Rd → [0, ∞).

In addition to Löwner s-problem (1.4), we will consider the following optimiza-

tion problem.

Positive position Löwner s-problem: find

min
h∈E+[g]

∫
Rd

hs subject to f ≤ h. (5.1)

We define local and global minimizers to these problems in the same way as

maximizers to the two John s-problems introduced in Section 4.

The next theorem, our main, most general result concerning the Löwner s-

problem provides a condition of optimality in terms of the polars of the functions—for

the definition, see Section 2.3.

Theorem 5.1 (Löwner’s condition). Fix s > 0. Let f : Rd → [0, +∞) be a proper function.

and let g : Rd → [0, ∞) be a proper log-concave function with f ≤ g. Assume that

• g◦ satisfies our Basic Assumptions (see page 8);

• the set of contact points Cpoint(f
◦, g◦) is a star-like set with respect to f ◦;

• the set Cred(f ◦, g◦) is bounded.
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Then the following hold.

1. If h = g is a local minimizer in Löwner s-problem (1.4) for f and g, then there

exist contact pairs (u1, v1), . . . , (um, vm) ∈ Cred(f ◦, g◦) and positive weights

c1, . . . , cm such that

m∑
i=1

civi ⊗ ui = Idd,
m∑

i=1

cig
◦(ui) · νi = s and

m∑
i=1

cig
◦(ui) · νiui = 0, (5.2)

where ui = (ui, g◦(ui)) and vi = (vi, νi) ∈ N
(
Lift g◦, ui

)
.

2. If there exist contact pairs and positive weights satisfying equation (5.2), then

h = g is a global maximizer in Positive position Löwner s-problem (5.1) for f

and g.

The proof is similar to that of Theorem 4.1 with an essential additional idea.

Instead of studying the inequality f ≤ gt for a perturbation gt of g, we will study the

equivalent inequality f ◦ ≥ gt
◦.

5.1 Main components of the proof of Theorem 5.1

First, the following lemma, the dual to Lemma 4.8, allows us to interpolate between two

functions above a given one in such a way that the new function remains above the

given one.

Lemma 5.2 (Outer interpolation of functions). Let f : Rd → [0, +∞) be a function and

g : Rd → [0, +∞) be a log-concave function. Let α1, α2 > 0, A1, A2 be non-singular

matrices of order d, and a1, a2 ∈ R
d be such that

f (x) ≤ α1g(A1x + a1) and f (x) ≤ α2g(A2x + a2)

for all x ∈ R
d. Let β1, β2 > 0 be such that β1 + β2 = 1. Define

α = α
β1
1 α

β2
2 , A = β1A1 + β2A2, and a = β1a1 + β2a2.

Assume that A is non-singular. Then

f (x) ≤ αg(Ax + a). (5.3)
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If A1 and A2 are positive definite and g is integrable, then also

∫
Rd

αg(Ax + a) dx ≤
(∫

Rd
α1g(A1x + a1) dx

)β1
(∫

Rd
α2g(A2x + a2) dx

)β2

(5.4)

with equality if and only if A1 = A2.

Proof. By the assumption of the lemma,

f (x) = f β1(x) · f β2(x)≤ α
β1
1 gβ1(A1x+a1) · α

β2
2 gβ2(A2x + a2)=αgβ1(A1x+ a1) · gβ2(A2x + a2).

By our definitions, β1(A1x + a1) + β2(A2x + a2) = Ax + a. Thus, the log-concavity of g

yields inequality (5.3).

Inequality (5.4) immediately follows from Minkowski’s determinant inequality

(2.3) and its equality condition. �

Definition 5.3. For any (u, v) ∈ R
d+1 × R

d+1, we define the Löwner-type extended

contact operator by

CL(u, v) = ((v ⊗ u) ⊕ μν, μνu) ∈ W,

where u = (u, μ) ∈ R
d+1, and v = (v, ν) ∈ R

d+1.

For two functions f , g : Rd → [0, ∞), we denote the set of Löwner-type extended

contact operators by

AL(f , g) = {
CL(u, v) : (u, v) ∈ Cred(f , g)

} ⊂ W. (5.5)

Lemma 5.4 (Compactness of the set of contact operators). Let functions f , g : Rd →
[0, +∞) satisfy the assumptions of Theorem 5.1. Then AL(f ◦, g◦) is a compact subset

of W.

We omit the proof as it is essentially the same as the proof of Lemma 4.6.

Next, we reformulate equation (5.2) in terms of separation of a closed convex set

from a point in the finite-dimensional real vector space W. The proof is identical to the

proof of Lemma 4.7, we omit it.

Lemma 5.5 (Separation of operators). For any two upper semi-continuous functions

f , g : Rd → [0, +∞), the following assertions are equivalent:
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20646 G. Ivanov and M. Naszódi

1. There are no contact pairs of f and g and positive weights satisfying

equation (5.2).

2. There exists (H ⊕ γ , h) ∈ W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈(
H ⊕ γ , h

)
, CL(u, v)

〉
< 0 (5.6)

for all (u, v) ∈ Cred(f ◦, g◦).
3. There exists (H ⊕ γ , h) ∈ W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈(
H ⊕ γ , h

)
, CL(u, v)

〉 ≤ 0 (5.7)

for all (u, v) ∈ Cred(f ◦, g◦).

Next, we observe that the leftmost inequalities in (5.6) and (5.7) compare the

integrals of g and a perturbation of g defined by

gt(x) = 1

αt
g
(
At

Tx + at

)
, for x ∈ R

d. (5.8)

Lemma 5.6 (Integral of a perturbation of g). Fix s > 0, and let g : Rd → [0, +∞) be a

function such that gs is of finite positive integral. Let 
(t) = (At ⊕ αt, at), t ∈ [0, 1] be

a curve in M with (A0 ⊕ α0, a0) = (Idd+1, 0), and assume that the right derivative of 


at t = 0 is of the form (H ⊕ γ , h). Define the perturbation gt of g by (5.8). Consider the

following statements:

1. 〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0;

2.

∫
gs

t <

∫
gs

for all t ∈ (0, τ ] and some τ > 0.

3.

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 ≥ 0.

Then (1) implies (2), and (2) implies (3).
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Functional John and Löwner Conditions 20647

Proof. One has

∫
Rd

gs
t = α−s

t det
(
A−1

t

)T
∫
Rd

gs = (1 + tγ + o(t))−s (1 − t tr H + o(t))
∫
Rd

gs =

= (1 − t (sγ + tr H) + o(t))
∫
Rd

gs = (
1 − t

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 + o(t)
) ∫

Rd
gs.

The result follows. �

Lemma 5.7 (Polar of a transformed function). Let f : Rd → [0, +∞) be a proper log-

concave function, A be a non-singular matrix of order d, α > 0, and a ∈ R
d. Set f̃ (x) =

αf (Ax + a). Then

f̃ ◦(y) = f ◦(
(
A−1

)T
y)

α
· e

〈(
A−1)T

y, a
〉
.

Proof.

f̃ ◦(y) = inf
x∈supp f̃

e−〈x,y〉

f̃ (x)
= 1

α
inf

x∈supp f̃

e−〈x,y〉

f (Ax + a)
= 1

α
inf

x∈supp f̃

e
−

〈
Ax,

(
A−1)T

y
〉

f (Ax + a)
=

1

α
inf

x∈supp f̃

e
−

〈
Ax+a,

(
A−1)T

y
〉

f (Ax + a)
e

〈
a,

(
A−1)T

y
〉
= e

〈
a,

(
A−1)T

y
〉

α
inf

z∈supp f

e
−

〈
z,

(
A−1)T

y
〉

f (z)
=

f ◦(
(
A−1

)T
y)

α
· e

〈(
A−1)T

y, a
〉
. �

Using Lemma 5.7 and the compactness of Lift g◦ together with Corollary 3.4, we

obtain the following.

Lemma 5.8. Let functions f , g : Rd → [0, +∞) satisfy the assumptions of Theorem 5.1.

Assume h = g is a local minimizer in Löwner s-problem (1.4). Then the sets Cred(f ◦, g◦)
and Cpoint(f

◦, g◦) are non-empty.

Finally, we show that the rightmost inequalities (5.6) and (5.7) encode that a

certain perturbation of g is pointwise above f .

Theorem 5.9 (Characterization of admissible perturbations). Let the functions

f , g : Rd → [0, +∞) satisfy the assumptions of Theorem 5.1, and let 
(t) = (At ⊕αt, at), t ∈
[0, 1] be a curve in M with (A0 ⊕α0, a0) = (Idd+1, 0), and assume that the right derivative
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20648 G. Ivanov and M. Naszódi

of 
 at t = 0 is of the form (H ⊕ γ , h). Define the perturbation gt of g by (5.8). Consider

the following statements:

1.
〈(

H ⊕ γ , h
)
, CL(u, v)

〉
< 0 for all (u, v) ∈ Cred(f ◦, g◦).

2. There is ε > 0 such that f ≤ gt for all t ∈ [0, ε].

3.
〈(

H ⊕ γ , h
)
, CL(u, v)

〉 ≤ 0 for all (u, v) ∈ Cred(f ◦, g◦).

Then (1) implies (2), and (2) implies (3).

Proof. The relation f ≤ gt is equivalent to gt
◦ ≤ f ◦, which we will proceed to work with.

Since Lift f ◦ and Lift g◦ are symmetric about R
d, it suffices to consider ess graph gt

◦.

Define the homotopy H : ess graph g◦ × [0, 1] → R
d+1 by

H(y, t) = (
Aty, gt

◦(Aty
))

.

for all y ∈ cl (supp g◦) and y = (y, g◦(y)). By Lemma 5.7,

gt
◦(Aty) = αtg

◦(A−1
t Aty

)
e

〈
A−1

t Aty, at

〉
= αtg

◦(y)e〈y,at〉

and At (supp g◦) = supp gt
◦. That is,

H
(
ess graph g◦, t

) = ess graph gt
◦.

Consider an arbitrary u ∈ cl (supp g◦) and v = (v, ν) ∈ R
d × R. Set u = (u, g◦(u)).

One has

H′ := d

dt

∣∣∣∣
t=0+

H(u, t) = (
Hu, g◦(u) (γ + 〈u, h〉)) ,

and thus, by Definition 5.3,

〈
v,H′〉 = 〈v, Hu〉 + νg◦(u)γ + νg◦(u) 〈u, h〉 = 〈(

H ⊕ γ , h
)
, CL(u, v)

〉
. (5.9)

Consider the case g◦(u) > 0. We recall the assumption of Theorem 5.1 according

to which Cpoint(f
◦, g◦) is a star-like set with respect to f ◦. Using Lemma 2.5 in identity

(5.9), we see that for a fixed u ∈ ess graph f ◦ with non-zero last coordinate, assertion (1)

of the theorem is equivalent to

H′ ∈ int
(
N

(
Lift f ◦, u

))◦ .
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Functional John and Löwner Conditions 20649

Similarly, assertion (3) of Theorem 4.11 is equivalent to

H′ ∈ (
N

(
Lift f ◦, u

))◦ .

Consider the case g◦(u) = 0. Since supp g◦ is bounded and contains the origin in

its interior by the assumption of Theorem 5.1, the origin is contained in the interior of

supp f ◦. This ensures that at every contact point u ∈ ess graph g◦ ∩ ess graph f ◦ with

f ◦(u) = 0, every outer normal direction to supp f ◦ has an acute angle with u = (u, 0) ∈ R
d,

and hence, it can be represented by a vector v = (v, 0) ∈ R
d such that 〈u, v〉 = 1, which

yields (u, v) ∈ Cred(g◦, f ◦).
It follows from identity (4.11) that for a fixed u whose last coordinate is zero,

assertion (1) of the theorem is equivalent to

H′ ∈ int
(
N

(
supp f ◦, u

))◦ ,

where all the sets and the polarity are meant in R
d. Similarly, assertion (3) of Theorem

4.11 is equivalent to

H′ ∈ (
N

(
supp f ◦, u

))◦ .

The rest of the proof of Theorem 5.9 is identical to the end of the proof of

Theorem 4.11, and so we omit it. �

Remark 5.10. Theorem 5.9. is the only place in the proof of Theorem 5.1 at which we

use the assumption that Cpoint(f
◦, g◦) is a star-like set with respect to f ◦.

5.2 Proof of Theorem 5.1

We start with assertion (1) of the theorem. Assume that there are no contact pairs and

positive weights satisfying equation (5.2). Then, by Lemma 5.5, there exists (H ⊕ γ , h) ∈
W such that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0 and

〈
(H ⊕ γ , h) , CL(u + c, v)

〉
< 0 (5.10)

for all (u, v) ∈ Cred(f ◦, g◦).
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20650 G. Ivanov and M. Naszódi

The matrix Idd − tH is non-singular and 1 + tγ > 0 for all t ∈ [0, τ ] for some

positive τ . Set At = (
Idd − tH

)−1 and

gt(x) = 1

1 + tγ
g
(
At

Tx + th
)

.

Clearly, gt ∈ E
[
g
]

for all t ∈ [0, τ ]. By implication (1) ⇒ (2) of Lemma 5.6,

∫
gs

t <

∫
gs

for all t ∈ (0, τ ] and some τ > 0.

Using the implication (1) ⇒ (2) of Theorem 5.9, one gets that f ≤ gt for all

sufficiently small t. Thus, g is not a local minimizer in Löwner s-problem (1.4), completing

the proof of assertion (1) of Theorem 5.1.

We proceed with assertion (2) of the theorem. Assume that g is not a global

minimizer in Positive position Löwner s-problem (5.1). That is, there exist a positive

definite matrix A, γ ∈ R, h ∈ R
d, such that the function g1 defined by

g1(x) = e−γ g(Ax + h) for x ∈ R
d

satisfies f ≤ g1 and
∫
Rd gs

1 <
∫
Rd gs. We will use g1 to define a perturbation gt of g (a

curve in M) that is above f with smaller integral, and then, taking the derivative of

that perturbation at the starting point t = 0, we will find (H ⊕ γ , h) ∈ W that separates(
Idd ⊕ s, 0

)
from the set AL(f ◦, g◦). This, by Lemma 5.5, will yield the assertion.

Define H = A − Idd. We begin by showing that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉
> 0. (5.11)

For any δ > 0, the function g̃ defined by

g̃(x) = e−γ+δg (Ax + h)

satisfies the relation f ≤ g̃. Moreover, for a sufficiently small δ, we have also
∫
Rd g̃s <∫

Rd gs.

Define

g̃t(x) = e−t(γ−δ)g
((

Idd + tH
)

x + th
) ∈ E+[

g
]

.
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Functional John and Löwner Conditions 20651

By Lemma 5.2, f ≤ g̃t for all t ∈ [0, 1], and

∫
Rd

g̃s
t ≤

(∫
Rd

gs
)1−t (∫

Rd
g̃s

1

)t

≤
∫
Rd

gs.

Using implication (2) ⇒ (3) of Lemma 5.6, we have

0 ≤ 〈
(H ⊕ (γ − δ), z) ,

(
Idd ⊕ s, 0

)〉 = 〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 − δs.

We conclude that

〈
(H ⊕ γ , h) ,

(
Idd ⊕ s, 0

)〉 ≥ δs > 0,

and (5.11) follows.

For t ∈ [0, 1), define

gt(x) = etγ g
((

Idd + tH
)

x + th
)

.

That is, g0 = g, and gt ∈ E+[
g
]

for all t ∈ [0, 1). By the choice of g1 and by Lemma 5.2,

one sees that f ≤ gt for all t ∈ [0, 1]. The implication (2) ⇒ (3) in Theorem 5.9 implies that〈
(H ⊕ γ , h) , CL(u + c, v)

〉 ≤ 0 for all (u, v) ∈ Cred(f ◦, g◦). Combining this with inequality

(5.11), Lemma 5.5 yields assertion (2) of Theorem 5.1, completing the proof of Theorem 5.1.

6 Existence and Uniqueness of Solutions

For any proper log-concave function f : Rd → [0, ∞), there exists a positive constant C

such that the integral of the proper log-concave function f over any line is at most C.

Indeed, it follows, from the existence of constants �, ν > 0 depending only on f that

satisfy

f (x) ≤ �e−ν|x| (6.1)

for all x ∈ R
d, see [6, Lemma 2.2.1]. We will use the notation

Cf = sup
�

∫
�

f ,

where the supremum is taken over all lines � in R
d.
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20652 G. Ivanov and M. Naszódi

The following technical fact, essentially a rephrasing of Lemma 3.2 of [10], will

allow us to use compactness arguments in finding the optima in the John and Löwner

s-problems.

Lemma 6.1 (Boundedness of the admissible set). For any proper log-concave function

f : Rd → [0, ∞) and any δ > 0, there exist ϑ , ρ, ρ1 > 0 with the following property. If for

a proper log-concave function g : Rd → [0, ∞) with g ≤ g(0) = 1 and (A ⊕ α, a) ∈ M, the

function w : Rd → [0, ∞) given by

w(x) = αg
(
A−1(x − a)

)

satisfies w ≤ f and
∫
Rd w ≥ δ, then the following inequalities hold:

ϑ ≤ α ≤ ‖f ‖ and |a| ≤ ρ, (6.2)

and

ρ1∫
Rd g

(
Cf

Cg

)1−d

≤ 1∥∥A−1
∥∥ ≤ ‖A‖ ≤ Cf

ϑCg
, (6.3)

where Cg is the maximum of the integral of the restriction of g to a line in R
d.

Proof. The proof is a minor modification of the proof of a particular case of Lemma 3.2

of [10]. Obviously, α ≤ ‖f ‖ . To bound α from below, we fix ϑ with α ≤ ϑ . Then w ≤ ϑ , and

thus,

∫
Rd

w ≤
∫
Rd

min{f (x), ϑ} dx.

Since f is a non-negative function of finite integral, the last expression is less than δ if

ϑ is sufficiently small. Thus, the leftmost inequality in (6.2) holds. Since w(a) = α, we

conclude that a ∈ [f ≥ ϑ ] completing the proof of (6.2).

We proceed with inequality (6.3). Clearly, Cf ≥ Cw = α ‖A‖ Cg ≥ ϑ ‖A‖ Cg. Thus,

the rightmost relation in (6.3) holds.

By the assumption, we have

δ ≤
∫
Rd

w = α |det A| ·
∫
Rd

g.
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Let β be the smallest singular value of A. By the previous inequality and since α ∈ [ϑ , ‖f ‖],

we have

0 <
δ

‖f ‖
1∫
Rd g

≤ |det A| ≤ β · ‖A‖d−1 .

By the rightmost relation in (6.3), the existence of ρ1 follows. �

6.1 Existence and uniqueness in the (Positive) John s-problem

Proposition 6.2. Let f , g : Rd → [0, ∞) be two proper log-concave functions such that

g ≤ f . Then John s-problem (1.1) and Positive John s-problem (4.1) have solutions.

Moreover, if g is of bounded support, then the solution to Positive John s-problem (4.1)

is unique.

We note that as was shown in [10], the solution to the Positive John s-problem

is not necessarily unique without assumption on the boundedness of the support. For

example, it is not necessarily unique for the standard Gaussian density.

Proof of Proposition 6.2. The existence of the solutions follows from Lemma 6.1 and a

routine compactness argument. So, we only need to show the uniqueness of the solution

to the Positive John s-problem (4.1). Let A1 and A2 be rank d positive definite matrices,

a1, a2 ∈ R
d, and α1, α2 > 0 be such that the functions

h1(x) = α1g
(
A−1

1 (x − a1)
)

and h2(x) = α2g
(
A−1

2 (x − a2)
)

are the solutions to Positive John s-problem (4.1). In particular, the integrals of the s

power of these functions are equal. By Lemma 4.8, A1 = A2. Hence, α1 = α2 as well.

That is, the liftings of h1 and h2 are translates of each other. The log-concavity of f

implies that the set Lift h1 + [0, 2w] with non-zero w ∈ R
d is contained in Lift f . We claim

that that there is a position h of g below f such that
∫

hs >
∫

hs
1. Indeed, consider the

function h1.5(x) = h1(x − w). Clearly, Lift h1.5 ⊂ Lift h1 + [0, 2w] ⊂ Lift f . Let h1.5 attain

its maximum at z. It means that z belongs to all non-empty level-sets of h1.5. These level

sets are compact convex sets, since h1.5 is a log-concave function of compact support.

Let Sε be the linear transformation that scales R
d in the direction of w by the factor 1+ε.

Then, for a sufficiently small positive ε, the inclusion

Sε

([
h ≥ �

] − z
) ⊂ [

h1 ≥ �
] + [0, 2w]
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holds for all � ∈ (0, ‖h‖]. That is, Sε

(
Lift h1.5 − z

) ⊂ Lift f . However, the set on the left-

hand side of the last inclusion is the lifting of some position h of g, completing the proof

of Proposition 6.2. �

6.2 Existence in the (Positive) Löwner s-problem

By a routine limiting argument, Lemma 6.1 yields the following.

Proposition 6.3. Let f , g : R
d → [0, ∞) be proper log-concave functions such that

f ≤ g. Then there are solutions to Löwner s-problem (1.4) and to Positive Löwner

s-problem (5.1).

We note that as was shown in [11], the solution to Positive Löwner s-problem is

not necessary unique even for a radially symmetric function g.

7 The Normal Cone and the Subdifferential

This section contains properties of the normal cone of log-concave functions, which will

be needed in the next section, where we discuss when the rather technical conditions of

Theorems 4.1 and 5.1 hold.

7.1 Subdifferential

We recall several definitions and properties about the subddiferential.

A vector p is said to be a subgradient of a function ψ : Rd → R ∪ {+∞} at the

point x if

ψ(y) ≥ ψ(x) + 〈p, y − x〉

for all y ∈ R
d. The set of all subgradients of ψ at x is called the subdifferential of ψ at x

and is denoted by ∂ψ(x). By definition, we have

Lemma 7.1 (Subdifferential and normals of the epigraph). Let ψ be a convex function

on R
d. Then p ∈ ∂ψ(x) if and only if (p, −1) ∈ N(epiψ , (x, ψ(x))) .

The following lemma is a basic property of the subdifferential (see [17, Theorem

23.5]) relating it to the Legendre dual.
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Lemma 7.2 (Subdifferential and Legendre dual). Let ψ : Rd → R∪{+∞} be a lower semi-

continuous convex function. Then the following three conditions on vectors u, p ∈ R
d are

equivalent

1. p ∈ ∂ψ(u);

2. u ∈ ∂Lψ(p);

3. ψ(u) + Lψ(p) = 〈p, u〉 .

Also, we will use the following well-known fact.

Lemma 7.3. Let ψ : R
d → R ∪ {+∞} be a lower semi-continuous convex function

containing δBd in the interior of its effective domain. Then there is a constant L such

that |p| ≤ L for all p ∈ ∂ψ(u) and u ∈ δBd.

7.2 Explicit formula for contact pairs

As an immediate consequence of Lemma 3.3, we obtain the following:

Lemma 7.4 (Horizontal normals of Lift f ). Let f : Rd → [0, +∞) be an upper semi-

continuous log-concave function containing the origin in the interior of its support. Let

u = (u, f (u)) ∈ ess graph f and v = (v, 0) ∈ N(Lift f , u) with 〈u, v〉 = 1. Then

v = (p, 0)

〈p, u〉 and 〈p, u〉 > 0

for some non-zero p ∈ N(supp f , u) .

Lemmas 3.3 and 7.1 yield the following.

Lemma 7.5 (Non-horizontal normals of Lift f ). Let ψ : Rd → R ∪ {+∞} be a convex

function containing u in its domain. Set f = e−ψ and u = (u, f (u)). Let v = (v, ν) with

ν �= 0. The following assertion are equivalent:

1. v ∈ N(Lift f , u) and 〈u, v〉 = 1

2.

v =
(
p, 1

f (u)

)
1 + 〈p, u〉 and 1 + 〈p, u〉 > 0

for some p ∈ ∂ψ(u).
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We conclude the following.

Lemma 7.6. Let g : Rd → [0, +∞) be a proper log-concave function containing the origin

in the interior of support. Then, a set U ⊂ R
d is a star-like set with respect to g if and

only if the inequality 〈p, u〉 > −1 holds for all u ∈ U ∩ supp g and p ∈ ∂(− ln g)(u).

Proof. Fix u ∈ U, denote u = (u, g(u)), and let v =
(
v, ν

g(u)

)
∈ N(Lift g, u) . If ν �= 0,

Lemmas 3.3 and 7.1 yield that ν > 0 and v = νp for some p ∈ ∂ψ(u). Hence, 〈v, u〉 =
ν(1+〈p, u〉). If ν = 0, then u is a point of the boundary of supp g. By Lemma 3.3 and since

the origin is in the interior of the convex set supp g, the inequality 〈v, u〉 = 〈v, u〉 > 0

holds. �

Remark 7.7. Let g = e−ψ : Rd → [0, +∞) be an upper semi-continuous function, and

let u be a point on the boundary of supp g at which ψ is not sub-differentiable. It is not

hard to show that N(Lift g, (u, g(u))) = N(supp g, u) holds in this case.

8 Properties of the Set of Contact Pairs

The main topic of the section is the question of when the set of contact pairs Cred(f , g)

is bounded in R
d+1 × R

d+1, as this is a crucial condition in Theorems 4.1 and 5.1.

Assume that g ≤ f . Then Cred(f , g) ⊆ Cred(g, g) and hence, it suffices to impose

conditions on g to guarantee the boundedness of Cred(f , g).

8.1 A difficulty: flat zeros

In order to explain the difficulty of guaranteeing that the contact set is bounded, we first

return to the setting of convex sets. Assume that K is a compact convex subset of R
d

containing the origin in the interior. Then for any u ∈ bd (K), the set

Nu = {v : 〈u, v〉 = 1 and v ∈ N(K, u)}

is a closed subset of the boundary of K◦. Hence, the set of contact pairs

C = {(u, v) : u ∈ bd (K) , v ∈ Nu}

is a closed subset of the compact set bd (K) ∩ bd (K◦), and hence, is compact.

Next, consider the epigraph of a convex function ψ with bounded domain. It will

be an unbounded convex set in R
d+1. So, when we turn to the lifting of the corresponding
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log-concave function g = e−ψ , we may find ill-behaved points. Namely, at any point

u ∈ cl (dom ψ) \ dom ψ , the normal cone of the epigraph of ψ is undefined at (u, ψ(u)),

since there is no such point, as ψ(u) = ∞. However, the normal cone to the lifting of g

at (u, g(u)) = (u, 0) is well defined and non-empty by Corollary 3.4. Most importantly,

N(Lift g, (u, 0)) may contain ed+1. It is this particular case that requires additional care.

Definition 8.1. For a log-concave function g : Rd → R, we call a point u ∈ cl (supp g) a

flat zero, if g(u) = 0 and ed+1 ∈ N(Lift g, (u, 0)).

To see why flat zeros pose a difficulty, assume that g and u are as in the definition

above, and f is a function with g ≤ f such that f = g on some neighborhood of u.

Let v ∈ R
d be an outer normal vector of the support hyperplane of supp f at u with

〈u, v〉 = 1. Then
(
(u, 0), (v, ν)

)
is in C(f , g) for all ν ∈ R, and hence, Cred(f , g) is not

bounded.

Consider the following examples, g1, g2 : Rd → [0, +∞).

g1(u) =
⎧⎨
⎩

(
1 − |u|2)2

, if |u| < 1

0, otherwise.

g2(u) =
⎧⎨
⎩e− 1

1−|u| , if |u| < 1

0, otherwise.

Clearly, both g1 and g2 are proper log-concave functions of bounded support. It is

easy to see that the normal cone of both of them is N
(
Lift gi, (u, 0)

) = {(αu, ν) : α ≥ 0, ν ∈
R} for any unit vector u ∈ R

d. That is, the sets C
(
g1, g1

)
and C

(
g2, g2

)
are unbounded, and

every unit vector is a flat zero. Even though for any fixed u = (u, 0) with |u| = 1, the set

{(u, v) ∈ Cred

(
gi, gi

)} is bounded, since only horizontal vectors v are present in it, but if

|u| < 1 is close to 1, then {(u, v) ∈ Cred

(
gi, gi

)} becomes arbitrarily large. Hence Cred

(
gi, gi

)
is not bounded.

Yet, there is a major difference between these two functions. The function g1 was

studied in [10] and the conditions of optimality equivalent to that of Theorem 4.1 were

obtained therein for an arbitrary proper log-concave function f . It was possible, since g1

is q-concave with q = 1/4 (see page 17 for the definition), and hence—as we will see—its

flat zeros can be removed by taking the q-th power. On the other hand, g2 is not q-concave

for any q > 0.
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8.2 Sufficient conditions

In this subsection, we show that if g(0) is close to min g, then the conditions in our main

theorems (Theorems 4.1 and 5.1) hold essentially with any f .

Lemma 8.2. Let g = e−ψ : Rd → [0, +∞) be a function satisfying our Basic Assumptions

(see page 8). Denote the minimum of ψ by m. Assume that the inequality ψ(0) < m + 1

holds. Then supp g is a star-like set with respect to g. Additionally, let U be a subset of

R
d such that inf

x∈U ∩ supp g
g(x) > 0, then the set C = {

((u, f (u)), v) ∈ Cred(g, g) : u ∈ U
}

is

bounded.

Proof. Fix u = (u, g(u)) ∈ ess graph g and let v = (v, ν) ∈ N(Lift g, (u, g(u))) \ {0}.
Consider the case when ν = 0. By Lemma 3.3, u belongs to the boundary of supp g

and v ∈ N(supp g, u) ⊂ R
d. Since supp g is a convex set containing the origin in its

interior, there are positive constants δ0 and δ1 independent of u and v such that |v| < δ0

and 〈v, u〉 > δ1.

Now, assume that ν �= 0. By Lemma 3.3 and the convexity of ψ , we have that ν > 0

and

〈v, u〉 ≥ νg(u) (ψ(u) − ψ(0)) ≥ νg(u) (m − ψ(0)) .

Hence,

〈v, u〉 = 〈v, u〉 + νg(u) ≥ νg(u) (m − ψ(0) + 1) > 0. (8.1)

We conclude that supp g is a star-like set with respect to g.

Set L = inf
x∈U∩supp g

g(x). Now, assume that 〈v, u〉 = 1. Then (8.1) yields

ν ≤ 1

(m − ψ(0) + 1) L

for any ((u, f (u)), v) ∈ Cred(g, g) such that u ∈ U. Thus, ν cannot be too large. Lemma 7.3

and Lemma 3.3 imply that the set of contact pairs ((u, f (u)), v) ∈ Cred(g, g) , where u is

in a sufficiently small neighborhood V of the origin, is bounded. Using convexity again

and identity (3.2) of Lemma 3.3, we see that |v| cannot be too large outside V, and thus,

the proof of the lemma is complete. �

As a direct consequence of this result, we obtain the following.
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Corollary 8.3. Let gb : R
d → [0, ∞) be an upper semi-continuous function such

that log-env gb satisfies our Basic Assumptions (see page 8). Denote the minimum of

− ln log-env gb by m. Assume the inequality

− ln log-env gb(0) < m + 1

holds. Then for any proper log-concave function f : Rd → [0, +∞), the set Cpoint

(
f , gb

)
is a star-like set with respect to f . Moreover, if the infimum of gb taken over the set

Cpoint

(
f , gb

) ∩ supp gb is strictly greater than zero, then the set Cred

(
f , gb

)
is bounded.

Remark 8.4. If log-env gb is of compact support in the assertion of Corollary 8.3, then

for any function f such that the set S = Cpoint

(
f , gb

) ∩ supp gb is non-empty, the infimum

of gb taken over S is strictly greater than zero.

8.3 Taking the reduced set of contact pair yields no loss

We recall that in the assertions of our theorems formulated in the Introduction, we

consider the full set of contact pairs, C(f , g), and not the reduced set Cred(f , g). The

following simple observation allows us to do so.

Lemma 8.5 (The vertical component of v may be ignored at a zero). Let f : Rd → [0, +∞)

be an upper semi-continuous log-concave function, and u ∈ cl (supp f ) be such that

f (u) = 0. Let v = (v, ν) ∈ N(Lift f , u), where u = (u, f (u)), be such that 〈v, u〉 = 1. Then

v ∈ N(supp f , u), and

CJ(u, v) = CJ(u, (v, 0)) and CL(u, v) = CL(u, (v, 0)) .

Thus, if no contact pairs from C(f , g) (resp., C(f ◦, g◦)) satisfy the equations in

Theorem 4.1 (resp., Theorem 5.1), then one can consider only horizontal normals at the

zero level when studying separation of the set of extended contact operators from the

point
(
Idd ⊕ s, 0

)
in W.

A more geometric, less algebraic explanation of this fact is that in the proof

of Theorem 4.1 (resp., Theorem 5.1), a point u = (u, 0) remains in R
d under the

corresponding homotopy. That is, the last coordinate of the normal vector does not play

a role.
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9 Radially Symmetric Functions

We call a function f on R
d radially symmetric, if it is of the form f (x) = F(|x|), where F

is a function on [0, +∞). Clearly, the sets of positions and positive positions of a radially

symmetric function coincide. Consequently, the identities (4.2) and (5.2) are the necessary

and sufficient condition in Theorem 4.1 and Theorem 5.1, respectively. This way, the

results of [10] can be recovered from Theorem 4.1.

10 The q-Concave Case

10.1 Immediate corollaries of Theorems 4.1 and 5.1

Fix s > 0 and q > 0. If a function g : Rd → [0, +∞) is a proper q-concave function,

then Lift gq is a compact convex set with non-empty interior in R
d+1, which yields the

following.

Lemma 10.1. Let g : Rd → [0, +∞) be a proper q-concave function containing the

origin in the interior of the support. Then supp gq is a star-like subset of gq and the

set Cred

(
gq, gq

)
is bounded.

Thus, we have the following results.

Corollary 10.2. Fix s > 0, and let f , g : R
d → [0, +∞) be two proper log-concave

functions. Additionally, assume g is q-concave with some q > 0 and contains the origin

in the interior of its support.

1. If h = g is a local maximizer in John s-problem (1.1), then there exist contact

pairs (ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

(
f q, gq

)
and positive weights c̃1, . . . , c̃m

satisfying

m∑
i=1

c̃iui ⊗ v′
i = Idd,

m∑
i=1

c̃if
q(ui)ν

′
i = s

q
and

m∑
i=1

c̃iv
′
i = 0, (10.1)

where ũi = (ui, f q(ui)) and ṽi = (v′
i, ν

′
i).

2. If there exist contact pairs and positive weights satisfying equation (10.1),

then g is a global maximizer in Positive position John s-problem (4.1).

Proof. We consider the corresponding John s
q -problem for functions f q and gq, and by

Lemma 10.1 we may apply Theorem 4.1. �
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Corollary 10.3. Fix s > 0, and let f , g : R
d → [0, +∞) be two proper log-concave

functions. Assume that g◦ is q-concave with some q > 0, and contains the origin in the

interior of its support. Then the following hold.

1. If h = g is a local minimizer in Löwner s-problem (1.4) for f and g, then

there exist contact pairs (ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

((
gq

)◦,
(
f q

)◦) and positive

weights c̃1, . . . , c̃m such that

m∑
i=1

c̃iv
′
i ⊗ u′

i = Idd,
m∑

i=1

c̃i

(
gq)◦

(u′
i) · ν′

i = s

q
. and

m∑
i=1

c̃i

(
gq)◦

(u′
i) · ν′

iu
′
i = 0,

(10.2)

where ũi = (u′
i,

(
gq

)◦
(u′

i)) and ṽi = (v′
i, ν

′
i).

2. If there exist contact pairs and positive weights satisfying equation (5.2), then

h = g is a global maximizer in Positive position Löwner s-problem (5.1) for f

and g.

Proof. Observe that

(
gq)◦

(y) =
(

g◦
(

y

q

))q

for any q > 0. Hence,
(
gq

)◦ is 1-concave. We consider the corresponding Löwner s
q -

problem for functions f q and gq, and by Lemma 10.1 we may apply Theorem 5.1. �

We note that in these two corollaries, we choose the origin arbitrarily inside the

interior of the support of corresponding functions. To obtain the theorems formulated

in the Introduction, we need a more subtle argument.

10.2 Taking power and algebraic identities involving the contact pairs

In this subsection, we discuss how replacing f and g by f q and gq changes the form of

identities (4.2) and (5.2).

Lemma 10.4. Fix s > 0 and q ∈ (0, 1]. Let f : Rd → [0, +∞) be a proper log-concave

function, and let gb : Rd → [0, ∞) be an upper semi-continuous function such that

• log-env gb satisfies our Basic Assumptions (see page 8);

• the set of contact points Cpoint

(
f , gb

)
is a star-like set with respect to f .
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Set ui = (ui, f (ui)) and ũi = (ui, f q(ui)). Then the following assertions are

equivalent:

• There are contact pairs (u1, v1), . . . , (um, vm) ∈ Cred

(
f , gb

)
and positive

weights c1, . . . , cm that satisfy the identities in (4.2).

• There are contact pairs (ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

(
f q, gq

b

)
and positive

weights c̃1, . . . , c̃m that satisfy the identities in (10.1).

Proof. Fix ui = (ui, f (ui)) ∈ ess graph f and vi = (vi, νi) ∈ N
(
Lift f , ui

)
with

〈
ui, vi

〉 = 1.

We consider two cases.

Case of a horizontal normal: Assume that νi = 0. By Lemmas 3.2 and 7.4, the

following assertion are equivalent.

•
(
ui, vi

) ∈ Cred

(
f , gb

)
;

•
(
ũi, ṽi

) ∈ Cred

(
f q, gq

b

)
, where ũi = (ui, f q(ui)) and ṽi = vi = (vi, 0).

Finally,

CJ

(
ui, vi

) = (
ui ⊗ vi ⊕ f (ui)νi, vi

) = (
ui ⊗ vi ⊕ 0, vi

) = CJ

(
ũi, ṽi

)

We set c̃i = ci in this case.

Case of a non-horizontal normal: assume that νi > 0. By the definition of

Cred

(
f , gb

)
, we have f (ui) > 0.

Since Cpoint

(
f , gb

)
is a star-like set with respect to f and by Lemma 7.5,

vi =
(
pi,

1
f (ui)

)
1 + 〈

pi, ui

〉

and 1 + 〈
pi, ui

〉
> 0 for some p ∈ ∂(− ln f )(ui). Hence, 1 + 〈

pi, ui

〉
> 0 and 1 + q

〈
pi, ui

〉
> 0.

Thus, Lemma 7.5 implies that the following assertion are equivalent:

•
(
ui, vi

) ∈ Cred

(
f , gb

)
and vi =

(
pi,

1
f (ui)

)
1+〈pi,ui〉 for some pi ∈ ∂(− ln f )(ui);

•
(
ũi, ṽi

) ∈ Cred

(
f q, gq

b

)
, where ṽi =

(
qpi,

1
f q(ui)

)
1+q〈pi,ui〉 for pi ∈ ∂(− ln f )(ui) and ũi =

(ui, f q(ui)).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/20613/7265294 by Institute of Science and Technology Austria user on 08 January 2024



Functional John and Löwner Conditions 20663

By substitution,

ciCJ

(
ui, vi

) = ci

(
(ui ⊗ pi) ⊕ 1, pi

)
1 + 〈

pi, ui

〉 and c̃iCJ

(
ũi, ṽi

) = ci

(
(ui ⊗ pi) ⊕ 1

q , pi

)
1 + 〈

pi, ui

〉 ,

where c̃i = ci
q

1+q〈pi,ui〉
1+〈pi,ui〉 . �

Lemma 10.5. Fix s > 0 and q ∈ (0, 1]. Let f , g : Rd → [0, +∞) be be two proper log-

concave functions such that

• g◦ satisfies our Basic Assumptions (see page 8);

• the set of contact points Cpoint(f
◦, g◦) is a star-like set with respect to f ◦.

Set ui = (ui, f ◦(ui)) and ũi = (
qui, (f

q)◦
(
qui

))
. Then the following assertions are

equivalent:

• There are contact pairs (u1, v1), . . . , (um, vm) ∈ Cred(f ◦, g◦) and positive

weights c1, . . . , cm that satisfy the identities in (5.2).

• There are contact pairs (ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

(
(f q)◦, (gq)◦

)
and positive

weights c̃1, . . . , c̃m that satisfy the identities in (10.2).

Proof. Observe that

(
f q)◦

(y) =
(

f ◦
(

y

q

))q

for any q > 0. The rest of the proof is similar to that of the previous lemma. We omit the

details.

The corresponding substitutions are as follows: ṽi =
(

vi
q , 0

)
and c̃i = ci in the

case νi = 0, and ṽi =
(

pi,
1

(f ◦(qi))
q

)
1+q〈pi,ui〉 for pi ∈ ∂(− ln f ◦)(ui) and c̃i = ci

q
1+q〈pi,ui〉
1+〈pi,ui〉 in the case

νi > 0. �

10.3 Taking power and the boundedness of contact pairs

Fix q ∈ (0, 1]. If one considers f q and gq instead of f and g, then the corresponding liftings

are “more” concave, which implicitly implies that the corresponding problem is easier to

solve. In some sense, this is indeed true. Lemma 7.6 ensures that if Cpoint(f , g) is star-like

set with respect to f , then Cpoint

(
f q, gq

)
is star-like set with respect to f q. The following

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/20613/7265294 by Institute of Science and Technology Austria user on 08 January 2024



20664 G. Ivanov and M. Naszódi

result shows that taking power of the functions does not destroy the boundedness of

contact pairs.

Lemma 10.6 (Replacing g by gα and boundedness). Let g : Rd → [0, +∞) be a proper

log-concave function such that the set Cred(g, g) is bounded. Then for any α ∈ (0, 1], the

function gα is a proper log-concave function and the set Cred(gα, gα) is bounded.

Proof. We only need to show that if for all u ∈ cl (supp g), we take all possible normals

v = (v, ν) to Lift gα at u = (u, g(u)), then we obtain a bounded set. We fix a u. In the case

when ν = 0, by Lemma 7.4, Lift g and Lift gα have the same set of horizontal normals at

u. Thus, we may assume that ν > 0, and hence u ∈ supp g.

Using Lemma 7.5, we see that v = p
1+〈p,u〉 for some non-zero p ∈ ∂ψ(u) and

1 + 〈p, u〉 > 0, where g = e−ψ . Using Lemma 7.5 again, we see that vα = (v, να) ∈
N(Lift gα, (u, gα(u))) with some να > 0 if and only if

vα =
(
αp, 1

gα(u)

)
1 + α 〈p, u〉

for some p ∈ ∂ψ(u). Note 1 + α 〈p, u〉 > α(1 + 〈p, u〉) > 0. Since g is bounded, there is a

constant L > 0 such that

1

gα(u)
≤ L

g(u)

for all u ∈ supp g. Thus,

∣∣vα

∣∣ ≤
(

1 + L

α

) ∣∣∣∣∣∣
(
p, 1

g(u)

)
1 + 〈p, u〉

∣∣∣∣∣∣ .

By Lemma 7.5, the latter vector is in N(Lift g, f ), and the lemma follows. �

Using Lemma 10.6 and Lemma 7.6, we see that if the functions f , gb : Rd →
[0, +∞) satisfy the assumptions of Theorem 4.1, then the functions f α, gα

b : Rd → [0, +∞)

satisfy it as well for any α ∈ (0, 1]. It means that the John conditions in the corresponding

problems are fulfilled simultaneously, which is ensured by Lemma 10.4.

Similarly, using Lemma 10.6 and Lemma 7.6, we see that if the functions

f , g : R
d → [0, +∞) satisfy the assumptions of Theorem 5.1, then the functions

f α, gα : Rd → [0, +∞) with the same c satisfy it as well for any α ∈ (0, 1]. It means
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that the Löwner conditions in the corresponding problems are fulfilled simultaneously,

which is ensured by Lemma 10.5.

11 Proofs of the Results Presented in the Introduction

Proof of Theorem 1.3. The proof mostly repeats the argument we used for Theorem

1.6 in Section 9. Since f takes only positive values and the support of g is bounded, we

see that

inf
x∈ Cpoint(f ,g) ∩ supp g

g(x) > 0.

By Lemma 8.2, we have that Cpoint(f , g) is a star-like set with respect to f and Cred(f , g) is

bounded. Thus, the assumptions on functions in Theorem 4.1 are fulfilled. The necessity

of condition (1.2) follows from this and Lemma 7.5. By the argument from Section 9

for radially symmetric, function the sufficiency of the corresponding conditions follows

as well. �

Proof of Theorem 1.5. If q > 1, then g is 1-concave. Since Lift g is a compact convex set

in R
d+1, the assumptions on the functions in Theorem 4.1 are fulfilled. The necessity of

condition (1.3) follows.

Assume that q ∈ (0, 1]. Then by Lemma 8.2, Cpoint(f , g) is a star-like set with

respect to f , and Cred

(
f q, gq

)
is bounded, since Lift gq is a compact convex set in R

d+1.

Thus, there are contact pairs (ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

(
f q, gq

)
and positive weights

c̃1, . . . , c̃m satisfying (10.1). The necessity of condition (1.3) follows from Lemma 10.4.

By the argument from Section 9 for radially symmetric function, the sufficiency

of the corresponding conditions follows as well. �

Proof of Theorem 1.6. Since f ◦ takes only positive values and the support of g◦ is

bounded, we see that

inf
x∈ Cpoint(f ◦,g◦) ∩ supp g◦ g◦(x) > 0.

By Lemma 8.2, we have that Cpoint(f
◦, g◦) is a star-like set with respect to f and

Cred(f ◦, g◦) is bounded. Thus, the assumptions on functions in Theorem 5.1 are fulfilled.

The necessity of condition (1.5) follows from this and Lemma 7.5. By the argument at the

beginning of the present section, the sufficiency of the corresponding conditions follows

as well. �
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Proof of Theorem 1.7. If q > 1, then g◦ is 1-concave. Since Lift g◦ is a compact convex

set in R
d+1, the assumptions on functions in Theorem 5.1 are fulfilled. The necessity of

condition (1.6) follows.

Assume now q ∈ (0, 1]. Then by Lemma 8.2, Cpoint(f
◦, g◦) is a star-like set with

respect to f ◦, and Cred

(
(f q)◦, (gq)◦

)
is bounded by convexity. Thus, there are contact pairs

(ũ1, ṽ1), . . . , (ũm, ṽm) ∈ Cred

(
f q, gq

)
and positive weights c̃1, . . . , c̃m satisfying (10.2). The

necessity of condition (1.6) follows from Lemma 10.5.

By the argument from Section 9 for radially symmetric, function the sufficiency

of the corresponding conditions follows as well. �

12 Discussion

12.1 Convex sets as a special case

Observe that Theorem 1.1 immediately follows from Theorem 4.1 by setting f = χL and

gb = χext K therein.

12.2 Equivalence of the John and the Löwner problems

Let f , g : Rd → [0, +∞) satisfy the assumptions of Theorem 5.1. Additionally, let f satisfy

Basic assumptions (1), Cpoint(f , g) be a star-like set with respect to g, and Cred(f , g) be

bounded. Clearly, if g is a local minimizer in the Löwner s-problem (1.4), then f is a

local maximizer in the John s-problem (1.1) for g and f . Hence, both Theorem 5.1 and

Theorem 4.1 are applicable in this case. We show that the corresponding versions of

(1.1) and (1.4) are equivalent in this case.

Since supp g◦ is bounded, we have that supp g = supp f ◦ = R
d. Therefore, there

are no “flat” contact points neither for the pair f and g, nor for f ◦ and g◦. More precisely,

if (u, v) with u = (u, f (u)) and v = (v, ν) belongs to Cred(f , g) (resp. Cred(g◦, f ◦)) then ν > 0

and f (u) > 0 (resp. f ◦(u) > 0). In this case, Lemma 7.5 yields

CJ(u, v) = ((u ⊗ p) ⊕ 1, p)

1 + 〈p, u〉

for some p ∈ ∂(− ln f )(u) ⊂ ∂(− ln g)(u). By the properties of the subdifferential listed in

Lemma 7.2,

u ∈ ∂
(− ln g◦)(p) ⊂ ∂

(− ln f ◦)(p)
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and g◦(p) = f ◦(p) = e−〈p,u〉
f (u)

. Hence, the pair (u, v) belongs to Cred(f , g) if and only if the pair

(
ũ, ṽ

)
belongs to Cred(g◦, f ◦) , where ũ = (p, g◦(p)) and ṽ =

(
u, 1

g◦(p)

)
1+〈p,u〉 . By direct calculations,

CJ(u, v) = CL

(
ũ, ṽ

)
.

The desired equivalence follows.

12.3 The fixed center John and Löwner problems—no translation

Our extended contact operator (A ⊕ α, a) ∈ M consists of two parts: the operator part

A ⊕ α and the translation part a. In essence, only the rightmost equation in (1.1) (resp.

(1.4)) is responsible for the translation (shifting) of the function. If A is a non-singular

matrix of order d and α > 0, then Lift αg(Ax) is the linear image of Lift g.

We will say that we consider the John or the Löwner s-problem (resp., Positive

John/Löwner s-problem) with fixed center if we maximize or minimize over Ef .c.

[
g
]

(resp., E+
f .c.

[
g
]
), where Ef .c.

[
g
] = {αg(Ax + a) : (A ⊕ α, a) ∈ Mf .c.} and E+

f .c.

[
g
] =

{αg(Ax + a) : (A ⊕ α, a) ∈ M+
f .c.}, where Mf .c. = {(A ⊕ α, 0) : (A ⊕ α, 0) ∈ M} and M+

f .c. ={
(A ⊕ α, 0) : (A ⊕ α, 0) ∈ M+}

.

Theorem 12.1 (Fixed center John condition). Let the functions f , gb : Rd → [0, +∞)

satisfy the assumptions of Theorem 4.1. Set g = log-env gb. Then the following hold.

1. If h = g is a local maximizer in the John s-problem with fixed center,

then there exist contact pairs (u1, v1), . . . , (um, vm) ∈ Cred

(
f , gb

)
and positive

weights c1, . . . , cm such that

m∑
i=1

ciui ⊗ vi = Idd and
m∑

i=1

cif (ui)νi = s (12.1)

where ui = (ui, f (ui)) and vi = (vi, νi).

2. If there exist contact pairs and positive weights satisfying equation (12.1),

then h = g is a global maximizer in the Positive John s-problem with fixed

center.

Sketch of the proof. In Lemma 4.7, we consider the linear span of Mf .c., which is a

subspace of W. By a standard separation argument, there are no contact pairs of f and

gb and positive weights satisfying equation (12.1) if and only if, a linear hyperplane with

normal of the form (H⊕γ , 0) strongly separates the set of contact operators and (Id⊕s, 0).

The rest of the proof coincides with that of Theorem 4.1. �
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Similarly, we have the following.

Theorem 12.2 (Fixed center Löwner condition). Let the functions f , gb : Rd → [0, +∞)

satisfy the assumptions of Theorem 5.1. Then the following hold.

1. If h = g is a local minimizer in the Löwner s-problem with fixed center,

then there exist contact pairs (u1, v1), . . . , (um, vm) ∈ Cred(g◦, f ◦) and positive

weights c1, . . . , cm such that

m∑
i=1

civi ⊗ ui = Idd,
m∑

i=1

cig
◦(ui) · νi = s. (12.2)

where ui = (ui, g◦(ui)) and vi = (vi, νi).

2. If there exist contact pairs and positive weights satisfying equation (12.2),

then h = g is a global maximizer in the Positive position Löwner s-problem

with fixed center.

We note that in the case of fixed center problems, the corresponding conditions,

that is, equations (12.1) and (12.2) coincide whenever both theorems are applicable.

Funding

This work was supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences

[to M.N.]; the National Research, Development, and Innovation Fund (NRDI) [K119670 and K131529

to M.N.]; and the ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and

Technology from the source of the NRDI [to M.N.].

Acknowledgments

We thank Alexander Litvak for the many discussions on Theorem 1.1. Igor Tsiutsiurupa partici-

pated in the early stage of this project. To our deep regret, Igor chose another road for his life and

stopped working with us.

References

[1] Alonso-Gutiérrez, D., B. G. Merino, C. Hugo Jiménez, and R. Villa. “John’s ellipsoid and the

integral ratio of a log-concave function.” J. Geom. Anal. 28, no. 2 (2018): 1182–201. https://

doi.org/10.1007/s12220-017-9858-4.

[2] Artstein-Avidan, S. and V. Milman. “A characterization of the concept of duality.” Electron.

Res. Announc. Math. Sci. 14 (2007): 42–59.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/20613/7265294 by Institute of Science and Technology Austria user on 08 January 2024

https://doi.org/10.1007/s12220-017-9858-4
https://doi.org/10.1007/s12220-017-9858-4


Functional John and Löwner Conditions 20669

[3] Artstein-Avidan, S. and V. Milman. “The concept of duality for measure projections of convex

bodies.” J. Funct. Anal. 254, no. 10 (2008): 2648–66. https://doi.org/10.1016/j.jfa.2007.11.008.

[4] Artstein-Avidan, S. and V. Milman. “The concept of duality in convex analysis, and the

characterization of the Legendre transform.” Ann. Math. (2) 169, no. 2 (2009): 661–74. https://

doi.org/10.4007/annals.2009.169.661.

[5] Bastero, J. and M. Romance. “John’s decomposition of the identity in the non-convex case.”

Positivity 6, no. 1 (2002): 1–16. https://doi.org/10.1023/A:1012087231191.

[6] Brazitikos, S., A. Giannopoulos, P. Valettas, and B.-H. Vritsiou. Geometry of Isotropic Convex

Bodies, vol. 196. Providence: American Mathematical Society, 2014. https://doi.org/10.1090/

surv/196.

[7] Giannopoulos, A., I. Perissinaki, and A. Tsolomitis. “John’s theorem for an arbitrary pair

of convex bodies.” Geom. Dedicata 84, no. 1–3 (2001): 63–79. https://doi.org/10.1023/A:

1010327006555.

[8] Yehoram Gordon, A. E., M. M. Litvak, and A. Pajor., et al. “John’s decomposition in the general

case and applications.” J. Differential Geom. 68, no. 1 (2004): 99–119, 09.

[9] Grünbaum, B. “Measures of symmetry for convex sets.” In Proc. Sympos. Pure Math. vol. VII,

233–70. Providence, RI: Amer. Math. Soc., 1963. https://doi.org/10.1090/pspum/007/0156259.

[10] Ivanov, G. and M. Naszódi. “Functional John ellipsoids.” J. Funct. Anal. 282, no. 11 (2022):

109441. https://doi.org/10.1016/j.jfa.2022.109441.

[11] Ivanov, G. and I. Tsiutsiurupa. “Functional Löwner ellipsoids.”J. Geom. Anal. 31, no. 11 (2021):

11493–528. https://doi.org/10.1007/s12220-021-00691-4.

[12] Hugo Jiménez, C. and M. Naszódi. “On the extremal distance between two convex bodies.”

Israel J. Math. 183 (2011): 103–15. https://doi.org/10.1007/s11856-011-0044-2.

[13] John, F. “Extremum problems with inequalities as subsidiary conditions.” In Traces and

Emergence of Nonlinear Programming, 197–215. Springer, 2014. https://doi.org/10.1007/978-

3-0348-0439-4_9.

[14] Lewis, D. R. “Ellipsoids defined by Banach ideal norms.” Mathematika 26, no. 1 (1979): 18–29.

https://doi.org/10.1112/S0025579300009566.

[15] Li, B., C. Schütt, and E. M. Werner. “The Löwner function of a log-concave function.” J. Geom.

Anal. 31, no. 1 (2021): 423–56. https://doi.org/10.1007/s12220-019-00270-8.

[16] Palmon, O. “The only convex body with extremal distance from the ball is the simplex.” Israel

J. Math. 80, no. 3 (1992): 337–49. https://doi.org/10.1007/BF02808075.

[17] Rockafellar, R. T. Convex Analysis, Number 28. Princeton University Press, 1970. https://doi.

org/10.1515/9781400873173.

[18] Schneider, R. Convex Bodies: The Brunn–Minkowski Theory, Number 151. Cambridge Univer-

sity Press, 2014.

[19] Tomczak-Jaegermann, N. Banach–Mazur Distances and Finite-Dimensional Operator Ideals.

Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Harlow: Longman

Scientific & Technical; copublished in the United States with John Wiley & Sons, Inc., New

York, 1989.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/23/20613/7265294 by Institute of Science and Technology Austria user on 08 January 2024

https://doi.org/10.1016/j.jfa.2007.11.008
https://doi.org/10.4007/annals.2009.169.661
https://doi.org/10.4007/annals.2009.169.661
https://doi.org/10.1023/A:1012087231191
https://doi.org/10.1090/surv/196
https://doi.org/10.1090/surv/196
https://doi.org/10.1023/A:1010327006555
https://doi.org/10.1023/A:1010327006555
https://doi.org/10.1090/pspum/007/0156259
https://doi.org/10.1016/j.jfa.2022.109441
https://doi.org/10.1007/s12220-021-00691-4
https://doi.org/10.1007/s11856-011-0044-2
https://doi.org/10.1007/978-3-0348-0439-4_9
https://doi.org/10.1007/978-3-0348-0439-4_9
https://doi.org/10.1112/S0025579300009566
https://doi.org/10.1007/s12220-019-00270-8
https://doi.org/10.1007/BF02808075
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173

	 Functional John and Lowner Conditions for Pairs of Log-Concave Functions
	1 Introduction
	2 Basic Notions
	3 The Normal Cone of the Lifting
	4 John's Problem
	5 Lowner Problem
	6 Existence and Uniqueness of Solutions
	7 The Normal Cone and the Subdifferential
	8 Properties of the Set of Contact Pairs
	9 Radially Symmetric Functions
	10 The <0:tex-math 0:notation="LaTeX" 0:id="ImEquation1363" > q-Concave Case
	11 Proofs of the Results Presented in the Introduction
	12 Discussion


